
Centro de Investigación yde Estudios Avanzados delInstituto Politécnico NacionalUnidad ZacatencoDepartamento de ComputaciónMétodos de Reducción de Datos paraClasificación con Máquinas de SoporteVectorial
Tesis que presenta

Asdrúbal López Chau

para obtener el grado de
Doctor en Ciencias en Computación

Asesores
Dra. Xiaoou Li

Dr. Wen Yu

México, Distrito Federal Septiembre, 2013

Centro de Investigación yde Estudios Avanzados delInstituto Politécnico NacionalUnidad ZacatencoDepartamento de ComputaciónData Reduction Methods forClassification with Support VectorMachines
Dissertation submitted by

Asdrúbal López Chau

for the degree ofDoctor of Philosophy (PhD) in Computer Science
Supervisors

Dr. Xiaoou Li
Dr. Wen Yu

Mexico City September, 2013

Abstract

Support Vector Machine (SVM) is a state-of-the-art classification method whose model isa hyperplane of maximum margin. SVMs produce a high classification accuracy, a compactmodel and have an extraordinary generalization capability. In spite of these attractive features,this classifier has the disadvantage of being unsuitable for large data sets, because its trainingphase is costly.In this research, two methods to decrease the size of the training data sets are proposed,in order to improve the training time of a SVM. The first method presented in this work usesa convex-concave hull to detect objects in data sets that are located on the outer boundariesof data, this method is suitable for low dimensional data sets. The second method uses theconcept of entropy to detect objects that are close to others with opposite label; this methodcan work with an arbitrary number of dimensions.Our methods allow to apply SVMs on large data sets. In fact, these methods also improvethe training time on medium-size data sets. The proposed methods were validated usingpublicly available data sets and comparing performance against other state of the art methods.After applying the novel methods, the training time of SVM is considerably improved whereasthe achieved classification accuracy is only slightly degraded.

Resumen

La Máquina de Soporte Vectorial o Máquina de vectores de soporte (SVM, por sus siglasen inglés) es un clasificador del estado del arte cuyo modelo es un hiperplano de margenmáximo. Las SVMs alcanzan una elevada precisón de clasificación, un modelo compacto ytienen un poder de generalización extraordinario. A pesar de estas atractivas características,este clasificador tiene la desventaja de no ser apropiado para conjuntos de datos grandes,debido a que su fase de entrenamiento es costosa.En esta investigación, se proponen dos métodos para disminuir el tamaño de conjuntos dedatos, estos mejoran el tiempo de entrenamiento de las SVMs. El primer método presentadoen este trabajo usa una cubierta cóncava-convexa para detectar objetos localizados en losbordes externos de conjuntos de datos; este método es adecuado para conjuntos de datos debaja dimensionalidad. El segundo método usa el concepto de entropía para detectar objetosque se encuentran cerca de otros de clase opuesta; este método puede trabajar con un númeroarbitrario de dimensiones.Los métodos de reducción de datos propuestos permiten aplicar SVM sobre conjuntos dedatos grandes. De hecho, estos métodos también mejoran el tiempo de entrenamiento enconjuntos de datos medianos. Los métodos propuestos fueron validados usando conjuntos dedatos disponibles públicamente y comparando su desempeño con respecto al de otros métodosdel estado del arte. Después de aplicar los nuevos métodos, el tiempo de entrenamiento de lasSVMs mejora de manera considerable, mientras que la precisión alcanzada sólo es disminuidaligeramente.

Publications

The products developed in this research are the following:
1. Journal paper: Convex and concave hulls for classification with support vector

machine, Asdrúbal López Chau, Xiaoou Li, Wen Yu, Neurocomputing, Availableonline 11 July 2013, ISSN 0925-2312, http://dx.doi.org/10.1016/j.neucom.2013.05.040.(http://www.sciencedirect.com/science/article/pii/S0925231213006449)
2. Journal paper: Support vector machine classification for large datasets

using decision tree and Fisher’s linear discriminant, Asdrúbal López Chau,Xiaoou Li, Wen Yu, Future Generation Computer Systems, Available online10 July 2013, ISSN 0167-739X, http://dx.doi.org/10.1016/j.future.2013.06.021.(http://www.sciencedirect.com/science/article/pii/S0167739X13001350)
3. Journal paper: Large Data sets Classification Using Convex-Concave Hull and Support

Vector Machine, Asdrúbal López Chau, Xiaoou Li and Wen Yu, Soft Computing, SpringerVerlag, 12 pages, pp 793-804, ISSN 1432-7643, 2013, doi10.1007/s00500-012-0954-x
4. Journal paper: Structural Health Monitoring of Tall Buildings with Numerical Integrator

and Convex-Concave Hull Classification, Suresh Thenozhi, Wen Yu, Asdrúbal López
Chau, and Xiaoou Li, Mathematical Problems in Engineering, vol. 2012, Article ID212369, 15 pages, 2012. doi:10.1155/2012/212369

5. Book chapter: Border Samples Detection for Data Mining Applications Using non
Convex Hulls, Asdrúbal López Chau, Xiaoou Li, Wen Yu, Jair Cervantes and Pedro

Mejía. Advances in Soft Computing LNCS, Vol. 7095, ISBN 978-3-642-25329-4, pp261-272. Año 2011.
6. Book chapter: A Fast SVM Training Algorithm Based on a Decision Tree Data Filter,Jair Cervantes, Asdrúbal Lopez and Farid Garcia y Adrían Trueba. Advances in ArtificialIntelligence LNCS, Vol. 7094, ISBN 978-3-642-25323-2, pp 261-272, 187-197. Año2011.
7. Conference paper: Data Selection Using Decision Tree for SVM Classification, Lopez-

Chau, A.; Garcia, L.L.; Cervantes, J.; Xiaoou Li; Wen Yu, Tools with Artificial Intelligence(ICTAI), 2012 IEEE 24th International Conference on , vol.1, no., pp.742,749, 7-9 Nov.2012
8. Conference paper: Fast Splice Site Classification Using Support Vector Machines

in Imbalanced Data sets, Jair Cervantes, Asdrúbal López Chau, Adrian TruebaEspinoza and Jose Sergio Ruiz Castilla, Proceedings of the 2011 internationalconference on bioinformatics and computational biology. Volume I ISBN:1-60132-170-8,1-60132-171-6(1-60132-172-4), pp 136-141. Año 2011.
9. Doctoral consortium: Data stream classification, Asdrúbal López Chau, November 9th2010, Mexican international conference on artificial intelligence. Pachuca, Hidalgo.México.

10. Conference paper: SV candidates pre-selection strategy using non convex hulls,
Asdrúbal López Chau, Xiaoou Li, Wen Yu and Jair Cervantes, 2010, 7th InternationalConference on Electrical Engineering, Computing Science and Automatic Control (CCE2010), México.

To Lutecia

Thank you for illuminating my life in every existence

Asdrúbal

Acknowledgments

The number of people that helped me to finish this research easily exceeds the number ofwords in this document. Due to the limited space in it, many people are not mentioned inthese acknowledgments. Thanks to them too.I wish to thank to my wife Lutecia. Her mere presence in my life has been a motive towalk along the eightfold path. Also, I would lile to thank to all my family. As well as Dr.Xiaoou Li and Dr. Wen Yu, my thesis advisers, for giving me the opportunity to continuingwith graduate studies.An acknowledgment to the reviewers of this work. Dr. Carlos A. Coello Coello, histeachings, comments and suggestions dramatically improved this work. I will be alwaysindebted to him; Dr. Debrup Chakraborty, his observations enhanced this work. His amazingand elegant courses will be a permanent source of inspiration for me; Dr. Jair Cervantes, hissuggestions and discussions about this research encouraged me to continue and finish thiswork, he has become an invaluable friend; Dr. Iván López Arevalo and Dr. Miguel GonzálezMendoza, their comments were very important.I am grateful with all professors at the Computer Science Department at CINVESTAV-IPN,specially, to Dr. José G. Rodríguez, Dr. Oliver Schütze and Dr. Jorge Buenabad.The assistance of Pedro Guevara López, José de Jesús Medel Juárez, Miguel Angel MiguezEscorcia, Jose Carlos Quezada and Cristina Flores Amador at the beginning of this journey wasinestimable. I appreciate the help of Francisco Javier García Lavalley, Rodolfo Tellez Cuevas,Raymundo Ocaña and Alejandro Mendieta for the facilities they provided me to continue withthis research work. A special gratitude to all my friends at the Universidad Autónoma del

Estado de México of Mexico and Universidad Autónoma del Estado de Hidalgo.I feel privileged to have studied at CINVESTAV-IPN. Also, I feel fortunate to havemet valuable friends. Liliana Puente Maury, her prodigious help played a very importantrole. Furthermore, thanks to Farid García, Lisbeth Masahua, Ivonne Ávila, Kimberly García,Gabriela Sánchez, Luis Enrique Ramírez, Joel Villanueva, Israel Buitrón, Saúl Zapotecas,Cuauhtemoc Mancillas, Daniel Escogido and Eduardo Pérez.Some friends gave me moral support during last years: Jorge Bautista López, LourdesLópez García, Carlos Alberto Rojas Hernández and Jair García Lamont.Finally, but no less important, my gratefulness to Sofia Reza, Felipa Rosas and ErikaBerenice Ríos for their extraordinary support.This research would not have been possible without the student grant of CONACYT.

Contents

1 Introduction 1

2 Classification 72.1 Preliminaries . 72.2 Classifiers . 92.2.1 Linear Models . 162.2.2 Support Vector Machines . 172.2.3 Decision Trees . 292.2.4 Fisher’s Linear Discriminant . 302.3 Model Evaluation . 322.4 Conclusions . 37
3 Training Support Vector Machines with Large Data sets 393.1 Data reduction methods . 403.1.1 Random Sampling Methods . 403.1.2 Distance-based methods . 423.2 Decomposition Methods . 473.3 Variants-based methods . 513.4 Other methods . 513.4.1 Parallel implementations . 513.4.2 Alpha seeding . 52

3.4.3 On-line training . 523.5 Preliminary experiments . 533.6 Conclusions . 58
4 Data reduction method based on convex-concave hull 614.1 Convex hull for classification . 614.2 Non-Convex Hull . 674.3 Searching for the vertices of convex-concave hull 684.3.1 Pre processing . 744.3.2 Searching for convex-concave hull vertices in higher dimensions 784.4 SVM Classification via Convex-Concave Hull . 784.5 Performance analysis . 814.5.1 Memory space . 814.5.2 Computational time . 824.6 Results . 834.6.1 Experiment 1: Size of the training set 864.6.2 Experiment 2: Parameters . 884.6.3 Experiment 3: Comparative with other methods 894.7 Conclusions . 90
5 Data reduction with decision tree and Fisher’s linear discriminant 935.1 Decision trees and SVMs . 935.2 Detecting regions with support vectors . 945.2.1 Computing adjacent regions . 955.2.2 Detecting objects on boundaries . 1005.3 Experiments and results . 1035.3.1 Data sets used in the experiments . 1045.3.2 Calibration of Parameters . 1065.3.3 Results . 1075.4 Variant of the DTFSVM method . 1075.4.1 Methods based on clusters for training SVMs 1075.4.2 Selection using directed random sampling 1105.5 Performance analysis . 112

5.6 Experiments and results . 1135.6.1 Data sets . 1135.6.2 Setup . 1145.6.3 Results and discussion . 1145.7 Conclusions . 117
6 Conclusions and future work 1216.1 Conclusions . 1216.2 Future work . 123
References 124

List of Figures

Page

2.1 A graphic example of separating hyperplane 132.2 Minimum distance to convex set . 142.3 Minimum Norm Duality . 152.4 Linear Decision Boundary . 162.5 Margin computation for linearly separable case 192.6 Soft-margin computation for linearly inseparable case 252.7 An example of a decision tree . 302.8 An example of Fisher’s linear discriminant . 38
3.1 Some neighbors of support vectors have opposite label 453.2 Separating hyperplane is used to select examples 483.3 Toy example of a linearly separable data set 543.4 Distances to the closest example, linearly separable case 543.5 Toy example of a linearly inseparable data set 553.6 Distances to the closest example, linearly inseparable case 553.7 . 56
4.1 Linear decision boundary for a binary classification problem 624.2 A separating hyperplane is defined by the closest pair of points in the

convex hulls . 63

LIST OF FIGURES
4.3 Reduced convex hull, µ = 0.5 . 664.4 Scaled convex hull, λ = 0.5 . 674.5 An example of a concave polygon . 684.6 The convex hull of a set of points X and two adjacent vertices 694.7 Points close to an edge of CH(X) . 714.8 Convex-concave hull computed with different values of K , (a) K = 9, (b) K

= 4 and (c) K = 6. 724.9 A super set of B (X) obtained by applying Algorithms 5 and 6 on partitions 744.10 General process of the convex-concave hull method 754.11 Partition of the input space using a grid . 764.12 Binary tree represents the grid . 774.13 Example with granularity hg = 0 . 774.14 Example with granularity hg = 1 . 784.15 Example of result on a toy example with three dimensions 794.16 Partition in higher dimensions . 794.17 Linearly separable case, hg = 0 . 804.18 Linearly inseparable case, hg = 0 . 804.19 Checkerboard data set . 844.20 Cross artificial data set . 844.21 Rotated-cross artificial data set . 854.22 Balls artificial data set . 854.23 Performance of CCHSVM with respect to size of the training set 88
5.1 A leaf Li in two dimensions . 965.2 Example of boundaries produced by an induction tree 985.3 Decision boundaries for SVM and Decision Tree classifier 1025.4 Decision tree applied on a toy example . 1095.5 Probabilities within clusters represented in a gray scale 1105.6 Example of guided selection for different σ values on a uniform distribution

of examples . 1125.7 Class Distribution for Iris-setosa Data set . 1175.8 Class Distribution for Iris-setosa reduced . 117

List of Tables

Page

1.1 Training methods for SVM . 3
2.1 Fragment of the Iris data set . 92.2 Example of the confusion matrix for a hypothetical binary classification

problem . 37
3.1 Data sets for testing SV candidate selection using a naive approach 543.2 Results using selection based on distances . 573.3 Results using selection based on simple random sampling 58
4.1 Data sets used in the experiments for the convex-concave hull method . . . 864.2 Classification results for the data set Checkerboard 874.3 Effect of parameters of the convex-concave hull method 894.4 Comparison with other methods . 91
5.1 Matrix M computed with Algorithm 7 for the tree of Figure 5.2 995.2 Partition of input space and adjacent regions 1025.3 Data sets used to test DTFSVM . 1035.5 Performance of the DTFSVM algorithm . 1045.7 Performance of DTDRSSVM . 1145.4 Value of DTFSVM ’s parameters used in the experiments 119

List of Tables

5.6 Data sets for experiments with DTDRSSVM 120

1
Introduction

If we can really understand the problem, theanswer will come out of it, because the answer isnot separate from the problem
Jiddu KrishnamurtiThe theoretical and technological advances in Computer Sciences and ComputerEngineering have made possible the current capabilities of storing a huge amount ofinformation at negligible costs. In fact, the rate of production of data is growing more and more.Since 2002, when the so-called digital age started [1], information has been preferentiallystored in digital media. By 2007, almost 97% of information was stored in this way [1]. Thecapacity for information storing, including digital and Analog Devices was estimated in morethan 295 Exabytes1 in 2008.The inclusion of complex electronic devices in virtually every place (security systems,sale points, automobiles, industrial control systems, etc.) and the networking capabilities ofmany systems (PDA, GPS, smart phones, computers, web applications, etc.) gave as a resulta massive generation of information. According to the most-recent study presented in June2011 [2] the amount of data generated is estimated exceed 1.8 zettabytes (ZB) 2,3 (1.8 trilliongigabytes). Every hour, thousands of mega Bytes (MB) are generated, and it is also estimatedthat the amount of data will grow at least 50 times in the next 10 years4.

1Exabyte (EB)= 1018 Bytes2Zettabyte (ZB)= 1021 Bytes3The exact number is 1, 987, 262, 613, 861, 770, 000, 000 Bytes, http://www.emc.com/leadership/programs/digital-universe.htm4http://www.emc.com/microsites/bigdata/index.htm
1

Chapter 1. Introduction

Data are worthless if there are no mechanisms to extract useful or interesting knowledgefrom them. The first successful attempts to explore this area were achieved by statisticians,using parametric models to explain the data. In pure statistical methods, a model is generallyproposed a priori, and then the parameters are adjusted with the minimal possible errorusing as less as possible data. It is known that using only classical statistical tools is nowimpractical because the amount of data has dizzily increased, data are incomplete or noisyand the underlying models that generate the data are complex and can change over time.The area of automatic extraction of knowledge from databases emerged in the late 1980sas a support to understand data digitally stored. The proposal was to create flexible andpowerful techniques with the ability to be driven by data instead of to be driven by a model.The main goal was to extract new, interesting and worth knowledge from large amounts of data[3] [4] with minimal or no human intervention. Much progresses have been accomplished, butthere is much work is pending yet, for example: scaling algorithms for big data; developingmethods for high speed data streams; adapting algorithms for distributed, multi core andparallel platforms and creating new methods specific for dynamic environments on specificdevices (low power consumption or very limited resources).The techniques developed for mining knowledge can be grouped in four main categories[5] [6]: Classification, Clustering, Regression, and Association rules.
Classification is the task related to predict the associated type or category associated toa given object, i.e., for a previously previously unseen object trying to identify the categoryit belongs to. The category, called class, can be represented by discrete values wherethe ordering among values has no meaning. Classification is said supervised because itis necessary to start with a set of labeled objects (this set is called training data set) to builda model to predict the labels as accurately as possible.Linear classification methods use hyperplanes as decision boundaries, in general thesemethods solve an optimization problem to determine the separating hyperplane, or, morestrictly, an affine plane. Some classification methods use kernels, which are non linearfunctions that permit to work in a higher dimensional space where data can be treated aslinearly separable, even when they are not linearly separable in the original input.The SVM is a state-of-the-art classification method that uses an optimal separatinghyperplane (linear boundary) to classify. The objects in the training data set that determinethe optimal separating hyperplane are called support vectors (SV) and they are obtained bysolving a quadratic programming problem (QPP).

2

Table 1.1: Training methods for SVM

Algorithm Data set sizea Features Type of methodbSMO (1998)[12] 32,562 14 DecompositionSMO improved (2001)[13] 24,692 300 DecompositionLibSVM (2005)[14] 100,000 54 DecompositionRCH (2007)[8] 618 2 GeometricSCH (2009)[11] 16,000 14 GeometricLASVM (2005)[15] 521,012 14 Data reductionHybrid DT SVM (2010)[16] 22,696 123 Data reductionHyperplane Distance (2011)[17] 20,000 22 Data reduction
aMaximum number of objects reported in corresponding article
bTechnique used by the method

The SVM can produce linear or nonlinear optimal boundaries via kernels. Theoretically,the optimal separating hyperplane solved by SVM produces the best generalization possiblefor the linearly separable case. It has been demonstrated [7] that methods for classificationhaving optimal linear boundaries converge to the SVM, so all its benefits mentioned beforeare inherent [8] [9] [10] [11].Current methods for training SVMs can be categorized as: data reduction, basedon geometric properties, decomposition, variants of SVM and others. Table 1.1 showsrepresentative methods for training SVM.
The sequential minimal optimization (SMO) is probably the most popular method for trainingSVMs, however, it is not the fastest. LibSVM is a library based on SMO, which outperformsSMO in the literature, and such a behaviour was corroborated in our experiments. TheReduced Convex Hull (RCH) and Scaled Convex hull (SCH) are geometric methods that donot scale well in practice, they work well only with a few hundreds of examples.In this research, we develop two novel reduction methods for improving the training time ofSVM classifiers. The idea behind data reduction methods is the observation that, in general,the number of SV is small compared with the number of objects in data sets [18] [19] [20]. Theobjects with a high probability of being support vectors (support vector candidates) are usedto train the SVM, the goal is to quickly detect the support vector candidates to reduce thetraining time of the SVM.

3

Chapter 1. Introduction

Motivation and goalsSVM classifiers have been successfully adopted in many applications such as credit rating[21], chemistry [22], spam filtering [23] [24], control of electric machines [25] and marketing [26],among others. The model produced by SVM is compact, geometrically interpretable and itsperformance usually surpasses the classification accuracy of other methods. In spite of theircharacteristics, SVM classifiers have a noticeable problem; the training phase consumes about
O(n3) time and O(n2) memory space [27] [28]. This prevents the use of SVM with large datasets.Enabling SVM on large data sets is an interesting problem. There are different typesof methods for training SVMs. Methods based on geometric properties of SVMs work wellfor linearly separable cases, however, they do not achieve good accuracy on the linearlyinseparable cases. The Decomposition methods can be used with large training sets but theyconverge slowly. Variants of SVM improve training time of SVM at the expense of classificationaccuracy. Data reduction has shown scale better than the other approaches, and, additionally,it can be applicable to other classification methods.The main goal of this research is to develop novel data reduction methods to improve thetraining time of the SVM classifier. These methods make possible to apply SVMs on largedata sets achieving an acceptable level of classification accuracy while keeping a trainingtime significantly lower than that of state-of-the-art methods.The specific objectives are the following:
• Analyze the state-of-the-art methods for training SVMs on large data sets, in order toidentify the advantages and disadvantages of these methods.
• Analyze the geometric properties of SVMs to propose a method based on a non-convexhull, to detect objects on the boundaries of the data distribution.
• Develop a novel method to detect objects located close to objects with opposite label.
• Determine the computational complexity of the proposed methods.
• Test the developed methods with publicly available benchmark data sets.
• Evaluate the performance of the proposed methods against the most representativealgorithms for training SVMs.

4

ContributionsIn this work, we propose two novel data reduction methods for the SVM classifier. Theproposed methods outperform the state-of-the-art methods for training SVMs such as LibSVM,SMO, RCH, SCH and SVMLight . A brief description of the contributions is provided next:
1. A fast reduction method based on non-convex hull. This method is suitable for lowdimensional data sets containing tens of thousands of objects. The method uses aconvex hull as a reference to guide a search of instances located on the boundaries ofthe training set. The result is a super set of vertexes of CH that form a non convex hull.
2. A method based on the entropy concept. This method uses a decision tree to discoverlow entropy regions, which are treated as clusters. Two main variants were developed.The first one uses Fisher’s linear discriminant to detect objects located close to clusterswith an opposite class. The second variant uses the objects close to centers of clustersto train a SVM.
Document OrganizationThe rest of this document is organized as follows. Chapter 2 is devoted to describe theclassification task, covering the basic background, terminology used, measures for evaluationof classifiers and the classification methods available that are relevant for the purposes of thisthesis.Chapter 3 shows the state of the art on training methods for SVM. Also, the results of apreliminary experiment are presented to show that the closest examples to an opposite classare good candidates to be SV candidates.In Chapter 4, a data reduction method able to work with low dimensional data sets ispresented. The method is based on non-convex hulls and search objects located on theboundaries of sets of points.A method that uses a decision tree is explained in Chapter 5. This method can be appliedto large data sets regardless of the number of features of each object. A minor variant of thismethod is also included in Chapter 5. This variant is faster but it is less accurate.The general conclusions as well as some possible paths for future work are presented inlast part of this thesis.

5

Chapter 1. Introduction

6

2
Classi�cation

A man of knowledge lives by acting, not bythinking about acting
Carlos CastanedaThe background on the classification task is presented in this Chapter. We begin withsome definitions and explain the main supervised and unsupervised methods, focusing on thefollowing classification methods: support vector machines, decision trees and Fisher’s lineardiscriminant. These three classifiers are related to the methods developed during this research.Finally, this Chapter provides a description of the main techniques used to evaluate classifiers.

2.1 PreliminariesA data set is a collection of data that contains individual data units, which are called objects.
The terms instance, object, record, sample, pattern or example willbe used interchangeably throughout this document; in all cases, the meaningis: an element of a given labeled or unlabeled data set.

The objects are composed of features also known as attributes or properties. The featuresare usually measures of real-world objects or relations between entities. The number offeatures is known as the dimension of an example. Instances usually have a small number offeatures, generally tens of them; however, some data sets have many features1.
1The URL Reputation data set [23] has 3, 231, 961 attributes.

7

Chapter 2. Classification

There are five main types of attributes, these are:
• Nominal attributes, which are not numerical, i.e.; they are simply a label. An examplecan be the color of something or the gender of a person.
• Ordinal variables. These are similar to nominal ones; however, their values can bearranged in a meaningful order, for example, light, medium or heavy.
• Numeric attributes. Their values are integer or real numbers.
• Interval features, which are quantities. Their values are not only ordered, but alsomeasured in fixed and equal units [3].
• Binary or Boolean. It is a special case of a nominal variable; it takes only two possiblevalues. Typical examples are: true or false, 0 or 1, male or female, etc.

Through this document, a data set is represented with an X . Nis the number of examples in X , i.e., N = |X |. The number of features isreferred as d.The data sets used in this work have the form
X = {(xi, yi) , i = 1, ...N., xi ∈ Rd, yi = {C1, C2}} (2.1)

A data set is said to be labeled, if all or most of its records contain a special attribute,called the class attribute; this indicates that it has some significance or is meaningful. Thepurpose of the class attribute is to identify the sample as being of a particular category orclass. If the data set does not contain a class attribute, then it is called unlabeled.Table 2.1 shows a fragment of the Iris data set [29], taken from [30]. This set is probablythe most famous data set for classification. Each row in the labeled Iris data set representsan instance, which has four properties and a class attribute.Methods for retrieving knowledge from data can be categorized as supervised orunsupervised. Both kinds of methods use data sets to build models. The supervised methodsbuild models from labeled data sets. The models obtained must be able to predict the class ofpreviously unseen objects. The unsupervised methods discover groups of similar objects fromunlabeled data sets.
8

2.2. Classifiers

Table 2.1: Fragment of the Iris data set

Sepal Length Sepal Width Petal Length Petal Width Species5.1 3.5 1.4 0.2 setosa4.9 3.0 1.4 0.2 setosa...7.0 3.2 4.7 1.4 versicolor6.4 3.2 4.5 1.5 versicolor...
The main supervised methods are classification and regression. Classification methods uselabeled data sets whose class attribute is categorical. The three key objectives in classificationare high classification accuracy, comprehensibility (ability of a human expert to understandthe classification model) and compactness (size of model) [31]. The regression is similar toclassification; however, the labels are of numeric type, i.e.; the class attribute is continuous.The principal unsupervised learning methods are: clustering, outlier analysis and frequentpattern analysis. Clustering consists of identifying similar objects based on distances.These algorithms are categorized in hierarchical, partitioning, density-based, constraint-basedclustering, grid-based methods and Model-based methods [32]. Outlier analysis consists inidentifying samples that do not comply with the general behavior or model of data. Frequentpatterns analysis includes those methods devoted to search for recurring relationships in agiven data set.Supervised and unsupervised methods are related to data mining (DM). The latter refersto a group of data-driven methods, devoted to extract knowledge from large amounts of data[4][5]. DM can be found in the literature with the following names: knowledge extraction,exploratory data analysis, information discovery, information harvesting, data archeology anddata pattern processing [5].

2.2 Classi�ers

Classification is a supervised learning technique that consists in assigning an object to oneof a set of predefined categories. The input data for a classifier is a labeled data set X ,in which the class attribute is of categorical type; the goal is to build a model to predict
9

Chapter 2. Classification

the (categorical) label of previously unseen samples. An unknown probability distribution isused to extract examples from a data set, then a model is created utilizing these objects. Themodel can predict accurately new examples if these are generated using the same probabilitydistribution.In general, the available information is not enough to have a clear relationship betweeninputs and output values. The goal in the classification task is to construct a decision functionto make good predictions, i.e., learn a map from input X into output Y , or, mathematically
f : X 7→ Y (2.2)

where
f : is the decision function,
X : is the input space,
Y : is the output, the set of labels.The training of a classification method consists in using pairs (xi, yi) to build decisionfunctions [28]. Because the decision functions are used to classify objects, the former areknown as classifiers.The decision functions partition the input space into a number of regions [33] (see eq. (2.3)),defined by decision regions, decision boundaries or decision surfaces [34]. After a decisionfunction has been learned from X , a given example xk can be mapped into a partition Aj anda label y ∈ Y is assigned to xk .

X = ⋃
j
Aj such that ⋂

j
Aj = ∅ (2.3)

where
Aj : The j − th partition of X .The decision functions are also known as classification models. They are used asexplanatory tools to understand hidden relations in a data set, or to predict the class label ofunknown records.Some algorithms for building classifiers use dot products and norms; these concepts arepresented in Definitions 1 and 2. The dot product is a tool for measuring angles and lengthsin geometry. Dot product is closely related with the concept of norm in vector spaces. Innerproducts and norms are treated in classification as a measure of dissimilarity among instances.

10

2.2. Classifiers

Definition 1 (Dot product) The dot product between two vectors u, v ∈ Rd

is a map 〈·, ·〉 : Rd × Rd → R , it is computed with

〈u, v〉 = uT v = d∑
i=1 uivi

The dot product fulfills the following properties:

1. Commutative. 〈u, v〉 = 〈v, u〉
2. Distributive. 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉
3. Bilinear. 〈u, rv + w〉 = r 〈u, v〉+ 〈u,w〉
4. Scalar multiplication. 〈au, bv〉 = ab 〈v, u〉

Definition 2 (Norm) A Norm is a function which assigns a length to vectors.
The norm between two vectors u, v ∈ Rd is a map f : Rd → R , it satisfies

1. Positive homogeneity: ∀u ∈ Rd, α ≥ 0, f (αu) = αf (u).
2. Triangle inequality: ∀u, v ∈ Rd, f (u+ v) ≤ f (u) + f (v).
3. Definiteness: ∀u ∈ Rd, f (u) = 0 implies u = 0.

Definition 3 presents convex sets, which play a central role in some classification methods,specially those that use a linear decision boundary.
Definition 3 (Convex Set) A set C ⊆ Rd is said to be convex if and only
if for every c1, c2 ∈ C , α ∈ R s.t. 0 ≤ α ≤ 1

αc1 + (1− α)c2 ∈ C, ∀ c1, c2 ∈ C (2.4)
The classification methods that use linear boundaries, search for points in the line segmentdefined by two points that belong to a set C . According to Definition 3, if C is convex, thenthe points that are found by these methods will lie in C . An example of convex sets are the

11

Chapter 2. Classification

half spaces, which are important for classification. A closed half space is either of the twoparts into which a hyperplane divides an affine space, i.e., {w : w tu ≤ b} , {w : w tu ≥ b}.
Definition 4 (Convex Hull) The convex hull of a set X ⊆ Rd is defined as

CH(X){w : w = n∑
i=1 aixi, ai ≥ 0, n∑

i=1 ai = 1, xi ∈ X
} (2.5)

A convex hull of a set is the intersection of all convex sets that contain the set. SeeDefinition 4 for a complete description of convex hull. One way to ensure a classificationalgorithm is working in a convex set, is to compute the convex hull of input data set; and then,allow the algorithm to run in it. In most cases this approach is very costly.The w = ∑n
i=1 aixi, ai ≥ 0,∑n

i=1 ai = 1, in Definition 4, is called a convex combination.In the algorithms, the ai are seen as a weight of instances, or as probabilities.Definition 5 describes a hyperplane.
Definition 5 (Linear hyperplane) A linear hyperplane is a Rd−1-
dimensional space H of a vector space V , i.e.,

H = {v ∈ V , s.t. 〈u, v〉 = 0}
Where
u is a fixed nonzero vector in V.

Geometric methods for classification, such as linear models or SVM, divide the space intonon overlapped regions or partitions. The boundaries (decision surfaces) of such partitionsare defined with hyperplanes.Eidelheit separation theorem is shown in Theorem 2.1; it is important for linear classifiers.The decision surface of these classifiers is a hyperplane, which produces two closed half spaceswhere each one contains instances of one class. Figure 2.1 shows a graphical representationof the theorem.
12

2.2. Classifiers

Figure 2.1: A graphic example of separating hyperplane

Theorem 2.1 (Eidelheit Separation Theorem) Let K1 and K2 be two convex
sets in a real vector space X , s.t. K1 contains interior points, and K2 contains
no interior points of K1. Then, there is a closed hyperplane H separating K1
and K2. In other words, K1 and K2 lie in the opposite half-spaces determined
by the hyperplane H .

In order to determine separating hyperplanes, the distance between a convex set and apoint is usually computed. Theorem 2.2 shows that the point in the convex that is closest toan exterior point to the set, is unique. Figure 2.2 is used to exemplify this fact.
Theorem 2.2 (Minimum Distance to a Convex Set) Let x be a vector in a
Hilbert space S and let K be a convex subset of S . Then, there is a unique
vector k0 ∈ K such that

∥∥x − k0∥∥ ≤ ∥∥x − k∥∥ ∀ k ∈ K (2.6)
Furthermore, a necessary and sufficient condition that k0 be a unique
minimizing vector is that

〈x − k, x − k0〉 ≤ 0 ∀ k ∈ K (2.7)
13

Chapter 2. Classification

Figure 2.2: Minimum distance to convex set

Duality is an important concept in optimization theory and also in classification. Thisconcept allows to represent a problem using another one which is equivalent. The latter canbe simpler to solve or to understand. An example of duality is the Minimum Norm DualityTheorem 2.3, which states that the minimum distance from a point to a convex set C, is equalto the maximum of the distances from the point to the (supporting) hyperplanes that separatethe point and the set C [35].
Theorem 2.3 (Minimum Norm Duality) Let x1 be a point in a real normed
space X and let d > 0 denote its distance from the convex set K having
support functional h, then

d = inf
x∈K

∥∥x − x1∥∥ = max∥∥x∗∥∥≤1 [〈x1, x ‘∗〉 − h(x∗)] (2.8)
Where the maximum on the right is achieved by some x0 ∈ X ∗.
If the infimum on the left is achieved by some x0 ∈ K , then −x∗0 is aligned
with x0 − x .

Multi class ProblemsIn binary classification problems, there are two categories of examples in the training data set.The typical structure of data sets is the same as shown in eq. (2.1); in practice the classes C1and C2 take values 0 and 1, or +1 and −1.
14

2.2. Classifiers

Figure 2.3: Minimum Norm Duality

The data sets used for multi-class problems have more than two classes. The structure ofthese data sets is:
X = {(xi, yi) : x ∈ X, x ∈ Rd, yi = {C1, C2, ..., CL}} (2.9)

The publicly available data sets usually contain a number of classes L, with L ≤ 202.For multi-class problems, more than one decision function is used. The form of thediscriminant function is
gi(x) > gj (x) ∀ i 6= j (2.10)

where
i = 1, ..., L
j = 1, ..., LThe last discriminant (eq. (2.10)) can be interpreted as a network, which selects thecategory corresponding to the largest margin [36]. Other approaches, which do not usediscriminant functions can be found in [37][38][39], they are:
1. One-against-all Classification.
2. Using k (k−1)2 pair wise classifiers with one of the voting schemes listed below:

• Majority Voting
• Pairwise Coupling

2We analyzed the data sets for the classification task available at http://archive.ics.uci.edu/ml/
15

Chapter 2. Classification

3. Extending the formulation of SVM to support the k-class problem.
• Construct the decision function by considering all classes at once.
• Construct one decision function for each class, by considering only the trainingdata points that belong to that particular class.

2.2.1 Linear ModelsThe linear models for classification are among the best understood [27]. In these models, thedecision boundaries are linear combinations of inputs x ; the decision surfaces are (d − 1)dimensional hyperplanes. The simplest linear model takes the form
y = ωT x + ω0 (2.11)

where
y ∈ R
ω ∈ Rd, called weight vector.
ω0 ∈ R , called the bias.Figure 2.4 shows an example of a linear boundary in two dimensions. In the linear model,the vector ω is orthogonal to the decision boundary. The boundary is defined by ωT x+ω0 = 0.The decision boundary separates the space in two semi planes.

Figure 2.4: Linear Decision Boundary

16

2.2. Classifiers

In Figure 2.4, all the samples can be perfectly classified. These type of data sets arereferred to as linearly separable data sets.In the simplest classification problem, there are only two possible values for the label ofeach instance, the data set X takes the form shown in eq. (2.1).The vector ω and the bias ω0 are obtained after the training. The new incoming samplesare tested using y = ωT x + ω0; the output y is a real number. Discriminant functions areused to decide (predict) the label of a sample xi. A common form of these functions (for thebinary classification problem) is
IF (f (ωT xi + ω0))

≥ 0 THEN yi = +1
< 0 THEN yi = −1 (2.12)

This discriminant is called the sign function.
2.2.2 Support Vector MachinesSVMs classifiers prevent the over-fitting by using a separating hyperplane with maximummargin.SVMs compute a hard-margin separating hyperplane for linearly separable data sets.It is enough to perfectly separate the examples. The linearly inseparable case is moredifficult. In this case, a soft-margin separating hyperplane and/or the so-called kernel trickare necessary. Hard-margin and soft-margin separating hyperplanes refer to those that forbidor allow misclassifications, respectively.

SVMs Classi�ers for Linear Separable Case

Considering a linearly separable data set X , a linear decision function can be determined.Because X is linearly separable, no sample in X satisfies
ωT x + b = 0 (2.13)

we have, then
ωT xi + ω0

≥ +1 ∀ yi = +1, i = 1, ..., N
≤ −1 ∀ yi = −1 (2.14)

17

Chapter 2. Classification

It is not difficult to see that (2.14) is equivalent to
yi(ωT xi + b) = yi(< ω, xi > +b) ≥ 1, i = 1, ..., N (2.15)

Assuming that the hyperplanes (2.17) and (2.18) include both at least one element of X ,the optimal separating hyperplane (2.16) is in the middle of them [28].
ωT x + b = 0 (2.16)
ωT x + b = +1 (2.17)
ωT x + b = −1 (2.18)

The generalization region of a classifier of this type is the space within the hyperplanes(2.17) and (2.18).
Definition 6 (Margin) The distance between the separating hyperplane
and the closest object to the hyperplane is called the margin.

Definition 7 (Maximum separating hyperplane) It is the separating
hyperplane that has the greatest margin. This is considered the optimal
separating hyperplane, and has the best generalization capability.

The optimal separating hyperplane

In Figure 2.5, the points x1 and x2 satisfy:y1(wT x1 + b) = 1, y1 = +1
y2(wT x2 + b) = 1, y2 = −1 (2.19)

Projecting x1 and x2 on vector ω
18

2.2. Classifiers

Figure 2.5: Margin computation for linearly separable case

x1ω = < x1, ω >
< ω,ω > (2.20)

= xT1 ω
< ω,ω >

x2ω = < x2, ω >
< ω,ω > (2.21)

= xT2 ω
< ω,ω >

The margin is determined the of difference of projections (2.20) and (2.21)
19

Chapter 2. Classification

Margin = < x1, ω >
< ω,ω > −

< x2, ω >
< ω,ω > (2.22)

= < x1, ω > − < x2, ω >
< ω,ω >

Using (2.19) we have
< x1, ω >= 1− b (2.23)

and
< x2, ω >= −1− b (2.24)

Substituting (2.23) and (2.24) into (2.22) we obtain
Margin = 1− b− (−1− b)

< ω,ω > = 2
< ω,ω > = 2

ω2 (2.25)
In order to compute the maximum separating hyperplane (maximize (2.25), it is necessaryto minimize ω2. The following nonlinear optimization problem arises:

min
ω

ω2 (2.26)
s.t.
yi(ωT xi + b) ≥ 1, i = 1, ..., N (2.27)

Non linear programming problems with equality and inequality constraints have, ingeneral, the following form:
min f (x) x ∈ Rd (2.28)subject to
hj (x) = 0 j = 1, ...m
gj (x) ≥ 0 j = m+ 1, ...p

20

2.2. Classifiers

The optimization of non linear problems is based on Karush-Kuhn-Tucker (KKT) conditions,which were proved in 1951.
The KKT conditions state that, if both the objective function f (x) and all its constraintsare once differentiable at the point x∗, and the first-order constraint qualification holds at x∗;then, the necessary conditions x∗ to be a local minimum are that exist Lagrange multipliers

α∗ and β∗ such that satisfy

hj (x∗) = 0 j = 1, ...m (2.29a)
gj (x∗) ≥ 0 j = 1, ...p (2.29b)

α∗gj (x∗) = 0 j = 1, ...p (2.29c)
α∗ ≥ 0 (2.29d)

∇L(x∗, β∗, α∗) = 0 (2.29e)
Where L(x, β.α) in (2.29e) is the Lagrangian defined in (2.30).

L(x∗, β∗, α∗) = f (x) + m∑
j=1 hj (x)−

p∑
j=m+1gj (x) (2.30)

The Lagrangian of the Quadratic Programming Problem (QPP) (2.26) becomes
L(ω, b, α) = ω22 − N∑

i=1 αi{yi(ωT xi + b)− 1} (2.31)
With αi ≥ 0.
The optimal solution of (2.31) is given by the saddle point, at which (2.31) is minimizedwith respect to vector ω and offset b (primal space). At the same time, it is maximized withrespect to Lagrange multipliers αi (dual space). The gradient of (2.31) with respect to theprimal variables vanishes at the saddle point, giving:

21

Chapter 2. Classification

∂L(ω, b, α)
∂ω = ∂ω22

∂ω −
∂
∑N

i=1 αi{yi(ωT xi + b)− 1}
∂ω

= ω −
N∑
i=1 αixiyi = 0 (2.32)

and
∂L(ω, b, α)

∂b = ∂ω22
∂b −

∂
∑N

i=1 αi{yi(ωT xi + b)− 1}
∂b

= N∑
i=1 αiyi = 0 (2.33)

and from (2.29c)
αi{yi(ωT xi + b)− 1} = 0 i = 1, ..., N (2.34)

Using (2.32) and (2.33)

ω = N∑
i=1 αixiyi (2.35)

N∑
i=1 αiyi = 0 (2.36)

The samples X that fulfill αi 6= 0 (2.34) are called the support vectors (SVs). The SVssatisfy yi(ωT xi + b) = 1.
Substituting (2.35) and (2.36) in Lagrangian (2.31) produces

22

2.2. Classifiers

L = 12ωTω − N∑
i=1 αi

{
yi
(
ωT xi + b

)
− 1} (2.37)

= 12ωTω − ωT N∑
i=1 αiyixi − b

N∑
i=1 αiyi + N∑

i=1 αi
= 12ωTω − ωTω − b N∑

i=1 αiyi + N∑
i=1 αi

= −12ωTω + N∑
i=1 αi

= − N∑
i,j=1 αi, αjyiyjx

T
i xj + N∑

i=1 αi

= − N∑
i,j=1 αi, αjyiyj < xi, xj > + N∑

i=1 αi

the dual problem is now

max
α

N∑
i=1 αi −

12 N∑
i=1,j=1 αiαjyiyjx

T
i xj (2.38)

s.t.
N∑
i=1 αiyi = 0
αi ≥ 0

Solution of (2.38) yields
23

Chapter 2. Classification

ω∗ = N∑
i=1 α

∗
i yixi (2.39)

b = 1
Nsv

Nsv∑
i=1 (1

yi
− xTi ω∗), xi is a SV (2.40)

Where
NSV The number of support vectors.
Given a sample x, it is classified according to the following discriminant function:

IF (
w∗x + b = N∑

i=1 α
∗
i yixTi x + 1

Nsv

Nsv∑
i=1 (1

yi
− xTi ω∗))

> 0 THEN yi = +1
< 0 THEN yi = −1= 0 THEN x is on the boundary(2.41)

SVMs Classi�ers for Linearly Inseparable Cases

In the real-world, linearly separable data sets are not common. When the classes of a givendata set X overlap, there is not feasible solution for the previous derivation of SVMs classifiers.
In order to achieve a solution, soft-margin hyperplanes are used. Mathematically, thismeans that the constraints (2.27) are relaxed, by introducing non negative slack variables ξin them (see eq. (2.43)). This ensures that a feasible solution exists. Figure 2.6 illustrates asoft-margin optimal separating hyperplane in two dimensions.
The formulation of the optimization problem for this linearly inseparable case becomesthen

24

2.2. Classifiers

Figure 2.6: Soft-margin computation for linearly inseparable case

min
ω

ω2 + C
N∑
i=1 ξ

p
i (2.42)

s.t.
yi
(
ωT xi + b

)
≥ 1− ξi, i = 1, ...N (2.43)

ξi ≥ 0 (2.44)
Where
C is a penalty weight that controls the trade-off between the maximization of the marginand the minimization of the classification error.
p is usually has the value 1 (L1 soft-margin support vector machine) or 2 (L2 soft-marginsupport vector machine).Similarly to the linear separable case, the Lagrangian in this case is

25

Chapter 2. Classification

L(ω, b, α, β) = ω2 + C
N∑
i=1 ξ

p
i −

N∑
i=1 αi

{
yi
(
ωT xi + b

)
− 1 + ξi

}
−

N∑
i=1 βiξi (2.45)

where
αi ≥ 0 and βi ≥ 0 are Lagrange multipliers.By the KKT conditions

∂L(ω, b, α, β)
∂ω = 0 (2.46)

∂L(ω, b, α, β)
∂b = 0 (2.47)

∂L(ω, b, α, β)
∂β = 0 (2.48)

and
αi
{
yi
(
ωT xi + b

)
− 1 + ξi

} = 0 (2.49)
βiξi = 0 (2.50)

αi ≥ 0, βi ≥ 0, ξi ≥ 0 (2.51)
Proceeding as in the linearly separable case, it is possible to obtain:

ω = N∑
i=1 αixiyi (2.52)

N∑
i=1 αiyi = 0 (2.53)
αi + βi = C, i = 1, ...N (2.54)

Substituting in (2.45) produces:
26

2.2. Classifiers

max
α

L(ω, b, α, β) = N∑
i=1 αi −

12 N∑
i=1,j=1 αiαjyiyjx

T
i xj (2.55)

s.t.
N∑
i=1 αiyi = 0
C ≥ αi ≥ 0 i = 1, ..., N

Use of Kernels

For linearly inseparable cases, it is possible to obtain an optimal separating (soft-margin)hyperplane. The generalization capability of such separating hyperplane could be degraded,and so does the accuracy of the classifier. This is because the slack variables reduce themargin [28].In order to improve the generalization capabilities of SVMs, the separating hyperplaneis computed in a high-dimensional space, called the feature space. The data set becomeslinearly separable in the feature space.The instances xi ∈ X are mapped into the higher-dimensional feature space:
x ∈ Rd 7→ [φ1(x), ..., φd(x)]T ∈ Rm (2.56)

where
m : Dimension of feature space (m > d)
φ: The mapping, it is usually a non linear function.The linear decision model is represented as:

f (x) = N∑
i=1 ωiφi(x) + b = N∑

i=1 yiαi 〈φ(xi), φ(x)〉+ b (2.57)
A problem with eq. (2.57) is its complexity. This problem is more accentuated when thedimension of the feature space is large. Evaluation of eq. (2.57) is impossible, if the dimensionof feature space is infinite.In order to avoid the direct computation required to map examples to the feature space, a

27

Chapter 2. Classification

kernel is used; it is defined as follows:
Definition 8 (Kernel[40]) A function k : X × X 7→ R is called kernel if
exists φ and H such that

k (xi, xj) = 〈φ(xi), φ(xj)〉 ∀xi, xj ∈ X (2.58)
where
X a non empty set
H a Hilbert space
φ : X 7→ H a feature map

In the previous definition, K = (
k (xi, xj))Ni,j=1 , xi,j ∈ X is named the Kernel matrix, or theGram matrix.Not all functions are a kernel. Mercer’s theorem 2.4 helps to identify which functions canbe a kernel [40][27][28][41]:

Theorem 2.4 (Mercer theorem) A symmetric function K(x,y) can be
expressed as an inner product

K (x, y) = 〈φ(x), φ(y)〉
for some φ if and only if K(x,y) is positive definite, or equivalently:

K (x1, x1) K (x1, x2) . . .
K (x2, x1) . . .

...

is positive definite for any collection {x1, x2, ..., xn}

Kernel functions allow to compute dot products in feature space without need for an explicitmapping, so (2.57) becomes
f (x) = N∑

i=1 yiαik (xi, x) + b (2.59)
28

2.2. Classifiers

The advantage of eq. (2.59) over eq. (2.57), lies on the number of operations required tocompute the dot product. Evaluating a kernel function is not necessarily proportional to thenumber of features in the feature space.Three of the most common kernels widely used in practice are the following ones.
Kernel name Kernel functionGaussian RBF K (xi, xj) = e−

xi−xj 22σ2Polynomial k (xi, xj) = [xTi xj + 1]dSigmoid k (xi, xj) = tanh
([
xTi xj + b

])
2.2.3 Decision TreesDecision or induction trees make partitions of the input space, recursively. At each phase, thepartitions are purer. Here, the term pure, means that the partitions contain the majority of itssamples with the same label.In general, the training methods for decision trees select an attribute and use it to partitionthe data. The selection of an attribute is based on a measure, which determines the best wayto partition a subset. The measures are typically defined in terms of the class distribution ofthe instances, before and after splitting a subset. In practice, these measures are based uponthe degree of impurity of the produced partitions. The most common impurity measures are:

Entropy(t) = − c−1∑
i=0 p(i|t)log2p(i|t) (2.60)

Gini = 1− c−1∑
i=0 [p(i|t)]2 (2.61)

Classif ication error(t) = 1−max [p(i|t)] (2.62)
Graphically, decision trees can be seen as a flowchart-like tree structure. Such a structurehas a root node, which is the topmost in the tree. A decision tree has internal nodes (thosethat are not leaves), that represent a test on an attribute; it also has terminal or leaf nodes,that maintain a class label. The internal nodes have exactly one incoming edge and two ormore outgoing edges (branches). Each branch from an internal node represents an outcomeof the test. Figure 2.7 [42] shows an example of a decision tree used to solve a toy example:a mammal classification problem.

29

Chapter 2. Classification

Figure 2.7: An example of a decision tree

The task of finding the best decision tree is computationally infeasible in most cases[42].In practice, the methods used to construct sub-optimal (but accurate) decision trees use agreedy strategy.
2.2.4 Fisher's Linear Discriminant

Fisher’s linear discriminant can be considered as a method for linear dimensionality reduction.The method is based on minimizing the projected class overlapping that maximizes the distancebetween class means, while minimizing the variance within each class. Figure 2.8 shows anexample of the essence of this method.Consider a given data set defined as in eq. (2.1). For binary classification problem, thisset can be partitioned into two disjoint subsets D+ = {xi ∈ X s.t. yi = +1} and D− =
{xi ∈ X s.t. yi = −1}. The means µ+ and µ− are computed with:

30

2.2. Classifiers

µ+ = 1
|D+|

|D+|∑
i=1 x, x ∈ D+ (2.63)

µ+ = 1
|D−|

|D−|∑
i=1 x, x ∈ D−

Let ω ∈ Rd be a vector. If every object in X is projected on ω, the means of projectionsare given by
m+ = 1

|D+|
|D+|∑
i=1 pi, x ∈ D+ (2.64)

m− = 1
|D−|

|D−|∑
i=1 pi, x ∈ D−

Where
pi = ωT xiCombining (2.63) and (2.64), we obtain:

m+ = 1
|D+|

|D+|∑
i=1 pi = 1

|D+|
|D+|∑
i=1ω

T x = ωT 1
|D+|

|D+|∑
i=1 x = ωTµ+ (2.65)

m− = 1
|D−|

|D−|∑
i=1 pi = 1

|D−|

|D−|∑
i=1ω

T x = ωT 1
|D−|

|D−|∑
i=1 x = ωTµ−

Fisher’s linear discriminant method searches for a vector ω that maximizes the separationbetween means m+ and m−, and at the same time, that minimizes the scattering of subsets
D+ and D−.The distance between m+ and m− is

|m+ − m−| = |ωTµ+ − ωTµ−| (2.66)
The scatter, also called the within-class variance [36][34], is defined as:

31

Chapter 2. Classification

s̃2+ = 1
|D+|

|D+|∑
i=1 (yi − µ+) (2.67)

s̃2
− = 1
|D−|

|D−|∑
i=1 (yi − µ−)

In order to measure the scattering of D+ and D−, the following optimization problem mustbe solved:
max J(ω)

ω
= |m+ − m−|2

s̃2+ + s̃2
−

(2.68)
The denominator in (2.68) is known as total within-class variance. A more useful form ofis the following:

max J(ω)
ω

= ωTSBω
ωTSWω

(2.69)
Where
SB=(µ− − µ+)(µ− − µ+)T called the between-class covariance matrix.
SW= ∑

xi∈D+(xi−µ+)(xi−µ+)T + ∑
xj∈D−

(xj−µ−)(xj−µ−)T called the total within-class covariancematrix.Solution of (2.69) is
ω = S−1

W (µ+ − µ−) (2.70)
Computing eq. (2.70) consumes O(d2|X |) time.A problem occurs with this classifier when the data distribution is multi-modal; furthermore,when there exists overlapping between classes, the vector ω cannot be enough to clearlydiscriminate between classes. To face this problem, kernelized versions of Fisher’s lineardiscriminant have been proposed.

2.3 Model EvaluationThe evaluation of performance of classifiers is very important. A classifier is evaluated to knowhow well it predicts unobserved data. The capability of a classifier to predict on independentdata is called generalization. Generalization extremely important in practice, because it isused to select a models; it also gives a measure on the quality of a model (model assessment)
32

2.3. Model Evaluation

[43].The most common measurement to evaluate the performance of a classifier is through its
classification accuracy.

Definition 9 (Clasification accuracy of a classifier) It is the percentage of
examples in Xtest that are correctly classified by the classifier. Accuracy is
also known as recognition rate of a classifier and is computed with

Acc = Ncorrect

N

Where
NCorrect : Number of examples correctly classified by the classifier.
N = |XTest| : Size of testing data set.

Two important measures related to the accuracy are true error and error rate.
Definition 10 (True error)

true error = Pr
xi∈D

[h(x) 6= g(x)]
Where
X : Input space, xi ∈ X .
h(x) : The classifier (hypothesis)
g(x) : Target function, it is in general unknown
D : Distribution, it defines the probability of finding xi in input space X.

Definition 11 (Error rate) The error rate is the percentage of misclassified
examples in XTest committed by the classifier.

error rate = Nerror

N = 1− Acc
With
Nerror : Number of misclassification committed by classifier.

33

Chapter 2. Classification

The true error of a classifier h(x), with respect to a target g(x) and distribution D, is theprobability that h misclassifies an instance xi, randomly chosen according to D.The error rate or sample error, is the error rate of a classifier over the available data. Thiserror can be measured in practice as shown in Definition 11.Because the true error cannot be measured, it is necessary to estimate it. In order tocompute a confidence interval of it, the following formula is used in practice [44]:
conf idence interval = error rate± Q

√
error rate(1− error rate)

n (2.71)
With Q having the following typical values: Q = 2.58 for 99% probability and 1.96 for 95%probability.When the accuracy of a classifier is being evaluated, two general scenarios can happen.The first (less common) scenario occurs when there is plenty of data. The second (mostcommon) happens when the amount of data is limited. For the fist case, the given data set Xis divided into two subsets: XTest and XT r :

X :
XT r , Training 70%
XTest , Testing 30% (2.72)

A classifier is trained using XT r , and its accuracy is measured on XTest . The latter containspreviously unseen instances. It is said that a classifier has a good generalization capability,if it accurately predicts the class of samples in XTest .For the second scenario, i.e., when the data set is not large, it is necessary to applyefficient sample re-use. Current techniques include cross-validation and the bootstrap. Theoriginal is now partitioned into three subsets: Training, Testing and Validation.
X :

XT r , Training 50%
XTest , Testing 25%
XVal, Validation 25% (2.73)

The Training set is used to calibrate the models. The Validation set is used to estimate theprediction error (model selection). The Test set is used for assessment of the generalizationerror of the final chosen model [43].
34

2.3. Model Evaluation

There are several techniques to create the subsets from a given data set X ; most commontechniques are Holdout, Random sub sampling, Cross validation, and Bootstrap.
In the Holdout selection method, the given X is randomly partitioned into two disjoint sets:

X = XT r ∪ XTest (2.74)
∅ = XT r ∩ XTest

In the random sub sampling technique, the holdout method is applied a number of K times,and the overall accuracy estimate is taken as the average of the accuracies obtained from eachiteration.
For the cross validation method, there are three variants: The k-fold cross validation,leave-one-out and stratified cross-validation.
The k-fold cross validation makes random K partitions from X . Each partition hasapproximately an identical size as the others. The classifier is trained and tested K times;each time a distinct partition is used for testing and the rest is used as the training data set.This approach is different from holdout and sub sampling, in the sense that each object isused the same number of times for training and once for testing. The estimated accuracy isthe overall number of correct classifications from the K iterations, divided by the total numberof objects in X .
For leave-one-out variant only one sample is “left out“ at a time for the test set. In stratifiedcross-validation, the folds are ranked so that the class distribution of the examples in eachfold is approximately the same as that in the initial data [3].
The bootstrap method works by sampling X uniformly with replacement, i.e.; an object canbe selected again every time with the same probability.
Alternatives to accuracy and error rate are the specificity and sensitivity. They take intoaccount the proportion of negative examples (i.e. samples xi s.t. yi = −1) that are correctlydetected and the ratio of positive examples that are correctly classified, respectively.

35

Chapter 2. Classification

Definition 12 (Specificity)

specif icity = tneg
Neg

With
tneg : Number of instances xi ∈ XTest s.t. yi = −1 and that have been
correctly detected by the classifier.
Neg : Number of instances xi ∈ XTest s.t. yi = −1
Definition 13 (Sensitivity)

specif icity = tpos
pos

With
tpos : Number of instances xi ∈ XTest s.t. yi = +1 and that have been
correctly detected by classifier.
Pos : Number of instances xi ∈ XTest s.t. yi = +1

Both sensitivity and specificity are used with imbalanced data sets. These have a largenumber of instances of a type, and a few samples of the opposite type.Another useful tool to observe how well (or bad) a classifier can predictthe class of instancesis the Confusion Matrix. It helps to see how the errors are distributed across the classes. Theconfusion matrix is applicable to detect if a classification problem is complicated, by observingits diagonal.A confusion matrix is a |Y | × |Y | matrix whose entry cij denotes the number of instancesin XTesting having class i and the classifier has assigned a label j .Table 2.2 shows an artificial example of the confusion matrix. Suppose |Xtr| = 38, then
c1,1 = 10 and c1,2 = 1 means that the classifier has correctly classified ten samples andincorrectly one sample. The accuracy of the classifier is computed as

Acc = T race (Confusion Matrix)
|XT r|

36

2.4. Conclusions

Table 2.2: Example of the confusion matrix for a hypothetical binary classification problem

Predicted class
yi = +1 yi = −1

Actual yi = +1 10 1
class yi = −1 2 25

The Receiver Operating Characteristic (ROC) curve is also used to compare two classifiers.The ROC curve plots sensitivity versus specificity. As the parameters of a classification rulechange. The ROC curve is considered a summary for assessing the trade-off between sensitivityand specificity. The area under the ROC curve is called the c-statistic.
2.4 ConclusionsClassification is a supervised learning method. It consists in assigning an object to one of aset of predefined categories (categorical values or labels). Supervised learning methods needa labeled data set to construct a model from it; the model is used to predict labels of instancesthat have not been seen before.Some examples of classification methods are linear models, SVM, decision trees,probabilistic models, rule based models, artificial neural networks and ensembles of classifiers.An overview of some of these methods was presented in this Chapter. The SVM was studiedin more detail than the other methods.SVM optimizes the linear boundary (separating hyperplane) previously proposed in othermodels. The Perceptron and the linear models also use a separating hyperplane, but it isnot the one with the largest margin. This is the main difference and advantage of SVM withrespect to many other classifiers. Theoretically, the optimal separating hyperplane improvesgeneralization capability. This has been confirmed in many real-world applications. The useof a kernel enables SVM to work in higher (infinity) dimensional spaces. This allows toclassify data sets that are not linearly separable in the original input space.

37

Chapter 2. Classification

(a) Original training set (b) Center of each class projected on a line

(c) Projections on the vector that maximizes classseparation
Figure 2.8: An example of Fisher’s linear discriminant

38

3
Training Support Vector Machines with Large Data sets

It is impossible to recognize a wrong way withoutknowing the right way
George Gurdjieff

In order to train SVM with large data sets, a number of methods have been developed in thelast years. These methods have been classified in the following categories: data reduction,decomposition, variants of SVM and other methods that use heuristics or parallelism. Inthis Chapter we describe these methods. As a preamble to the algorithms developed in thisresearch, we show, experimentally, that the examples close to the decision boundaries aregood candidates to be support vectors.Training methods for SVM are usually classified [45] according to the implementedstrategies:
1. Data reduction For most cases, it has been found that after training a SVM, the numberof SV is small compared to N [18][19]. The basic idea behind the data reduction strategyis to select instances with a high probability of being SV, and then, train SVM withthem.
2. Decomposition The training time of SVMs can be reduced if only the active constraintsof QPP are taken into account [46]. A similar idea to active sets methods for optimizationis applied in decomposition methods. In the active set approach, two sets are used: theworking set and the set of fixed variables. The optimization is made only on the working

39

Chapter 3. Training Support Vector Machines with Large Data sets

set. For the case of SVM, the working set is usually composed of instances that violatethe KKT conditions.
3. Variants of SVM Some researchers have modified the original QPP problem for SVMto speed up its training time, at the expense of losing classification accuracy [45]. Mostof the variants of SVMs conclude with a system of linear equations, which is solvedefficiently if the number of features is moderate, i.e., around 100.
4. Others We include here all those techniques not considered in the other categories: theuse of parallel computations, caching, geometric approach and alpha seeding.
3.1 Data reduction methodsFor the linearly separable case, the optimal separating hyperplane of SVMs dependscompletely on instances located closest to the separation boundary [7]. This instances are theso-called SV. It is well known that for most data sets, the number of SV is a small portioncompared to N . Training an SVM using only the SV yields the same hyperplane than thatobtained with the whole data set. The training time is certainly the shortest in the formercase. This is the main motivation for attempting to reduce the size of the data sets beforetraining an SVM.In order to achieve the best classification accuracy, and improve the training time ofSVMs, data reduction methods should preserve all the SV of data sets. These methods shouldremove all instances that are not SV. Data selection can be viewed as the incorporation ofprior knowledge into SVMs.The current approaches to achieve a reduction of training data sets can be classified intothese categories:

1. Random Sampling methods
2. Distance-based methods
3.1.1 Random Sampling MethodsRandom sampling techniques are useful when the N � d. The general idea behind this kindof algorithms, is to approximate the optimal separating hyperplane by using a small subset ofthe training set Xtr . In [47][48][49], iterative methods which introduce misclassified examples

40

3.1. Data reduction methods

into a reduced set Xr are presented. At the beginning of the process, all samples in set
Xtr are given the same weight, which is related with the probability of being chosen, and anumber of K samples are selected randomly. This produces a separating hyperplane whichcan produce classification errors. The misclassified samples (violators) in Xtr are selected,and their probability of being chosen is increased. This process is iterated several rounds.Although it is reported that these methods converge to the global solution, there are someproblems with them. First, it is difficult to choose the value of K . If it is small, then the QPPcan be quickly solved, however, the produced model could have a high bias. If K is large, theQPP is costly to be solved. Second, it is not clear how the initial weight must be chosen,and how it should be updated during iterations. Algorithm 1 shows the pseudo code for thesetechniques.

Algorithm 1: Iterative Random Sampling, Generic Algorithm
Input :

Xtr : Training set
K : Number of samples to select in each iteration
λ: Initial weight

Output:
Xr : A subset of Xtr

1 begin
2 Assign to each sample in Xtr a probability λ of being chosen
3 repeat
4 Xr ⇐Select randomly K samples from Xtr
5 hsub ⇐ Train SVM with Xr
6 Classify Xtr using sub optimal separating hyperplane hsub
7 Change the probability (weight λ) of each sample of being chosen according towhether it is misclassified or not
8 until No misclassified samples;
9 End

Reduced SVM (RSVM) [50] produces a very compact SVM, based on a random selectionof samples. It is shown in [51][52] that uniform random sampling is the optimal robust selectionscheme, in terms of several statistical measures. RSVM reformulates the QPP to come upwith a much smaller problem, whose number of variables is about 1 to 10% of |Xtr|, and thenumber of constraints is equal to |Xtr|. The reformulation of QPP (eq. (2.42)) consists of using2-norm (p = 2) and weighting the slack variables ξi by the factor C/2. The next problem
41

Chapter 3. Training Support Vector Machines with Large Data sets

shows these two changes:
min
ω,b,ξ

12 (ωTω + b2)+ C2 N∑
i=1 ξ

2
i (3.1)

s.t.
yi
(
ωT xi + b

)+ ξi ≥ 1, i = 1, ...N ξi ≥ 0
RSVM translates the constrained QPP into an unconstrained one:

min
ω,b,ξ

12 (ωTω + b2)+ C2F (1− yi (ωT xi − b)) (3.2)
where F (·) = max (0, ·).In [53], it is shown that this problem is a strongly convex minimization problem, witha unique solution. The last transformation of RSVM, consists in using a smoothing, inorder to apply an Armijo-Newton like method. RSVM uses about 10% of Xtr to solve thereformulated QPP, and the entire training set to refine the classification accuracy of theseparating hyperplane. Refining means to select the best coefficients of the chosen kernelfunctions.In practice, RSVM has a problem; the distance between selected examples must exceed acertain tolerance. This introduces an extra cost, which is not reported in the literature.
3.1.2 Distance-based methodsThe distances between objects, or the distance from separating hyperplane to the examples,has been used as a guide to select instances from data sets.Two heuristics commonly used are the following: (1) The samples which are located closestto others with opposite label are probably SV [18], (2) samples far from a hyperplane do notcontribute to the definition of decision boundary [54].By far, the Euclidean distance is the most commonly used in these algorithms; however,Mahalanobis and Hausdorff distances have been also utilized. The former gives a measure oflength in a natural sense, but it only gives a reference between two objects. The Mahalanobisdistance (eq. (3.3)) takes into account the correlation between the variables; it is used

42

3.1. Data reduction methods

to measure similarities between multidimensional random variables or groups of objects.Mahalanobis distance can be seen as a measure of divergence or distance between groupsin terms of multiple characteristics. The Hausdorff distance (eq. (3.4)) computes the maximumdistance from a set to the nearest point in other set. d(x, y) is any metric between the points
x, y.

dM (xi) = 2√(xi − µ)TS−1(xi − µ) (3.3)
With

µ the mean
S the covariance matrix

max{sup inf d(x, y), sup inf d(x, y)}
x∈Xy∈Y , y∈Y x∈X

(3.4)
The Mahalanobis distance is used in [55] to propose a data reduction algorithm; theexamples on the boundaries are detected by measuring the relative differences of theMahalanobis distances. The hypothesis is that important samples correspond to the oneswith large relative differences of Mahalanobis distances. The use of Mahalanobis instead ofEuclidean is justified because the former is invariant to rotations; it is also invariant to lineartransformations of the input variables [55]. This method has the disadvantage of needing tocompute all distances between every point and the set with different class.In [18], an algorithm that uses the Hausdorff distance from an example to the objects withdifferent class is proposed. This criterion selects patterns near to the decision boundary. Thedistance from a training example to the closest training examples of the opposite class is usedas an approximation to the convex hull. This approach is related to the nearest point problem:

d(xi) = min
j :yj 6=yi

∥∥xi − xj∥∥ (3.5)
In [56] [57], all the Euclidean distances between objects with opposite label are firstcomputed. The closest samples are then selected. This method works in the input space. Thealgorithm in [45] shows how to select samples in feature space. The results shown in all these

43

Chapter 3. Training Support Vector Machines with Large Data sets

papers correspond to small data sets.
Algorithm 2: Distances Based Sampling, Generic Algorithm

Input :
Xtr : Training set

Output:
Xr : A subset of Xtr

1 begin
2 Separate into positive and negative classes:
3 X+ = {xi ∈ Xtr s.t. yi = +1}
4 X− = {xi ∈ Xtr s.t. yi = −1}
5 Compute distances from objects in X+ to a point or reference of X−
6 Xr ←Choose objects whose distance satisfy a criterion
7 End

In [18], an algorithm that detects instances near to the class boundaries is introduced. Itselects all the examples with the same label, which are contained within a hyper sphere ofmaximum radius. In order to choose examples around a point, it is necessary to increase thediameter of the sphere. Because each instance is tested as a center, this represents the majordrawback of this approach.In general, distance based algorithms are not too efficient, because they have to compute alarge number of distances. Their worst case is O(n2) in time and space. Algorithm 2 shows thegeneral strategy of this kind of algorithms. An opportunity area is to develop novel methodsthat select examples by computing only a small number of distances.Some proposals to reduce the size of training sets, are based on neighborhood propertiesof SV. The fundamental idea is that SV are located close to opposite class examples. Toexemplify the idea, we use the figure 3.1. The area around two SV is represented by circles,and the Euclidean distances from an SV to the points within each area are represented bystraight lines. Most of the time, a number of objects (neighbors) around an SV have an oppositeclass. This is more pronounced at points close to decision boundaries.The pioneering work "‘condensed nearest neighbor rule"’, presented in [58],[59], takesadvantage of this observation. The algorithm proposed in [59] discovers samples close todecision boundaries based on the Mutual Neighborhood Value (MNV). It is computed betweenany two samples of a set, as the sum of the conventional nearest neighbor ranks of these twosamples with respect to each other. Mathematically, let be xi, xj ∈ X with X ⊂ Rd, suppose
44

3.1. Data reduction methods

Figure 3.1: Some neighbors of support vectors have opposite label

xj is the mth nearest neighbor of xi, and xi is the nth nearest neighbor of xj , then MNV isdefined as in eq. (3.6).
MNV (xi, xj) = m+ n with m, n ∈ {0, 1, ..., N − 1} (3.6)

The value of m and n equals to zero when i = j . Considering only the first K nearestneighbors of each point, then if either xi or xj , or both, are not found in each other’s k-nearestneighborhood, then xi and xj do not belong to the mutual neighborhood. Samples that arenear the decision boundary will have low values of MNV, and their distances will be short.Recently, in [60] a similar approach has been presented.Some algorithms that select examples located between the overlap region around thedecision boundary are shown in [61], [62], [63] [64], [18] and [65]. These algorithms are alsobased on neighborhood properties of SV. The general strategy is to begin with a subset ofobjects randomly chosen from the training set. Then, patterns near the decision boundaryare found, and their neighbors are examined successively until all the patterns near thedecision boundary are chosen and evaluated. Two main disadvantages of this method are: itis unsuitable for linearly separable cases, and it only works when the classes are overlapped.The method presented in [66] is quite similar, but it uses fuzzy C-means clustering to select
45

Chapter 3. Training Support Vector Machines with Large Data sets

samples on the boundaries of the class distribution.Two methods devoted to discover points on boundaries of data sets are BRIM andBORDER. The BRIM algorithm was proposed in [67]. It selects points that are on the exteriorboundaries of data distribution. BRIM works as follows: for each sample in the data set,its neighborhood is computed and the point with maximal density in this neighborhood isselected; this point is called an attractor. Then, the distribution feature of the points in theneighborhood in the direction of the attractor is calculated. This has a double effect: first,outliers are ignored, because there are no other points and the outlier itself is the attractor.Second, the neighborhood is split into two parts, one with a large number of points (the sideof the attractor) and another with few points. The boundary degree of each point is computed,and those with a higher boundary degree are selected. The boundary degree is the relationbetween the number of objects in each part of the neighborhood.The BORDER method presented in [68] detects instances on the boundaries by selectingthose with the lowest number of reverse k-nearest neighbors (RkNN), see Definition 14 [69].The RkNN of an object p consists of the points that look upon p as one of their k-nearestneighbors.
Definition 14 (Reverse K-Nearest Neighbor) Given a data set X , a query
point p, a positive integer k , and a distance metric d(), the reverse k
nearest neighbors of p, denoted as RkNNp(k), is a set of points pi such
that pi ∈ X and ∀pi; p ∈ RkNNpi(k), where RkNNpi(k) are the k nearest
neighbors of point pi.

The RkNN examines the neighborhood of an object p considering the “view” of the wholedata set instead of the object itself; the number of RkNN decreases as the distance of a pointfrom the center increases [68]. This fact is used by Border to the identification of boundarypoints that lie between two or more distributions. The Border algorithm begins by finding thek-nearest neighbors for each example in the data set; a RkNN number is assigned to eachsample and those whose RkNN number is smaller than a user defined threshold detected asboundary points.The problem with both BORDER and BRIM is that their complexity is about O(n2), sothey are unsuitable for large data sets.Different from detecting samples on the boundaries, a number of techniques begin selectinga small number of samples to compute an initial separating hyperplane. Then this number of
46

3.2. Decomposition Methods

samples is used to choose samples iteratively from the data set in order to compute a moreaccurate separating hyperplane. The Sequential Bootstrapped Accelerator (SBA) algorithm[70] uses this approach. SBA selects a quite small subset of the training data set to trainan SVM; the computed hyperplane is used to look for the data which is farthest away fromthe hyperplane and that is misclassified. This iterates until no more misclassified pointscan be found. Figure 3.2 exemplifies this idea. Figure 3.2(a) shows a toy data set andthe optimal separating hyperplane. In Figure 3.2(b) most examples have been removed, thepoint misclassified by the separating hyperplane would be used as the candidate in the nextiteration. It is important to notice that this approach does not work for the linearly inseparablecase. A kernel can be applied to compute the distances:
dist(xi) = ∑yiαiK (x, xi) + b± 1

The main advantage of SBA is that the related QPP is very small, whereas its majordrawback is that all samples need to be tested each time the separating hyperplane is updated.In [71] a similar strategy is used; however, a number of clusters are used instead of all points.These clusters are detected with Fuzzy C-means and minimum enclosing balls.An algorithm based on minimum enclosing ball (MEB) clustering is presented in [72], as anextension of the method presented in [71]. The algorithm is conformed of four steps: (1) dataselection via MEB clustering, (2) SVM classification, (3) declustering, and (4) second-stageSVM classification. After the training data are partitioned by the proposed clustering method,the centers of the clusters are used for the first SVM classification. Then, the clusters whosecenters are support vectors are utilized in the second SVM classification. A disadvantagein the method presented in [72] occurs in the first step. It requires to know a priori twoparameters; the number of balls and their radii. In [72], a guess is realized. Because it is notclear how to propose the parameters of the algorithm, an estimate of the number of balls canbe obtained from the data, using the method of cross validation. However, this is a very timeconsuming task.
3.2 Decomposition Methods

The optimal separating hyperplane for an SVM is computed solving the QPP (eq. (2.26) or(2.42)). When a kernel is used, the kernel matrix (eq. (2.58)) is involved in the solution of theQPP.
47

Chapter 3. Training Support Vector Machines with Large Data sets

(a) Example of training set and optimal separatinghyperplane

(b) A small subset of training set and separating hyperplane
Figure 3.2: Separating hyperplane is used to select examples

The Gramm matrix is as large as the square of the training set size, and in addition, suchmatrix is dense; this makes classical optimization methods unsuitable to be directly appliedon this situation [38][12]. To show this, consider the problem:

min
x

12xTHx with H definite positive (3.7)
s.t.

Ax ≤ b, A ∈ Rm×n

The explicit solution of problem (3.7) is given explicitly by
48

3.2. Decomposition Methods

x = −H−1 (H−1AT (AH−1AT)−1)b (3.8)
The main drawback this solution, is that inverting a matrix takes about O(n3) time, so thiskind of direct solutions should be avoided. The naive alternative of recomputing the kernelmatrix when needed is not practical, because all its values are frequently used.Decomposition methods tackle the problem of training an SVM by optimizing iterativelyonly on the variables belonging to a subset of tractable size. This is the so-called working oractive set. The variables that do not belong to the working set are fixed and form the so-calledfixed set. Decomposition methods can be classified into primal and dual methods. They aimfor dual(primal) feasibility, while maintaining primal (dual) feasibility and complementaryslackness. Algorithm 3 [73] shows the general scheme of the active set methods.A clear advantage in this scheme, in addition to its proved convergence [74][75], is thatits memory requirements grow linearly with the number of training examples. On the otherhand, because only a fraction of the variables is being considered in each iteration, it is timeconsuming [45] if elements in the working set are not carefully selected. It has been observedthat the active set method can oscillate nearby the solution [73].The most important element in decomposition methods for them to converge quickly isthe selection of the subset of variables in the working set [38]. One method, commonly used,consists in selecting those samples that violated the most KTT conditions [76][77][19].One of the firsts decomposition methods was Chunking [54]. It repetitively obtains themaximum margin hyperplane from a number of instances (called the chunk), and then forms anew chunk with the SV from the previous solution and some recent instances.The SVMlight [78] implementation selects working set members using the steepest feasibledirection of descent. It has only a number of non-zero elements; the variables correspondingto these elements will constitute the current working set.Probably, the most famous decomposing algorithm is SMO [12]. SMO considers thesmallest size working set: only two training samples. In SMO, the parameters to optimizein each iteration are two if ∑m

i=1 αiyi = 0 holds. This problem can be solved analyticallywithout requiring the use of any library. The key elements in SMO are two: A heuristic step,that finds the best pair of parameters to optimize; and the use of an analytic expression toensure that the Lagrangian increases monotonically [79].
49

Chapter 3. Training Support Vector Machines with Large Data sets

Algorithm 3: Active Set Method, Generic Algorithm
Input : A QPP to solve

x1: A feasible point
A: Initial active set

Output:
x∗: Solution of QPP

1 begin
2 while no solution found do
3 if δ = 0 does not solve (3.9) then
4 Solve (3.9) for sk
5 Find α (k) to solve (3.10) and set x (k+1) = x (k) + λks(k)
6 if λ(k) < 1 then
7 A = A ∪ p
8 else
9 Compute Lagrange multipliers λ(k) and solve (3.11) if λ(k)

q ≥ 0 then
10 return x∗ = x (k)
11 else
12 remove q from A
13 k⇐k+1
14 End
15 Where
16

min
δ

12δTGδ + δTg(k) (3.9)s.t
aTi δ = 0, i ∈ A

17

α (k) = min
(1, min

i:i /∈A,aTi s(k)<0
bi − aTi x (k)
aTi s(k)

) (3.10)
18

min
i∈A∩I

λ(k)
i (3.11)

50

3.3. Variants-based methods

LibSVM [80] is an algorithm based on SMO with the improvement of a more advancedselection mechanism for the working set, which uses the second-order information methodpreviously shown in [14].
3.3 Variants-based methodsApproximate versions of standard SVM have been proposed to improve its training time atthe expense of accuracy. The least square SVM (LS-SVM) [81] changes the original QPPby using a linear system of equations that can be solved explicitly or by using a conjugategradient method [81].Original SVMs classify instances by assigning them a label, depending on which side of aseparating hyperplane they are. The PSVM (Proximal SVM) [82] takes a different approach;the instances are classified by assigning them to the closest of two parallel lines, these lines(hyperplanes) cluster samples that cannot be linearly separated. The problem is thus reducedto that of solving a linear system in O(n3) time.
3.4 Other methodsIn this section, techniques which are different from the previous ones are presented.

3.4.1 Parallel implementationsRather than detecting samples that are likely SV, or decomposing the QPP in smallersub problems, some algorithms try to speed up the training time of SVM by parallelimplementations.The Parallel implementation of QPP is difficult, this is because there is a strong datadependency [83]. Most approaches divide the training set into independent subsets to trainSVMs in different processors, as in [83], [84] and [85]. In [86], the kernel matrix of SVMsis approximated by block diagonal matrices. The original optimization problem can bedecomposed into hundreds of sub problems, which are easy to solve in a parallel fashion.A similar parallel computation of the kernel matrix for high dimensional data space isimplemented in [87].In [88], the authors use the variable projection decomposition technique. adapted to workin parallel; this work was inspired on the SVM light implementation of [78].A distributed SVM algorithm for row and column-wise data distribution is described in
51

Chapter 3. Training Support Vector Machines with Large Data sets

[89], which cannot be used with non linear kernels. A parallel MPI-based decomposition solverfor training support vector machines has been implemented in [90], whereas multi-processorshared memory (SMP) clusters have been introduced in [91].
3.4.2 Alpha seedingAlmost all SVM training methods begin by assuming that all Lagrangian multipliers (αi) havezero values. The alpha seeding approach exposed in [92] consists in providing initial estimatesof the αi values, for the starting of QPP. According to the results produced by alpha seeding,it seems to be a practical method to improve the training time of SVMs [92]. Recently, in [93]has been proposed a similar method.A very simple algorithm called DirectSVM is proposed in [94]. Instead of solving the relatedQPP, DirectSVM uses an iterative scheme based on two heuristics. This method requires tocompute the closest pair of points in the data set, at the beginning, and several times duringthe iterations if necessary, which introduces an intensive workload. This is a disadvantage ofthe method.
3.4.3 On-line trainingTraining an SVM from scratch when one or more samples are added to the training data setis not computationally efficient. Incremental methods have been developed to address thisproblem. Currently, these training methods can be classified depending on how they work:(a) Algorithms that use batches of instances, e.g. [95][96], (b) Algorithms that use partitionsand (c) other methods.The general idea of methods of type (a) is as follows: retain the SV previously computedand then add one or more samples, afterwards solve a new optimization problem of smallsize. This approach resembles Chunking (see subsection. 3.2) but it is different because itproduces low accuracy in on-line classification [97]. Variants of (a) have also been proposed.The method presented in [98] consists in updating a set of linearly independent vectors toconstruct the separating function. A single-pass algorithm for training SVM is presented in[82], and it takes advantage of PSVM[82]. In this algorithm, instead of finding the separatinghyperplane, the instances that avoid linear separability are clustered by two hyperplanes. Inthe incremental step, the SV are retained whereas all the other samples are removed.Some other methods (type (b)) create at least three partitions with the arrived instances:

52

3.5. Preliminary experiments

the partition of SV, the partition of error samples and the remaining set [99]. The key is to moveeach sample to the correct partition and then update. Most algorithms use the KTT conditionsto determine where to move samples. Examples of this technique are in [97][100][101].There are several algorithms that use an approach different from those of type (a) and(b). The idea of controlling the changes of the optimal separating hyperplane by using thepreviously computed in the optimization problem as a weighted penalty was proposed in [102].Recently, [103], used similar idea by coupling two SVMs combined with a time window. In[104] the authors use a property of the radial basis kernel, updating the separating hyperplanelocally.The “Huller” algorithm shown in [105] treats SVMs as NPPs, solving a simple optimizationproblem. This algorithm is very fast but cannot deal well with linearly inseparable or noisydata sets.
3.5 Preliminary experimentsIt can be found in the literature that SVs are located near to decision boundaries [54][7][106]or are the closest to opposite class examples[18][107][108]. Other data reduction methods usesimple random sampling [48][65][109][110]. In this section, we explore both approaches andpresent some results.For the linearly separable case, the optimal separating hyperplane is determined by theclosest points that belong to the convex hull of each class [7]. In Most cases these points arealso close to opposite class examples [111][112]. The trivial idea for reducing the size of thetraining sets for classification with an SVM consists in selecting the closest objects with anopposite label.Consider the toy data set shown in Figure 3.3. Figure 3.4 shows the smallest distancesfrom positive(negative) objects to negative(positive) examples. The distances marked with acircle correspond to the real SV obtained after training an SVM with a linear kernel. Figures3.5 and 3.6 show another toy example that is linearly inseparable.The objects closest to the opposite class are also SVs for the last two toy examples.In order to explore the behavior of this approach to detect SV candidates, we executed anexperiment using the following real-world data sets: Breast Cancer, Diabetes and Ionosphere.Table 3.1 shows the main features of them. We used the radial basis function kernel(
K (x1, x2) = exp(−γ ∥∥x1 − x2∥∥2)). The value of the parameter γ was set to value 1/N in allcases. The goal was to observe the general performance of the approach based on distances.

53

Chapter 3. Training Support Vector Machines with Large Data sets

Figure 3.3: Toy example of a linearly separable data set

Figure 3.4: Distances to the closest example, linearly separable case

Many strategies to choose SV candidates from a data set using the distances as a guidecan be designed, for example, (a) Select the initial M (M � N) objects closest to the oppositeclass, (b) prefer objects, randomly, with a probability for each object of being chosen setas a function of its distance or (c) Get rid off examples whose distance is greater than acertain threshold. We implemented strategy (a) in this experiment, i.e.; we chose a numberof Xr objects that form the first Distused smallest distances. Strategy (b) depends on randomnumbers, and can give unrepeatable results, strategy (c) is similar to strategy (a).
Table 3.1: Data sets for testing SV candidate selection using a naive approach

Data set Size Dim |yi = +1| |yi = −1|
Breast-Cancer 683 10 444 239Diabetes 768 8 500 268Ionosphere 351 34 126 225

Figure 3.7 shows the general procedure to test and compare our methods with other ones.
54

3.5. Preliminary experiments

Figure 3.5: Toy example of a linearly inseparable data set

Figure 3.6: Distances to the closest example, linearly inseparable case

The training set is separated into training and testing set. A classification model is generatedwith the entire training set, this is referred as Model A in Figure 3.7. We apply our datareduction methods on the training set to obtain a "‘reduced data set"’. This is used to traina SVM classifier; a Model B is obtained. Both models are tested with the training set, theclassification accuracy is measured. The training times of our methods include the time toreduce the training set and the time to train a SVM classifier.Table 3.2 shows the results obtained. The reported results are the average of 100 runs ofeach experiment. The standard deviation is very large, and the accuracy is low if one takesabout 1% of the training set. In general, the classification accuracy achieved with this naiveselection method is lower than to classification accuracy achieved using the whole data set.It is important to note that in this experiment, the training of the SVM took place in bothfeature and input space, whereas the selection of examples is executed in the input space. Forboth cases, the accuracy achieved with the approach based on distances gives approximate
55

Chapter 3. Training Support Vector Machines with Large Data sets

Figure 3.7:Framework for comparing our methods
results even if the SVM training method is using a linear or a Gaussian kernel; this can beattributed to the fact that the Gaussian kernel preserves distance [112].A problem with this approach is that the computation of distances has a complexity ofabout O(n2) in time and space; therefore, this method is unsuitable for large data sets. Thatis why we chose small real-world data sets for our experiment.Data selection using simple random sampling is the cheapest computational method forreducing the size of training sets. This consists in taking a portion of the training set, randomly,and using it to build an SVM. Table 3.3 shows the results of 100 runs for each data set usingthis approach. It can be seen that the accuracy obtained with the 1% of training set is betterthan that obtained with the method based on distances; however, the standard deviationis considerably higher. Using about 10% of the training set seems a good tradeoff betweenaccuracy, standard deviation and size of training set. It is important to notice that the standarddeviation remains high for simple random sampling.

56

3.5. Preliminary experiments
Table

3.2:R
es

ul
ts

us
in

g
se

le
ct

io
n

ba
se

d
on

di
st

an
ce

s

D
at

a
se

t
|S
V w

G
|
|S
V w

L|
D

is
t

D
is

t us
ed
|X

r|
|S
V r

G
|
|S
V r

L|
Ac

c w
G
/stdd

ev
Ac

c w
L/stdd

ev
Ac

c r
G
/stdd

ev
Ac

c r
L/stdd

ev

Breas
t-Can

cer
53

37.96
106,1

16
10

14
11

11
97.14

/1.00
96.7/1

.10
64.76

/10.76
57.45

/10.55
20

22
16

16
65.28

/6.97
63.33

/5.29
40

37
20

30
72.82

/8.79
91.91

/4.23
100

78
26

24
86.13

/4.16
91.88

/4.64
200

102
31

29
94.07

/1.78
93.98

/2.44
400

233
38

30
96.33

/1.10
96.99

/1.36
1000

349
46

63
96.80

/0.96
97.01

/1.13
Diabe

tes
537

281
134,0

00
10

19
19

19
64.92

/2.90
76.91

/2.34
58.87

/8.48
58.87

/11.48
20

34
33

31
59.63

/11.46
63.33

/7.60
40

61
58

52
65.25

/2.80
64.96

/7.49
100

109
109

97
64.71

/2.82
69.67

/5.51
200

191
191

131
65.12

/2.88
74.03

/4.09
400

246
243

164
65.57

/2.66
75.27

/3.01
1000

371
356

218
65.03

/2.49
76.78

/2.86
Ionos

phere
168

75
3,936

10
10

9
9

92.01
/2.43

86.23
/2.96

48.98
/16.78

80.94
/6.80

20
11

11
10

56.08
/15.14

80.83
/6.13

40
37

18
14

64.45
/4.90

76.19
/7.5

100
59

30
22

65.02
/4.77

76.78
/5.76

200
97

47
32

68.19
/3.18

86.83
/4.63

400
127

60
43

74.97
/3.01

79.66
/4.01

1000
158

72
52

83.67
/2.33

83.37
/3.30

Them
eanin

gofc
olumn

name
s.

|S
V w

G
|:Nu

mber
ofSV

using
whole

data
setan

sGau
ssian

kerne
l,

|S
V w

L|
:Num

bero
fSV

using
whole

data
setan

dline
arke

rnel
Dist:

Total
numb

erof
distan

cesc
ompu

ted,
Dist u

se
d

:The
numb

erof
distan

cesc
onsid

ered
tosel

ectS
V

|X
r|:Si

zeif
reduc

edtra
ining

set,
|S
V r
G
|:Nu

mber
ofSV

thatc
oincid

ewit
hSV

w
G

|S
V r
L|

:Num
bero

fSV
thatc

oincid
ewit

hSV
w
L

Acc wG
/s
td
D
ev

:Acc
uracy

/stand
ardd

eviati
onac

hieve
dusin

gwho
leda

taset
andG

aussi
anke

rnel
Acc wL

/s
td
D
ev

:Acc
uracy

/stand
ardd

eviati
onac

hieve
dusin

gwho
leda

taset
andl

inear
kerne

l
Acc rG

/s
td
D
ev

:Acc
uracy

/stand
ardd

eviati
onac

hieve
dusin

gred
uced

data
setan

dGau
ssian

kerne
l

Acc rL
/s
td
D
ev

:Acc
uracy

/stand
ardd

eviati
onac

hieve
dusin

gred
uced

data
setan

dline
arke

rnel

57

Chapter 3. Training Support Vector Machines with Large Data sets

Algorithm 4: Naive data reduction based on distantes
Input :

X : Set of points
Output: A subset of X

1 begin
2 Separate the data set X into two subsets:
3 X+ = {xi ∈ X s.t. yi = +1}
4 X− = {xi ∈ X s.t. yi = −1}
5 For each xi ∈ X+, xj ∈ X− compute di,j = √(xi − xj)2
6 Select examples in X taking into account the di,j .

Table 3.3: Results using selection based on simple random sampling

Data set Size Xr(%) |SVrG| |SVrL| AccrG(%)/stdDev AccrL(%)/stdDevBreast-Cancer 1% 3 2 76.44/13.56 87.46/10.4110% 13 7 85.44/12.15 95.91/4.1250% 33 15 95.20/4.01 96.62/3.01Diabetes 1% 5 3 52.01/19.19 66.52/14.0110% 53 24 65.57/17.33 73.06/10.7750% 268 137 65.54/13.78 76.71/9.32Ionosphere 1% 2 1 57.76/16.90 60.00/16.5010% 20 13 74.79/10.08 77.50/9.0050% 70 42 89.27/4.29 85.75/5.80
The meaning of column names.Size Xr(%): Portion of training set randomly selected
|SVrG |, |SVrL|, AccrG(%)/stdDev, AccrL(%)/stdDev: Same as table 3.2.

3.6 ConclusionsThe state-of-the-art regarding methods for training SVMs was presented in this chapter.These methods are categorized in Data reduction, Decomposition, Variants of SVM and otheralgorithms.Data reduction methods allow to improve the training time of an SVM at the expenseof degrading classification accuracy. The observation that objects that define the optimalseparating hyperplane are usually close to decision boundaries, or located close to opposite
58

3.6. Conclusions

class examples, can be used as a guide to select SV candidates. We explored the performanceof this approach using two naive strategies; the first is based on distances, and the second isbased on simple random selection.The objects whose distances are the closest to opposite class examples correspond to SV,regardless of the type of kernel adopted by the SVM (linear or a Gaussian). Using only asmall number of candidates selected with respect to distance produces low accuracy, and highstandard deviation. Simple random selection is probably the cheapest method, computationallyspeaking. It can achieve a higher accuracy than the previous approach, with a smaller numberof examples. However, when using this apporach the standard deviation remains very high.

59

Chapter 3. Training Support Vector Machines with Large Data sets

60

4
Data reduction method based on convex-concave hull

As above, so below
Hermes Trismegistus

The pioneering works on classification, proposed classifiers that used linear decisionboundaries to predict the class of patterns. Although the first classifiers worked only onlinearly separable cases, they provided powerful insights about the geometry of classification.Linear decision boundaries are simple to understand in the input space. The linearlyseparable case can be graphically represented in two dimensions, along with a separatinghyperplane. Intuition says that something similar happens in higher dimensions, and this issupported mathematically.The classification of linearly separable data sets can be solved by using convex hulls.However, these data sets are not common in real-world applications. Convex hulls can beadapted for these problems. A reduced convex hull is used in [7] to classify linearly inseparabledata sets.In this chapter, we introduce a novel data reduction method called convex-concave hull. Itimproves the training time of SVM classifier. This method does not require to modify convexhulls. Also, it can be applied on both, linearly separable and inseparable cases.
4.1 Convex hull for classi�cationLinear classifiers, such as the simple perceptron and SVMs, compute linear decisionboundaries; these are linear combinations of inputs. The SVM with linear kernel is prettysimilar to the simple perceptron, in the sense that they both compute a linear decision

61

Chapter 4. Data reduction method based on convex-concave hull

boundary. However, in the former, the decision boundary is the optimal. The hyperplanefound by SVM has the largest margin.Figure 4.1 shows the geometry of the decision boundaries for the linearly separable case.The separating hyperplane is determined by vector ω, and the distance from the origin isgiven by b∥ω∥ .

Figure 4.1: Linear decision boundary for a binary classification problem

For all linearly separable cases, no point can be expressed as a linear combination ofthe subsets X+ = {x ∈ X s.t. class x is +1} and X− = {x ∈ X s.t. class x is -1}. The twoconvex hulls CH(X+) and CH(X−) do not intersect [7].Computing the “best” separating hyperplane, is equivalent to finding the closest pair ofpoints (x+ ∈ X+ and x− ∈ X−) that belong to CH(X+) and CH(X+), respectively [7][113][114].In order to identify these two points, the following problem must be solved:
min

xi∈X+xj∈X−
M∑
i=1 αixi −

L∑
j=1 αjxj

2 (4.1)
s.t.

M∑
i=1 αi = 1, L∑

j=1 αj = 1, j = 1...M, i = 1, ..., N
and αi,j ≥ 0

62

4.1. Convex hull for classification

Where
X+ ⊆ Rd, X− ⊆ Rd

| X+ |= M , | X− |= LThe separating hyperplane is the normal vector to the line that joins the closest points.It is called “optimal”, in the sense that it has the maximum margin. As explained in Chapter2, the margin is the distance from the hyperplane to closest pattern. This is exemplified inFigure 4.2.

Figure 4.2: A separating hyperplane is defined by the closest pair of points in the convex
hulls

The solution of problem (4.1) is equivalent to SVM [7][115]. This can be explained, based onthe principle of Duality, in the area of Minimum Norm Problems. Observe that the hyperplanesmust satisfy the equations
〈xi, ω〉 ≥ α, ∀ i = 1, ...,M (4.2)and ∃ xi ∈ X+ s.t. 〈xi, ω〉 = α

〈
xj , ω

〉
≤ β, ∀ j = 1, ..., L (4.3)and ∃ xj ∈ X− s.t.

〈
xj , ω

〉 = β

63

Chapter 4. Data reduction method based on convex-concave hull

The distance between these two hyperplanes — eq. (4.2) and eq. (4.3) — is computed by
D = α − β

ω (4.4)
The optimal separating hyperplane is the one that maximizes D. In order solve this problem,

ω must be minimized, and (α − β) maximized. Seen otherwise, t is necessary to minimize
−(α − β).Using these observations, the problem to be solved is transformed into

max
ω,α,β

12ω2 − (α − β) (4.5)
s.t.
〈xi, ω〉 ≥ α ∀ i = 1, ...,M
−
〈
xj , ω

〉
≥ −β ∀ j = 1, ..., L

The Lagrangian of eq. (4.5) is
L(ω, α, β, u, v) = 12ω2 − (α − β)− λi (〈xi, ω〉 − α)− λj (〈xj , ω〉+ β

) (4.6)
with

i = 1, ...,M and j = 1, ..., L
λi ≥ 0, λj ≥ 0

The dual optimization problem is
max

ω,α,β,u,v
L(ω, α, β, u, v) (4.7)

According to the KKT conditions, for eq. (2.29a) to eq. (2.29e), we have
∇ωL(ω, α, β, u, v) = ω − λixi + λjxj = 0 (4.8)
∇αL(ω, α, β, u, v) = −1− λi = 0 (4.9)
∇βL(ω, α, β, u, v) = 1− λj = 0 (4.10)

64

4.1. Convex hull for classification

The gradient of this Lagrangian is
ω = L∑

j=1 λjxj −
M∑
i=1 λixi (4.11)

From (4.9), (4.10) and (4.6):
M∑
i=1 λi = 1, λi ≥ 0 (4.12)
L∑
j=1 λj = 1, λj ≥ 0 (4.13)

Interchanging λ by α yields
min

xi∈X+xj∈X−
M∑
i=1 αixi −

L∑
j=1 αjxj

2 = ω2
s.t.

M∑
i=1 αi = 1, L∑

j=1 αj = 1, j = 1...M, i = 1, ..., N
and αi,j ≥ 0

which is equivalent to (2.26).Most data sets are not linearly separable. In these situation, the convex hulls do intersect,and therefore, the solution to problem (4.1) does not exist. Current geometric methods fortraining SVMs, take the idea presented in [7]. It consists in shrinking or reducing the CH toavoid overlapping. In [8], a reduced convex hull (RCH) is used. The RCH is defined as
RCH(X, µ) = {ω : ω = k∑

i=1 aixi where k∑
i= ai = 1, xi ∈ X, µ < 1 and 0 ≤ ai ≤ µ

}
65

Chapter 4. Data reduction method based on convex-concave hull

Given a linearly inseparable data set, the initially overlapping convex hulls can be reducedto become separable. This is achieved by selecting a suitable value of µ. Figure 4.3 showsan example of the shape of RCH.

Figure 4.3: Reduced convex hull, µ = 0.5
There are some problems with the reduced convex hulls: The parameter µ must be carefullyselected. A large value of µ does not avoid intersection of convex hulls; a very small value of

µ produces many vertices of the RCH. Another intrinsic problem with RCH is that it changesthe shape of original set of points; the separating hyperplane misclassifies many examples.One variant of a convex hull is the scaled convex hull (SCH), defined by
SCH(X, λ) = {ω : ω = k∑

i=1 ai (λxi+ (1− λ)m)}

With∑k
i= ai = 1, xi ∈ X, λ ≤ 1 and 0 ≤ ai ≤ 1In SCH, the shape of the convex hull is maintained. Figure 4.4 shows a SCH in twodimensions.The training times of SVMs using RCH or SCH are large, and the classification accuracyis degraded with both methods.In our method, it is unnecessary to change the convex hull. Instead we detect the objectsthat are close to exterior boundaries of class distribution and use them to train a SVM.

66

4.2. Non-Convex Hull

Figure 4.4: Scaled convex hull, λ = 0.5
In order to detect objects on the boundary, we use the convex hull first, and then, we createnon-convex hulls.

4.2 Non-Convex Hull

The border points B (X) of a set X ∈ R2 are the vertices of a convex-concave hull, if theysatisfy the following properties:
1. The vertices of a convex-concave hull B (X) are all the vertices of a convex hull (CH),plus the points that are "‘close"’ to the edges of CH(X):

B (X) = VCH(X) ∪ CloseCH(X) (4.14)
Where
VCH(X) is the set of the vertices of the convex hull.
CloseCH(X) is the set of points that are close to the edges of CH(X).The degree of closeness, is different from point to point. There is no unique set of borderpoints.If the points in B (X) are joined properly, it results in a concave polygon. A polygon isconcave if any internal angle is greater than 180◦. Figure 4.5 shows a concave polygon.In general, the B (X) is not a convex hull.

67

Chapter 4. Data reduction method based on convex-concave hull

Figure 4.5: An example of a concave polygon

2. The border points should exclude at least one member of X :
B (X) ⊂ X (4.15)

A direct result is that the cardinality of B (X) fulfills:
max |B (X)| < N (4.16)

3. The minimum size of B (X) is three (a triangle can never be concave). In most cases,when the cardinality of X is large, the minimum size of B (X) is equal to the number ofvertices of CH(X).
The polygon formed with B (X) is convex, if there are no points "‘close"’ to any vertex of

CH(X). Similarly to a convex hull, this polygon "‘envelopes"’ the elements in X . In general,
B (X) is not convex, and we call it a convex-concave hull of X .In the following subsection, we describe a method to detect the vertices of a convex-concavehull.
4.3 Searching for the vertices of convex-concave hull

We begin with the set of vertices in the CH(X), where X = {x ∈ R2}. As shown in Figure4.6, for any two adjacent vertices vi and vj of CH(X), all points in X must be located at oneside of the line that passes through vi and vj .We call vi the starting point, and vj the stopping point. The general procedure to detectobjects "‘close"’ to the edge defined by these vertices is summarized as follows:
68

4.3. Searching for the vertices of convex-concave hull

Figure 4.6: The convex hull of a set of points X and two adjacent vertices

1) The starting point is considering the "‘currentPoint"’.2) The point that fulfills the following is considered "‘close"’ to the current edge:
• It is one of the K -nearest neighbors of currentPoint.
• It has the smallest angle with respect to vi and vj .
• It does not intersect the polygon formed with the previously selected points.
3) Once a point that fulfills the last conditions is found, it becomes the new currentPoint.4) The steps 2 and 3 are repeated until the stopping point is reached.Algorithm 5 shows implementation details for this procedure.Figure 4.7 shows the points close to an edge of the convex hull. In this example, thenumber of nearest neighbors is equal to three.In order to compute B (X), the previous procedure is applied on each pair of adjacentvertices. Algorithm 6 implements this task.Figure 4.8 shows real examples of the convex-concave hull B (X) computed via Algorithms5 and 6.It is possible to obtain a different set B (X) by changing the parameter K in Algorithm 5.For example, in Figure 4.8 the values of K are: (a) K = 9, (b) K = 4 and (c) K = 6. Thegreater the value of K , the more similar it is to the convex hull.

Remark 4.1 Algorithm 5 shows how the space between two consecutive extreme points is
explored. The underlying idea is similar to Jarvis’ march [116], where a set of points is
wrapped. However, Jarvis’ march considers all points, whereas Algorithm 5 uses only local
neighbors.

69

Chapter 4. Data reduction method based on convex-concave hull

Algorithm 5: Search closest points
Input :

X : A set of points
S: Two adjacent vertices {vi, vj} of CH(X)
K : Number of neighbors
θ : The previous angle between adjacent vertices

Output:
CloseCH(X) : The set of points close to the edge defined by adjacent vertices{

vi, vj
}

1 begin
2 currentPoint ← vi;
3 stopPoint ← vj ;
4 CloseCH(X) ← vi;
5 Maximum value of K is the size of set X

6 K ← max {|X | , K};
7 while currentPoint 6= vj do
8 candidates←get the K nearest points to currentPoint;
9 Compute the angle of every pi ∈ candidates w.r.t. to angle θ;

10 Sort candidates by increasing angle;
11 foreach pi ∈ candidates do
12 L is a segment of line defined by pi and currentPoint;
13 if L does not intersect the convex-concave hull then
14 CloseCH(X)← CloseCH(X) ∪ pi;
15 exit this loop;
16 if no point was added in the last loop then
17 CloseCH(X)← CloseCH(X) ∪ vj ;
18 return CloseCH(X);
19 Remove currentPoint from X ;
20 Update θ using the two more recently added points of CloseCH(X);
21 if currentPoint = vj then
22 return CloseCH(X);
23 currentPoint ← pi;

70

4.3. Searching for the vertices of convex-concave hull

Figure 4.7: Points close to an edge of CH(X)
Remark 4.2 The convex-concave hull has the following advantages over the KNN concave
hull [117]: 1) The starting and stopping points of our algorithms are set before, using the
convex hull. This ensures that all vertices of the convex hull are always in the vertices of a
convex-concave hull. 2) The angles in [117] are entirely depended on the previously computed
ones. In our method, the extreme points are used to compute the angles. This allows an easy
concurrent implementation. 3) Our algorithm does not use recursive invocations. The stop
point is added to the set of the border points when it cannot find more any points. This saves
the detection time of B (X).

The properties of a convex-concave hull are used to formulate a pre-processing step ofdata sets for SVMs. Now, we show how to take advantage of these properties.According to the first property, (B (X) = VCH(X) ∪ CloseCH(X)), the set of vertexes of theconvex-concave hull B (X) is a super-set of the vertexes of convex hull VCH(X), i.e., VCH(X) ⊆ B (X).Algorithm 6 computes CH(X), and then, it uses two extreme points vi, vj to search forthe closest points, via Algorthm 5. At the last iteration, B (X) contains all vertices of CH(X).According to property 1, if B (X) is used to train a SVM, then the optimal separating hyperplaneis computed. This is true in the case in which the X is linearly separable.The property 2, (B (X) ⊂ X), ensures that the number of points selected is at most N , where
N = |X |. In practice, the size of X is often reduced.

71

Chapter 4. Data reduction method based on convex-concave hull

Figure 4.8: Convex-concave hull computed with different values of K , (a) K = 9, (b) K = 4
and (c) K = 6.

Finally, property 3 ensures that B (X) is not an empty set; this is interpreted to mean thatSVMs will have data to be trained. A special case occurs when the size of X is less than 3;however, in such case, no data reduction is required.The parameter K , in Algorithm 5, is quite important. It decides the number of nearestneighbors of currentPoint. If K is chosen to be large enough, for example, K ≥ N , then therest of elements in X are nearest neighbors. In this case, the proposed Algorithms converge toa convex hull. This is because for a currentPoint vi, the point that satisfies the three conditionsto be a closest point is the stopping point.Up to this moment, the properties of a convex-concave hull have been useful only for thelinearly separable case. The direct application of convex hulls is not valuable for the generalcase of classification. The problem with real-world data sets is that the convex hulls usuallyoverlap.The idea behind RCH and SCH methods is to transform the problems into linearlyseparable ones. According to the geometry of classification, the patterns that define the
72

4.3. Searching for the vertices of convex-concave hull

Algorithm 6: Convex-Concave Searching Scheme
Input :

X : Set of points
K : Number of candidates

Output:
B (X): Convex-concave hull

1 begin
2 //Set of vertices begins empty

3 B (X)← ∅ Compute CH(X)
4 The vertices of CH(X) are v1,...,vn;
5 for each pair of adjacent vertexes (vi, vj) do
6 θ ← compute angle defined by (vi, vj);
7 Detect points "close" to edge (vi, vj);
8 Apply Algorithm 5 using (X, (vi, vj), K , θ) B (X)← B (X) ∪ CloseCH(X)

linear decision boundary are the closest points to the opposite (and modified) convex hull.The vertices of convex hulls are enough to compute the separating hyperplane.Instead of reducing or scaling convex hulls, our data reduction method takes a differentapproach. First, we create partitions, and then, we compute the convex-concave hulls. Theresults are joined in a set. This is a super set of B (X):⋃
i
B (X i) ⊇ B (X) ⊇ CH(X)

Where
X i the i− th partition of set X.
∩X i = ∅
∪X i = X .We use Figure 4.9 to explain this. A set X has been been partitioned into four subsets.The convex-concave hull of each one of them has been computed. The set of vertices of convexhull VCH(X) is a subset of ∪VCH(X i).

Remark 4.3 If the Algorithms 5 and 6 are applied on the disjoint partitions of X ; the joining
of results contain all the vertices of CH(X). The points in intersection of convex hulls are also
included in B (X). This is helpful for linearly inseparable cases for SVM classification.

73

Chapter 4. Data reduction method based on convex-concave hull

Figure 4.9: A super set of B (X) obtained by applying Algorithms 5 and 6 on partitions

4.3.1 Pre processingThe convex-concave hull algorithms shown in the previous section work for sets with twofeatures. In order to extend our method to more than two dimensions, a dimensionalityreduction is necessary. The principal component analysis (PCA) is a common method toreduce the dimension of data sets; however, we do not use PCA. It is costly, and, additionally,the features are linear combinations of features.We select the two dimensions with the lowest variance, and then, we compute theconvex-concave hull. The other features are used to search for more points.The general approach to apply our algorithms on data sets with higher dimensions is thefollowing:
1. Partition the input space to create a number of partitions X i.
2. Select two features from X i to create a set Y i ∈ R2. The Y i can be viewed as X i withall its features fixed, at exception of two.
3. Apply convex-concave hull searching on Y i.
4. Explore fixed features for more points.
5. Join the points recovered in the previous steps.

74

4.3. Searching for the vertices of convex-concave hull

Figure 4.10: General process of the convex-concave hull method

75

Chapter 4. Data reduction method based on convex-concave hull

Partition the input space

The partition of input space must be fast to avoid a bottleneck problem. We use a binary treedata structure to manage a grid G. All points in X are mapped into a grid G, i.e., they areinserted into a cell of it. Figure 4.11 shows the structure of the grid. The cells are hyperboxes. Each side such a hyper boxes has a length
sidei = max(di) +min(di)2hgWhere

hg the height of the binary tree, or, the granularity of G.
di is the i− th feature of the training set.The size of each cell is controlled by the height of the tree. Figure 4.12 shows how thebinary tree manages the grid. The hg decides how many times one feature should be halved.Each leaf of the tree represents a cell.

Figure 4.11: Partition of the input space using a grid

The mapping from X into grid also reduces the repeated points; if a set of points in X arevery close to each other, they are mapped into the same cell.We use two examples to show how the grid and the convex-concave hull work together.Figure 4.13 shows the result of applying the algorithms on the whole points (hg = 0). Figure4.14 shows the result with hg = 1. The border point is realized by the union set operation.
76

4.3. Searching for the vertices of convex-concave hull

Figure 4.12: Binary tree represents the grid

Figure 4.13: Example with granularity hg = 0
77

Chapter 4. Data reduction method based on convex-concave hull

Figure 4.14: Example with granularity hg = 1
4.3.2 Searching for convex-concave hull vertices in higher

dimensionsThe convex-concave hull search utilizes the convex hull as an intermediate step. It is wellknown that computing the convex hull in more than three dimensions is computationallyexpensive, and this should be avoided.We overcome this difficulty by searching the vertices of the convex-concave hull in twodimensions. The other features are used to find more points. After searching in the twoselected dimensions, we move in one dimension at a time and apply this process iteratively.The effect of this procedure in three dimensions is similar to slicing a cube. An example ofconvex-concave hull in three dimensions is shown in Figure 4.15.In order to cross the dimensions, we use the following strategy: We choose the cells ofthe grid G that are at height hb < hg in the binary tree, searching from heigh ha < hg (seeFigure 4.16). Then we reach the next node of the tree and repeat the process. The selectionof ha < hb can be realized quickly by testing the values 0, 1, 2.., hg − 1.
4.4 SVM Classi�cation via Convex-Concave HullFigure 4.10 shows the general steps to apply our methods with SVMs. These steps can besummarized as follows:

1. Split the data set into two subsets: positive an negative records.
78

4.4. SVM Classification via Convex-Concave Hull

Figure 4.15: Example of result on a toy example with three dimensions

Figure 4.16: Partition in higher dimensions

2. Create partitions
3. Compute the convex-concave hulls on partitions.
4. Join the previous results.
5. Train a SVM
Basically, SVM classification can be grouped into two types: linearly separable andlinearly inseparable cases. The grid and convex-concave hull algorithms are suitable for thelinearly separable and linear inseparable cases. Figure 4.17 shows an example of applicationof our methods on a linearly separable case.

79

Chapter 4. Data reduction method based on convex-concave hull

Figure 4.17: Linearly separable case, hg = 0
In the linearly inseparable case, the convex hulls CH(X) are intersected, see Figure 4.18.Because the SVs are generally located on the exterior boundaries of the data distribution,they are not the vertices of CH(X+) and CH(X−) [118][7]. On the other hand, the vertices ofthe convex-concave hull are the border points, and they can be used as SVs.

Figure 4.18: Linearly inseparable case, hg = 0
The parameters of the kernel are chosen utilizing the grid search method, widely usedin the literature. That method tests the performance of a classifier using different parametervalues in an interval.

80

4.5. Performance analysis

4.5 Performance analysisIn this section, we show the memory space and computation time complexities of our CCH-SVMmethod.It is not easy to analyze the exact complexity of the normal SVM algorithm. For n inputdata, this operation involves a multiplication of matrices of size n, which has complexity O(n2.3)and O(n2.83) at worst [119]. In the following, we assume that a QP implementation of eachstage of SVM takes O(n3) computation time and O(n2) memory space.
4.5.1 Memory spaceDuring the pre processing phase of our method, all the examples in the training set Xare mapped into a grid G by inserting them in a binary tree.The height of the tree is hg(granularity). Considering the following facts:
• Each example has d dimensions and those data types are double (8 bytes),
• The internal nodes in the binary tree occupy each one about 40 bytes (two referencesto the child nodes and internal variables),
The amount of memory to manage all examples in G is

23+hg (d + 5)− 40 bytes
, where hg is the height of the binary tree, d is the number of features in the data set X . Thisamount of memory is computed as follows: The maximum number of leaves in a binary treeof height hg is given by 2hg . Each leaf contains a vector of d features, and each feature isstored in 8 bytes, the amount of memory used by the leaves is

2hg · 8 · d = 2hg23 · d
. It is well known that the number of internal nodes in a binary tree of height hg is givenby 2hg − 1. Because each internal node in the implemented binary tree uses about 40 bytes.The amount of memory used for the internal nodes is

40 · (2hg − 1)
81

Chapter 4. Data reduction method based on convex-concave hull

The total amount of memory used by a binary tree is composed of the leaves and theinternal nodes, i.e., (2hg23 · d) + 40 · (2hg − 1)
This can be simplified as 2hg · 23 · d + 40 · (2hg − 1) = 2hg · 23d + 2hg · 40 − 40 =2hg · 23 · d + 2hg · 23 · 5− 40. Grouping terms we obtain 2hg · 23(d + 5)− 40 bytes.This amount of memory is used when all leaves of the binary tree exist. In this case, morethan one example is usually mapped into the same leaf of the tree. Reducing the amount ofmemory originally required to allocate the training set X , i.e., 8 · |X | · d bytes. With |X | thesize of the training set, namely n.The memory used by Algorithms 5 and 6 can be ignored, because they use little memoryspace compared with the binary tree.
4.5.2 Computational timeIn order to analyze the computational cost of the proposed method, we separate it in thefollowing phases:
• Create a grid G via a binary tree. The computational time for creating G is obtainedwith the insertion of examples in a binary tree. It is O(n log2 n) with n = |X | examples.
• Detect the vertexes of the convex-concave hulls in partitions Yi by looking downwardthe tree from height ha down to height hb.Algorithm 6 uses the partition Yi to obtain the vertexes of a convex hull. The cost is
O(|Yi| log2 |Yi|).To simplify the analysis we consider a uniform distribution of examples, in this case thesize of Yi can be approximated as |X |2hb .For Algorithms 5 and 6, the worst case occurs if all examples of Yi are consideredas vertexes; this happens when Yi has few elements. The computational time is smallcompared with these few samples. In the general case, Algorithm 5 searches a smallsubset from Yi by the K-nearest neighbors method (KNN). The computational time ofthe simple KNN is O(d|X |2). For our case, it becomes O (d(|X |222·(hb)

)).Because we search at each node that is located at heigh ha, this becomes a bottleneckof our method when dealing with higher dimensions. This is the major disadvantage of
82

4.6. Results

our method; it is scalable with the size of the training set but not with the number offeatures. We have observed that our method is unsuitable for more than four dimensions.The total computational time on the pre-processing steps is
O(|X | log2 |X |) + O(|X |2hb log2 |X |2hb) + O

(
d
(
|X |222·(hb)

)) (4.17)
• Train a SVM using a QPP solver. We assume that a QP implementation of a SVMtakes O(n3) time and O(n2) space for |X | input data. On the other hand, the numberof vertexes of convex-concave hull is greater than the vertexes of convex hull |B (X)| >
|VCH(X)|. However, |B (X)| � |X |, because not all points are on the boundary. The timeto train an SVM using |B (X)| is lower than the time used to train a SVM with the wholetraining set X , i.e., O(|B (X)|3)

4.6 ResultsWe used eight data sets to compare our algorithms with other methods. Four data sets arepublicly available in the UCI repository; one was modified, and four more were created toobserve the performance of each method.The data sets from the UCI repository are: Four classes, Skin-no-skin, Breast cancer andHaberman’s survival. The data set modified was Checkerboard (Figure 4.19), and the syntheticdata sets are Cross (figure 4.20) Rotated-cross (Figure 4.21) and Balls aDb (Figure 4.22). Allof them all are linearly inseparable. Table 4.1 shows a summary of the data sets used in theexperiments. The synthetic data set Balls aDb has “a” features and size “b”×1000.Our algorithms were compared with the SMO 1 [12], library LIBSVM 2. [80] and the reducedconvex hull SVM (RCHSVM) [8]. The SMO and LIBSVM are trained with the original dataset. The RCHSVM finds the closest points within a reduced convex hull. Our convex-concavehull SVM (CCHSVM) uses the border points detected by the proposed algorithms.All experiments were run on a computer with the following features: Core i7 2.2 GHzprocessor, 8.0 GB RAM and Windows 7 operating system. The algorithms are implemented inthe Java language. The maximum amount of random access memory given to the Java virtualmachine is set to 2.0 GB. The reported results correspond to 100 runs of each experiment.
1implementation http://wiki.pentaho.com/display/DATAMINING/SMO2http://www.cs.iastate.edu/ yasser/wlsvm.html

83

Chapter 4. Data reduction method based on convex-concave hull

Figure 4.19: Checkerboard data set

Figure 4.20: Cross artificial data set

84

4.6. Results

Figure 4.21: Rotated-cross artificial data set

Figure 4.22: Balls artificial data set

85

Chapter 4. Data reduction method based on convex-concave hull

Table 4.1: Data sets used in the experiments for the convex-concave hull method

Data set Features Size yi = +1 yy = −1 classesFour-class 2 862 307 555 2Checkerboard50 2 50,000 13,000 12,000 2Cross 2 90,000, 50,000, 40,000 2Rotated-cross 2 90,000, 50,000, 40,000 2Skin-no-Skin 3 245,057 50,859 194,198 2Haberman’s Survival 3 306 225 81 2Balls aDb a b b/2 b/2 2Breast cancer 9 286 201 85 2
For each experiment, the training data are chosen randomly from 70% of the data set; the restdata was used for testing.The kernel used in all experiments is a radial basis function. The RBF kernel is chosenas:

f (x, z) = exp(− (x − z)T (x − z)2γ2
) (4.18)

where γ was selected using the grid search method.

4.6.1 Experiment 1: Size of the training setIn this experiment, we use the checkerboard data set [120] which is commonly used forevaluating SVM implementations.Although this data set can be reduced applying a random selection of examples [50], thecheckerboard data set is useful for illustrating the scaling properties of our algorithms.We first examine how the training data size affects the training time and the classificationaccuracy of our convex-concave hull SVM (CCHSVM). We use 500; 1, 000; 2, 000; 5, 000;10, 000; 50, 000 and 100, 00, 000 examples to train CCHSVM and LibSVM. The comparisonresults of 100 runs of experiments are shown in Table 4.2.In Table 4.2, the columns Avg Acc and Avg training are the averages of the classificationaccuracy and the training times respectively. The column stdDev is the standard deviation ofthe accuracy. For experiment 1, the values γ = 0.9 and C = 1.0 were chosen using the gridsearch method.
86

4.6. Results

Table 4.2: Classification results for the data set Checkerboard

Method Data set Avg training Avg Acc stdDev
size ×1000 time (ms) %LibSVM 0.5 16.66 85.04 0.27CCHSVM 0.5 28.13 85.32 0.19LibSVM 1 46.36 91.34 0.27CCHSVM 1 61.86 91.01 0.19LibSVM 2 108.10 98.31 0.27CCHSVM 2 156.46 94.90 0.19LibSVM 5 362.00 97.12 0.12CCHSVM 5 336.80 96.35 0.15LibSVM 10 1023.40 98.27 0.33CCHSVM 10 792.80 97.15 0.27LibSVM 50 15,692.93 99.28 0.07CCHSVM 50 5,185.00 98.60 0.27LibSVM 100 47,670.80 99.58 0.05CCHSVM 100 13,434.81 98.32 0.15

The parameters of the CCHSVM algorithm were selected using a grid method. The valuesfor this experiment were K = 50, hg = 9, ha = 4 and hb = 8.We can see that our CCHSVM has less training time than LibSVM when the size of thetraining set is large. For data sets with few hundreds of examples, the LibSVM outperformsour method. The classification accuracy is slightly lower than that obtained with LibSVM.The pre-processing time reduces the size of the training set; this improves the trainingtime of SVMs. The size of the training set is important when the set contains thousands ofexamples. In other cases, the pre-processing step is not valuable.

When the data size is increased, the training time is augmented with LibSVM, whilewith our method, it only increases a little. Although the classification accuracy cannot besignificantly improved when data size is very large, it does not get worse, and the testingaccuracy is still acceptable.Figure 4.23 shows performance of CCHSVM algorithm. It can be seen that with more than10, 000 examples, our method is significantly better than LibSVM.
87

Chapter 4. Data reduction method based on convex-concave hull

Figure 4.23: Performance of CCHSVM with respect to size of the training set

4.6.2 Experiment 2: Parameters

The CCHSVM method has four parameters: hg, ha, hb and K . The hg controls the granularityof the grid, i.e., the height of the binary tree in which the examples of the training set aremapped into. The parameter ha is used to create the partitions in higher dimensions. Thebinary tree is traversed down to heigh hb. The parameter K controls the number of neighborsto detect border points close to edges of the convex hull.We used the synthetic Balls3D40 data set (40, 000 examples) to analyze the effect of theparameters of the algorithm. The LibSVM method was used as a reference. Table 4.3 showsthe results. For experiment 1, the values γ = 1.9 and C = 2.5 were chosen using the gridmethod.

The most important effect of parameter K is on the size of the reduced set. Its effect onthe classification accuracy and running time seems not too important.The parameters hg and ha have an impact in the training time and accuracy. The higherthe value of hg the deeper the binary tree and also the greater the number of cells in the grid.
88

4.6. Results

Table 4.3: Effect of parameters of the convex-concave hull method

Method ha hb hg K Avg size Avg training Avg Acc stdDev
reduced time (ms) %LibSVM - - - - - 1,164,500.00 99.69 0.13CCHSVM 4 7 12 50 9,277.04 23,443.00 99.83 0.24CCHSVM 4 7 12 5 9,992.02 23,790.00 99.83 0.20CCHSVM 4 7 8 50 9,244.01 19,945.00 99.75 0.26CCHSVM 5 9 12 5 17,585.01 90,130.00 99.92 0.19CCHSVM 5 9 12 500 8,460.05 20,130.00 99.71 0.22CCHSVM 4 6 6 100 7,760.80 9,898.20 99.73 0.24CCHSVM 4 7 8 100 7,920.10 13,260.00 99.76 0.16CCHSVM 4 5 7 100 4,245.12 5,815.00 92.35 0.19CCHSVM 4 5 8 100 4,287.33 8,656.60 91.97 0.20CCHSVM 3 6 8 100 4,500.40 3,079.40 94.55 0.19CCHSVM 3 6 8 300 4,395.40 3,296.81 92.91 0.53

The value of ha affects the number of partitions. A larger value of this parameter involvesa major number of searches for boundary points. The accuracy is degraded when ha is lowbecause many support vectors are omitted.
4.6.3 Experiment 3: Comparative with other methodsIn this experiment, we compare our method with the SMO, LibSVM and RCHSVM. We use fourbenchmark data sets and three synthetic ones. The Balls3D100 contains 100, 000 examples,and it has three features. Both the Cross and the Rotated-cross data sets have two featuresand 100, 000 examples.For experiment 3, the parameters were selected using the grid search method. The valuesfor the first data set are LibSVM γ = 0.68 and C = 1.0, SMO γ = 0.68 and C = 1.0,RCHSVM γ = 0.1 and C = 0.5, CCHSVM γ = 0.9 and C = 3.0. The values that producedthe better results in this experiment were K = 5, hg = 10 and ha = 5 and hb = 9 for all datasets except for Skin-NoSkin, in this case the values used were K = 7, hg = 12 and ha = 9.The training of SVMs with data sets that contain tens of thousands or more examples, isgenerally expensive. The results obtained in this experiment are shown in Table 4.4. TheRCHSVM algorithm does not scale well with the size of the training set. The LibSVM andSMO produce the best accuracies and standard deviations in practically all cases, but theirtraining times are very high. Our CCHSVM method can train SVM very fast; the accuracy

89

Chapter 4. Data reduction method based on convex-concave hull

and standard deviation are slightly degraded but yet acceptable. For small data sets, ourmethod is not the best in terms of the training time.

4.7 ConclusionsThis Chapter proposes a novel method for SVM classification, the CCHSVM. By usingconvex-concave hull and a grid method to avoid costly computations in higher dimensions,the CCHSVM overcomes the problems of slow training times of an SVM and the low accuracyof many geometric properties based methods.The key point of our method is the detection of vertices of a convex-concave hull, whichcorresponds to the examples located on the boundaries of the data set. Experimental resultsdemonstrate that our approach has good classification accuracy, while the training time issignificantly faster than other SVM classifiers. The classification accuracy is higher than thatof other geometric methods such as reduced convex hull.The training time of SVM has been significantly reduced. Our method is unsuitable forsmall data sets. The accuracy achieved by CCHSVM is maintained slightly lower than thatof the classical SVM classifiers which use the whole data set, and the training time is notreduced.However, in the case of larger data sets, the classification accuracies are almost the samethan that of other SVM methods; in contrast, the training time is greatly improved.

90

4.7. Conclusions

Table 4.4: Comparison with other methods

Method Data set Training Acc stdDev
time (ms) %SMO Four-class 17.00 95.33 0.20LibSVM Four-class 6.10 99.01 0.0RCHSVM Four-class 27.00 98.08 0.12CCHSVM Four-class 22.83 98.55 0.14SMO Checkerboard50 27,740.00 98.08 0.19LibSVM Checkerboard50 19,001.00 98.2 0.01RCHSVM Checkerboard50 48,225.00 92.9 .24CCHSVM Checkerboard50 3,791.01 96.82 0.68SMO Cross 27,740.00 98.08 0.19LibSVM Cross 19,001.00 98.2 0.01RCHSVM Cross program crashes program crashes program crashesCCHSVM Cross 5,234.20 95.82 0.68SMO Rotated-Cross 27,740.00 98.08 0.19LibSVM Rotated-Cross 19,001.00 98.2 0.01RCHSVM Rotated-Cross program crashes program crashes program crashesCCHSVM Rotated-Cross 4,986.20 95.82 0.68SMO Skin-NoSkin 3,100,254.00 96.08 0.32LibSVM Skin-NoSkin 1,860,014.00 96.34 0.09RCHSVM Skin-NoSkin program crashes program crashes program crashesCCHSVM Skin-NoSkin 12,780.00 94.72 0.23SMO Haberman’s survival 9.46 72.31 0.02LibSVM Haberman’s survival 9.30 72.25 0.12RCHSVM Haberman’s survival 12.30 72.10 0.13CCHSVM Haberman’s survival 11.45 73.94 0.10SMO Balls3D100 2,100,013.25 95.26 0.02LibSVM Balls3D100 2,000,663.02 96.10 0.10RCHSVM Balls3D100 program crashes program crashes program crashesCCHSVM Balls3D100 15,260.50 97.66 0.21SMO Breast cancer 95.00 96.78 0.01LibSVM Breast cancer 80.01 96.93 0.13RCHSVM Breast cancer 128.25 91.35 0.23CCHSVM Breast cancer 1,026.66 95.13 0.21

91

Chapter 4. Data reduction method based on convex-concave hull

92

5
Data reduction with decision tree and Fisher's linear discriminant

Out of one thousand who seek me...one is mine
Jesus of Nazareth

A novel data reduction algorithm, called DTFSVM (Decision Tree and Fisher’s lineardiscriminant for SVMs), is presented in this chapter. DTFSVM discovers low entropy regionsin the input space, and analyzes them to detect objects close to others with an oppositelabel. Our method has advantages over simple random sampling and also over distancebased methods. First, DTFSVM does not use any kind of unplanned selection, which allowsrepeatable results; second, it does not compute all distances between objects, avoiding thebottleneck of naive algorithms. We also introduce a minor variant of the DTFSVM; this variantuses a directed random selection, which improves even more the training time at the expenseof degrading the classification accuracy of SVMs classifiers. We tested DTFSVM and itsvariant on seventeen publicly available data sets. The results are very competitive comparedwith respect to LibSVM and the SMO. The training of the SVM is reduced in several orders;the classification accuracy is almost preserved, and its standard deviation is quite low.
5.1 Decision trees and SVMsAmong the currently classification methods, SVMs produce a high accuracy, a have a compactmodel and extraordinary generalization capability. On the other hand, decision trees areclassifiers that produce models comprehensible by human experts. In general, the algorithmsto induce decision trees are not costly. Decision trees are used in this thesis to improve thetraining time of SVMs.

93

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

Data reduction methods based on decision trees have been proposed before. They allowthe use of SVMs on large data sets. In [121] each partition discovered by a decision treeis used to train a SVM. That method uses the fact that the partitions are less “complicated”than the entire training set. A SVM is applied to each partition to build the classifier. In [16]the number of instances is reduced to train a SVM; the underlying idea is to approximate thedecision boundary of SVMs, by capturing the objects near to it, using a decision tree.Decision trees have been combined with SVMs to facilitate their application on multi-classproblems. The method in [122], selects two classes at every node of a decision tree. Then, itemploys the probabilistic outputs, to measure the similarity between the remaining samples.In [123], multi-class problems are simplified. They are converted into a number of two-classclassification problems. The C4.5 [124] algorithm is used as a tool to generate two subsets; allthe classes that are less separated by the margin are joined, and treated as one class; the classwith the largest margin is considered as the opposite class. Two drawbacks in the methodsshown in [123] are: (a) the margins need to be computed at each stage of a decision tree,which is costly; and (b) the method exhibits a poor performance when the number of classesis small. In [39], these drawbacks are solved by inserting information about margin measuresin a list data structure. Another algorithm that faces multi-class problems was presented in[125]. It creates a tree using an SVM to split the data. The main disadvantage of this method,is that for each internal node, a separating hyperplane is computed. This strategy has thenegative effect that the right, and the left sub trees are imbalanced. It is known that SVMsdon’t achieve a high classification accuracy on skewed data sets.
5.2 Detecting regions with support vectorsThe optimal separating hyperplane of the SVMs classifiers is defined by a few examples knownas the SV. In general, these objects are located close to others with an opposite class. Theseexamples are near to the boundaries of class distribution [126] [127] [64]. The SV candidatescould be selected using a brute force approach; by computing all the distances betweenobjects and choosing the pairs of examples with the shorter distances. However, a problemwith this trivial method is that it takes about O(N2) in time and space, as shown in Chapter3. This naive approach becomes computationally expensive and, therefore, is unsuitable evenfor medium-size data sets.DTFSVM avoids the bottleneck of the brute force approach, by using a different strategy.Instead of computing all the distances between objects, DTFSVM discovers low entropy

94

5.2. Detecting regions with support vectors

regions. The majority class of each region is the most repeated class in it. DTFSVMdetermines all the adjacent regions whose majority class is different from the current regionbeing analyzed. Having two regions with opposite majority class, DTFSVM applies asearch-method that selects the examples with the shortest distances.It is well known that decision trees create partitions of the input space. According to suchapproach, these partitions have generally a low entropy value. The partitions are discoveredin O(N · d) time, with N being the number of examples and d the number of dimensions.
5.2.1 Computing adjacent regionsIn this subsection, a method to detect adjacent regions in the input space of a given data setis presented. In order to explain the approach, this subsection is divided into two parts. Thefirst part explains the representation of partitions discovered by decision trees (leaves), andexposes some definitions that are used later. The second subsection describes how to detectadjacent regions.

Leaves of decision trees

Decision trees separate the input space of data sets into low entropy partitions. These arerepresented as leaves (terminal nodes) in the tree’s structure. The boundaries of leaves areconstrained by hyperplanes that are parallel to the axes. The partitions can be interpreted asdisjoint ortho topes or hyperboxes. Their vertices are orthogonal to the axes of the attributes.Let T represent a decision tree and let Li its i-th leaf. In this work, a leaf Li is representedby
Li = d⋂

j=1 rij , lij ≤ rij < hij (5.1)
where:
Li : the i− th leaf in the decision tree T .
d: the number of dimensions of the training set.
ri,j : a region of input space determined by boundaries [li,j , hi,j) with li,j , hi,j ∈ R . These

li,j , hi,j are the cutting points found by an induction tree algorithm.Figure 5.1 shows an example of a leaf, and the contained region in two dimensions. Inthis case, the region is a rectangle. In three dimensions, the region would be a rectangular
95

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

prism, and in higher dimensions, it would be a hyperbox.

Figure 5.1: A leaf Li in two dimensions

A candidate to be neighbor of a leaf or region Lp of T , is another leaf Lo of T , that islocated together to Lp. Definition 15 formalizes this notion.
Definition 15 (Neighbor candidates) Two leaves Lo and Lp, are
candidates to be neighbors if their boundaries have been changed from
eq. (5.1) to eq. (5.2).

Lo = d⋂
j=1 ro,j , lo,j ≤ ro,j ≤ ho,j (5.2)

Lp = d⋂
j=1 rp,j , lp,j ≤ rp,j ≤ hpj

Remark 15.1 Most induction tree algorithms split the input space using a rule of the form
xi < C for one partition and xi ≥ C for the other one. In the Definition 15, the boundaries ofleaves Lo and Lp have changed to give them a chance to be connected.Two leaves are together (they are true neighbors) if they share at least a split point. Anytwo points of two true neighbors can be joined by a path.

96

5.2. Detecting regions with support vectors

Definition 16 (True neighbors) Two leaves Lo,Lp which are candidates to
be neighbors, become true neighbors if Lo ∪ Lp is a connected space.

Remark 16.1 Leaves Lo and Lp are neighbors if there exists an m with 1 ≤ m ≤ d, andthe following are satisfied:
ho,m = lp,m or lo,m = hp,m (5.3)

lp,n ≤ lo,n ≤ hp,n or lpn ≤ ho,n ≤ hp,n (5.4)
with 1 ≤ n ≤ d with n 6= m
ExplanationIf two leaves Lo and Lp are neighbors, then there exists at least one point xn that fulfillsthe following.

xn ∈ {ro,k ∩ rp,k}, for k = 1, ..., d (5.5)
This means that leaves Lo and Lp must necessarily share a boundary, which is orthogonalto an axis of features, for example m. The possible options are that the lower(upper) bound of

Lp coincides with the upper(lower) bound of Lo, as stated in eq. (5.3).
Remark16.2 Eq. (5.3) is a necessary but insufficient condition for two leaves to be trueneighbors; they need to share all their boundaries at the other dimensions. In order to betrue neighbors, eq. (5.5) and eq. (5.4) must both be fulfilled.Figure 5.2 shows an example in which the condition Eq. (5.3) is fulfilled, but Eq. (5.4) isnot. Here, h2,1 = l3,1 (the separating hyperplane orthogonal to dimension one is shared byleaves L2 and L3) but L2 and L3 are not neighbors. Something similar occurs with the pairs(L2,L4), (L2,L7), (L1,L7), (L3,L8), (L4,L5), (L4,L7), (L4,L8), (L5,L6), etc.In order to implement our method, it is necessary to discover true neighbors of a leaf. Inthe next subsection, we explain an algorithm to compute them.
A method to �nd all the neighbors of a leaf

In this part, we propose a method to compute the neighbors of a leaf. The method was designedfor the C4.5 decision tree; however, it can be extended to other trees.
97

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

Figure 5.2: Example of boundaries produced by an induction tree

At the beginning, the tree is traversed to determine the boundaries of each leaf; allboundaries are stored in a matrix M ∈ RNL×2d, with NL the number of leaves in the induceddecision tree. The matrix M can be filled in O(NLht) time, with ht the height of the tree.During the traversing of the decision tree, the split points in each internal node are used todiscover the boundaries of partitions.The i− th row in the matrix M , contains all the boundaries of leaf Li. The columns of thematrix M represent the values lij and hij , with j = 1, .., d. These values are implemented ina vector B, which is initialized with the minimum and maximum value of float point variablesat root node. These values are represented as −∞ and +∞. Algorithm 7 shows the pseudocode to fill out the matrix M .To exemplify the results produced with Algorithm 7, Table 5.1 shows the boundaries of theleaves for the tree shown in Figure 5.2.The neighbors of any leaf Lp can be quickly computed, using Algorithm 8. The set of
98

5.2. Detecting regions with support vectors

Table 5.1: Matrix M computed with Algorithm 7 for the tree of Figure 5.2
L i li,1 hi,1 li,2 hi,21 −∞ a −∞ b2 −∞ a b +∞3 a c f e4 a c −∞ f5 a c e b6 c +∞ −∞ d7 c +∞ d b8 a +∞ b +∞

Algorithm 7: Computation of leaves’ boundaries
Input :

T : An induced C4.5 decision tree
Output:

M : A matrix with the boundaries of all the leaves of T.
1 begin
2 B ∈ R2d, B [1 to d]← {[−∞]} , B [d + 1 to 2d]← {[+∞]} ;
3 call DiscoverBoundariesRecursive(B,M) from root node;
4 return M ;
5 DiscoverBoundariesRecursive(B,M)
6 if current node is a leaf then
7 Insert vector B as last row into matrix M ;
8 else
9 Create BL copying boundaries from B;

10 BL: Change hij using attribute index and the split point value of current node;
11 call DiscoverBoundariesRecursive(BL, M) on the left son of current node;
12 Create BR copying boundaries from B;
13 BR : Change lij using attribute index and the split point value of current node;
14 call DiscoverBoundariesRecursive(BR , M) on the right son of current node;
15 return

99

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

Algorithm 8: Neighbors of a leaf
Input :

M matrix of leave’s boundaries
Lp A leaf

Output:
N The neighbors of leaf Lp

1 begin
2 foreach attribute m in data set do
3 Get all leaves that satisfy (5.3);
4 foreach leaf Lo obtained in the previous step do
5 if Lo satisfies (5.4) then
6 Add Lo to list N ;
7 Remove repeated elements in N ;
8 return N ;

leaves that satisfy eq. (5.3) for attribute m are computed by searching in the matrix M . Thisset is explored again to find those leaves that are neighbors, namely, those that satisfy Eq.(5.4).
5.2.2 Detecting objects on boundariesWe recover the instances that are close to others with an opposite label using the detectedneighbors of each leaf. We apply Fisher’s linear discriminant to each pair of neighbors. Thenuse of Fisher’s linear discriminant is based on the observation that for linearly separable cases,the linear discriminant produces similar results than SVMs [128]. The idea is to approximatetwo adjacent regions with opposite class as a linearly separable case. Algorithm 9 showsthe implementation: Once two adjacent regions have been detected, all the points in Lj areprojected on vector ω (eq. (2.70)), a number of δ × |Lj | examples with smaller projections areadded to the reduced set XR . Here, |Lj | refers to the number of examples in the leaf Lj of T .

δ is a parameter given by the user.It is important to notice that high entropy regions will contain support vectors, and theydo not need to be analyzed with Fisher’s linear discriminant, and are included directly in XR .To exemplify the method, consider the toy example shown in Figure 5.3. After the trainingof a decision tree, the input space has been partitioned into six regions L1 to L6. Each region
100

5.2. Detecting regions with support vectors

Algorithm 9: General Algorithm using Decision Tree and FLD
Input :

X : Training set
δ : Threshold

Output:
XR : XR ⊂ X s.t. |XR | � |X |

1 begin
2 Train a decision tree T ;
3 XR ← NULL // XR Begins empty;
4 foreach leaf Li of T do
5 foreach opposite class neighbor Lj do
6 if entropy of Lj is low then
7 //Select SVs candidates:

8 Use Li and Lj to build X+ and X−, respectively;
9 Compute ω (eq. (2.70));

10 Project every example in X− on ω;
11 Select the most separate (w.r.t. projections) pair of objects x+

i ∈ X+ and
x−j ∈ X−;

12 Compute distance between x+
j and every element in X−, sort examplesw.r.t. distance;

13 Select the first σ% of objects in Lj and join them to XR ;
14 else
15 XR ← XR ∪ Lj // Add all the elements;
16 return XR

101

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

Table 5.2: Partition of input space and adjacent regions

Region Majority class Adjacent regions
L1 +1 L2, L3, L4
L2 mixed L1, L4,L5
L3 +1 L1, L4
L4 -1 L1, L2, L3,L5, L6
L5 -1 L2, L4, L6
L6 +1 L4, L5

L is associated with a majority class y = {C1, C2}, with C1 = +1 and C2 = −1 for thisexample. Table 5.2 shows the discovered partitions, the majority class of each one and theadjacent regions.For certain region Li, our method selects the examples that are located “close” to adjacentregions Lj that contain different class examples. For example, for region L4 (y = −1) theadjacent regions are L1,L3 and L6 (y = +1).Regions with high entropy value, such as L2 in Figure 5.3, are aggregated directly to XR .

Figure 5.3: Decision boundaries for SVM and Decision Tree classifier

102

5.3. Experiments and results

Table 5.3: Data sets used to test DTFSVM

Data set Size Dim |yi = +1| |yi = −1|
Iris-setosa 100 4 50 50Iris-versicolor 100 4 50 50Iris-virginica 100 4 50 50Haberman’s Survival 306 3 225 81Ionosphere 351 34 126 225Breast-Cancer 683 10 444 239Diabetes 768 8 500 268Four-class 862 2 307 555Waveform-0 3, 308 40 1, 653 1, 655Waveform-1 3, 347 40 1, 692 1, 655Waveform-2 3, 347 40 1, 692 1, 653ijcnn1 35, 000 22 3, 415 31, 585Bank marketing 45, 211 16 39, 922 5, 289Cod-rna 59, 535 8 19, 845 36, 690Cross rotated 90, 000 2 50, 000 40, 000Checkerboard100K 100, 000 2 50, 000 50, 000

5.3 Experiments and results

We compare the performance of our method with respect to that of the SMO1 [12] and LIBSVM2[80]. In the experiments, SMO and LIBSVM are trained with the entire data set. DTFSVMtrains a SVM using the points detected by the proposed algorithms.The experiments were conducted on a computer with the following features: Core i72.2 GHz processor, 8.0 GB RAM and Windows 7 operating system. The algorithms areimplemented in the Java language. The maximum amount of random-access memory given tothe Java virtual machine is set to 2.0 GB. The reported results correspond to 100 runs of eachexperiment. The 70% of the data is used to create the training set; the remainder is used fortesting.The kernel used in all experiments is a radial basis function, the value of γ was selectedusing the grid search method.
1implementation http://wiki.pentaho.com/display/DATAMINING/SMO2implementation http://www.cs.iastate.edu/ yasser/wlsvm.html

103

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

5.3.1 Data sets used in the experimentsWe tested the method on eighteen data sets. Nine of them are publicly available. We modifiedthree sets to create binary problems. In order to explore the performance of the method, onedata set was produced artificially.The public data sets are Haberman’s survival, Ionosphere, Breast cancer, Diabetes,Four-class, ijcnn1, Bank marketing and cod-rna.The data sets modified were Checkerboard [120], Iris and Waveform. The formerwas generated to have 100, 000 examples (Fig.4.19), the second was separated into threebinary classification problems: Iris-setosa, Iris-versicolor and Iris-virginica. The thirdwas also separated in binary classification problems: WaveformBin-0, WaveformBin-1 andWaveformBin-0. The name after the hyphen is the removed class, for example, the data setIris-setosa consists of all elements of data set Iris minus those elements with label "‘setosa"’.A synthetic data set called Rotated cross (Fig. 4.21) was built; it is linearly inseparable;it has two features and 90, 000 instances.Table 5.3 shows a summary of the data sets used in the experiments. The column’s namesand meaning are the following: Size is the number of examples in the data set; Dim is thenumber of features in the data set; |yi = +1| and |yi = −1| are the number of examples withlabel +1 and −1, respectively.
Table 5.5: Performance of the DTFSVM algorithm

Method Data set
Training

time avg (ms)
Training time

std dev
Acc
(%)

Acc
(std dev)

Size
(%)LibSVM Iris-setosa 3.11 0.24 94.65 0.03 -SMO 3.01 0.23 94.70 0.02 -DTFSVM 3.88 0.38 89.21 0.19 79.46LibSVM Iris-versicolor 1.51 0.23 100.00 0.00 -SMO 1.65 0.31 100.00 0.00 -DTFSVM 1.35 0.37 100.00 0.00 68.19LibSVM Iris-virginica 1.76 0.24 100.00 0.00 -SMO 1.68 0.25 100.00 0.00 -Continued on next page

104

5.3. Experiments and results

Table 5.5 – continued from previous page

Method Data set
Training

time avg (ms)
Training time

std dev
Acc
(%)

Acc
(std dev)

Size
(%)DTFSVM 1.43 0.40 100.00 0.00 68.04LibSVM Haberman 9.48 0.79 73.41 0.03 -SMO 10.51 0.66 73.55 0.03 -DTFSVM 4.51 0.89 73.08 0.06 80.52LibSVM Ionosphere 9.48 0.79 73.41 0.03 -SMO 8.59 0.99 73.05 0.03 -DTFSVM 4.51 0.89 73.08 0.06 80.52LibSVM Breast-cancer 29.36 1.95 96.63 0.01 -SMO 35.00 1.45 96.92 0.01 -DTFSVM 15.78 1.76 95.31 0.08 84.51LibSVM Diabetes 81.13 6.27 74.73 0.02 -SMO 35.00 7.12 77.34 0.03 -DTFSVM 15.00 4.77 73.25 0.08 84.46LibSVM Four-class 18.10 5.87 99.81 0.00 -SMO 21.23 8.51 98.78 0.02 -DTFSVM 14.06 7.14 97.55 0.04 70.49LibSVM waveformBin-0 1, 210.40 180.69 94.39 0.01 -SMO 1, 687.00 78.96 93.99 0.02 -DTFSVM 193.30 66.57 93.78 0.01 88.22LibSVM waveformBin-1 1, 659.50 49.39 92.52 0.02 -SMO 1, 840.00 33.89 92.60 0.00 -DTFSVM 316.60 68.59 91.31 0.01 64.01LibSVM waveformBin-2 1, 667.00 42.85 92.50 0.01 -SMO 1, 859.00 30.55 92.70 0.02 -DTFSVM 193.00 75.55 91.98 0.00 89.98LibSVM ijcnn1 25, 875.25 3, 650.04 97.92 3.65 -SMO 48, 923.31 4, 605.03 96.01 1.01 -DTFSVM 5, 444.25 375.03 96.06 0.00 89.96Continued on next page

105

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

Table 5.5 – continued from previous page

Method Data set
Training

time avg (ms)
Training time

std dev
Acc
(%)

Acc
(std dev)

Size
(%)LibSVM Bank marketing program crashes -SMO program crashes -DTFSVM 39, 102.12 6, 062.00 89.91 0.03 91.12LibSVM cod-rna 441, 568.70 33, 942.69 93.05 0.01 -SMO 989, 476.00 89, 279.26 94.01 0.02 -DTFSVM 23, 224.7 11, 866.53 92.46 0.01 87.67LibSVM Rotated Cross 119, 123.14 22, 368.78 94.15 0.02 -SMO 309, 111.00 2, 078.03 93.65 0.01 -DTFSVM 6, 726.91 2, 400.82 93.78 0.02 92.53LibSVM Checkerboard100K 131, 855.25 3, 116.76 98.86 5.79 -SMO 285, 621.12 4, 036.99 98.99 0.01 -DTFSVM 8, 740.25 412.39 97.15 0.00 89.99

5.3.2 Calibration of ParametersThe parameters of our algorithms are the minimum number of objects in each leaf of a decisiontree (Min_obj) and the fraction of examples that are taken from each region (δ).The parameter Min_obj is required by the C4.5 decision tree. A set is not partitioned if itcontains fewer samples than Min_obj. Choosing a large value for this parameter, produces afast training of decision trees, at expense of creating impure partitions.In general, data reduction methods should retain the patterns closest to opposite classexamples. As explained in the preliminary experiments, shown in section 3.5 of Chapter 3,there are different strategies for the selection of examples using the brute force approach. Inour DTFSVM method, instead of choosing a constant number of examples, a percentage ofeach partition is used; the parameter δ is used to decide this.In order to achieve the best classification accuracy, these two parameters need to betuned. Table 5.4 shows the values used for each data set in the experiments. These valueswere selected applying a grid search method.
106

5.4. Variant of the DTFSVM method

For large data sets, the values of the parameter Min_obj are sizable. The parameter
δ also becomes large for imbalanced data sets, such as Breast-cancer and Diabetes. Thisis attributed to the fact that for skewed data sets decision trees produce impure partitions;therefore, more points are needed to achieve a better classification accuracy.In Table 5.4, the regularization parameter for the QPP and the gamma for the kernel arerepresented by C and γ , respectively.

5.3.3 ResultsThe performance of the SMO algorithm, LibSVM library and our method are shown in Table5.5. column Acc (%) is the classification accuracy. Column Size (%) is the percentage of objectsdeleted from the training set. It can be seen that the training time is improved in practically allcases with our method DTFSVM. For small data sets, the savings in time are not considerable;however, when the training sets are large, the improvement becomes important.It is noticeable that the accuracy is slightly degraded, but still acceptable. This is due tothe fact that some of the SV are not selected during the pre-processing step. The sizes of thetraining sets are reduced in about 80% and 90% for most cases; this reduction makes fasterthe training of SVMs.
5.4 Variant of the DTFSVM methodThe use of Fisher’s linear discriminant in the DTFSVM method selects the closest examplesto the opposite class. This helps to improve accuracy at the expense of increasing thecomputational complexity of the method. In this section, we show a modification of theDTFSVM algorithm called DTDRSSVM (Decision Tree Directed Random Sampling SVM) .This method consists of replacing the linear discriminant by a random sampling. We observedthat this produces better results than simple random sampling.

5.4.1 Methods based on clusters for training SVMsMost clustering based methods to improve the training time of SVMs use centroids of detectedclusters, and afterwards, they train the SVM multiple times to refine the separating hyperplane[129][130][131].DTDRSSVM is similar to clustering methods, in the sense that it first creates clusters ofexamples, and then, it trains the SVM using a summarized version of the clusters.
107

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

The main difference between DTDRSSVM and the others, is that it is not necessaryto guess the number of clusters in the training set, which is a drawback in some of thosealgorithms. The method does not use any distance measure to create the clusters, and,additionally, a SVM is trained only once.DTDRSSVM is also somewhat similar to random sampling methods. However, a uniformdistribution of examples is not assumed in this case, as simple random sampling or otheralgorithms do. Additionally, a SVM is not trained several times, which is an importantdifference to other randomized methods.In this variant, the centroids are not used as a summary of the training sets, but a numberof examples is randomly selected. The probability of an example to be chosen varies withrespect to its distance to the center of the cluster. In this way, the examples located onexterior boundaries of clusters are preferred because they are probably SV, according to theobservation made in [16]. This mechanism is a guided random selection and not a simplerandom sampling.In general, decision trees find regions in which almost/all of the contained examples areof the same class. Each region is specified by a leaf of decision trees, it can be seen as akind of cluster. Clustering methods such as KNN or Fuzzy C-Means, form clusters explicitlyby grouping examples, using distance or density measures. In contrast, in our DTDRSSVM ,a decision tree discovers pure regions, using a purity function such as the Gini index or theentropy gain. An advantage of decision trees is that they don’t require specifying the numberof leaves.Figure 5.4 shows a toy example, and the decision boundaries discovered by a decisiontree C4.5. The number of clusters (leaves) is four and all the clusters are not pure.At this time, it is useful to remember that according to the KKT conditions (2.29a), theexamples that are located close to decision boundaries determine the optimal separatinghyperplane. Intuition says that the points close to the center of clusters are not too importantand can be safely discarded. Other methods that exploit this observation in a different wayare reported in [129][64][66].This intuition can be supported by Eidelheit’s separation Theorem (see Therorem 2.1),which states that given two convex sets K1 and K2 in a real vector space X , such that K1contains interior points, and K2 contains no interior points of K1. In other words, K1 and K2lay on the opposite half-spaces determined by the hyperplane H .Based on this observation, we develop a variant of DTFSVM. Instead of using a linear
108

5.4. Variant of the DTFSVM method

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y
i
=1

y
i
=−1

A

B

C

D

Figure 5.4: Decision tree applied on a toy example

discriminant, we exploit the clusters discovered by a decision tree, and execute a randomselection. The method can be summarized as follows: Consider two adjacent clusters, sayC and D in Figure 5.4, the minority class examples from each one can be removed, so theclusters become pure ones.Without loss of generality, we can say that each cluster is in a convex set, and they donot intersect. The division created by a decision tree perfectly separates these two clusters,so the split is a separating boundary hsplit , although probably not the optimal one.It is possible to select the closest pair of examples that produce the optimal separatinghyperplane for clusters C and D, by using a brute force approach; however, this iscomputationally expensive. Considering that this process must be repeated for each pairof clusters with different majority class, a computationally expensive approach is not a goodchoice.Instead of solving this costly problem, we select randomly some examples from each cluster.However, different from simple random sampling, in this method the probability of an exampleto be selected from a cluster is given by
p(xi) = 1− 1

σ
√2πe− (δ)22σ2 (5.6)

Where η is the (normalized) distance from the example to the center of the cluster and σis the standard deviation. The greater the distance of an example with respect to the centerof the cluster, the higher its probability to be chosen.Figure 5.5 shows the probability values represented in a gray scale for the toy data set.
109

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

Figure 5.5: Probabilities within clusters represented in a gray scale

The darker a region is, the higher its probability to contain more important examples.
5.4.2 Selection using directed random samplingDTDRSSVM is straightforward to implement, it consists of three simple steps:

1. Train a decision tree, using the whole data set. In this thesis, we use C4.5.
2. Recover all the leaves of the decision tree; these are treated as clusters with low entropy.
3. Select examples from clusters weighting their probability to be chosen as a function ofthe distances to the center.
4. Train the SVM with the selected instances.
Algorithm 10 shows the pseudocode for the three first steps (data selection). The decisiontree used in the algorithm was the C4.5 of Weka [132], and it is called as J48 class withinWeka. We modified this class to have access to some of its internal members. Anotherimportant modification to the original J48 class, was that not all examples are examined forthe selection of the best division. This is because we are interested in discovering regionswith low level entropy and not necessarily clusters with zero entropy.Once clusters have been discovered, each example in a cluster is “normalized” beforecomputing (5.6). This is implemented using

110

5.4. Variant of the DTFSVM method

Algorithm 10: Data Selection
1 Input: X A training set

2 Output:
3 Xr A subset of X
4 Train a C4.5 DT on X
5 for each cluster do//Each leaf of DT is seen as a cluster
6 for each xi in current cluster do
7 Compute p(xi) using (5.6)
8 Add xi to Xr randomly according to its p(xi)
9 end for

10 end for
11 return Xr

x ′k,j = xk,j −min
{
xi,j
}∣∣max {xi,j}−min {xi,j}∣∣ (5.7)

Where k is the current example being examined,
j = 1, ..., d is the j th feature of k th example,
i = 1, ...N
min

{
xi,j
} and max {xi,j} is the minimum and maximum values of feature j in the clusterrespectively.The “distance” δ , from example k to the center of the cluster, is computed with:

δk =
∑ j =d1

(
x ′kj − 0.5)2
d

1/2

(5.8)
with d of the training set.Because of the previous normalization, the center of every cluster has always a value of0.5 in each feature or dimension.The use of d in (5.8) is to produce

0 ≤ ηk ≤ 1
111

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1
X
2

(A)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(B)

X1

X
2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(C)

X1

X
2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(D)

X1

X
2

Figure 5.6: Example of guided selection for different σ values on a uniform distribution of
examples

Parameter σ affects the number of selected examples by the method. Fig. 5.6 shows anexample of guided selection for a uniformly distributed set of examples, for different values of
σ : (A) Original set, (B) σ = 0.10, (C) σ = 0.40, (D) σ = 0.70,
5.5 Performance analysis

The proposed method uses the algorithm C4.5 to detect clusters. Then, it randomly selectsexamples from these clusters, assigning a higher probability to be chosen to those that arelocated on the exterior boundaries of each cluster.The algorithm C4.5 has the following training time for non-numeric features.
O(d ·N · log2(N)))

where d is the number of features.The original Weka implementation of the algorithm C4.5 does not use any discretizationof continuous-valued attributes. However, for the presented method, we introduce thismodification at the expense of degrading the accuracy of the classifier.
112

5.6. Experiments and results

The resulting complexity of the slightly modified C4.5 is
O(L · d ·m · log2(m))) (5.9)

where L is a non negative integer number. Several values were tested, finally, the valuewas set to L = 20 for the experiments.At each node, the decision tree tests for the best attribute, considering only L bins, withoutconsidering all the examples in the node.Once the decision tree has been trained, its leaves are used as clusters, and some examplesin them are selected. The selection is executed in linear time, so the time complexity of themethod is
O(L · d ·m · log2(m)) + C∑

i=1 Ni (5.10)
With C the number of clusters and Ni the number of examples in each cluster.Observe that

C∑
i=1 Ni = N

Solving the QPP to compute the optimal separating hyperplane adds up a quadratic termto the final training time of the SVM. However, since the total number of selected examples isalways lower than the original size of the training set, the proposed method is more efficientthan other implementations.
5.6 Experiments and results

In this section, we present the results of the DTDRSSVM method applied on nine differentdata sets. Given that some of the selected data sets are for multi-class problems, we createdbinary versions of them by selecting two classes. The total number of data sets was finallythirteen.
5.6.1 Data setsIn order to test the effectiveness of the proposed method, it was evaluated on typical data setsused for classification. Table 5.6 shows the main characteristics of them. Most of the training

113

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

sets have numeric features and one of them has mixed features.
5.6.2 SetupThe method was implemented in Java, as our programming language, and Weka as our baseplatform. The C4.5 decision tree implemented in the J48 class of Weka was slightly modifiedto obtain access to some of its members.All the experiments were run on a Laptop with Intel core i7 2670QM CPU at 2.2 GHz 8GB RAM, running the Windows 7 Operating System.The library LibSVM [80] 3 was used to train SVM, the kernel used for SVM was the RBFfunction, the values for the parameter γ are shown in Table 5.4. The amount of memory givento the JVM was set to 1, 200 MB. Among all the implementations of the training algorithmsfor SVMs, LibSVM was selected because it outperformed the other methods in previous tests.For each run, the training sets were randomly partitioned into two sets: the training (70%)and the testing (30%). The results presented correspond to the average of 100 runs of eachexperiment; these results are shown in Table 5.7.
5.6.3 Results and discussion

Table 5.7: Performance of DTDRSSVM

Method Data set
Training

time avg (ms)
Training time

std dev
Acc
(%)

Acc
std dev

Size
(%)DTDRSSVM Iris-setosa 3.51 2.61 88.12 0.23 70.57(η = 0.01)Libsvm 3.11 0.24 94.65 0.03 -DTDRSSVM Iris-versicolor 1.94 0.29 100.00 0.00 67.73(η = 0.99)Libsvm 1.51 0.23 100.00 0.00 -DTDRSSVM Iris-virginica 2.09 0.79 100.00 0.00 68.28(η = 0.99) Continued on next page

3implementation http://www.cs.iastate.edu/~yasser/wlsvm.html
114

5.6. Experiments and results

Table 5.7 – continued from previous page

Method Data set
Training

time avg (ms)
Training time

std dev
Acc
(%)

Acc
std dev

Size
(%)Libsvm 1.76 0.24 100.00 0.00 -DTDRSSVM Ionosphere 9.14 1.5 73.00 0.40 59.47(η = 0.70)Libsvm 9.48 0.79 73.41 0.03 -DTDRSSVM Diabetes 80.17 9.23 75.0 2.1 26.02(η = 0.10)Libsvm 81.13 6.27 74.73 0.02 -DTDRSSVM Waveform-0 190.01 50.78 92.00 0.90 60.51(η = 0.50)Libsvm 1,210.40 180.69 94.39 0.01 -DTDRSSVM Waveform-1 215.62 35.37 90.98 0.57 60.17(η = 0.50)Libsvm 1,659.50 49.39 92.52 0.02 -DTDRSSVM Waveform-2 185.75 80.55 89.75 0.13 60.50(η = 0.50)Libsvm 1,667.00 42.85 92.50 0.01 -DTDRSSVM ijcnn1 4,027.16 400.00 95.13 0.23 80.33(η = 0.40)Libsvm 25,875.25 3, 650.04 97.92 3.65 -DTDRSSVM bank-full 4,528.12 7,085.00 86.10 0.50 79.54(η = 0.60)Libsvm program crashes program crashesDTDRSSVM svmguide3 165.00 5.31 76.35 0.50 80.01(η = 0.30)Libsvm 360.00 12.09 78.82 0.33 -DTDRSSVM cod-rna 59,156.60 198.13 91.74 1.10 75.59(η = 0.60)Libsvm 441,568.70 33, 942.69 93.05 0.01 -

115

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

Table 5.7 shows the comparison between LibSVM and the DTDRSSVM method. It canbe seen that for all the experiments, DTDRSSVM reduces the training time of SVM. Theachieved accuracy is improved for some data sets. For some training sets, the accuracy isdegraded, although acceptable.For small size data sets, it is neither necessary nor useful to apply a data reduction methodsuch as DTDRSSVM. The main motivation to apply our method on small data sets, was toexplore the behavior of the proposed method.Taking as a particular example the Iris-setosa set, the proposed method gave the worstresult in accuracy. Examining both the original training set (see Figure 5.7) and the reducedversion after applying the DTDRSSVM method, it can be verified that the method successfullydetects examples located close to the decision boundary (see Figure 5.8) and discards thoseelements far from it. In general, if there are regions where classes overlap, then the accuracyis degraded. Because in practice, most data sets have this characteristic, it is necessary toadjust the parameters of the QPP solver to improve classification accuracy.The method removes examples that have less chance to contribute to define the optimalseparating hyperplane. During this process some SVs can be accidentally deleted. Althoughthis was not used in the results reported in Table 5.7, by adjusting the parameters γ , andthe penalty factor Ci in the QPP solver, the accuracy of the classifier can be improved. Forexample, using γ = 0.85 and C = 2, the achieved accuracy for Iris-setosa is 94.81%. Thiseffect also occurs in other data reduction methods.The parameter σ can be easily adjusted using the grid method. The values σ =0.1, 0.2, , ..., 0.9 were tested to select the values that produced the best training time andaccuracy. For the modified Iris data sets, this value was calibrated using a finer grid, becausethe training times are very short.The results become more noticeable with the largest size data sets. The accuracy iscompetitive with that achieved with LibSVM using all the training examples. The cases wherethe accuracy is slightly degraded can be attributed to the fact that some of the SVs were notincluded during the selection phase.
116

5.7. Conclusions

Figure 5.7: Class Distribution for Iris-setosa Data set

Figure 5.8: Class Distribution for Iris-setosa reduced

5.7 ConclusionsIn this Chapter, we proposed a data reduction method to improve the training time of SVMs,called DTFSVM. This approach discovers low entropy regions which are then analyzed todetect opposite class regions in order to select examples located close to decision boundaries.The number of selected examples is a subset whose size is considerably smaller than the sizeof the whole training set; this subset is used to train the SVM. The training time of the SVMis improved with practically all the training sets tested in the experiments, and the accuracyis maintained slightly below the one obtained with the entire training set.We also proposed the DTDRSSVM method, which is a variant of DTFSVM. Our proposedDTDRSSVM applies random sampling. However, unlike other methods that use simple randomsampling, we guide the selection giving more chances to be selected to those examples thatare on the boundaries of clusters discovered by a decision tree. Experiments on different datasets, commonly used for the classification task, show the defectiveness of the proposed variant.
117

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

The method gives better results when the training sets are large.The difference in performance between DTFSVM and DTDRSSVM is that the formerachieves higher classification accuracies and lower standard deviations.

118

5.7. Conclusions

Table 5.4: Value of DTFSVM ’s parameters used in the experiments

Method Data set C γ δ Min_ obj
RBF Kernel Algorithm 9 C4.5LibSVM Iris-setosa 3.00 3.00 - -DTSVM 2.00 1 0.10 2LibSVM Iris-versicolor 1.00 3.00 -DTFSVM 3 1 0.10 2LibSVM Iris-virginica 1.00 3.00 -DTFSVM 3.00 1 0.15 2LibSVM Haberman’s survival 3.00 2.00 - -DTFSVM 2.00 2.00 0.30 15LibSVM Ionosphere 2.50 1.55 - -DTFSVM 3.00 2.00 0.50 2LibSVM Breast-cancer 1.00 1/n - -DTFSVM 1.50 1/n 0.50 10LibSVM Diabetes 1.00 1/n - -DTFSVM 2.5 2.00 0.15 5LibSVM Four-class 2.00 3.00 - -DTFSVM 20.00 3.50 0.15 2LibSVM Waveform-0 1.00 1/n - -DTFSVM 2.50 1/n 0.35 35LibSVM Waveform-1 1.00 1/n - -DTFSVM 2.50 1/n 0.35 35LibSVM Waveform-2 1.00 1/n - -DTFSVM 2.50 1/n 0.35 35LibSVM ijcnn1 3.00 1/n - -DTSVM 5.00 1/n 0.10 30LibSVM Bank marketing 3.50 2.3 - -DTSVM 4.30 1/n 0.05 40LibSVM cod-rna 4.50 3.5 - -DTFSVM 10.50 3.5 0.35 100LibSVM Rotated Cross 2.00 1/n - -DTFSVM 3.00 1/n 0.15 20LibSVM Checkerboard100K 2.00 3.00 - -DTFSVM 20.00 3.50 0.35 2DTFSVM 2.00 1/n 0.15 25

119

Chapter 5. Data reduction with decision tree and Fisher’s linear discriminant

Table 5.6: Data sets for experiments with DTDRSSVM

Data set Size Dim Class 1 Class 2 Feat. type

Iris-setosa 100 4 50 50 NumericIris-versicolor 100 4 50 50 NumericIris-virginica 100 4 50 50 NumericIonosphere 351 34 126 225 Numericdiabetes 768 8 500 268 Numericsvmguide3 1, 243 22 296 947 NumericWaveform-0 3, 308 40 1, 653 1, 655 NumericWaveform-1 3, 347 40 1, 692 1, 655 NumericWaveform-2 3, 347 40 1, 692 1, 653 NumericMushroom 8, 124 112 3, 916 4, 208 Numericijcnn1 35, 000 22 3, 415 31, 585 Numericbank-full 45, 211 16 39, 922 5, 289 Mixedcod-rna 59, 535 8 19, 845 36, 690 Numeric

120

6
Conclusions and future work

Better than a thousand hollow words, is one wordthat brings peace
Siddharta Gautama

6.1 ConclusionsIn this work, we developed novel data reduction methods for SVM classifiers. Our methodsare applied to data sets with the purpose of removing the objects that are not SV. It this way,the size of the training sets is significantly decreased and the reduced set is used to train theSVM.We compared our methods against other state-of-the-art methods with the followingresults: the training time of SVM is significantly improved; the classification accuracies aresimilar to those obtained with the whole training set and the standard deviations of accuracyremain low.As a preliminary study to our methods, we explored the performance of two strategiescommonly used in other data reduction algorithms: Simple random selection and detectionof objects close to an opposite class. The former is the least costly and achieves goodclassification accuracy if at least 10% of the size of the training set is used. A disadvantage ofthis approach is that the standard deviation remains large. The second method is unsuitablefor large data sets, because it has O(n2) time and space complexities. Furthermore, thisapproach obtains lower classification accuracy than random sampling. However, the standarddeviations of classification accuracy are low, in addition, the latter method can discover SVs
121

Chapter 6. Conclusions and future work

regardless of the type of kernel (i.e., linear or Gaussian) used by the SVM. The objects thatpresent the closest distances to opposite class examples are usually also SVs. A problem themethod that computes all the distances between objects, is that some SV cannot be detected,because their distances are greater than other points that are not SV; this occurs, specially,in linearly inseparable cases.Our methods achieve better classification accuracies than these two naive methods. Thisis because we detect objects that characterize decision boundaries, and then we extract SVcandidates. The standard deviations of classification accuracy are considerably smaller thanthose obtained with such naive methods. The training time of a SVM using our algorithms isbetter than that required by algorithms such as SMO, RCH, SCH and LibSVM.The first method that we present is called CCH-SVM. This approach begins by mappingall examples into a grid. This makes that points located close to other ones are put in samecell of the grid. The key element in CCH-SVM is the detection of vertices of a convex-concavehull, which corresponds to the examples located on the boundaries of the data set. For thelinearly separable case, the SV are the closest pair of points of convex hulls; however, forthe general case this is not true. The reduction or scaling of a convex hull has two maindisadvantages: it is computationally costly and, in general, the accuracy obtained is not good.Current methods that use reduced or scaled convex hulls work only with small data sets. Thepoints that define vertices of a convex-concave hull contain the vertices of a convex hull, andmost of these points are close to the edges of convex hull. In this way, our first method worksin both the linearly separable and the inseparable cases. We propose a method to apply ourCCH-SVM to more than two dimensions.Unlike the naive method based on distances, CCH-SVM selects objects not only closeto their opposite class, but also the distribution of examples is sparser. A disadvantage ofCCH-SVM is that is unsuitable for both high dimensional data sets and small data sets. Theaccuracy achieved by CCH-SVM is maintained slightly lower than the classical SVM trainersthat use the whole data set. The training time is not reduced with our CCH-SVM method inthese two cases.The second method that we developed is named DTFSVM. This method discovers lowentropy regions to detect objects that describe the decision boundaries, i.e., SV candidates.DTFSVM uses a decision tree to discover regions where most elements are of the same class,and then it selects objects close to their opposite class regions using a linear discriminant.Similar to the naive algorithm based on distances, DTFSVM works in input space, but it is
122

6.2. Future work

applicable to SVMs with Gaussian kernel. Unlike the simple algorithm based on distances,our method selects objects in a clever way as shown in the results of experiments. DTFSVMdoes not use random selection as other methods that use a similar approach. This allowsto produce repeatable results, high classification accuracies and low standard deviations. Aminor variant of the DTFSVM is also proposed, which, instead of using a linear discriminant,executes a random selection in the low entropy regions. This is considered as a directedrandom sampling and not a simple random sampling. Although the training time obtainedwith the variant of DTFSVM is better than that achieved with the original DTFSVM, theclassification accuracy is lower. DTFSVM and its variant are suitable for mediumsÂą sizeand large data sets with a number of features typically used in the classification task.
6.2 Future workWe are interested in extending our research to the following problems:1. Data selection on large and skewed data sets. When the ratio of minority and majorityclasses is very small, the SVM and other classifiers present a poor performance. In thiscase, it is necessary to design new data reduction methods not only to reduce the sizeof the training sets, but also to improve the accuracy of classification, sensitivity andspecificity.

2. Classification task with big data. Classic classifiers and also SVMs are unsuitableto deal with sets that contain trillions of data. Classic classifiers and data reductionmethods need to be updated, and implemented in parallel and distributed environments.
3. SVMs for data streams. The data stream classification has been an active researcharea in the last few years. There are algorithms such as VFDT, cVFDT and on demandclassification for these type of applications. However, current proposals that applySVMs are only able to deal with low-speed-rate data streams, and the accuracy thatis achieved not good enough. Data reduction methods include the use of time windowsor horizons.
4. SVM Classification with embedded devices. One interesting problem is to reduce thecomplexity of the operations involved in the solution of the quadratic programmingproblem, as well as reducing the power consumption, so that this type of classifiercan be used in low performance devices.

123

Chapter 6. Conclusions and future work

124

References

[1] M. Hilbert and P. López, “The world’ s technological capacity to store, communicate, andcompute information,” Science, pp. 60–65, Apr. 2011.
[2] J. Gantz and D. Reinsel, “Extracting value from chaos,” http://idcdocserv.com/1142, June2011, eMC-sponsored IDC Digital Universe study.
[3] H. I. Witten, E. Frank, and M. A. Hall, Data Mining Practical Machine Learning Tools

and Techniques, 3rd ed. Morgan Kaufmann, 2011.
[4] D. L. Olson and D. Delen, Advanced Data Mining Techniques. Springer PublishingCompany, Incorporated, 2008.
[5] K. J. Cios, R. W. Swiniarski, W. Pedrycz, and L. A. Kurgan, Data Mining: A Knowledge

Discovery Approach, 1st ed., ser. New York, NY, USA. Springer, 2007.
[6] M. Bramer, Principles of Data Mining, ser. Undergraduate Topics in Computer Science.Springer-Verlag, 2007.
[7] K. P. Bennett and E. J. Bredensteiner, “Geometry in learning,” in In Geometry at Work,1997.
[8] M. E. Mavroforakis, M. Sdralis, and S. Theodoridis, “A geometric nearest pointalgorithm for the efficient solution of the svm classification task.” IEEE Transactions

on Neural Networks, vol. 18, no. 5, pp. 1545–1549, 2007. [Online]. Available:http://doi.ieeecomputersociety.org/10.1109/TNN.2007.900237
125

http://doi.ieeecomputersociety.org/10.1109/TNN.2007.900237

References

[9] X. Peng, “Efficient geometric algorithms for support vector machine classifier,” in Natural
Computation (ICNC), 2010 Sixth International Conference on, vol. 2, aug. 2010, pp.875–879.

[10] X. Peng and Y. Wang, “Geometric algorithms to large margin classifier based on affinehulls,” Neural Networks and Learning Systems, IEEE Transactions on, vol. 23, no. 2, pp.236 –246, feb. 2012.
[11] Z. Liu, J. G. Liu, C. Pan, and G. Wang, “A novel geometric approach to binary classificationbased on scaled convex hulls,” Trans. Neur. Netw., vol. 20, no. 7, pp. 1215–1220, July2009.
[12] J. Platt, “Fast training of support vector machines using sequential minimal optimization,”

Advances in Kernel Methods: Support Vector Machines, pp. pp. 185–208, 1998.
[13] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvementsto platt’s smo algorithm for svm classifier design,” Neural Comput., vol. 13, no. 3, pp.637–649, Mar. 2001. [Online]. Available: http://dx.doi.org/10.1162/089976601300014493
[14] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using second orderinformation for training support vector machines,” J. Mach. Learn. Res., vol. 6,pp. 1889–1918, December 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1046920.1194907
[15] B. Antoine, S. Ertekin, W. Jason, and B. Léon, “Fast kernel classifiers with online andactive learning,” Journal of Machine Learning Research, vol. 6, pp. 1579–1619, 2005.
[16] M. Arun Kumar and M. Gopal, “A hybrid svm based decision tree,” Pattern

Recogn., vol. 43, no. 12, pp. 3977–3987, Dec. 2010. [Online]. Available:http://dx.doi.org/10.1016/j.patcog.2010.06.010
[17] C. Li, K. Liu, and H. Wang, “The incremental learning algorithm with support vectormachine based on hyperplane-distance,” Appl. Intell., vol. 34, no. 1, pp. 19–27, 2011.
[18] J. Wang, P. Neskovic, and L. N. Cooper, “Selecting data for fast support vector machinestraining.” in Trends in Neural Computation, ser. Studies in Computational Intelligence,K. Chen and L. Wang, Eds. Springer, 2007, vol. 35, pp. 61–84. [Online]. Available:http://dblp.uni-trier.de/db/series/sci/sci35.html#WangNC07

126

http://dx.doi.org/10.1162/089976601300014493
http://dl.acm.org/citation.cfm?id=1046920.1194907
http://dl.acm.org/citation.cfm?id=1046920.1194907
http://dx.doi.org/10.1016/j.patcog.2010.06.010
http://dblp.uni-trier.de/db/series/sci/sci35.html#WangNC07

References

[19] A. Shilton, “Incremental training of support vector machines,” Neural Networks, IEEE
Transactions on, vol. 16, pp. 114–131, 2005.

[20] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer,1995. [Online]. Available: http://books.google.com/books?id=sna9BaxVbj8C&printsec=frontcover
[21] W.-H. Chen and J.-Y. Shih, “A study of taiwan’s issuer credit rating systems using supportvector machines.” Expert Systems with Applications, vol. 30, pp. 427–435, 2006.
[22] O. Ivanciuc, “Chapter 6 applications of support vector machines in chemistry,” 2007.
[23] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspicious urls: anapplication of large-scale online learning,” in ICML, 2009, p. 86.
[24] D. Sculley and G. Wachman, “Relaxed online svms for spam filtering.” in SIGIR, W. Kraaij,A. P. de Vries, C. L. A. Clarke, N. Fuhr, and N. Kando, Eds. ACM, 2007, pp. 415–422.[Online]. Available: http://dblp.uni-trier.de/db/conf/sigir/sigir2007.html#SculleyW07
[25] Y. Zhao, H. Xi, and Z. Wang, “A fast online svm algorithm for variable-step cdmapower control.” in ICNC (1), ser. Lecture Notes in Computer Science, L. Wang, K. Chen,and Y.-S. Ong, Eds., vol. 3610. Springer, 2005, pp. 1090–1099. [Online]. Available:http://dblp.uni-trier.de/db/conf/icnc/icnc2005-1.html#ZhaoXW05
[26] D. Cui and D. Curry, “Prediction in marketing using the support vector machine,”

Marketing Science, vol. 24, no. 4, pp. pp. 595–615, 2005. [Online]. Available:http://www.jstor.org/stable/40056988
[27] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods, 1st ed. Cambridge University Press, Mar.2000.
[28] S. Abe, Support Vector Machines for Pattern Classification, ser. Advances in PatternRecognition. London: Springer-Verlag, Jul. 2005.
[29] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals Eugen.,vol. 7, pp. 179–188, 1936.

127

http://books.google.com/books?id=sna9BaxVbj8C&printsec=frontcover
http://books.google.com/books?id=sna9BaxVbj8C&printsec=frontcover
http://dblp.uni-trier.de/db/conf/sigir/sigir2007.html#SculleyW07
http://dblp.uni-trier.de/db/conf/icnc/icnc2005-1.html#ZhaoXW05
http://www.jstor.org/stable/40056988

References

[30] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010. [Online]. Available:http://archive.ics.uci.edu/ml
[31] A. A. Hussein, B. Jaume, M. V. Butz, and X. Llor, “Online adaptation in learning classifiersystems: Stream data mining,” University of Illinois at Urbana-Champaign, Tech. Rep.2004031, June 2004.
[32] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan KaufmannPublishers Inc. Elsevier, 2006.
[33] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression

Trees. Wadsworth, 1984.
[34] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
[35] D. G. Luenberger, Optimization by Vector Space Methods, 1st ed. New York, NY, USA:John Wiley & Sons, Inc., 1997.
[36] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition).Wiley-Interscience, 2000.
[37] S. Abe, “Analysis of multiclass support vector machines,” IEEE Trans actions on

Pattern Analysis and Machine Intelligence, pp. 437–440, 2003. [Online]. Available:http://www2.kobe-u.ac.jp/~abe/pdf/cimca2003.pdf
[38] C.-W. Hsu and C.-J. Lin, “A simple decomposition method for support vectormachines,” Mach. Learn., vol. 46, pp. 291–314, March 2002. [Online]. Available:http://dx.doi.org/10.1023/A:1012427100071
[39] J. Chen, C. Wang, and R. Wang, “Combining support vector machines with a pairwisedecision tree,” Geoscience and Remote Sensing Letters, IEEE, vol. 5, no. 3, pp. 409 –413,july 2008.
[40] A. Christmann and I. Steinwart, Support Vector Machines, 1st ed., ser. InformationScience and Statistics. Springer New York, Sep. 2008, vol. 1.

128

http://archive.ics.uci.edu/ml
http://www2.kobe-u.ac.jp/~abe/pdf/cimca2003.pdf
http://dx.doi.org/10.1023/A:1012427100071

References

[41] V. Kecman, Learning and Soft Computing: Support Vector Machines, Neural Networks,
and Fuzzy Logic Models. Cambridge, MA, USA: MIT Press, 2001.

[42] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, (First Edition).Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005.
[43] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, ser.Springer Series in Statistics. New York, NY, USA: Springer New York Inc., 2001.
[44] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill, Inc., 1997.
[45] G. Wang, “A survey on training algorithms for support vector machine classifiers,” in

Proceedings of the 2008 Fourth International Conference on Networked Computing and
Advanced Information Management - Volume 01, ser. NCM ’08, vol. 1. Washington,DC, USA: IEEE Computer Society, sept. 2008, pp. 123–128. [Online]. Available:http://dx.doi.org/10.1109/NCM.2008.103

[46] M. Doumpos, “An experimental comparison of some efficient approaches fortraining support vector machines,” Operational Research, vol. 4, pp. 45–56, 2004,10.1007/BF02941095. [Online]. Available: http://dx.doi.org/10.1007/BF02941095
[47] J. L. Balcázar, Y. Dai, and O. Watanabe, “A random sampling technique for trainingsupport vector machines,” in Proceedings of the 12th International Conference on

Algorithmic Learning Theory, ser. ALT ’01. London, UK, UK: Springer-Verlag, 2001,pp. 119–134. [Online]. Available: http://dl.acm.org/citation.cfm?id=647719.736065
[48] J. L. Balcazar, Y. Dai, and O. Watanabe, “Provably fast support vectorregression using random sampling,” Feb. 10 2002. [Online]. Available: http://citeseer.ist.psu.edu/626945.html;http://www.lsi.upc.es/~balqui/postscript/svmregr.ps
[49] J. L. Balcázar, Y. Dai, J. Tanaka, and O. Watanabe, “Provably fast training algorithmsfor support vector machines,” Theory Comput. Syst, vol. 42, no. 4, pp. 568–595, 2008.[Online]. Available: http://dx.doi.org/10.1007/s00224-007-9094-6
[50] Y. jye Lee and O. L. Mangasarian, “Rsvm: Reduced support vector machines,” in Data

Mining Institute, Computer Sciences Department, University of Wisconsin, 2001, pp.00–07.
129

http://dx.doi.org/10.1109/NCM.2008.103
http://dx.doi.org/10.1007/BF02941095
http://dl.acm.org/citation.cfm?id=647719.736065
http://citeseer.ist.psu.edu/626945.html; http://www.lsi.upc.es/~balqui/postscript/svmregr.ps
http://citeseer.ist.psu.edu/626945.html; http://www.lsi.upc.es/~balqui/postscript/svmregr.ps
http://dx.doi.org/10.1007/s00224-007-9094-6

References

[51] Y.-J. Lee and S.-Y. Huang, “Reduced support vector machines: A statistical theory,” IEEE
Transactions on Neural Networks, vol. 18, no. 1, pp. 1–13, 2007.

[52] L.-J. Chien, C.-C. Chang, and Y.-J. Lee, “Variant methods of reduced set selection forreduced support vector machines,” J. Inf. Sci. Eng., vol. 26, no. 1, pp. 183–196, 2010.
[53] Y.-J. Lee and O. L. Mangasarian, “SSVM: A smooth support vector machine,”

Computational Optimization and Applications, vol. 20, pp. 5–22, 2001,data Mining Institute, University of Wisconsin, Technical Report 99-03.ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-03.ps.
[54] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal marginclassifiers,” in Proceedings of the fifth annual workshop on Computational learning

theory, ser. COLT ’92. New York, NY, USA: ACM, 1992, pp. 144–152. [Online].Available: http://doi.acm.org/10.1145/130385.130401
[55] A. Shigeo and I. Takuya, “Fast training of support vector machines by extracting boundarydata,” in ICANN ’01: Proceedings of the International Conference on Artificial Neural

Networks. London, UK: Springer-Verlag, 2001, pp. 308–313.
[56] Y.-G. Liu, Q. Chen, and R.-Z. Yu, “Extract candidates of support vector from training set,”in Machine Learning and Cybernetics, 2003 International Conference on, vol. 5, nov.2003, pp. 3199–3202 Vol.5.
[57] Z.-W. Li, J. Yang, and J.-P. Zhang, “Dynamic incremental svm learning algorithm formining data streams,” in Proceedings of the The First International Symposium on Data,

Privacy, and E-Commerce, ser. ISDPE ’07. Washington, DC, USA: IEEE ComputerSociety, 2007, pp. 35–37. [Online]. Available: http://dx.doi.org/10.1109/ISDPE.2007.69
[58] P. E. Hart, “The condensed nearest neighbor rule,” IEEE Transactions on Information

Theory, vol. 14, pp. 515–516, 1968.
[59] K. Gowda and G. Krishna, “The condensed nearest neighbor rule using the conceptof mutual nearest neighborhood (corresp.),” IEEE Trans. Inf. Theor., vol. 25, no. 4, pp.488–490, Sep. 1979. [Online]. Available: http://dx.doi.org/10.1109/TIT.1979.1056066

130

http://doi.acm.org/10.1145/130385.130401
http://dx.doi.org/10.1109/ISDPE.2007.69
http://dx.doi.org/10.1109/TIT.1979.1056066

References

[60] F. Angiulli, “Fast condensed nearest neighbor rule,” in Proceedings of the 22nd
international conference on Machine learning, ser. ICML ’05. New York, NY, USA:ACM, 2005, pp. 25–32. [Online]. Available: http://doi.acm.org/10.1145/1102351.1102355

[61] H. Shin and S. Cho, “Pattern selection for support vector classifiers,” in Proceedings
of the Third International Conference on Intelligent Data Engineering and Automated
Learning, ser. IDEAL ’02. London, UK, UK: Springer-Verlag, 2002, pp. 469–474.[Online]. Available: http://dl.acm.org/citation.cfm?id=646288.686626

[62] ——, “Fast pattern selection for support vector classifiers,” in Proceedings of the
7th Pacific-Asia conference on Advances in knowledge discovery and data mining,ser. PAKDD’03. Berlin, Heidelberg: Springer-Verlag, 2003, pp. 376–387. [Online].Available: http://dl.acm.org/citation.cfm?id=1760894.1760944

[63] ——, “How many neighbors to consider in pattern pre-selection for support vectorclassifiers?” in IJCNN 2003, 07 2003, pp. 565–570.
[64] ——, “Neighborhood property-based pattern selection for support vector machines,”

Neural Comput., vol. 19, no. 3, pp. 816–855, March 2007.
[65] R. Wang and S. Kwong, “Sample selection based on maximum entropy for supportvector machines,” in Machine Learning and Cybernetics (ICMLC), 2010 International

Conference on, vol. 3, july 2010, pp. 1390–1395.
[66] X. Jiantao, H. Mingyi, W. Yuying, and F. Yan, “A fast training algorithm for support vectormachine via boundary sample selection,” in Neural Networks and Signal Processing,

2003. Proceedings of the 2003 International Conference on, vol. 1, dec. 2003, pp. 20–22Vol.1.
[67] B.-Z. Qiu, F. Yue, and J.-Y. Shen, “Brim: An efficient boundary points detecting algorithm,”in Advances in Knowledge Discovery and Data Mining, ser. Lecture Notes in ComputerScience, Z.-H. Zhou, H. Li, and Q. Yang, Eds. Springer Berlin / Heidelberg, 2007, vol.4426, pp. 761–768.
[68] C. Xia, W. Hsu, M. Lee, and B. Ooi, “Border: efficient computation of boundary points,”

Knowledge and Data Engineering, IEEE Transactions on, vol. 18, no. 3, pp. 289–303,march 2006.
131

http://doi.acm.org/10.1145/1102351.1102355
http://dl.acm.org/citation.cfm?id=646288.686626
http://dl.acm.org/citation.cfm?id=1760894.1760944

References

[69] F. Korn and S. Muthukrishnan, “Influence sets based on reverse nearest neighborqueries,” in Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’00. New York, NY, USA: ACM, 2000, pp. 201–212.[Online]. Available: http://doi.acm.org/10.1145/342009.335415

[70] E. Sung, Z. Yan, and L. Xuchun, “Accelerating the svm learning for very large data sets,”in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, vol. 2, 0-02006, pp. 484 –489.
[71] J. Cervantes, X. Li, and W. Yu, “Support vector machine classification based on fuzzyclustering for large data sets,” in Lectures notes on Computer Science, A. Gelbukhand C. Reyes-Garcia, Eds., Mexican International Conference on Artificial Intelligence.Springer-Verlag Berlin Heidelberg, November 2006, pp. 572–582.
[72] J. Cervantes, X. Li, W.Yu, and K. Li, “Support vector machine classification for large datasets via minimum enclosing ball clustering,” Neurocomputing, vol. 71, pp. 611–619, 2008.
[73] R. Fletcher, Practical methods of optimization; (2nd ed.). New York, NY, USA:Wiley-Interscience, 1987.
[74] N. List and S. Hans-Ulrich, “A general convergence theorem for the decompositionmethod,” in COLT, 2004, pp. 363–377.
[75] D. Luenberger and Y. Ye, Linear and Nonlinear Programming, ser. International Seriesin Operations Research & Management Science. Springer, 2008. [Online]. Available:http://books.google.com.mx/books?id=-pD62uvi9lgC
[76] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for support vectormachines,” in NNSP’97. IEEE, 1997, pp. 276–285.
[77] R. Saunders, C. Stitson, J. Weston, L. Bottou, B. Scholkopf, and A. Smola, “Supportvector machine reference manual,” Department of Computer Science, Royal HollowayUniversity of London, Egham, Surry TW20 0EX, UK, Tech. Rep. CSD–TR–98–03,Oct. 1998. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7760

132

http://doi.acm.org/10.1145/342009.335415
http://books.google.com.mx/books?id=-pD62uvi9lgC
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7760
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7760

References

[78] T. Joachims, “Making large-scale svm learning practical,” Advances in Kernel Methods–
Support Vector Learning, pp. 169–184, 1998.

[79] C. Campbell, “Algorithmic approaches to training support vector machines: a survey,”in ESANN 2000, 8th European Symposium on Artificial Neural Networks, Bruges,
Belgium, April 26-28, 2000, Proceedings, 2000, pp. 27–36.

[80] C. Chih-Chung and L. Chih-Jen, “Libsvm: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–27, 2011.

[81] J. A. K. Suykens and J. Vandewalle, “Least squares support vector machineclassifiers,” Neural Process. Lett., vol. 9, pp. 293–300, June 1999. [Online]. Available:http://dl.acm.org/citation.cfm?id=326394.326408
[82] G. Fung and O. L. Mangasarian, “Incremental support vector machine classification,” in

SDM, 2001, pp. 77–86.
[83] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik, “Parallel support vectormachines: The cascade svm,” in In Advances in Neural Information Processing Systems.MIT Press, 2005, pp. 521–528.
[84] L. Bao-Liang, W. Kai-An, and W. Yi-Min, “Comparison of parallel and cascade methodsfor training support vector machines on large-scale problems,” in Machine Learning and

Cybernetics, 2004. Proceedings of 2004 International Conference on, vol. 5, Aug. 2004,pp. 3056 – 3061.
[85] R. Collobert, Y. Bengio, and S. Bengio, “Scaling large learning problems with hardparallel mixtures,” International Journal on Pattern Recognition and Artificial Intelligence

(IJPRAI), vol. 17, no. 3, pp. 349–365, 2003.
[86] J. xiong Dong, A. Krzyzak, and C. Suen, “Fast svm training algorithm with decompositionon very large data sets,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 27, no. 4, pp. 603–618, april 2005.
[87] S. Qiu and T. Lane, “Parallel computation of rbf kernels for support vector classifiers,”in SDM, 2005.

133

http://dl.acm.org/citation.cfm?id=326394.326408

References

[88] G. Zanghirati and L. Zanni, “A parallel solver for large quadratic programs in trainingsupport vector machines,” Parallel Comput., vol. 29, no. 4, pp. 535–551, 2003.
[89] F. Poulet, “Multi-way distributed svm algorithms,” in Parallel and Distributed computing

for Machine Learning. In conjunction with the 14th European Conference on Machine
Learning (ECML’03) and 7th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD’03), Cavtat-Dubrovnik, Croatia, September2003.

[90] T. Serafini, L. Zanni, and G. Zanghirati, “Some improvements to a parallel decompositiontechnique for training support vector machines,” in PVM/MPI, 2005, pp. 9–17.
[91] T. Eitrich and B. Lang, “On the optimal working set size in serial and parallel supportvector machine learning with the decomposition algorithm,” in AusDM ’06: Proceedings

of the fifth Australasian conference on Data mining and analystics. Darlinghurst,Australia, Australia: Australian Computer Society, Inc., 2006, pp. 121–128.
[92] D. DeCoste and K. Wagstaff, “Alpha seeding for support vector machines,” in

Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, ser. KDD ’00. New York, NY, USA: ACM, 2000, pp.345–349. [Online]. Available: http://doi.acm.org/10.1145/347090.347165

[93] D. Feng, W. Shi, H. Guo, and L. Chen, “A new alpha seeding method for support vectormachine training,” in Advances in Natural Computation, ser. Lecture Notes in ComputerScience, L. Wang, K. Chen, and Y. Ong, Eds. Springer Berlin / Heidelberg, 2005, vol.3610, pp. 418–418. [Online]. Available: http://dx.doi.org/10.1007/11539087_87
[94] D. Roobaert, “Directsvm: A fast and simple support vector machine perceptron,” in

Proceeding of IEEE, International Workshop on Neural Networks for Signal Processing,2000, pp. 356–365.
[95] Y. Liu, Q. Chen, Y. Tang, and Q. He, “An incremental updating method for support vectormachines,” in APWeb, 2004, pp. 426–435.
[96] Z. Hao, S. Yu, X. Yang, F. Zhao, R. Hu, and Y. Liang, “Online ls-svm learning forclassification problems based on incremental chunk,” in ISNN (1), 2004, pp. 558–564.

134

http://doi.acm.org/10.1145/347090.347165
http://dx.doi.org/10.1007/11539087_87

References

[97] G. Cauwenberghs and T. Poggio, “Incremental and decremental support vectormachine learning,” in Advances in Neural Information Processing Systems
(NIPS*2000), vol. 13, 2000, pp. 409–415. [Online]. Available: http://citeseer.ist.psu.edu/cauwenberghs00incremental.html

[98] F. Orabona, C. Castellini, B. Caputo, J. Luo, and G. Sandini, “On-line independent supportvector machines,” Pattern Recognition, vol. 43, no. 4, pp. 1402–1412, 2010.
[99] F. Parrella, “Online support vector regression,” Master’s thesis, University of Genoa,June 2007.

[100] H. Duan, X. Shao, W. Hou, G. He, and Q. Zeng, “An incremental learning algorithmfor lagrangian support vector machines.” Pattern Recognition Letters, vol. 30, no. 15,pp. 1384–1391, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/prl/prl30.html#DuanSHHZ09
[101] H. Gâlmeanu and R. Andonie, “Implementation issues of an incremental and decrementalsvm,” in ICANN (1), 2008, pp. 325–335.
[102] S. Ruping, “Incremental learning with support vector machines,” Proceedings 2001

IEEE International Conference on Data Mining, pp. 641–642, 1999. [Online]. Available:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=989589
[103] G. Grinblat, L. Uzal, H. Ceccatto, and P. Granitto, “Solving nonstationary classificationproblems with coupled support vector machines,” Neural Networks, IEEE Transactions

on, vol. 22, no. 1, pp. 37–51, jan. 2011.
[104] L. Ralaivola and F. d’Alché Buc, “Incremental support vector machine learning: A localapproach,” in ICANN, 2001, pp. 322–330.
[105] A. Bordes and L. Bottou, “The Huller: a simple and efficient online SVM,” in Machine

Learning: ECML 2005. Springer Verlag, 2005, pp. 505–512, lNAI 3720.
[106] C. Sun, “Closest pairs data selection for support vector machines,” in proceedings

of the 21st national conference on Artificial intelligence - Volume 2, ser. AAAI’06.AAAI Press, 2006, pp. 1926–1927. [Online]. Available: http://dl.acm.org/citation.cfm?id=1597348.1597511
135

http://citeseer.ist.psu.edu/cauwenberghs00incremental.html
http://citeseer.ist.psu.edu/cauwenberghs00incremental.html
http://dblp.uni-trier.de/db/journals/prl/prl30.html#DuanSHHZ09
http://dblp.uni-trier.de/db/journals/prl/prl30.html#DuanSHHZ09
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=989589
http://dl.acm.org/citation.cfm?id=1597348.1597511
http://dl.acm.org/citation.cfm?id=1597348.1597511

References

[107] D. M. J. Tax and R. P. W. Duin, “Support vector data description,” Mach. Learn., vol. 54,no. 1, pp. 45–66, Jan. 2004.
[108] L. Zhang, N. Ye, W. Zhou, and L. Jiao, “Support vectors pre-extracting for support vectormachine based on k nearest neighbour method,” in Information and Automation, 2008.

ICIA 2008. International Conference on, june 2008, pp. 1353–1358.
[109] Z.-q. Wang, C.-t. Wang, and F. Hou, “An effective method for support vectors selectionin kernel space,” in Computer Science and Software Engineering, 2008 International

Conference on, vol. 1, dec. 2008, pp. 872–875.
[110] S. Canu, L. Bottou, and S. Canu, Training Invariant Support Vector Machines using

Selective Sampling. MIT Press, 2007. [Online]. Available: http://eprints.pascal-network.org/archive/00002954
[111] S. Vishwanathan and M. Narasimha Murty, “Geometric svm: a fast and intuitive svmalgorithm,” in Pattern Recognition, 2002. Proceedings. 16th International Conference on,vol. 2, 2002, pp. 56 – 59 vol.2.
[112] ——, “Ssvm: a simple svm algorithm,” in Proceedings of the 2002 International Joint

Conference on Neural Networks IJCNN02. IEEE, 2002.
[113] Y. Ming-Hsuan and A. Narendra, “A geometric approach to train support vector machines,”

Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, vol. 1,p. 1430, 2000.
[114] Crisp and Burges, “A geometric interpretation of υ-svm classifiers,” NIPS, vol. 12, pp.244–250, 2000.
[115] D. Zhou, B. Xiao, H. Zhou, and R. Dai, “Global geometry of svm classifiers,”

Institute of Automation Chinese Academy of Sciences, 2002. [Online]. Available:http://kyb.tuebingen.mpg.de/publications/pdfs/pdf2587.pdf
[116] R. A. Jarvis, “On the identification of the convex hull of a finite set of points in the plane,”

Inform. Process. Lett.,, vol. 2, pp. 18–21, 1973.
136

http://eprints.pascal-network.org/archive/00002954
http://eprints.pascal-network.org/archive/00002954
http://kyb.tuebingen.mpg.de/publications/pdfs/pdf2587.pdf

References

[117] J. C. A. Moreira and M. Y. Santos, “Concave hull: A k-nearest neighbours approach forthe computation of the region occupied by a set of points,” in GRAPP (GM/R), 2007,pp. 61–68. [Online]. Available: http://dblp.uni-trier.de
[118] K. P. Bennett and E. J. Bredensteiner, “Duality and geometry in svm classifiers,” in

Proceedings of the Seventeenth International Conference on Machine Learning, ser.ICML ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp.57–64.
[119] B. Gnedenko, I. Beliaev, A. Solovev, and R. Barlow, Mathematical methods of reliability

theory, ser. Probability and mathematical statistics. Academic Press, 1969. [Online].Available: http://books.google.com.mx/books?id=a7c8AAAAIAAJ
[120] T. Ho and E. Kleinberg, “Checkerboard data set,” http://www.cs.wisc.edu/math-prog/mpml.html, 1996.
[121] F. Chang, C.-Y. Guo, X.-R. Lin, and C.-J. Lu, “Tree Decomposition for Large-ScaleSVM Problems,” Journal of Machine Learning Research, 2010. [Online]. Available:http://www.jmlr.org/papers/volume11/chang10b/chang10b.pdf
[122] B. Fei and J. Liu, “Binary tree of svm: a new fast multiclass training and classificationalgorithm,” Neural Networks, IEEE Transactions on, vol. 17, no. 3, pp. 696 –704, may2006.
[123] M. Lu, C. L. P. Chen, J. Huo, and X. Wang, “Multi-stage decision tree basedon inter-class and inner-class margin of svm,” in Proceedings of the 2009

IEEE international conference on Systems, Man and Cybernetics, ser. SMC’09.Piscataway, NJ, USA: IEEE Press, 2009, pp. 1875–1880. [Online]. Available:http://dl.acm.org/citation.cfm?id=1732003.1732025
[124] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann,1993.
[125] H. Zhao, Y. Yao, and Z. Liu, “A classification method based on non-linear svmdecision tree,” in Proceedings of the Fourth International Conference on Fuzzy

Systems and Knowledge Discovery - Volume 04, ser. FSKD ’07. Washington,
137

http://dblp.uni-trier.de
http://books.google.com.mx/books?id=a7c8AAAAIAAJ
http://www.jmlr.org/papers/volume11/chang10b/chang10b.pdf
http://dl.acm.org/citation.cfm?id=1732003.1732025

References

DC, USA: IEEE Computer Society, 2007, pp. 635–638. [Online]. Available:http://dx.doi.org/10.1109/FSKD.2007.6
[126] D. Tax and P. Laskov, “Online SVM learning: from classification to data description andback,” in Proc. NNSP, C. e. a. Molina, Ed., 2003, pp. 499–508.
[127] S. Katagiri and S. Abe, “Selecting support vector candidates for incremental training,”in Systems, Man and Cybernetics, 2005 IEEE International Conference on, vol. 2, oct.2005, pp. 1258–1263.
[128] A. Shashua, “On the relationship between the support vector machine for classificationand sparsified fisher’s linear discriminant,” Neural Process. Lett., vol. 9, no. 2, pp.129–139, Apr. 1999. [Online]. Available: http://dx.doi.org/10.1023/A:1018677409366
[129] D. Wang and L. Shi, “Selecting valuable training samples for svms via data structureanalysis,” Neurocomput., vol. 71, pp. 2772–2781, August 2008. [Online]. Available:http://portal.acm.org/citation.cfm?id=1401261.1401308
[130] F. Fernandez and P. Isasi, “Local feature weighting in nearest prototype classification,”

Neural Networks, IEEE Transactions on, vol. 19, no. 1, pp. 40 –53, jan. 2008.
[131] Z.-J. Chen, B. Liu, and X.-P. He, “A svc iterative learning algorithm based on sampleselection for large samples,” in Machine Learning and Cybernetics, 2007 International

Conference on, vol. 6, aug. 2007, pp. 3308–3313.
[132] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “TheWEKA data mining software: an update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp.10–18, 2009. [Online]. Available: http://dx.doi.org/10.1145/1656274.1656278

138

http://dx.doi.org/10.1109/FSKD.2007.6
http://dx.doi.org/10.1023/A:1018677409366
http:// portal.acm.org/ citation.cfm?id = 1401261.1401308
http://dx.doi.org/10.1145/1656274.1656278

	Introduction
	Classification
	Preliminaries
	Classifiers
	Linear Models
	Support Vector Machines
	Decision Trees
	Fisher's Linear Discriminant

	Model Evaluation
	Conclusions

	Training Support Vector Machines with Large Data sets
	Data reduction methods
	Random Sampling Methods
	Distance-based methods

	Decomposition Methods
	Variants-based methods
	Other methods
	Parallel implementations
	Alpha seeding
	On-line training

	Preliminary experiments
	Conclusions

	Data reduction method based on convex-concave hull
	Convex hull for classification
	Non-Convex Hull
	Searching for the vertices of convex-concave hull
	Pre processing
	Searching for convex-concave hull vertices in higher dimensions

	SVM Classification via Convex-Concave Hull
	Performance analysis
	Memory space
	Computational time

	Results
	Experiment 1: Size of the training set
	Experiment 2: Parameters
	Experiment 3: Comparative with other methods

	Conclusions

	Data reduction with decision tree and Fisher's linear discriminant
	Decision trees and SVMs
	Detecting regions with support vectors
	Computing adjacent regions
	Detecting objects on boundaries

	Experiments and results
	Data sets used in the experiments
	Calibration of Parameters
	Results

	Variant of the DTFSVM method
	Methods based on clusters for training SVMs
	Selection using directed random sampling

	Performance analysis
	Experiments and results
	Data sets
	Setup
	Results and discussion

	Conclusions

	Conclusions and future work
	Conclusions
	Future work

	References

