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ABSTRACT. We give a construction of genus fields for Kummer cyclic I—extensions
of rational congruence function fields, ! a prime number. First we find this
genus field for a field contained in a cyclotomic function field using Leopoldt’s
construction by means of Dirichlet characters and the Hilbert class field de-
fined by Rosen. The general case follows from this. This generalizes the result
obtained by Peng for a cyclic extension of degree .

1. INTRODUCTION

The concept of genus field was defined by Gauss [7] in 1801 in the context of
binary quadratic forms. For any finite extension K/Q, the genus field is defined as
the maximal unramified extension Ky, of K such that K. is the composite of K
and an abelian extension £* of Q: Ky, = Kk*. This definition is due to A. Frélich
[6]. If K denotes the Hilbert class field of K, K C Ky C Ky. H. Leopoldt
[10] determined the genus field K of an abelian extension K of Q using Dirichlet
characters.

For function fields, the notion of Hilbert class field has no proper analogue since
the maximal abelian extension of any congruence function field K/F, contains
K, = KFgn for all positive integers m and therefore the maximal unramified
abelian extension of K is of infinite degree over K.

M. Rosen [14] gave a definition of an analogue of the Hilbert class field for a
conguence function field K and a fixed finite nonempty set S, of prime divisors
of K. Using this definition, a proper concept of genus field can be given along the
lines of the classical case. R. Clement [4] considered a cyclic extension of Fq(T')
of degree a prime number [ dividing ¢ — 1 and found the genus field using class
field theory. Later, S. Bae and J. K. Koo [3] generalized the results of Clement
following the methods of Frélich [6]. In fact, Bae and Koo defined the genus field
for global function fields and developed the analogue of the classical genus theory
(see Definition 2.2). B. Angles and J.-F. Jaulent [1] used narrow S—class groups
to establish the fundamental results of genus theory for finite extensions of global
fields, where S is an arbitrary finite set of places. Using the genus theory for
quadratic function fields, Y. Li and S. Hu [11] obtained an analogue in the function
field framework of the number field case by constructing infinitely many real (resp.
imaginary) quadratic extensions K over Fy(T") whose ideal class group capitulates
in a proper subfield of the Hilbert class field of K.
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G. Peng [13] explicitly described the genus theory for Kummer function fields.
C. Wittmann [17] extended Peng’s results to the case [ { ¢(¢ — 1) and used them
to study the [—part of the ideal class groups of cyclic extensions of prime degree
I. Hu and Li [8] described explicitly the ambiguous ideal classes and the genus
field of an Artin—Schreier extension of a rational congruence function field. In
analogy with the number field case, S. Bae, S. Hu and H. Jung [2] defined the
generalized Rédei—matrix of local Hilbert symbols with coefficients in F;. As appli-
cations they determined the generalized Rédei matrices for Kummer, biquadratic
and Artin—Schreier extensions of Fy(T') and showed that their algorithm for finding
the invariant Ay for Kummer extensions is different and simpler compared to that
of Wittmann. They used their results to determine completely the 4-rank of the
ideal class group for a large class of Artin—Schreier extensions that have been used
in cryptanalysis and which may lead to a possible method of attack against the
discrete logarithm problem on an elliptic curve.

In [12] the genus field of a finite geometric abelian extension of k := Fy(T") was
described and as applications the genus fields of cyclic extensions of prime degree
over k were found explicitly. The results of Peng and of Hu and Li can be obtained
in this way. In that paper were obtained the p—cyclic extensions of k where p is the
characteristic.

In this paper we use the results obtained in [12] to describe explicitly the genus
field of cyclic extensions of degree I™ where [ | ¢—1. The case n = 1 is the result of
Peng. Our methods are based on Leopoldt’s ideas and therefore are very different
from Peng’s methods which are based on the global function field analogue of P. E.
Conner and J. Hurrelbrink’s exact hexagon [5]. In [12] we describe the case n =1 a
little differently from how it was described originally. Here we show that using our
methods it is possible to give the same description as the one in the original paper.

2. CYCLOTOMIC FUNCTION FIELDS

First we give some notations and some results in the theory of cyclotomic function
fields [16]. Let k = F,(T") be a rational congruence function field, F, denoting the
finite field of ¢ elements. Let Ry = Fy[T] be the ring of polynomials, that is, we
choose Ry as the ring of integers of k. R}' denotes the set of monic irreducible
polynomials in Rp. For N € Ry \ {0}, Ay denotes the N—torsion of the Carlitz
module and k(Ay) denotes the N—th cyclotomic function field. For any function
field K/F,, K,, := KF, = denotes the constant field extension. For any m € N, Cy,
denotes a cyclic group of order m.

We have Gy = Gal(k(An)/k) = (RT/(N))* with the identification o4 Ay = A4
for A € Rp. For any finite extension K/k we will use the symbol S (K) to
denote either one prime or the set of all primes in K above p.,, the pole divisor
of T in k. We understand by a Dirichlet character any group homomorphism
x: (Rr/(N))" — C* and we define the conductor f, of x as the monic polynomial
of minimum degree such that x can be defined modulo f,, x: (RT/(fX))* — C*.

Given any group of characters X C (/}';(: Hom(Gy, C*)), the field associated
to X is the subfield of k(Ay) fixed under Nycx ker x. Conversely, for any field

—_—

K C k(An), the group of Dirichlet characters associated to K is Gal(K/k).
For any character x we consider the canonical decomposition x = []p R XP

where xp has conductor a power of P. We have f, = HPeRJT“ Fxp-
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If X is a group of Dirichlet characters, we write Xp := {xp | x € X} for P € Rf.
If K is any extension of k, k C K C k(Ay) and P € R}, then the ramification
index of P in K is ep = |Xp|.

In k(AN)/k, poo has ramification index ¢ — 1 and decomposes into % different
prime divisors of k(Ay) of degree 1. Furthermore, with the identification G =
(RT/(N))*, the inertia group J of po is F C (RT/(N))*, more precisely, J =
{oa | @ € Fy}. In this case the inertia and the decomposition groups coincide. The
primes that ramify in k(Ay)/k are po and the polynomials P € RF such that
P|N.

We recall Rosen’s definition for a relative Hilbert class field of a congruence
function field K.

Definition 2.1 ([14]). Let K be a function field with field of constants F,. Let
S be a nonempty finite set of prime divisors of K. The Hilbert class function field
of K relative to S, K g, is the maximal unramified abelian extension of K where
every element of S decomposes fully.

From now on, for any finite extension K of k we will consider S as the set of
prime divisors dividing P, the pole divisor of T in k and we write Ky instead of
KH,S .

Definition 2.2. Let K be a finite geometric extension of k. The genus field Kg.
of K is the maximal extension of K contained in K g that is the composite of K
and an abelian extension of k. Equivalently, Ky, = Kk* where £* is the maximal
abelian extension of k contained in Kg.

When K/k is an abelian extension, Ky, is the maximal abelian extension of k
contained in Kg. Our main goal in this section is to find Kye when K/k is a cyclic
extension of degree " where {" | ¢ — 1 and K is a subfield of a cyclotomic function
field.

Proposition 2.3. If K C k(Ay) and the group of characters associated to K is X,
then the maximal abelian extension J of K unramified at every finite prime P € R;,
contained in a cyclotomic extension, is the field associated to Y = HpeR; Xp =

HP\N Xp.
Proof. [12, Proposition 3.3]. O
In this case po, has no inertia in J/K but it might be ramified.

Proposition 2.4. If E/k is an abelian extension such that po, is tamely ramified,
then there exist N € Ry and m € N such that E C k(An)Fgm.

Proof. [12, Proposition 3.4]. O

Theorem 2.5. Assume K C k(Ay) for some polynomial N. Let X be the group
of Dirichlet characters associated to K, Y = [[py Xp, Y1 = {x € Y [ x(a) =

1 for alla € F;} and Jy the field associated to Y1. Then the genus field of K is
Ky = KJi.

Proof. [12, Theorem 3.6]. d

Now we consider K /k a cyclic geometric extension of degree [ where [ is a prime
number and such that {" | ¢ — 1. Therefore K/k is a Kummer extension and then
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K = k('\/yD) where v € F; and D € Ry is a monic polynomial ["power free.

If K C k(An) for some N € Ry, we have K = k('\/(—1)dP D) ([15]). For the
convenience of the reader we present a proof of this fact.

Here we will assume that ¢ > 3. First we want to know when a field k( V/P),
where [ | g—1 and P € RF, is contained in k(A p). The Galois group Gal(k(Ap)/k) =
(Rr/(P))" = F?; is a cyclic group of order ¢ — 1, where d is the degree of P.
Therefore there exists a unique extension of the form k( VaP), a € [, contained
in k(Ap). Note that if « ¢ (]FZ)ln, k('V/P) # k('VaP) since otherwise 'V/a € k
and so a € (IFZ)ZW.

Proposition 2.6. For P € R, k('\/(=1)4P) C k(Ap).

Proof. Let ®p(u) = % be the P—th cyclotomic polynomial. We have
d
op) = [I (w—= 3 [P,

A#0,A€ERT i=0
deg A<deg P

where A € Ap \ {0}, that is, A is an Rp—generator of Ap. Then
ep(0)= (-1t [ M=P

A#0,A€Ry
deg A<deg P

Now, every polynomial A € Ry, A # 0 can be uniquely written as a product of
an element o € Fy and a monic polynomial A;: A = aA;. Now, A = A = g\A,
Note that there are exactly ¢ — 1 polynomials A € Ry, A # 0 such that A; occurs
in its factorization as above, one for each of the ¢ — 1 elements of . Therefore

P=(nt [T M=cnrt J] e

A#0,A€RT A1 monic
deg A<deg P a€ly
d
-1 _1
d_ q—1 q
— (~1)¢ 1( I1 a) ( I1 AAl) .
aG]F;; A1 monic

Note that [],cp. @ = —1 and that £ := [T 4, nonic A" € k(Ap). Thus

()7 (@ et = (Cyfert = P

with € € k(Ap). It follows that £ = */(—1)4P € k(Ap). In particular \/(—1)4
@D/ ¢ k(Ap).

Corollary 2.7. For any monic polynomial D € Ry, we have k( '\/(—1)dee D D)
k(Ap).

Next, we study the behavior of ps, in K/k.

Proposition 2.8. Let K = k('\/yD) where v € F} and D € Ry is a monic
polynomial I —power free. Then if e, foo and hoy denote the ramification index,
the inertia degree and the decomposition index of poo respectively in K/k, then

oo =1""0 foo =1, and he =11,

where deg D = 1* a with ged(a,1) = 1, t = min{n, '} and F,( \/(—1)des D) = Fgim .

o)

Odn O
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Proof. The computation of the ramification index is due to Hasse (see [16, Theorem
5.8.12]).

By Corollary 2.7 we have that p., decomposes fully in k(4/(—1)deDD) C
kE(Ap), and po is fully inert in kIF = /k since poo is of degree one (see [16, Theorem

6.2.1]). Therefore the inertia degree of po in k( l\t/E)IE"qzm [k is I"™. It follows that
k(4/(~1)3eDD) is the inertia field of po in k( \/D)Fm /k. Therefore po is fully
decomposed in k( y/yD)Fm /k( y/D):

K(VAD) —— k(VAD)F i = k(VAD)K( Y/ (~1)%P D)
lt

" 1t /(1 \deg D
k Poo totally k( ( 1) D)
decomposed

Therefore fo, = (™. The result follows. O

3. THE CASEn =1

The case n = 1 is due to Peng [13]. In [12] we gave another proof of the result of
Peng with the techniques developed there. The description for the genus field in [12]
is different from that given in [13]. In this section we obtain the same description
as in the original paper.

We will use that for any a € F; and 1 < e <1—1, we have k(vVaP¢) = k(ValP)
where fe = 1 mod [. Since we have [ classes mod(F})" in F}, the [ different fields
k(VaP), o € F} are given by the classes mod(F:)!. Therefore k(vVa/P) C k(Ap)
if and only if o/ = (—~1)% mod (F;)".

Here we have that K := k(v/7D) C k(Ap)F, with D € Ry a monic [-power free
polynomial, v € F; and D = Py* --- Pf~ where P; € Rf,1<e <l-1,1<i<r.
Furthermore we arrange the product so that [ | deg P; for 1 <1i < s and [ { deg P;
fors+1<j5<r, 0<s<r. We have F; C (F;l)l. Fix e € Fu \ Fy.

First,

Proposition 3.1. The behavior of po in K/k is the following:

(a).- IfltdegD, ps is ramified.

(b).- Ifl|degD and v € (F})!, poo decomposes.

(c)- Ifl|degD and~y & (F;)', poo is inert.

Proof. This is a particular case of Proposition 2.8. O

Now by [12, Remark 4.3], we have [K : K| = [Ey, : E|t, where

= deg Sou(K) 1 if peo is not inert in K/k
= e 00 =
s I if poo is inert in K/k

and E := KF, Nk(Ap) = k(y/(—1)dsPD).

When K = E, that is, when K C k(Ap), if x is the character of order [ associated
to K, x = xp, -+ Xp,, we consider Y = (xp, | 1 <4 < r). The field associated
toY is F = k(y/(=1)dee Py ... {/(—1)dee P+ P), and K4 = F if | { deg D or if
l | deg P; for all i (that is, s = r). This is because in the first case p, is already
ramified in K and in the second p, is unramified in F'/k.
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When [ | deg D and [ { deg P, poo ramifies in F//k and is unramified in K/k. In
this case [F : Eg] = 1. Let asi1,...,a,—1 € Z be such that [ | deg(P; P;?), that is,
deg P; +a;deg P, =0modl, s+1<j7<r—1. Let

Iy = k(\l/ﬁl,...,\Z/Fs,\I/Ps+1pgs+l,...,\Z/Prflpfr’l).

Then S (E) decomposes in Fy/E, K C Fy C Eg. and [F': F1] = [. It follows that
E4e = Fi.
We obtain

Proposition 3.2. When K C k(Ap), we have Ky = Ege =
(a)- k(Ve,v/Pr,....v/P,) if Lfdeg D or if | | deg P; for all 1 <i <,

(b).- k(Ve,V/Pr,...,.VPs, /Py P \l/Pr_leT_l), where the exponent a;
satisfies deg P; + ajdeg P, = O0mod !, s+1 < j <r—1, ifl | degD and
l{deg P.. O

Now we consider a general K.

Remark 3.3. In any case, for all 1 < i < 7 and for every a € ]F;, the extension
k(\/yD,\/aP;)/k(\/yD) is unramified at every finite prime. This follows from the
fact that Gal(k(v/vD,vaP;)/k) = C;xC and we have tame ramification. Therefore
the inertia group of any prime divisor is {1} or C;. On the other hand the only
finite prime divisors ramified in k(V/vD,vaP;)/k) are P;, 1 < i < r and they are
already ramified in k(\/vD)/k.

Let ® be the decomposition group of Sy (K) in Kge;/K. Then Kz = K;%l

([12, Theorem 4.2]).
Case 1: If [ { deg D, then p, ramifies in K/k and Soo(K) is inert in Kg;/K. If
K = E, the inertia of S, (K) occurs in Eg.;/Eq., so that © = Gal(Ey.;/FEq.) and
by Proposition 3.2, Ky, = Fg. = Eg@eJ = k(\l/(—l)degPlPl, R \l/(—l)degPrPr) =
k(vVAD,v/P1,... .VP;).

If K#FE, Ky = K?d and [Kge; @ Kg]) = 1. If 1| deg P;, poo decomposes in
k(V/P;/k. 1t follows that po is not inert. Therefore in this case k(v/7D, v/P;) C Kje.
Thus k(v/7D, /Py, ..., v/Ps) C Kge.

For s+1 < j <r—1,1{degP;. Then p. ramifies both in k(v/7D)/k and in
k(y/B;P;)/k for B; € Fy. Then p., ramifies in all but one subextension of degree
l over k of k(\/vD,/B;P;)/k. The only subextension where p, is unramified is

k(y WBJ-_C"DPJV_C"’) with ¢; such that deg DPJ-_Cj =degD —c¢jdeg P; =0mod [. In
order that po, decompose in this last extension it is necessary that v3; e ()
Thus, let 3; := +% be such that 1 — cjb; = 0mod [. That is, b; = cj_1 mod [.

It follows that [y = k(VyD,V/Pr,...,v/Ps,\/7P+ 1 Pos1,...,\/7br—1P,_1) C
Kge and [Kg.; : F1] = 1. We obtain that Ky, = F.
Case 2 Now we consider the case I | deg P, for all 1 < i <r. If K = F C k(Ap),
Koe = k(V/PL, ... ,NP) = k(YA /P, ... VF).

If K # E, Kge = Kge = Eges = k(VE,V/Pr, -, VP) = k(YA Py, ... V).
Case 3 Let [ | deg D, [ tdeg P,.. If K = E then

Koo = k(/Proeco Y/ Po{ Pt PO P P
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with deg P; +a;deg P, =0mod [, s+1<j5<r—1.

K #E, Kyey=Kge =k(Ve,V/P1,....V/Psy,\/Psp1 PP . /Py P77 =
k(WA N/ Pry ..o N Poy A/ Po Pt /P P,

We have obtained the result of Peng:
Theorem 3.4 (G. Peng [13]). Let D = P{* --- Pt~ € Ry be a monic l-power free
polynomial, where P; € R;, 1<e; <l—1,1<e<r. Let 0 < s <7 be such
that 1 | deg P; for 1 <i < s andl{degP; for s+1 < j <r. Let K := k(y/yD)
where v € Fy. Let aj,bj,c; be defined such that: deg P; + a;deg P, = 0 mod [,
deg D —cjdeg P; = 0mod ! and b; = cj_1 mod !, s+1 <5 <r. Then Ky is given
by:
(a).- k‘(w, VP, ... 7\Z/PT) if 1| deg P..
(b)- k(YA NP1y N/ Po, N/ Poyr Pt \/Pr_1P77) when || deg D and 1 4

deg P;.

(C)'_ k(VL 7D> \/l Pla BREE) Vl Psa \l/ ’7b5+1P8+17 BN} \l/ ’be71 T*l) Zfl'fdegD U

4. CYCLIC EXTENSIONS OF DEGREE ["

First we assume K = k( v/yD) C k(Ay) for some N € Ry. Let D = P - .. PO,
1<o; <I"—1,1<i<r, with Pi,...,P. € Rf. Let a; = %¢;, ged(l,¢;) = 1,
1<i<r 0<a; <n-—1. Since K/k is geometric, we have that at least one a;
must be 0. Let xp be the Dirichlet character associated to E := k('\/(—1)de D D).

Then xp, is the character associated to E; = k('"~/(—1)d8 I ;) since

m m—a;

(71)degP;1"' PiOCi _ ly{/(fl)l%ci deg Pipil“iw _

Therefore M := E;--- E, is the maximal abelian extension of FE unramified at
every finite prime.

Now the ramification index of po, in E/k is ["~t where deg D = I*'s, ged(l,s) =1
and t = min{n,#'}. Let deg P; = I%d;, ged(d;,1) = 1 and let b; := min{n — a;, b}
Then p, has ramification index [r—ai=bi E;/k. We have

(4.1) I's=degD =Y a;deg P =Y 1%cld; = > 1% (csdy),
=1 1=1 =1

and

and o; deg P; = [%bi¢c;d; < deg D = It s.
From Abhyankar Lemma ([16, Theorem 12.4.4]), we have that the ramification

index of po in M/k is lem [l”_al_b1,~-~ ,Z”_‘“_bT] = ("% ~b where ag + by =
min{a; + b; | 1 <i <r}. We may order the product P --- P so that a; + b; <
as + by < --- < a, + b, and therefore we may assume ag + bg = a1 + b;. Since

E C M, we have that "7 < ["=ai=bi for some i, that is, a1 + b1 < t.
‘We have

M=k(" "/ (=1)deaPrp "R/ (=1)des P py (< 1)des Pr )

jn—a1—by

and the ramification index of So(E) in M/E is “—fm— = [fma=bi Let Ey be
the genus field of E. Then E C Ege C M and [M : Eg] = ['"%7% = |D(Swo(E))|
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where D(So(E)) denotes the decomposition group of S (E) in M/Eg. Now

B = k(" D®PR) = k(Y (-1 R P 1< <o

We have a; + by <t. If ay + by = ¢, then M = E,.

Note that if a; + b; < t, then b; < t — a; < n — a;. Hence b; = b; in this case.

If a; + b1 <t <, from (4.1) we obtain

lt/S _ la1+b1 lai"l‘b;—al—bl Cidi )
(; )
Hence, a1 + by = as + be. That is, the minimum value of {a; +b; | 1 < i < r} is
achieved at least twice.

Let u be such that a, + b, <t < ayq1 + by+1. We assume u > 2.

We define E! as follows. If ["~%~% < "=t equivalently if t < a; + b;, then
E! = E; since the ramification index of poo in E;/k is less than or equal to "t In
other words, E, = E;, foru+1<i<r.

For 2 < i < u, we define E as follows. We consider the special case by = min{b; |
1<i<u}. Let

(4.2) E! = k( l"’“{/(,l)degpipfiﬂplxi)
be such that
deg (PiP{") = deg P; + m; deg Py = 1" ™1y,

where n — a; — (b + m;) = n — t and ged(y;,1) = 1. That is we choose x; such
that the ramification index of po in E//k is I"~*. We will see that this is always
possible. Recall that b; = b/ in this case.

Remark 4.1. We will use the following elementary fact. Let [ be a prime number,
m € N and let dy,d; € N be relatively prime to I: ged(dy,1) = ged(d;, 1) = 1. Then
there exist y;, z; € N such that ged(y;, 1) = 1 and y;I™ — z;d; = d;.

We have
(PPy") = deg P; + z;deg Py = 1"d; + ;1" dy = 1" (1" d; + 2:dy).
Therefore we need x; such that
70y + widy = 1™y,

with n — a; — (b + m;) = n — t, equivalently, m; = ¢t — a; — by, and ged(y;, 1) = 1.
Note that m; =t —a; — by :t—ai—bi—I—(bi—bl) >t—a; —b; > 0.
Let x; := (%12, for some z;, that is,

10y 1P zdy = 1My,
Therefore, we need z;,y; € Z such that ged(y;,1) = 1 and
(43) d; + zid; = [mi—bith Yi.

Since m; —b; +by = (t—a; —by) —b; + by =t —a; — b; > 0, and ged(d;,1) = 1,
it follows, by Remark 4.1, that there exist z;,y; € N with ged(y;,1) = 1 satisfying
(4.3). Note that ged(z;,1) = 1.

In short, let @; = 1% %1z € N be such that E} = k( LH7GV(—1)d9gP¢Pfi Psz7)

and the ramification index of po in Ef/k is " ".
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Finally let Ef = k(""""}/(—1)d¢e " P) where we choose w € NU{0} such that
ECM,:=E{E)---E,E - E, = Ey. We will prove that this is possible. Let

+PY ifi=1,
+P fut+l1<i<r,

where the sign = is chosen to be (—1)4¢¢ @ where Q = Py, P;P]" or P; respectively.
We have

- gl" i |: Pl ic; Pl 1c1w1:| l leiw
e ==[f17 11

’ D ’
(4.4) :i[lg%.mv: }mga "= +DpY
i=2 1
where
(4.5) w = Z 1%c;x; + 1 cw.
i=2

We want w’ to be chosen so that [],_; (&™) € M{".
Using (4.1), (4.3), that by < b; and b; = b} for 1 < i < u, and that t < ¢/, we
obtain

(4.6) w' =1"c;(w+1) +1"rdy (Zczyl—lt ts 4+ Z Jai b _tcd>

i=u+1

From (4.4) we have that E C M if w’ = a; mod I". From (4.6) we have that
w' = a; mod {" iff there exists k € Z such that

(4.7) kI — cqw = llt - bl(chyl — 1t ts 4 Z Jaitbi— )

1=u+1

Since ged(e1,l) =1, n—a; > 0and dy | Y iy ciyi — It —ts + > it Jeitbi=te,d,.
it follows that (4.7) can be solved for x,w € N. Observe that [!=%17b1 | w, that is,
w = ["="~b1p for some p € N. With this w we obtain E C E} -+ E/ Eyy1---E, =
M.

We have deg P’ = wdeg P, = [!=%1~b1plb1d; = [*=%pd;. Tt follows that the
ramification index of py, in Ef is < [n—a1=(t=a1) — [n—t Therefore My C Eqe.

To show that My = Eg, we let p; := """ 3/(—1)desPip,, 1 < i <r. We have
M =k(u1,...,u). Now

n—a; (_1)deg pri Pir" _ L7z—a</(_1)deg P Pllbi—bl

_ S
_ " ai/(_l)dchll PO alzzpllbi—b1+ai—a1z7:

n—a; dee PTi pxy _ Q(@itbi)—(a1+b1)
\/(—1) P =

)

that is

for 2 <i<u.
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Therefore, since w = [t~(a1+01) .

(4.8)
jt—(a1+b1) (a;+b;)—(a1+b1) , (autbu)=(a1+b1)
My = k(! P, o R S g ).
Finally, M = Mi[p1] and since (a; +b;) — (a1 +b1) < t— (a1 +b1), it follows that
PR e A In particular [M 2 My] < [t(atb) = [Af Eg). Since M; C Eg,
we obtain M; = Eg..
In the general case K = k( ’\"/fyD), we use the following result proved in [12,
Theorem 4.2]. We present the proof for the convenience of the reader.

Theorem 4.2. Let K/k be any abelian finite geometric tamely ramified extension.
Then K C k(AN)Fgm for some N € Rp and m € N. Let E = k(Anx) N KFym.
Then Kge = Eg K.

Proof. We have ENK = Ege N K = k(Ax) N K. Therefore E,,, C K,, and since
[K,, : k] = [E —m : k] it follows that E,, = K,,.

k(A) k(AN)Fgm
c Kgem
/
Kge
/
Eqe B K Ege,m
E EFym = KFym
_—
K
/

k K g

Since KFym /K and Ey./E are unramified, we obtain that Fy. K /K is unramified.
Also, because Soo(E) decomposes fully in Eg,, Soo (EK) decomposes fully in Ey K.
Now, Soo (ENK) has inertia degree one in E/ENK s0 So (K) has inertia degree one
in EK/K. Therefore Eg K C K. Finally, if C := K. » Nk(Ay), on the one hand
Eg4e C C and on the other hand C/FE is unramified since Kg./EK is unramified;
also S (E) decomposes fully in C'/E. It follows that C' = Eg.. By the Galois
correspondence, we have Ko, = Egem. Now Kgem/FgemK is an extension of
constants and the field of constants K g », is Fge where ¢ is the degree of any infinite
prime in K. It can be proved that Fy C Eg. K. The result follows. (]

In our case, E = k( '\/(—1)d¢ P D). Therefore we obtain our main result.
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Theorem 4.3. Let D € Ry be a monic l-power free polynomial and let v € F7.
Let K = k(lW) Let D = P .- P where a; = 1%¢;, 0 < a; < n—1,
ged(ei, 1) =1, 1 < i <r. Let degD = I"'s, ged(s,1) = 1 and let deg P; = 1%d;,
ged(d;, 1) = 1. Let t = min{n,t'}, b; = min{d,,n — a;}. We order the product so
that a1 +b1 < as+by < ... <ay+b, <t<ayr +byr1 <---<a.+b.. We
also assume that by = min{b; | 1 <i < u}. There exist x; = Jbi—b zi, where z; € N,
ged(z,0) =1, 2 <i <w and y; €N, where ged(y;, 1) =1, 2 < i < u such that

di + zidy = 1'% biy,
and there exists w = 1"~ p with p € N such that
u K
Kl clw = dl—lltfalfbl (chyz o lt 7tS + Z lahLbiitCidi)
=2

1=u+1
for some k € Z. Then Kg. is given by

ng :k< ln‘/ 1D, lnial\/(_l)degplwplwv 1“7GV(_1)degP2Pf2 P2P1127 A

Ln/_azi/(—]‘)ng Puplzu Puplgpu7 m*au+§/(_1)deg Py Pu+17 e

m—ar /(_1)degPrPT)_ O
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