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1 Introduction

Adaptive control of nonlinear systems has been an active area in recent years, but it is dif-
ficult to control unknown plants. A common approach to deal with this problem is to utilize
the simultaneous identification technique. Neural networks have been employed in the iden-
tification and control of unknown nonlinear systems owing to their massive parallelism, fast
adaptation and learning capability. Neural networks based control naturally leads to prob-
lems in nonlinear control and nonlinear adaptive control. The past decade has witnessed
great activity in the field, with increased awareness on the part of researchers that such
problems can be addressed within the framework of mathematical control theory.

Adaptive neural networks control can be classified by the types of neural networks or
by methods. By neural networks, we have continuous time [23], discrete-time [2], feedfor-
ward [21] and recurrent [16] neuro control. By methods, for examples, internal model neuro
control used forward and inverse model are within the feedback loop [25]. Neural control
can realize output regulation and tracking problems in nonlinear systems [2], decentralized
control for large-scale systems was proposed in [6], backstepping technique can be applied
for neural control [24]. Adaptive neural networks control has two kinds of structure: indirect
and direct adaptive control. Direct neuro adaptive may realize the neuro control by neural
network directly [21]. The indirect method is the combination of the neural network identifier
and adaptive control, the controller is derived from the on-line identification [26]. Lyapunov
synthesis approach is most popular tool for neural control [22]. Lyapunov–Krasovskii func-
tions can be used for adaptive neural control with unknown time delays [5]. Passivity analysis
can simplify the learning algorithms [29].

Some of neural networks applications, such as patterns storage and solving optimization
problem, require that the equilibrium points of the designed network be stable [9]. So, it is
important to study the stability of neural networks. Dynamic neural networks with different
time-scales can model the dynamics of the short-term memory (neural activity levels) and
the long-term memory (dynamics of unsupervised synaptic modifications). Their capability of
storing patterns as stable equilibrium points requires stability criteria which includes the mu-
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tual interference between neuron and learning dynamics. The dynamics of dynamic neural
networks with different time-scales are extremely complex, exhibiting convergence point at-
tractors and periodic attractors [1]. Networks where both short-term and long-term memory
are dynamic variables cannot be placed in the form of the Cohen-Grossberg equations [4].
However, a large class of competitive systems have been identified as being "generally"
convergent to point attractors even though no Lyapunov functions have found for their flows.

There are not many results on the stability analysis of neural networks in spite of their
successful applications. The global asymptotic stability (GAS) of dynamic neural networks
has been developed during the last decade. Negative semi-definiteness of the interconnec-
tion matrix may make Hopfield-Tank neuro circuit GAS [5]; The stability of neuro circuits was
established by the concept of diagonal stability [13]. By the frameworks of the Lur’e sys-
tems, the absolute stability of multilayer perceptrons (MLP) and recurrent neural networks
were proposed in [28] and [19]. Input-to-state stability (ISS) analysis method [10] is an ef-
fective tool for dynamic neural networks, and in [?] it is stated that if the weights are small
enough, neural networks are ISS and GAS with zero input. Stability of identification and
tracking errors with neural networks was also investigated. [8] and [14] studied the stability
conditions when multilayer perceptrons are used to identify and control a nonlinear system.
Lyapunov-like analysis is a popular tool to prove the stability. [26] and [29] discussed the
stability of signal-layer dynamic neural networks. For the case of high-order networks and
multilayer networks the stability results may be found in [11] and [23].

Although many important results and discoveries have been made in neural adaptive
control, a number of open problems for nonlinear dynamic systems remain unsolved.

1. Various physical problems are characterized by the presence of a small disturbance
which because it is active over a long period of time, has a non-negligible cumulative
effect. Perturbation methods can be used to obtain an approximate solution in the form
of an expansion in a small parameter. A special method is called singular perturbation.
It makes use of multiple time scales in initial value problems and coordinate stretching
in regions of sharp change in boundary value problems. A basic requirement of pertur-
bation methods is that the nonlinear system is complete known. If we use the universal
approximation properties of neural networks [7], can we apply perturbation methods to
unknown nonlinear systems?

2. Many large scale systems, such as power systems, can be decomposed into slowly
coherent areas and fast subsystems in the Lure formation by time scale property [12].
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Some mechanics systems can also be divided into fast and slow subsystems, for ex-
ample the dynamic of flexible-link robot can be broken into two parts in a separate
time scales [18]. Since the normal neural control uses unique time scale, some papers
have used two neural networks to control the fast and slow subsystems independently
[17]. Each controller is normal unique time scale. Can we design multi-time scale
neural networks controller for multi-time scales plant directly?

3. Neural networks operate in two modes: computing and learning. For example, Hopfield
type recurrent neural networks, the computing operation defined by the system equa-
tion is a "fast" synaptic event associated with a small time constant (RC), whereas the
learning (synaptic weight change) can be thought as a "slow" process with a large time
constant 1

λ
(λ is learning rate). Almost all of analysis for neural control regard these two

modes operate in the same time scale. If we use multi-time scales, can we design both
learning and computational parts of a neural networks to ensure learning convergence
and closed-loop stability?

4. Many practical systems involve sensors that provide signals at slow sample rates. The
controller and output sensor have different time scales. Some control systems have
different control periods, for example, in visual servoing system joint servoing is faster
than image-based control [27]. To the best of our knowledge, multi-rate technique
for neural control has not yet been established in the literature. Can we use neural
networks to apply multi-rate control?

To the best of our knowledge, adaptive control and identification for multiple time scale
dynamic systems via multiple time scales neural networks has not yet been established
in the literature. The project objective is to develop a methodology for the analysis and
design of nonlinear dynamic systems that have an underlying multiple time-scale structure
via neural networks. The presence of two or more widely separated time-scales offers the
opportunity for reduced-order analysis and design, yet at the present time there is no general
methodology for uncovering and exploiting time-scale separation in nonlinear systems.

We are developing neural networks with multiple time scales for time-scale identification
and reduced-order model development for high-order nonlinear systems that arise in the
context of analyzing and designing machines, processes, structures, ground and aerospace
vehicles, robots, and other mechanical systems. Since the neural networks with multiple
time scales have learning abilities in multirate, we can do identification and adaptive control
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for multiple time scales systems. They have universal forms for a large class of multiple time
scales nonlinear systems, we can develop an universal proof approach to overcome the
validation difficulty in complete large scale systems. In order to show the effectiveness of
adaptive neural networks with multiple time scales, we will use two typical multi-time scales
nonlinear systems, flexible-link robot arm and multi tank system, to verify the theory results.

2 Objectives

We will study adaptive neural networks control with multiple time scales in both theory and
application. Following objectives will be reached in this project.

1. Give new neural networks models for multi-time scales systems. For multi-time scales
nonlinear systems, singular perturbation, large scales system theory and multirate the-
ory are mostly used when the plants are known. The normal neural networks can
model any nonlinear plant, but they are unique time scale. In order to model multi-time
scales nonlinear systems, one approach is to use multiple neural networks, where a
switch logic is applied to change time scales [30]. But multiple neural networks cannot
take benefits from multi-time scales theory. In this project, we will use multi-time scales
theory to construct new modelling frameworks, which are called Multi-Time Scales
Neural Networks (MTSNN). These new neural networks will include four types: con-
tinuous time static networks, continuous time dynamic networks, discrete-time feedfor-
ward networks and discrete-time recurrent networks.

2. Give new learning laws for Multi-Time Scales Neural Networks (MTSNN). The four
neural networks models in Objective 1 are special nonlinear systems. We will show
how to design learning algorithm by nonlinear multi-time scales theory instead of tradi-
tional gradient descent. These learning algorithms can guarantee convergence without
the usual problems, such as local minima, slow convergence, etc. At least we will be
able to develop sufficient conditions for such convergence. Because nonlinear multi-
time scales theory can consider learning process and neural networks computing at
same time, some better learning laws can be obtained which will ensure fast learning
convergence and closed-loop stability.

3. Modelling analysis. Multi-time scale decompositions can reduce the model complexity
[18]. Multi-time scales systems identification via neural networks is a very interesting
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Figure 1: Flexibale-link robot arm control system

topic. This project will use perturbation methods and multirate technique in neural
identification. Several theory problems will be solved, such as observability, stability,
parameters identification, convergence for each subsystems and for whole multi-time
scales system, etc.

4. Robust adaptive control for uncertain multi-time scales nonlinear system. Adaptive
control via multi-time scales neural networks can follow the route of traditional ap-
proaches: singular perturbation method [18], large-scale systems theory [6] and multi-
rate technique [27]. Nobody have ever used multi-time scales neural networks control
for multi-time scales nonlinear system. We will solve following problems: controllability
of uncertain multi-time scales nonlinear system, robust stability for uncertain nonlinear
system, how to obtain continuous and discrete control commands, etc.

5. Applications. We will present one software package with MATLAB, with which we can
do identification and synthesis automatically via multi-time scales neural networks. We
will also present two prototypes: flexible-link robot arm (see Fig.1) and multi tank sys-
tem (see Fig.2). Flexible-link robot arm is a benchmark problem for singular perturba-
tion method. Multi tank system can be used for multirate control.
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3 Methods

In order to finish the objectives proposed in this project. We will use following approaches.

1. Multi-Time Scales Neural Networks (MTSNN) are our new modeling tools. The theory
base of singular perturbation methods is

·
x = f (x, z, u, ε)

ε
·
z = g (x, z, u, ε)

As a “boundary” value problem, we have the conditions as x(0) = x0, z(tf) = zf . We
may construct four types of neural networks with two time scales (fast and slow)

• Continuous time static MTSNN
·bx1,t = f (x1,t, x2,t)

ε
·bx2,t = g (x2,t, x2,t)byt =Wtσ([V1,t, V2,t] [bx1,t, bx2,t]T )

where bx1,t ∈ <n, bx2,t ∈ <n are the states of the neural network, f and g are
nonlinear functions which we will design, Wt and [V1,t, V2,t] are the weights of the
neural networks
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• Continuous time dynamic MTSNN. A general dynamic neural network with two
time-scales can be expressed as

·
x = Ax+W1σ1(V1 [x, z]

T ) +W3φ1(V3 [x, z]
T )u

�
·
z = Bz +W2σ2(V2 [x, z]

T ) +W4φ2(V4 [x, z]
T )u

(1)

where x ∈ Rn and z ∈ Rn are slow and fast states, , Wi ∈ Rn×2n (i = 1 · · · 4) are
the weights in output layers, Vi ∈ R2n×2n (i = 1 · · · 4) are the weights in hidden
layers, σk = [σk (x1) · · ·σk (xn) , σk (z1) · · ·σk (zn)]T ∈ R2n (k = 1, 2), φ(·) ∈ R2n×2n

is diagonal matrix,φk (x, z) = diag [φk (x1) · · ·φk (xn) , φk (z1) · · ·φk (zn)] (k = 1, 2),
u(k) = [u1, u2 · · ·um, 0, · · · 0]T ∈ R2n. A ∈ Rn×n, B ∈ Rn×n are stable matrices
(Hurwitz). � is a small positive constant. The structure of the dynamic neural
networks (2) is shown in Fig.3. When � = 0, the dynamic neural networks (1)
have been discussed by many authors, for example [26], [23] and [29]. One may
see that Hopfield model is a special case of this kind of neural networks with
A = diag {ai} , ai := −1/RiCi, Ri > 0 and Ci > 0. Ri and Ci are the resistance
and capacitance at the ith node of the network respectively. The sub-structure
W1σ1(V1 [x, z]

T )+W3φ1(V3 [x, z]
T )u is a multilayer perceptron structure. In order or

simplify the theory analysis, we let the hidden layers Vi = I. We discuss a single
layer neural network

·
x = Ax+W1σ1 (x, z) +W3φ1(x, z)u

�
·
z = Bz +W2σ2 (x, z) +W4φ2(x, z)u

(2)

• Discrete-time feedforward MTSNN. We consider multilayer neural network(or mul-
tilayer perceptrons, MLP) which is represented as

bx1 (k + 1) = f (bx1 (k) , bx2 (k))
εbx2 (k + 1) = g (bx1 (k) , bx2 (k))byt = Vtσ([W1,t,W2,t] [bx1 (k) , bx1 (k)]T )

where the scalar output y (k) and vector input X (k) ∈ Rn×1 is defined in (??), the
weights in output layer are Vk ∈ R1×m, the weights in hidden layer are Wk ∈ Rm×n,

φ is m−dimension vector function. The typical presentation of the element φi(.) is
sigmoid function.

• Discrete-time recurrent MTSNNbx (k + 1) = Abxt + V1,kσ [W1 (k)x (k)] + V2,kφ [W2 (k)x (k)]U (k)

εbz (k + 1) = Bbz (k) + V3,kσ [W3 (k)x (k)] + V4,kφ [W4 (k)x (k)]U (k)
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Figure 3: Dynamic neural network with two time-scales

where bx (k) ∈ <n represents the internal state of the neural network . The matrix
A ∈ <n×n is a stable matrix which will be specified after. The matrices Wi (k) ∈
<m×n are the weights of the neural network, the weights in output layer are Vi,k ∈
R1×m, σ and φ are m−dimension vector function σ = [σ1 · · ·σn]T . The typical
presentation of the element σi(.) is sigmoid function.

The stability of neural networks can be discussed using Tikhonov’s theorem. There
are other interesting problems for these new types of neural networks, such as how to
choose ε, time scale analysis for neural networks, stability radius of the neural networks
by Popov-Yakubovich theory, etc.

2. New learning laws for Multi-Time Scales Neural Networks (MTSNN). The typical adjust-
ment algorithm for the weights of neural networks are gradient descent. In continuous
time, learning law is

·
W 1,t = −λPσ(V1,tbxt)∆T

t
·
V 1,t = −λPW1,tDσ∆tbxTt

In discrete-time, the learning algorithm

Wk+1 =Wk − λe (k)φ0V 0TXT (k)

Vk+1 = Vk − λe (k)φT

In order to ensure stable learning, λ should be very small. Combine these algorithms
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and the normal neural networks
·bxt = Abxt +W1,tσ(V1,tbxt)
1
λ

·
W 1,t = −Pσ(V1,tbxt)∆T

t

It is in the form of singular perturbation. Here the neuro states and neuro weights are
redefined as fast and slow variables. It exhibit all the characteristic feature of singularly
perturbed systems. We may use singular perturbation theory to obtain better learning
laws.

3. Modeling via Multi-Time Scales Neural Networks (MTSNN) in this project can be di-
vided into two types: singular perturbation method and multirate identification.

• Neural networks identification is in the sense of black-box. If we know the black-
box can be divided into fast and slow subsystems, it becomes gray box, now
MTSNN is more suitable, because the model (MTSNN) and plant have the same
structure. For example, modelling for flexible link robot, the dynamic of a robot
with nr flexible links and ne elements for each link is

D (q)
··
q + C

³
q,

·
q
´ ·
q + F

³
q,

·
q
´
+G (q) +Kq = B (q)u

By singular perturbation method it can be rewritten as
··
qr = −MrrHr −MrfHf −MrfKffsz +Mrru

ε2
··
zr = −MfrHr −MffHf −MffKffsz +Mfru

The following neural networks have the same form as above
·bxt = Abxt +W1,tσ(V1,tbxt) +W2,tφ(V2,tbxt)π (ut)
·
εbzt = Bbzt +W3,tσ(V3,tbxt) +W4,tφ(V4,tbxt)π (ut)

• Multirate identification. When the output y is measured J times slower than the
secondary process output v and the input u, an output estimate ye should be pro-
duced at each sampling interval of v and u, this is multirate inferential theory. We
can apply this theory to neural identification, where the outputs of neural networks
are also in multirate.

4. Adaptive control with multi-time scales neural networks (MTSNN) is absolute new con-
troller. Several theory problems should be discussed, such as stability, robust modifi-
cation (for example, dead-zone, σ−modification), indirect and direct adaptive control,
can be applied to MTSNN. The following techniques can be used
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• Normal neuro control theory [23] can be used to analyze each subsystems.

• For the whole system singular perturbation, multirate control and K-monotone
theory can be used to analyze the closed-loop system. For multirate neuro control,
inter sample responses are estimated and used as compensation for the missing
measurements of the controlled output. This scheme can therefore operate at the
desired fast rate. We can also update the control action at the slow rate that the
output is sampled, it is different from conventional techniques.

• Some traditional controller can be combined with neuro control, for example op-
timal control, LQG, etc. Large scale systems can be decomposed hierarchically.
For example, adaptive optimization problem can be solved by decoupling the per-
formance index. For MTSNN, the object can be decoupled by the hierarchical
structure, and multirate control technique may be applied.

5. Flexible-link robot arm is an economic multi-time scales prototype. The two subsystem
have their own inner-loop control system (PD control). We are interesting in multi-time
scales neural networks control. There are some results on classical control (PD, LQG,
optimal) combined with neural networks control [18]. It is very interesting to check if
this multi-time scales system can be stabilized a multi-time scales neural networks.

6. Control of the multi tank system is to maintain the water levels in the three tanks at
some desired values. Three control loops are needed, theory analysis shows that
Zone appears if these control algorithms are simple switch. We will check our multirate
neuro adaptive control algorithm to model and avoid Zone.

4 Members of this project:

• Responsible:

Dr. Wen Yu Liu (SNI – II, investigador titular del CINVESTAV nivel 3C)

• Participants:

Dr. Ieroham Barouch (SNI – I, investigador titular CINVESTAV nivel 3A)
Dr. Manuel de la Sen (collaborative researcher from Facultad de Ciencias de Universidad

del País Vasco, Spain)
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Dr. QuanMin Zhu (collaborative researcher from Faculty of Engineering and Mathemati-
cal Sciences, University of the West of England, UK)

Dr. Yuhong Zhang (collaborative researcher from University of Delaware, USA)
M. en C. Alejandro Cruz Sandova (CINVESTAV Doctor Degree student, generation 2004)
M. en C. Rubio Avilla Jose de Jesus (CINVESTAV Doctor Degree student, generation

2003)
M. en C. Rigoberto Toxqui Toxqui(CINVESTAV Doctor Degree student, generation 2004)

5 Feasibility

Human resource:

• The responsible Dr.Wen Yu Liu has worked on neural network control and nonlinear
system theory for 8 years, he has published 30 international journal papers and about
70 international conference papers on these two areas. Especially, in recent three
years she has paid more attention on multi-time scales system via neural networks. Dr
Wen Yu Liu had been the responsible of a CONACyT project (ref. 38505A) during the
period 2002-2004, and the project was finished successfully. Dr.Wen Yu Liu has ability
to combine neural networks and nonlinear system theory together and develop a new
modeling tool: Multi-Time Scales Neural Networks (MTSNN). This project will be done
in the Department of Automatic Control of CINVESTAV. There are several professors
working on neural networks and nonlinear system. We have already got some results
on neural networks [29], multi-model [30], and nonlinear control [31]. These are great
help for this project.

• One of participants Dr.Ieroham Barouch is an expert on neural networks. He has been
the responsible of the development of neural networks algorithms. So, he has enough
experience to assure the completion of simulation and learning algorithm.

• Dr. Manuel de la Sen is a world-wide known expert in the area of nonlinear system
control. We knew each other 8 years ago, and we have intended to cooperate since 3
years before. We tried to apply a bilateral project in the last year. Although it was not
approved, the cooperation relation has been established. We believe his participation
will be very helpful.
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• Dr. QuanMin Zhu and Dr. Yuhong Zhang are the pioneers in the area of neural control,
also they are the first researchers who proposed the concept of neural multi-time scales
control. We have some communication with them. And they gave us a lot of valuable
advice. We believe that their participations will be significant on improving research
quality.

• The three Ph.D. students, Alejandro Cruz Sandova, Rubio Avilla Jose de Jesus and
Rigoberto Toxqui Toxqui, have a lot of programming and software design experience.
On the other hand, our doctoral students have basic theoretical research capability. By
the direction of their advisors they are able to finish their activities.

Laboratories and Equipment:

• This project will be executed in the Department of Automatic Control of CINVESTAV,
where three laboratories and various types of computers, workstations, operation sys-
tems, software and networks may be utilized freely.

6 Expected Results

• 4-6 international journal publications (each year will publish 2 international journal pa-
pers)

• 6-9 international conference publications (each year will publish 2-3 international con-
ference papers)

• Multi-Time Scales Neural Networks (MTSNN) software package

• Two prototypes: flexible-link robot arm and multi tank system for the lab of our depart-
ment

• 3 doctoral thesis (now 5 doctor students already started their works)

• 2 master thesis

7 Plan of the Project

• The first year will realize Objective 1 and Objective 2:
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– Cuatrimestre 1: collect publications about multi-time scales system, and proposed
a survey on adaptive control of multi-time scales nonlinear system

– Cuatrimestre 2: study Multi-Time Scales Neural Networks. We will propose a ba-
sic framework which can model and control uncertain multi-time scales nonlinear
system. Finish Objective 1

– Cuatrimestre 3: propose new learning laws for MTSNN. Finish Objective 2

• The second year will realize Objective 3 and Objective 4

– Cuatrimestre 1: Theory analysis and simulation for nonlinear systems identifica-
tion via MTSNN, finish Objective 3

– Cuatrimestre 2: Theory analysis and simulation for nonlinear systems adaptive
control via MTSNN, finish Objective 4

– Cuatrimestre 3: Prepare some paper for international journals.

• The third year will realize Objective 5

– Cuatrimestre 1: do the experiment on flexible-link robot arm and multi tank sys-
tems.

– Cuatrimestre 2: finish software package, with which we can do identification and
synthesis automatically via multi-time scales neural networks

– Cuatrimestre 3: prepare the final document and some papers for publication.
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