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Multivalued robust tracking control of Lagrange

systems: Continuous and discrete-time algorithms.
Félix A. Miranda-Villatoro y, Bernard Brogliato z, and Fernando Castaños y

Abstract—The robust trajectory tracking of fully actuated
Lagrange systems is studied. Exogenous perturbations as well
as parameter uncertainties are taken into account. A family of
set-valued passivity-based controllers is proposed, including first-
order sliding-mode schemes. The existence of solutions and the
stability of the closed-loop system are established in continuous-
time. An implicit discretization approach is proposed and the
well posedness and the stability of the closed-loop system are
studied. Numerical simulations illustrate the effectiveness of the
proposed discrete-time controller.

Index Terms—Robust control, sliding-mode control, differen-
tial inclusion, discrete-time, trajectory tracking, Euler-Lagrange
systems, finite-time convergence, Lyapunov stability, convex anal-
ysis, passivity-based controller.

I. INTRODUCTION

THERE exists a vast literature on the control of Euler-

Lagrange systems (see, e.g., [12], [39], [21] and ref-

erences therein). In the early eighties, the problem of ro-

bust tracking for nonlinear robotic systems was approached

in [36] by using sliding-mode control techniques. Later in [34],

[35] the methodology was improved by the use of adaptive

schemes. The main idea was to use a passivity-based approach

to render the closed-loop passive and globally asymptotically

stable [30]. As it is well known, the implementation of robust

controllers based on sliding-mode techniques, suffers from

the so-called chattering problem [39], i.e., the output and

the control input switch at a high frequency between a finite

number of values. Chattering becomes dangerous in mechan-

ical systems, specially when the discrete-time controller is

implemented without the proper discretization scheme. Re-

cently, implicit discretization schemes for linear systems with

sliding modes were proposed in [1], [2], [20] (see also [23]

for a similar approach), and experimentally tested with success

in [18], [19], [20], [40], where it is shown that chattering in

both, the output and the input, is almost totally suppressed.

We begin with an Euler-Lagrange system for which a de-

sired trajectory q

d

; _q

d

; �q

d

is given and we propose a family of

multivalued control laws such that robust tracking is obtained,

both in continuous and discrete-time. Robustness is obtained in

the presence of bounded external disturbances and parametric

uncertainties. The results we present encompass [1], [2], [4],

[5], [20] in the sense that none of the previous papers deals

with parametric uncertainties and [1], [2], [20] limit their study

to linear systems. From a mathematical point of view, the
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problem with parametric uncertainties is that they appear as a

term which cannot be uniformly upper bounded by a constant.

The part on continuous time is a nontrivial extension of

the results in [4], [34], [35], [36] and is strongly based

on the theories of maximal monotone operators and convex

analysis. The time-discretization of set-valued sliding-mode

control laws requires particular care, as it may yield numerical

chattering if the set-valued part of the controller is discretized

using an explicit scheme [1], [2], [15], [18], [19], [20], [40],

[41]. Moreover, an explicit discretization may yield unstable

closed-loop systems in the nonlinear case [27] while, on the

other hand, the implicit method advocated in [1], [2], [5], [20]

retains the continuous-time stability properties of the system

in question [11], [20].

Set-valued control laws are common in sliding-mode control

theory, where the sign multifunction plays a particularly im-

portant role. However, little attention has been granted to other

possible multifunctions. Only until recently, more general set-

valued maximal monotone operators were studied in a control

context [4], [10], [28], [38]. In this paper we study the use

of other multifunctions for the robust control of dynamical

systems and their implementation in discrete-time. The main

objective is to diminish the chattering phenomenon.

Contributions: We generalize the implicit method for

discrete-time sliding mode controllers proposed in [1], [2],

[20] in several ways: First, we take into account the lack

of complete knowledge on system parameters and propose

a family of set-valued controllers for the robust tracking

problem. The family contains the signum multifunction but

it is not limited to it. Second, we provide an algorithm for the

computation of the control that will achieve the robust tracking

with virtually no chattering.

Paper structure: Section II contains mathematical pre-

liminaries while Section III recalls some basic properties of

Lagrangian dynamics. We present in Section IV the well-

posedness analysis of the closed-loop system with set-valued

controllers (existence of solutions), relaxing a stringent as-

sumption made in [4] (see Remark 2). The stability analysis

is made in Section V. We do not establish uniqueness of

solutions, but we do prove that all of them yield a tracking

error with suitable stability properties. Section VI is dedicated

to the analysis of the discrete-time controller. Due to the

nonlinearities of the Euler-Lagrange dynamics, the design of

the implicit discrete-time controller is made from an inexact

discretization of the continuous plant. The design of the

discrete-time nonlinear passivity-based controller is made in

Section VI-A and the stability analysis in Section VI-B.

Numerical simulations illustrate the theoretical developments
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in section VII. Conclusions end the article in section VIII.

II. PRELIMINARIES

Some preliminary results are presented together with the

notation used through this article. Let X be an n-dimensional

real space with the usual Euclidean inner product denoted as

h�; �i and the corresponding norm as k �k. A symmetric matrix

M = M

> is called positive definite if x>Mx > 0 for any

x 2 X n f0g. For any matrix M 2 R

n�n the norm kMk

m

is the induced norm given by kMk

m

= sup

kxk=1

kMxk. The

unitary ball of R

n with center in 0 is denoted by B

n

. We

denote by �

0

(X) the set of all proper, convex, and lower semi-

continuous (lsc) functions from X to R[f+1g. The indicator

of a set C � X is the function 	

C

: X ! R [ f+1g which

satisfies 	

C

(x) = 0 for x 2 C and 	(x) = +1 otherwise.

The boundary of a set A is denoted as bd(A). The following

definitions are rather standard in the convex analysis literature.

The interested reader can refer to [8], [16], [17], [31], [32] for

further details.

Definition 1. Let � 2 �

0

(X). The subdifferential of � at x,

denoted as ��(x), is the set-valued map given by

��(x) := f� 2 R

n

jh�; � � xi � �(�)��(x)

for all � 2 Xg:

Definition 2. Let f : X ! R [ f+1g be a proper function

and let � > 0. The Moreau envelope of f of index � is

f

�

(x) := inf

w2X

�

f(w) +

1

2�

kw � xk

2

�

: (1)

Remark 1. When f 2 �

0

(X), the Moreau envelope is known

as the Moreau-Yosida approximation of f of index � and it

is known that f� 2 �

0

(X). Furthermore, the gradient of f�

exists and f

� is Lipschitz continuous with constant 1=� [32,

Exercise 12.23].

Definition 3. Let f 2 �

0

(X) and let x 2 X . Then, the

proximal map of f at x, denoted as Prox

f

(x), is the unique

minimizer of f(w) + 1

2

kw � xk

2, i.e.,

f(Prox

f

(x)) +

1

2

kProx

f

(x)� xk

2

= min

w2X

�

f(w) +

1

2

kw � xk

2

�

= f

1

(x): (2)

It is important to notice that, when f = 	

C

(the indicator

of the set C), the proximal map agrees with the classical

projection operator Proj
C

(�) given by

Proj

C

(x) = argmin

w2C

1

2

kw � xk

2

: (3)

The distance between a point w 2 R

n and a closed convex

set A is given by the expression

dist(x;C) = min

w2C

kx� wk = kx� Proj

C

(x)k : (4)

Definition 4. Let f : R

n

! R be a proper and lsc function.

The conjugate function of f is

f

?

(x

?

) = sup

w2X

fhw; x

?

i � f(w)g :

It follows from the definition of conjugate function that, for

any two functions f; g 2 �

0

(X) such that f � g, we have

g

?

� f

?. The following facts will be useful in the sequel.

Lemma 1 ([16, Lemma 5.2.1]). Let f 2 �

0

(X) and let A :

X ! X be a continuous and strongly monotone operator.

That is, for any x

1

; x

2

2 X ,

hA(x

1

)�A(x

2

); x

1

� x

2

i � �kx

1

� x

2

k

for some � > 0. Then, for each v 2 X , there exists a unique

solution x 2 X to the variational inequality

hAx� v; � � xi+ f(�)� f(x) � 0 for all � 2 X:

Proposition 1 ([8, Th. 14.3] Moreau’s decomposition). Let

f 2 �

0

(X) and � > 0. For any x 2 X we have

x = Prox

�f

(x) + �Prox

f

?

=�

(x=�):

We will use Proposition 1 in order to compute explicitly

the proximal map of the norm function that will be used in

Section IV.

Lemma 2 ([8, Example 14.5]). Consider a function f : R

n

!

R

+

, x 7! 
kxk with 
 > 0. The proximal map of index � at

x, Prox
�f

(x), is given by

Prox

�f

(x) =

(

�

1�

�


kxk

�

x if kxk > �
,

0 if kxk � �
.
(5)

III. LAGRANGIAN MECHANICS

Let us introduce the class of dynamical systems on which

we will focus. We start with a nonlinear system described by

Euler-Lagrange equations,

M(q(t))�q(t) + C(q(t); _q(t)) _q(t) +G(q(t))

+ F (t; q(t); _q(t)) = �(t); (6)

where q; _q; �q 2 R

n are the vectors of generalized posi-

tions, velocities and accelerations, respectively. The matrix

M(q) 2 R

n�n , M(q) = M(q)

>

> 0, denotes the inertia

matrix of the system. The term C(q; _q) _q 2 R

n represents

the centripetal and Coriolis forces acting on the system. The

term G(q) 2 R

n is the vector of gravitational forces. The

vector F (t; q; _q) 2 R

n accounts for unmodeled dynamics and

external disturbances. Finally, the vector � 2 R

n represents

the control input forces. We assume that C(q; _q) is defined

using the so-called Christoffel’s symbols [21, Chapter 4].

Property 1. For all differentiable functions q, the matrices

M(q) and C(q; _q) satisfy

d

dt

M(q(t)) = C(q(t); _q(t)) + C

>

(q(t); _q(t)):

Notice that the previous property implies that _

M(q) �

2C(q; _q) is skew-symmetric.

The following assumptions are standard [21], [12].

Assumption 1. The matrices M(q), C(q; _q) together with the

vectors G(q) and F (t; q; _q) satisfy the following inequalities
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for all (t; q; _q) 2 R

+

� R

n

� R

n and some known positive

constants k
1

; k

2

; k

C

; k

G

and k

F

:

0 < k

1

� kM(q)k

m

� k

2

; kC(q; _q)k

m

� k

C

k _qk;

kG(q)k � k

G

kqk; kF (t; q; _q)k � k

F

:

Assumption 2. There exists a constant k
3

such that, for all

x; y 2 R

n , kM(x)�M(y)k

m

� k

3

kx� yk.

Assumption 3. The function h : R

n

� R

n

! R

n defined by

h(x

1

; x

2

; x

3

) := C(x

1

; x

2

)x

3

is locally Lipschitz.

Assumption 4. The function F (t; x

1

; x

2

) is continuous in t

and uniformly locally Lipschitz in (x

1

; x

2

), (i.e., the Lipschitz

constant is independent of t).

Assumption 5. The function G(�) is Lipschitz continuous and

satisfies 0 = G(0) � G(x) for all x 2 R

n .

IV. WELL-POSEDNESS OF THE CONTINUOUS-TIME

CLOSED-LOOP DYNAMICS

A. Multivalued control law

In this section we present the multivalued control law

inspired by the controller proposed in [34], [35] for the

case when the parameters are known. Subsequently we will

establish the existence of solutions and stability of the closed-

loop.

Let us introduce the position error ~q = q�q

d

and the sliding

surface � =

_

~q +�~q, which will be used in order to maintain

the error signal around zero. Here, the matrix �� 2 R

n�n is

Hurwitz and satisfies K
p

� = �

>

K

p

> 0 for a symmetric and

positive definite matrix K
p

2 R

n�n . The proposed control law

has the following form:

�(q; _q) =

^

M(q)�q

r

+

^

C(q; _q) _q

r

+

^

G(q)�K

p

~q + u; (7)

where _q

r

= _q

d

� �~q, K
p

2 R

n�n , K
p

= K

>

p

> 0. The

term u accounts for the multivalued part of the controller

and is specified below. The matrices ^

M(q), ^

C(q; _q) and
^

G(q) describe the nominal system and are assumed to fulfill

Assumptions 1 to 5 (although with different bounds). In other

words, we assume that all the uncertainties are in the system

parameters and not in the structure of the matrices.

Assumption 6. The matrices ^

M(q), ^

C(q; _q) together with the

vector ^

G(q) satisfy the following inequalities for all (t; q; _q) 2

R

+

�R

n

�R

n and some known positive constants ^

k

1

;

^

k

2

;

^

k

C

and ^

k

G

0 <

^

k

1

� k

^

M(q)k

m

�

^

k

2

; k

^

C(q; _q)k

m

�

^

k

C

k _qk;

k

^

G(q)k �

^

k

G

kqk:

After some simple manipulations on (6) and (7), the closed-

loop system results in

M(q) _� + C(q; _q)� +K

p

~q + �(t; �; ~q) = u; (8a)

_

~q = � � �~q; (8b)

where the new function � : R

+

� R

n

� R

n

! R

n accounts

for all the uncertainties in the system and is given by

�(t; �; ~q) = F (t; q; _q)+�M(q)�q

r

+�C(q; _q) _q

r

+�G(q); (9)

where �M(q) = M(q)�

^

M(q), �C(q; _q) = C(q; _q)�

^

C(q; _q)

and �G(q) = G(q) �

^

G(q). Note that the closed-loop

system (8) slightly differs from the closed-loop system in [34],

[35], since we have omitted the term proportional to � and we

have added the term K

p

~q instead. Additionally, it is worth to

mention that the function � is not uniformly bounded but it is

still upper-bounded by a locally Lipschitz continuous function

of positions and velocities, as the following proposition re-

veals. This fact is a nice feature of the passivity-based control

not shared by other nonlinear control techniques like feedback

linearization.

Proposition 2. The function �(t; �; ~q) satisfies

k�(t; �; ~q)k � �(�; ~q);

where �(�; ~q) = 


1

+ 


2

k�k + 


3

k~qk + 


4

k~qkk�k + 


5

k~qk

2,

for known positive constants 

i

, i = 1; : : : ; 5.

Proof. From (9) we have

k�(t; �; ~q)k � kF (t; q; _q)k+ k�M(q)�q

r

k

+ k�C(q; _q) _q

r

)k+ k�G(q)k: (10)

It follows from Assumption 1 that the first term on the right-

hand side of (10) is bounded by a constant k
F

. The following

terms satisfy

k�M(q)�q

r

k � (k

2

+

^

k

2

)(k�q

d

k+ k�k

m

k�k+ k�k

2

m

k~qk):

k�C(q; _q) _q

r

k � (k

C

+

^

k

C

)

�

(k _q

d

k+ k�k

m

k~qk)

2

+ (k _q

d

k+ k�k

m

k~qk)k�k℄ ;

k�G(q)k � (k

G

+

^

k

G

)(kq

d

k+ k~qk):

Inasmuch as the variables q

d

; _q

d

and �q

d

are known and

bounded, we obtain the desired result.

Now we define the multivalued part of the control law � as

�u 2 
(�; ~q)��(�); (11)

where the function 
 : R

n

� R

n

! R

+

is locally Lipschitz

continuous and is specified below in Theorem 1. Additionally,

� 2 �

0

(R

n

) and is selected in such a way that the following

assumption is fulfilled.

Assumption 7. The function � 2 �

0

(R

n

) has effective domain

equal to R

n and satisfies 0 = �(0) � �(w) for all w 2 R

n .

Also, we have that 0 2 int ��(0).

Notice that Assumption 7 rules out linear controllers. Indeed,

we require � to be convex and to be non differentiable at

the origin, e.g., the norm function k � k. It is noteworthy

that the condition 0 2 int ��(0) is essential for the finite-

time convergence of the sliding variable � (see the proofs of

Theorem 2 and Lemma 6). The key property is established

formally in the following proposition.

Proposition 3. The following assertions are equivalent:

� 0 2 int ��(0),

� There exists � > 0 such that, �(�) � �k � k.

Proof. Let 0 2 int ��(0), i.e., there exists � > 0 such that

for all � 2 �B

n

and all � 2 R

n , we have h�; �i � �(�).

Equivalently, supfh�; �i j � 2 �B

n

g � �(�) for all � 2 R

n

and consequently �k�k � �(�) for all � 2 R

n .
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B. Existence of solutions

The next step consists in establishing the existence of

solutions for the closed-loop system (8) when the multivalued

control (11) is applied. To this end we start using the Yosida

approximation of the set-valued map ��(�) and after proving

the boundedness of � and ~q, we can conclude the existence of

solutions of the differential equation taking a limit process. Let

�

�

(�) be the Moreau-Yosida approximation of � of index � at

the point � 2 R

n . As is pointed out in [6, Th. 4 Sec. 3.4], the

gradient r�

�

(�) corresponds to the Yosida approximation of

��(�). Thus, the approximated closed-loop dynamics satisfy

M(q

�

) _�

�

+ C(q

�

; _q

�

)�

�

+K

p

~q

�

+ �(t; �

�

; ~q

�

) = �
(�

�

; ~q

�

)r�

�

(�

�

); (12a)

_

~q

�

= �

�

� �~q

�

: (12b)

As a first step we prove that the closed-loop system (12) is

well-posed. Once the well-posedness of the approximated sys-

tem is established, the existence of solutions for the differential

inclusion (8)-(11) can be established by applying [4, Theorem

4.2]. This procedure is formalized in Theorem 1. The proof is

only outlined, but can be found in its complete version in [29].

Theorem 1. Let Assumptions 1-7 hold. Then, there exists a

solution � : [0;+1) ! R

n , ~q : [0;+1) ! R

n of (8)-(11)

for every (�

0

; ~q

0

) 2 R

n

� R

n , whenever:

�

2


(�; ~q) � �(�; ~q); (13)

where � is specified in Proposition 2 and � is given in

Proposition 3. The notion of solution is taken in the following

sense:

� � is continuous with derivative _� continuous and bounded

in bounded sets.

� ~q is continuous with derivative _

~q continuous and bounded

in bounded sets.

� Equations (8)-(11) are satisfied for almost all t 2

[0;+1).

� �(0) = �

0

and ~q(0) = ~q

0

.

Sketch of the proof. Clearly, equation (12) is equivalent to
�

_�

�

_

~q

�

�

=

�

�M

�1

(q

�

)G(t; q

�

; _q

�

; �

�

)

�

�

� �~q

�

�

; (14)

where

G(t; q

�

; _q

�

; �

�

) = C(q

�

; _q

�

)�

�

+K

p

~q

�

+ �

�

+ 
(�

�

; ~q

�

)r�

�

(�

�

)

and �

�

= �(t; �

�

; ~q

�

). Since all the terms in �

�

are locally

Lipschitz together with the function 
 and the gradient r�

�,

it is easy to see that the term

g(�

�

; ~q

�

) := C(q

�

; _q

�

)�

�

+K

p

~q

�

+ �

�

+ 
(�

�

; ~q

�

)r�

�

(�

�

)

is locally Lipschitz as well. It is not difficult to show

that Assumption 2 ensures the local Lipschitz property for

M

�1

(q

�

)g(�

�

; ~q

�

). In conclusion, the right-hand side of (14)

is locally Lipschitz continuous and, therefore, there exists

a unique solution in an interval [0; T ) in the sense of

Caratheodory.

Now we prove that the solution exists for all T > 0. Fol-

lowing [37] and [12, p. 403], we consider the energy function

H(�

�

; ~q

�

) =

1

2

�

>

�

M(q

�

)�

�

+

1

2

~q

>

�

K

p

~q

�

. The derivative of H

along trajectories of (14) takes the form

_

H(�

�

; ~q

�

) = �~q

>

�

K

p

�~q

�

� 
(�

�

; ~q

�

)hr�

�

(�

�

); �

�

i � h�

�

; �

�

i: (15)

The following step consists in describing more precisely the

term hr�

�

(�

�

); �

�

i. As pointed out in Remark 1, the func-

tion �

� is convex and differentiable. Therefore, its gradient

satisfies

� hr�

�

(�

�

); �

�

i � �f

�

(�

�

)

= ��kProx

�f

(�

�

)k �

1

2�

kProx

�f

(�

�

)� �

�

k

2

; (16)

where we have used [17, Th. 4.1.1] and Proposition 3 with

f(�) = �k � k. The substitution of (16) into (15) together with

Lemma 2 leads to

_

H(�

�

; ~q

�

) � �~q

>

�

K

p

�~q

�

�

�

�

2


(�

�

; ~q

�

)� �(�

�

; ~q

�

)

�

k�

�

k

(17)

for all k�
�

k > ��, which is strictly negative for all ~q

�

in

view of (13). On the other hand, considering the case when

k�

�

k � �� and k~qk � r, we have that

_

H(�

�

; ~q

�

) � � [�

min

(K

p

�)� ���℄ k~q

�

k

2

�

1

2�


k�

�

k

2

;

(18)

where � = (


1

+ 


2

��=r

2

+ (


3

+ 


4

��)=r + 


5

and the

positive constants 

i

, i 2 f1; : : : ; 5g are defined in Proposition

2. Thus, it becomes clear that (18) is negative for all � > 0

small enough. It follows that any level set V



:= f(�

�

; ~q

�

) 2

R

2n

jH(�

�

; ~q

�

) � 
g that contains the ball
p

�

2

�

2

+ r

2

B

2n

,

is positively invariant and attractive since _

H < 0 outside V




.

Hence, the pair (�
�

; ~q

�

) is ultimately bounded (see, e.g., [22,

Sec. 4.8]). Finally, the existence of a solution of (8)-(11) is

established by taking the limit as � ! 0. Formally, this is

a direct application of [4, Theorem 4.2] (taking into account

that �q corresponds to _� in our setting).

Remark 2. The previous proof differs from the proof of

Lemma 4.1 in [4℄ in that the stringent Assumption H

�;F

is relaxed. Such assumption imposed a severe restriction on

the relation between the Moreau-Yosida approximation of

� and the disturbance. Instead, we only require (13) and

0 2 int ��(0) for the design function. It is thus possible to

consider a much larger and realistic class of disturbances.

Remark 3. Theorem 1 does not guarantee uniqueness of solu-

tions. An analytic proof of uniqueness requires more stringent

properties which are rarely satisfied in practical cases [4,

Section 5].

C. Case with a constant gain 


The well-posedness of the closed-loop system (8)-(11) has

been proved above making use of a state dependent gain
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(�; ~q) which satisfies (13). An important case of study is

when the control gain is set constant, which simplifies the

implementation.

Corollary 1. Let Assumptions 1-7 hold. Consider the system

M(q

�

) _�

�

+ C(q

�

; _q

�

)�

�

+K

p

~q

�

+ �(t; �

�

; ~q

�

) = �
r�

�

(�

�

); (19a)

_

~q

�

= �

�

� �~q

�

: (19b)

Fix R > 0 and define the set

W

R;K

p

:= f(�

�

; ~q

�

) 2 R

n

� R

n

j H(�

�

; ~q

�

) � Rg; (20)

where H(�

�

; ~q

�

) =

1

2

�

>

�

M(q

�

)�

�

+

1

2

~q

>

�

K

p

~q

�

. Let k
p

2

be the

maximum eigenvalue of K
p

and let R
�

be a positive constant

satisfying

R

�

= max

(�;~q)2W

R;K

p

�(�; ~q): (21)

Then, for any initial condition (�

�

(0); ~q

�

(0)) 2 W

R;K

p

, the

unique solution of (19) is bounded for all t � 0 whenever


 > 2

R

�

�

and �

2

�

2

+ r

2

� 2

R

maxfk

2

; k

p

2

g

;

for some r > 0. Moreover, the system is semi-globally

practically asymptotically stable.

Proof. The proof is a consequence of Theorem 1. Indeed,

the condition �

2

�

2

+ r

2

� 2R=maxfk

2

; k

p

2

g implies that
p

�

2

�

2

+ r

2

B

2n

�W

R;K

p

and, using the same arguments as

those in the proof of Theorem 1, it follows that _

H < 0 for

all (�
�

; ~q

�

) 2 bd(W

R;K

p

). This proves the positive invariance

of W
R;K

p

. Moreover, we have semi-global practical stability

since the trajectories converge to the smallest level set which

contains the ball
p

�

2

�

2

+ r

2

B

2n

, and this set can be made

arbitrary small by decreasing the value of � (consider, for

example, r = �

1=3 in the proof of Theorem 1).

It is clear that, for any fixed R > 0 and the conditions

of Corollary 1 satisfied, Theorem 1 ensures the existence of

solutions of the differential inclusion (8) with the multivalued

controller u 2 �
��(�).

V. ROBUST STABILITY OF THE CLOSED-LOOP SYSTEM

In this section we prove how the trajectory tracking is

robustly achieved in the presence of external bounded dis-

turbances and parametric uncertainties. Additionally, we show

that the variable � reaches zero in finite time. In order to obtain

an upper bound of the reaching time, we shall take only the

dynamic equation related to � and make K

p

= 0, i.e.,

M(q) _� + C(q; _q)� + �(t; �; ~q) 2 �
(�; ~q)��(�): (22)

From the closed-loop equation (8b) we see that the finite-time

stabilization of the variable � implies the asymptotic stability

of the error ~q and its derivatives.

Theorem 2. Consider system (22). Let the assumptions of

Theorem 1 hold. Set 
(�; ~q) = (2�(�; ~q)+ Æ)=�, where Æ > 0

is constant and � is defined as in Proposition 2. Then, the

sliding surface � = 0 is reached in finite time.

Proof. Consider the function V (�; t) =

1

2

�

>

M(q(t))�, which

is positive definite as a function of � alone. Taking the time-

derivative of V along the trajectories of (22) leads to

_

V � �
(�; ~q)h�; �i + k�(t; �; ~q)kk�k;

where � 2 ��(�) and Property 1 was used. From the definition

of the subdifferential and from Proposition 3, it follows that

�h�; �i � ��(�) � ��k�k, which yields

_

V � � [�
(�; ~q)� �(�; ~q)℄ k�k:

Hence, if �
(�; ~q) = �(�; ~q)+Æ where Æ is a positive constant,

we obtain _

V � �Æk�k = �Æ

q

2

k

2

V

1=2. By applying the Com-

parison Lemma and integrating over the time-interval [0; t℄ we

obtain V

1=2

(t) � V

1=2

(0)�

Æ

p

2k

2

t. Consequently, V reaches

zero in a finite time t

� bounded by t

�

�

p

2k

2

Æ

V

1=2

(0).

Remark 4. The case K

p

6= 0 makes the computations more

laborious and is left to the reader. The main difficulty resides in

the fact that it is no longer possible to analyze the sliding and

the error dynamics separately. It is then necessary to consider

the full Lyapunov function V = �

>

M�+ ~q

>

K

p

~q or to use a

small-gain-theorem approach.

Now that the global asymptotic stability of the origin has

been established in the presence of parametric uncertainty and

external disturbances using a state-dependent gain 
(�; ~q), we

will derive stability conditions for the case when 
 is constant.

Theorem 3. Let the assumptions of Theorem 1 hold. Consider

system (8) with the multivalued control law u 2 �
��(�)

and consider a compact set W
R;K

p

as in (20) with R > 0

fixed. The origin of the closed-loop system is semi-globally

asymptotically stable. Moreover, the basin of attraction con-

tains W
R;K

p

whenever


 >

R

�

�

; (23)

with R

�

as in (21).

Proof. The result follows from the fact that W
R;K

p

is posi-

tively invariant (the proof is similar to the one of Corollary

1) and the fact that, for � 2 ��(�), we have that _

H �

�~q

>

K

p

�~q � (
� � R

�

)k�k. It is clear that _

H is negative

definite whenever (23) holds.

VI. IMPLICIT DISCRETE-TIME SLIDING-MODE

TRAJECTORY TRACKING CONTROL

A. Discrete-time controller design

This section is devoted to the analysis of the discrete-time

version of the above robust set-valued passivity-based control

algorithms. We consider an implicit time discretization similar

to the one proposed in [1], [2], [20] for linear time-invariant

systems with known parameters. The difficulty in extending

the above-mentioned method resides in the facts that the plant

is now nonlinear (which prevents us from using an exact

integration like the zero-order-hold method), the controller is

also nonlinear and, most importantly, we allow for parametric

uncertainties.
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Let us start with the following Euler discretization of the

plant (6):

M(q

k

)

_q

k+1

� _q

k

h

+ C(q

k

; _q

k

) _q

k+1

+G(q

k

) + F (t

k

; q

k

; _q

k

) = �

k

; (24a)

q

k+1

= q

k

+ h _q

k

: (24b)

(Henceforth, for a given function F , F
k

denotes F (t

k

).)

Assuming that the matrix ^

C(q; _q) is also computed using the

Christoffel’s symbols from ^

M(q), then the pair ^

M(q), ^

C(q; _q)

satisfies a property similar to Property 1.

Property 2. The matrices ^

M(q) and ^

C(q; _q) satisfy

d

dt

^

M(q(t)) =

^

C(q(t); _q(t)) +

^

C

>

(q(t); _q(t)):

Notice that Property 2 is not necessary in the continuous-

time case since the explicit selection of the controller was not

specified. This stands in contrast to the discrete-time setting,

where one of our main concerns is obtaining a numerical value

for the control input at each time step (see (32) below).

Lemma 3. For any k � 0 we have

^

M

k+1

�

^

M

k

= h

^

C

k

+ h

^

C

>

k

+ �̂

k

; (25a)

M

k+1

�M

k

= hC

k

+ hC

>

k

+ �

k

; (25b)

where h is the time step and satisfies t

k+1

� t

k

= h, and

�

k

; �̂

k

2 R

n�n are o(h) (‘little-o’) matrix functions, i.e.,

lim

h#0

k�̂

k

k

m

h

= lim

h#0

k�

k

k

m

h

= 0:

Proof. Obtained from the expansion in Taylor series of Prop-

erties 1 and 2 [5].

Following the same methodology as in the continuous-time

problem, we introduce the position error ~q

k

= q

k

� q

d

k

as well

as the sliding surface �
k

=

_

~q

k

+�~q

k

, where ~q

k+1

= ~q

k

+h

_

~q

k

,

� 2 R

n�n is a Hurwitz matrix as in the continuous-time case,

and q

d

k

refers to the sample of the reference trajectory at time

t

k

. We propose the control law �

k

as

�

k

=

^

M

k

_q

r

k+1

� _q

r

k

h

+

^

C

k

_q

r

k+1

+

^

G

k

+ u

k

; (26a)

q

r

k+1

= q

r

k

+ h _q

r

k

; (26b)

where _q

r

k

= _q

d

k

� �~q

k

and u

k

refers to the multivalued part

of the controller plus an additional dissipation term specified

below. After some simple algebraic manipulations, the closed-

loop system is obtained from (24) and (26) as

M

k

�

k+1

�M

k

�

k

+ hC

k

�

k+1

= �h�

k

+ hu

k

; (27a)

~q

k+1

= (I � h�) ~q

k

+ h�

k

; (27b)

where �
k+1

= �

k

+h _�

k

, ~q
k+1

= ~q

k

+h

_

~q

k

and the equivalent

disturbance �

k

:= �(t

k

; �

k

; ~q

k

) is given by

�

k

= F

k

+

�

M

k

�

^

M

k

� �

�q

d

k

� � (�

k

� �~q

k

)

�

+G

k

�

^

G

k

+

�

C

k

�

^

C

k

� �

_q

d

k+1

� � [(I � h�) ~q

k

+ h�

k

℄

�

: (28)

It is easy to prove that the discrete-time version of the

disturbance �

k

satisfies an analogue version of Proposition 2:

Proposition 4. The function �(t

k

; �

k

; ~q

k

) satisfies

k�(t

k

; �

k

; ~q

k

)k � �(�

k

; ~q

k

);

where

�(�

k

; ~q

k

) = 


1

+ 


2

k�

k

k+ 


3

k~q

k

k+ 


4

k~q

k

kk�

k

k+ 


5

k~q

k

k

2

and 


i

, i = 1; : : : ; 5 are known positive constants.

Proof. The result is obtained by following the same steps as

in the proof of Proposition 2.

If u
k

is well-posed and non anticipative, i.e., if it depends

only on the data available at time t

k

, then the control law �

k

will be non anticipative as well. Simple computations reveal

that (26) is equivalent to

�

k

=

^

M

k

�

�q

d

k

� � (�

k

� �~q

k

)

�

+

^

G

k

+ u

k

+

^

C

k

�

_q

d

k+1

� � [(I � h�) ~q

k

+ h�

k

℄

�

: (29)

Equation (27) leads us to the following.

Assumption 8. The step length h > 0 is small enough such

that the spectrum of I �h� is contained in the interior of the

complex unitary circle.

At this point we specify the remaining term u

k

in a similar

way as its counterpart in continuous-time (11),

�u

k

2 K

�

�̂

k+1

+ 
��(�̂

k+1

); (30)

where K
�

= K

>

�

> 0. The gain 
 > 0 is considered constant

and �̂

k+1

is defined by the nominal version of (27a),

^

M

k

�̂

k+1

�

^

M

k

�

k

+ h

^

C

k

�̂

k+1

+ hK

�

�̂

k+1

2 �h
��(�̂

k+1

):

(31)

Since the equivalent disturbance �
k

is unknown, we will com-

pute the controller from the nominal unperturbed plant (31)

with state �̂

k

and using (27) as follows:

M

k

�

k+1

�M

k

�

k

+ hC

k

�

k+1

+hK

�

�̂

k+1

� h�

k

= �h
�

k+1

; (32a)

�

k+1

2 ��(�̂

k+1

); (32b)

^

M

k

�̂

k+1

�

^

M

k

�

k

+ h

^

C

k

�̂

k+1

+hK

�

�̂

k+1

= �h
�

k+1

; (32c)

~q

k+1

= (I � h�) ~q

k

+ h�

k

; (32d)

Notice that the discrete-time closed-loop system (32) is

slightly different from the direct discretization of the

continuous-time closed-loop system (8), since it contains a

new term K

�

�̂

k+1

and we have made K
p

= 0. The additional

term K

�

�̂

k+1

will assure the stability of the closed-loop

system by adding dissipation, as is shown in the proofs of

Theorems 4 and 5. From now on we will concentrate our

attention on equations (32a)-(32c), for which, if some stability

properties are preserved, then the boundedness of the solutions

of the difference equation (32d) follows. Moreover, from

Assumption 8 we have that ~q
k

! 0 as �
k

! 0 and k ! +1.

System (32a)-(32d) may be viewed as follows: Equa-

tions (32a) and (32d) are the Euler discretization of the

plant with a pre-feedback, (32c) is a nominal unperturbed

system and (32b) is the discretized set-valued controller to be
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calculated from (32c). From (32) it becomes clear that, when

all uncertainties and disturbances vanish, �̂
k

= �

k

whenever

�̂

0

= �

0

.

First, we prove the well-posedness of the general

scheme (32), i.e., we prove that we can compute a selection

of the multivalued controller (32b) in a unique fashion, using

only the information available at the time step k. We note first

that (32c) and (32b) imply

(

^

M

k

+ h

^

C

k

+ hK

�

)�̂

k+1

�

^

M

k

�

k

2 �h
��(�̂

k+1

): (33)

Equivalently,



^

A

k

�̂

k+1

�

^

M

k

�

k

; � � �̂

k+1

�

+ h
�(�)� h
�(�̂

k+1

) � 0;

(34)

for all � 2 R

n , where ^

A

k

:=

�

^

M

k

+ h

^

C

k

+ hK

�

�

. It is

clear from Lemma 1 that �̂
k+1

is uniquely determined if the

operator ^

A

k

is strongly monotone. Additionally, note that �̂
k+1

depends on ^

A

k

;

^

M

k

; �

k

; h; 
 and � only (all of them available

at time step k). In order to obtain conditions for the strong

monotonicity of ^

A

k

we note that, for any w 2 R

n ,




^

A

k

w;w

�

�

�

^

k

1

+ h�

1

�

k�̂

k

k

m

2

�

kwk

2

; (35)

where �
1

is the minimum eigenvalue of K
�

and we have made

use of Assumption 6 and Lemma 3. Hence, ^

A

k

is strongly

monotone for any h small enough such that

^

k

1

2

+ h�

1

�

k�̂

k

k

m

2

� 0: (36)

By applying Lemma 1 we obtain the uniqueness of �̂

k+1

.

Moreover, the solution �̂

k+1

is Lipschitz continuous with

respect to �

k

. It is noteworthy that the condition on the strong

monotonicity of ^

A

k

of Lemma 1 can be relaxed using the

approach developed in [3, x2.7]. It is possible to derive an

implicit formulation for the solution of (34), so that it can be

easily found numerically. The following Lemma provides the

means to accomplish that.

Lemma 4. Consider the following variational inequality of

the second kind,

hPx� r; � � xi+ �(�) � �(x) � 0 for all � 2 R

n (37)

with P 2 R

n�n a strongly monotone operator (but not

necessarily symmetric). Then, the unique solution of (37)

satisfies

x = Prox

��

((I � �P )x+ �r) (38a)

=

�

Id� �Prox

�

?

=�

Æ�

�1

Id

�

((I � �P )x+ �r) (38b)

for some � > 0. Moreover, there exists � > 0 such that the

map x 7! Prox

��

((I � �P )x+ �r) is a contraction.

Proof. Let x be the solution of (37). Then, for any � > 0,

we have �r��Px 2 �(��)(x) or, equivalently, (I ��P )x+

�r�x 2 �(��)(x). Hence, x = Prox

��

((I��P )x+�r). The

second equality in (38) is a direct consequence of Moreau’s de-

composition Theorem (Proposition 1). Recalling that Prox
��

is a non expansive operator, we have that

kProx

��

(y

1

)� Prox

��

(y

2

)k � kI � �Pk

m

kx

1

� x

2

k;

where y

i

= (I � �P )x

i

+ �r, i = 1; 2. Now, because we

are using the Euclidean norm we have that the induced norm

of a matrix A satisfies kAk
m

=

p

�

max

(A

>

A) [26, p. 365

Exercise 5]. Thus, if I�(I��P )

>

(I��P ) is positive definite,

then the map defined by x 7! Prox

��

((I � �P )x + �r) is a

contraction. The condition for positive definiteness reads

0 < P + P

>

� �P

>

P

which, by the strong monotonicity of P , is readily satisfied by

selecting � small enough.

Remark 5. There are several ways to numerically solve

problems of the form (37), like the semi-smooth Newton

method [14, x7.5] advocated in [5, Section 6]. For control

applications this method may be too time-consuming since

it involves the computation of inverse matrices and proximal

maps of composite functions. In contrast, the simple method of

successive approximations [24, x14] can quickly find the fixed

point or (38). Details about the implementation are given in

Section VII.

According to Lemma 4, the selection of the control value

can be obtained from (32b), (32c) as

�

k+1

= �

1

h


�

^

A

k

�̂

k+1

�

^

M

k

�

k

�

(39a)

�̂

k+1

= Prox

�h
�

((I � �

^

A

k

)�̂

k+1

+ �

^

M

k

�

k

); (39b)

where � > 0 is such that 0 <

^

A

k

+

^

A

>

k

� �

^

A

>

k

^

A

k

. The

solution of the implicit equation (39b) with unknown �̂

k+1

is

a function of �

k

and h, and it is clear from (39a) that the

controller is non-anticipative. Let us now present conditions

that guarantee (36) and, consequently, the possible application

of Lemma 4 to (34).

Lemma 5. There exists Æ� > 0 (depending on ~q

0

and �
0

) such

that, for any h 2 (0; Æ

�

℄ the following inequalities hold:

k�̂

k

k

m

� min

�

^

k

1

; 2h�

1

	

; (40a)

k�

k

k

m

� min fk

1

; 2h�

1

g ; (40b)

where �

1

is the minimum eigenvalue of K
�

and �̂

k

; �

k

sat-

isfy (25).

Proof. It follows from Lemma 3 that (40) is always solvable.

Indeed, since �̂

k

(�
k

) is o(h) we have that, for any "̂ > 0

(" > 0), there exists ^

Æ > 0 (Æ > 0) such that k�̂
k

k

m

< "̂h

(k"k < "h) for all h <

^

Æ (h < Æ). Therefore, by choosing "̂

and " small enough, we have that both inequalities in (40) are

fulfilled for all h 2 (0;minf

^

Æ; Æg℄.

The previous reasoning calls our attention to a detail re-

garding the uniformity of h. That is, whether or not Æ� and ^

Æ

can be selected independently of the time step k. The fact that

it does becomes more clear after proving that all solutions

of (32) are bounded. In the mean time, the rigorous reader

can set h = h

k

. Note also that, by Lemma 5, equation (40a)

implies (36).
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B. Stability of the discrete-time closed-loop system

Once the solvability of the control law has been established

for each time step, we turn to the question about the stability

of the closed-loop discrete-time system (32). To this end we

present two cases. The first one addresses the stability issue

without parametric uncertainty, whereas in the second case the

full perturbation case (i.e., external disturbance and parametric

uncertainty) is considered.

The following bounds will be useful.

Proposition 5. Let Assumption 6 hold and assume that the

time step h > 0 is such that (40a) is satisfied. Then, for all

k 2 N the following bounds hold:





 ^

A

�1

k







m

�

1

^

k

1

; (41)





 ^

B

�1

k







m

�

2

^

k

1

; (42)

where ^

A

k

:=

^

M

k

+ h

^

C

k

+ hK

�

and ^

B

k

:=

^

M

k

+ h

^

C

k

.

Proof. From (35) and (40a) it follows that, for any vector

w 2 R

n

n f0g, we have




 ^

A

k

w







kwk �

^

k

1

kwk

2, so

kwk �

1

^

k

1










�

^

M

k

+ h

^

C

k

+ hK

�

�

w










:

In particular, w =

�

^

M

k

+h

^

C

k

+hK

�

�

�1

x with x 2 R

n

nf0g

yields the desired result. The proof of the second inequality

follows the same steps and takes into account the fact that
^

k

1

� k�̂k

m

� 0 (see (40a)).

Remark 6. Bounds for matrices A�1
k

and B

�1

k

(depending

on M

k

and C

k

) can be obtained as kA�1
k

k

m

� 1=k

1

and

kB

�1

k

k

m

� 2=k

1

in a similar way by making use of (40b) in

Proposition 5.

Before presenting the main results on the stability of the

closed-loop system we show that, even in the presence of an

external perturbation �

k

, the variable �̂

k

, which is a state of

the nominal unperturbed system (32b)-(32c), is maintained at

zero.

Lemma 6. Let h > 0 be small enough such that (40a) holds.

If















^

M

k

�

k

h
















� 
�;

then �̂

k+1

= 0. Moreover, suppose that M
k

=

^

M

k

, C
k

=

^

C

k

(no parametric uncertainty), that �
k

is uniformly bounded by

some constant 0 < �

F < +1 and that the gain satisfies

2

^

k

2

^

k

1

�

F � 
�: (43)

Then, �̂
k

0

+1

= 0 for some k = k

0

implies that �̂
k

0

+n

= 0 for

all n � 1.

Proof. Since the solution of the variational inequality (34) is

unique, we have that �̂
k+1

= 0 if, and only if, ^

M

k

�

k

=h


belongs to the set of minimizers of the conjugate function �

?.

Indeed, from (33) we have the following chain of equivalences:

�̂

k+1

= 0 ()

^

M

k

�

k

h


2 ��(0) ()

0 2 ��

?

 

^

M

k

�

k

h


!

()

^

M

k

�

k

h


2 Argmin�

?

:

Now, according to Assumption 7, �(�) � �k � k, which in

fact implies 	

�B

n

(�) � �

?

(�) for, recall that the conjugate

function of �k � k is the indicator function of the set �B
n

and

f � g implies g

?

� f

?. Hence, we have that �

?

(w) � 0

for any w 2 �B

n

. On the other hand, from the definition of

the conjugate function, the fact that � 2 �

0

(R

n

) and using

the Fenchel-Moreau Theorem [9, Theorem I.10], it is easy to

deduce that 0 = �(0) = �

??

(0) = � inf �

?, and we have

0 � �

?

(w) for all w 2 R

n . Therefore we have proved that,

for any w 2 �B

n

, one has �

?

(w) = 0, while �

?

(�) � 0

everywhere. In other words, �B
n

� Argmin�

?.

For the second part of the proof, let k
0

be such that �̂
k

0

+1

=

0. We know from (32c) that � ^

M

k

�

k

0

= �h
�

k

0

+1

for some

�

k

0

+1

2 ��(0). Substitution of �
k

0

in (32a) gives

�

k

0

+1

= �h

^

B

�1

k

0

�

k

0

: (44)

Equations (42) and (43) then yield















^

M

k

0

+1

�

k

0

+1

h
















=










^

M

k

0

+1

^

B

�1

k

0

�

k

0










�

2

^

k

2

^

k

1

�

F � 
�:

From the inequality above we obtain �̂

k

0

+2

= 0. An induction

argument allows us to conclude that �̂
k

0

+n

= 0 for all n �

1.

In continuous-time, the selection of the set-valued controller

exactly compensates for the perturbation on the sliding surface

� = 0, see (22). This is not possible in discrete-time. The

following corollary gives the value of the controller once the

nominal sliding surface �̂

k

= 0 has been reached.

Corollary 2. Under the assumptions of Lemma 6, the equiv-

alent control which maintains the constraint �̂
k+n

= 0 for all

n � 1 is given by

�

eq

k+2

=

1

h


^

M

k+1

B

�1

k

�

(M

k

�

^

M

k

)�

k

� h�

k

�

(45)

with B
k

= M

k

+ hC

k

.

Proof. According to (32c), the condition �̂
k+n

= 0 for all n �

1 implies ^

M

k

�

k

= �h
�

eq

k+1

. Substitution of �
eq

k+1

in (32a)

then yields

(M

k

+ hC

k

)�

k+1

� (M

k

�

^

M

k

)�

k

= �h�

k

:

It follows that �
k+1

= B

�1

k

�

(M

k

�

^

M

k

)�

k

� h�

k

�

. Another

iteration on (32c) results in ^

A

k

�̂

k+2

�

^

M

k+1

�

k+1

= �h
�

eq

k+2

and the result follows.

The previous corollary has the following interpretation: The

scheme in (39) for computing the controller for the nominal

system (32b)-(32c) allows to compensate for the disturbance

of the actual system with a delay of one time step. Obviously,
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the equivalent control in (45) is not directly implementable

since the disturbance is unknown.

It is noteworthy that the magnitude of the equivalent control

in (45) does not depend on h (cf. (44)).

Theorem 4 (Known parameters). Let Assumptions 1-8 hold.

Consider the discrete-time dynamical system (32a)-(32c) with-

out parametric uncertainty (M
k

=

^

M

k

, C
k

=

^

C

k

) and �

k

uniformly bounded by �

F . Then, the origin (�; �̂) = 0 is

globally practically stable whenever


� � max

8

<

:

2

^

k

2

^

k

1

�

F

�

1 +

�

F

^

k

1

r̂

�

; 2

^

k

2

s

^

k

2

^

k

1

�

r̂ +

2

�

F

^

k

1

�

9

=

;

(46)

for some 0 < r̂ small enough and fixed. Moreover, �̂
k

reaches

the origin in a finite number of steps k�, and �̂

k

= 0 for all

k � k

�

+ 1.

Proof. Consider the functions V
1;k

:= �̂

>

k

^

M

k

�̂

k

and V

2;k

:=

�

>

k

^

M

k

�

k

and their respective differences �V

i

:= V

i;k+1

�

V

i;k

, for i = 1; 2. The following is due to (25) and (32c):

�V

1

= �̂

>

k+1

^

M

k+1

�̂

k+1

� �̂

>

k

^

M

k

�̂

k

= �̂

>

k+1

�

^

M

k+1

�

^

M

k

�

�̂

k+1

+ 2�̂

>

k+1

^

M

k

(�̂

k+1

� �

k

)

� �̂

>

k+1

^

M

k

�̂

k+1

+ 2�̂

>

k+1

^

M

k

�

k

� �̂

>

k

^

M

k

�̂

k

� �̂

>

k+1

�

2h

^

C

k

+ �̂

k

�

�̂

k+1

+ �

>

k

^

M

k

�

k

� �̂

>

k

^

M

k

�̂

k

+ 2�̂

>

k+1

�

� h

^

C

k

�̂

k+1

� hK

�

�̂

k+1

� h
�

k+1

�

: (47)

Now, adding and subtracting the term �

>

k+1

^

M

k+1

�

k+1

+

�̂

>

k+1

^

M

k+1

�̂

k+1

to the right-hand side of (47) results in

�V

1

� �̂

>

k+1

�̂

k

�̂

k+1

� 2h�̂

>

k+1

(K

�

�̂

k+1

+ 
�

k+1

)

+ �V

1

��V

2

+ �

>

k+1

^

M

k+1

�

k+1

� �̂

>

k+1

^

M

k+1

�̂

k+1

;

and it follows that

�V

2

� �̂

>

k+1

�̂

k

�̂

k+1

� 2h�̂

>

k+1

(K

�

�̂

k+1

+ 
�

k+1

)

+ �

>

k+1

^

M

k+1

�

k+1

� �̂

>

k+1

^

M

k+1

�̂

k+1

: (48)

Substitution of (32c) into (32a) yields (recall that here M

k

=

^

M

k

, C
k

=

^

C

k

and ^

B

k

=

^

M

k

+ h

^

C

k

)

�

k+1

= �̂

k+1

� h

^

B

�1

k

�

k

; (49)

from which we derive

�

>

k+1

^

M

k+1

�

k+1

= �̂

>

k+1

^

M

k+1

�̂

k+1

� 2h�̂

>

k+1

^

M

k+1

B

�1

k

�

k

+ h

2

�

>

k

B

�>

k

^

M

k+1

B

�1

k

�

k

: (50)

After substitution of (50) into (48) we arrive at (recall that

�

1

= �

min

(K

�

))

�V

2

� � (2h�

1

� k�̂k

m

) k�̂

k+1

k

2

� 2h
�̂

>

k+1

�

k+1

+ 4h

^

k

2

^

k

1

k�

k

kk�̂

k+1

k+ 4h

2

^

k

2

^

k

2

1

k�

k

k

2 (51)

� � (2h�

1

� k�̂k

m

) k�̂

k+1

k

2

� 2h

 


��

2

^

k

2

^

k

1

�

F

!

k�̂

k+1

k+ 4h

2

^

k

2

^

k

2

1

�

F

2

;

where we used the fact that �

k+1

2 ��(�̂

k+1

) together

with Proposition 3 in the last inequality. Now, assume that

k�

k+1

k >

�

r̂ +

2

�

F

^

k

1

�

h for some 0 < r̂ < +1. Equa-

tions (49) and (42) ensure that k�
k+1

k >

�

r̂ +

2

�

F

^

k

1

�

h implies

k�̂

k+1

k > r̂h. Hence,

�V

2

� � (2h�

1

� k�̂k

m

) k�̂

k+1

k

2

� 2h

 


��

2

^

k

2

^

k

1

�

F

�

1 +

�

F

^

k

1

r̂

�

!

k�̂

k+1

k:

Finally, from (46) and (40a) we conclude that �V

2

< 0

whenever k�
k+1

k >

�

r̂ +

2

�

F

^

k

1

�

h. Therefore, we obtain the

ultimate boundedness of the solution of (32a), i.e., for any

initial condition �

0

2 R

n , we have that

dist

0

�

�

k

;

s

^

k

2

^

k

1

�

r̂ +

2

�

F

^

k

1

�

hB

n

1

A

! 0

as k !1. More precisely, we have proved the global practical

stability of the origin, since the set

q

^

k

2

^

k

1

�

r̂ +

2

�

F

^

k

1

�

hB

n

can

be made arbitrary small by letting h approach zero.

Now we proceed with the proof of the finite-time conver-

gence of �̂

k

. Because of the ultimate boundedness of the

solution of (32a) we know that there exists a finite number

of steps k

� such that k�
k

k � 2

q

^

k

2

=

^

k

1

�

r̂ + 2

�

F=

^

k

1

�

h for

all k � k

�. Then, from (46) we have that















^

M

k

�

k

h
















�

^

k

2

h

k�

k

k � 2

^

k

2

s

^

k

2

^

k

1

�

r̂ +

2

�

F

^

k

1

�

� �


for all k � k

�. From Lemma 6 we conclude that �̂
k

reaches

zero in at most k� + 1 steps. Moreover, �̂
k

�

+n

= 0 for all

n � 1, since the ball 2

q

^

k

2

=

^

k

1

�

r̂ + 2

�

F=

^

k

1

�

hB

n

is positively

invariant. Finally, since �̂

k

�

+n

= 0 for all n � 1, it follows

from (49) that

k�

k

�

+n

k = hkB

�1

k

�

+n

�

k

�

+n

k �

2

�

F

^

k

1

h for all n � 1:

Remark 7. Under the assumptions given in Theorem 4, it

is clear that the sliding variable �

k

converges to a ball

of radius r

�

=

q

^

k

2

=

^

k

1

�

r̂ + 2

�

F=

^

k

1

�

h, which implies the

boundedness of the state variable ~q

k

. Recalling that � and h

are such that Assumption 8 holds, the solution at the step k

is given by

~q

k

= (I � h�)

k

~q

0

+ h

k�1

X

n=0

(I � h�)

(n+1)

�

k�n

:

Hence, if �
k

is bounded by R

�

for all k 2 N, we have that

lim sup

k!1

k~q

k

k � hR

�

1

X

n=0

k(I � h�)

n

k � hR

�

�

for some finite � > 0 [33, Theorem 22.11]. Therefore, ~q
k

is

also bounded for all k 2 N. In fact, it converges to a ball of

radius hR
�

�.
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Corollary 3. Let the assumptions of Theorem 4 hold. Then

in the case when there is no disturbance (� � 0), the origin

of (32) is globally finite-time Lyapunov stable, while ~q

k

! 0

asymptotically.

Proof. From (49) we have that �
k+1

= �̂

k+1

and the result

follows since �̂

k

reaches the origin after a finite number of

steps. The last statement becomes clear by taking R

�

= 0 in

Remark 7.

Let us now consider the parametric uncertainty. In this case

we see that the difference equation (32a) is equivalent to

^

M

k

�

k+1

�

^

M

k

�

k

+ h

^

C

k

�

k+1

+ hK

�

�̂

k+1

+ h(�

k

+ �

k

+ #

k

) = �h
�

k+1

; (52)

where we have defined two new perturbation terms associated

with the parametric uncertainty as �

k

:= (M

k

�

^

M

k

) _�

k

and

#

k

:= (C

k

�

^

C

k

)�

k+1

, where �

k+1

= �

k

+ h _�

k

. The two

additional disturbance terms will add new constraints to both,

the gain of the controller and the time step of the discrete-time

scheme as stated in the following theorem.

Theorem 5 (Parametric uncertainty). Let Assumptions 1-8

hold. Consider the discrete-time dynamical system (32). Then,

there exist constants r̂

�

> 0 and h

�

> 0 such that, for all

h 2 (0;minfÆ

�

; h

�

g℄ with Æ

� given by Lemma 5, the origin

of (32a) is semi-globally practically stable whenever 
 and �

satisfy


� > max

8

<

:

2

^

k

2

^

k

1

�

�

�

1 +

�

�

^

k

1

r̂

�

�

; 2

^

k

2

s

^

k

2

^

k

1

�

r̂

�

+

2F

^

k

1

�

9

=

;

:

(53)

The constants �

� and F are specified in the proof. Moreover, �̂
k

reaches the origin in a finite number of steps k�, and �̂

k

= 0

for all k � k

�

+ 1.

Proof. The analysis made in the proof of Theorem 4 can be

repeated for (52) if we aggregate the uncertainty as ^

�

k

= �

k

+

#

k

+ �

k

. However, special care must be taken since ^

�

k

is not

uniformly bounded anymore. Consider the compact set W :=

fw 2 R

n

jw

>

^

M

0

w � Rg for some R 2 R

+

. For any �

0

2 R

n

we can always find R > 0 such that �
0

2 W . Moreover, by

Assumption 6, there is a known R
�

> 0 such that W � R

�

B

n

.

Following the same steps as in the proof of Theorem 4 we

arrive at an inequality similar to (51),

�V

2

� � (2h�

1

� k�̂k

m

) k�̂

k+1

k

2

� 2h

 


��

2

^

k

2

^

k

1

k

^

�

k

k

!

k�̂

k+1

k+ 4h

2

^

k

2

^

k

2

1

k

^

�

k

k

2

: (54)

Now, choose R large enough such that hr̂
�

B

n

� W , where

r̂

�

> 0 is a design parameter. We have two cases.

Case 1: First consider the case where k�̂
k+1

k � hr̂

�

.

Hence,

�V

2

� � (2h�

1

� k�̂k

m

) k�̂

k+1

k

2

� 2h

 


��

2

^

k

2

^

k

1

k

^

�

k

k �

2

^

k

2

^

k

2

1

r̂

�

k

^

�

k

k

2

!

k�̂

k+1

k: (55)

The next step consists in finding appropriate bounds for the

term k

^

�

k

k on W . We have

k

^

�

k

k �

�

� + kM

k

�

^

M

k

k

m

k _�

k

k+ kC

k

�

^

C

k

k

m

k�

k+1

k;

where �

� := max

(�

k

;~q

k

)2W�

~

RB

n

�(�

k

; ~q

k

) is an upper bound

of �(�

k

; ~q

k

) (cf. Proposition 4) and ~

R =

~

R(�

0

; ~q

0

) is the

radius of a closed ball such that ~q

k

2

~

RB

n

(the radius can

always be found in view of Remark 7). Recalling that h _�
k

=

�

k+1

� �

k

and using (52) as well as Assumptions 1 and 6,

one can see that

k _�

k

k �

1

k

1

"

k

C

k _q

k

kk�

k+1

k+

�

2

^

k

2

^

k

1

R

�

+

�

1 + h

�

2

^

k

1

�


R

�

+

�

�

�

; (56)

where �

2

is the maximum eigenvalue of K

�

and R

�

is an

upper-bound of �
k+1

. Thus, from (56) we obtain

k

^

�

k

k � (1 + a

1

)

�

� + a

1

�

2

k

2

^

k

1

R

�

+

�

1 + h

�

2

^

k

1

�

a

1


R

�

+ (a

1

k

C

k _q

k

k+ a

0

) k�

k+1

k; (57)

where a
0

:=







C

k

�

^

C

k







m

and a

1

:=







M

k

�

^

M

k







m

=k

1

. Note

that a
0

is in general a function of �
k

and ~q

k

, whereas a
1

is a

function of ~q

k

only. It follows also from (32a) that

k�

k+1

k �

2

k

1

  

k

2

+ h

�

2

^

k

2

^

k

1

!

R

�

+

�

1 + h

�

2

^

k

1

�

h
R

�

+ h

�

�

�

; (58)

where we made use of an analog of Proposition 5 for B�1
k

(see

Remark 6). After some algebraic operations, the substitution

of (58) into (57) results in









^

�

k










� b

0

+ b

1

h+ b

2

h

2

=: F ; (59)

where each b

i

> 0 is given by

b

0

:=

 

�

� + 
R

�

+

 

^

k

2

^

k

1

�

2

+ 2

k

2

k

1

k

C

R

q

!

R

�

!

a

1

+

�

� + 2

�

2

k

1

a

0

R

�

(60a)

b

1

:=

�

2

^

k

1


R

�

a

1

+

�

�

� + 
R

�

+ 2

�

2

k

2

k

1

^

k

1

R

�

�

(a

0

+ k

C

R

q

a

1

) ;

(60b)

b

2

:=

�

2

^

k

1


R

�

(a

0

+ k

C

R

q

a

1

) (60c)

and R

q

< +1 is an upper-bound of _q

k

(which exists because

both �

k

and ~q

k

are bounded on W ).

It is thus clear from (55) and (59) that �V

2

is strictly

negative whenever

g(h) := �
�+

2

^

k

2

^

k

1

�

b

0

+ b

1

h+ b

2

h

2

�

+

2

^

k

2

^

k

2

1

r̂

�

�

b

0

+ b

1

h+ b

2

h

2

�

2

< 0: (61)
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Condition (61) can be written in the form g(h) := d

4

h

4

+

d

3

h

3

+ d

2

h

2

+ d

1

h + d

0

, where d

i

> 0 for i = 1; : : : ; 4. It

is clear that, if d
0

< 0, then there exists h

�

> 0 such that

g(h) < 0 for all h 2 (0; h

�

℄.

From (61) and (60a) it follows that d
0

is given by

d

0

(b

0

) := �
�+

2

^

k

2

^

k

1

b

0

+

2

^

k

2

^

k

2

1

r̂

�

b

2

0

:

Notice that in the case without parametric uncertainty we

have a

1

= a

0

= 0 and, from (59)-(60), we have that the

polynomial g(h) reduces to d

0

(

�

�), which is strictly negative

in the light of (53). Thus, by continuity there exists b

�

0

>

�

�

such that d
0

< 0 for all b
0

2 [

�

�; b

�

0

). Indeed, let us write

the polynomial d

0

as d

0

(b

0

) = �


0

b

2

0

+ �


1

b

0

+ �


2

, where

the values of the �


i

’s are easily obtained from the definition

of d

0

. Thus, from the continuity of d

0

together with the

fact that �


2

< 0 it becomes clear that for all b
0

such that

b

0

2

�

�

�;

�

� + (��


1

+

p

�


2

1

� 4�


0

�


2

)=�


0

�

, then d

0

(b

0

) < 0. It

is noteworthy that the previous condition imposed in b

0

can be

always made feasible by increasing the value of �

2

through an

increment in the gain �. This last fact implies that there exists

h

�

> 0 such that for any h 2 (0; h

�

℄ we have that g(h) < 0

and therefore �V

2

< 0.

Case 2: For the second case, (i.e., k�̂
k+1

k � hr̂

�

), the

Lyapunov difference �V
2

could fail to be negative, but instead

we prove that if it increases, it will be in small quantitites in

such a way that �

k

remains in W . Formally, from (54) it

follows that (using (53) and Lemma 5)

V

2

(�

k+1

) � V

2

(�

k

) + 4h

2

^

k

2

^

k

1

k

^

�

k

k

2

:

Hence, letting h > 0 be such that

R > max

kwk�r

�

V (w) + 4h

2

^

k

2

^

k

1

F ;

we get V
2

(�

k+1

) < R, i.e., �
k+1

2 W , (where r

�

is the

appropriate bound of �

k

, consequence of k�̂
k+1

k � hr̂

�

).

Therefore, in both cases the next iteration �

k+1

remains in W

and the positive invariance of W follows.

Let us now pass to the last part of the theorem. Assume

that we start at k = 0 with an initial condition �

0

2 R

n .

We have shown that there exists R > 0 such that �
0

2 W .

Moreover, there exists R

�

> 0 such that W � R

�

B

n

. Since

W is invariant, it follows that k�
k

k is bounded by �

� for all

k 2 N. These statements imply that that the bound (59) is valid

for all k 2 N. Upon examination of (54) and by considering

that k�
k+1

k > (r̂

�

+ 2F=

^

k

1

)h with r̂

�

> 0 fixed and F

defined in (59), we have that

�V

2

� � (2h�

1

� k�̂k

m

) k�̂

k+1

k

2

� 2h

 


��

^

k

2

^

k

1

k

^

�

k

k �

^

k

2

2

^

k

2

1

r̂

�

k

^

�

k

k

2

!

k�̂

k+1

k

(as in the proof of Theorem 4, the constraint k�
k+1

k >

(r̂

�

+ 2F=

^

k

1

)h implies that k�̂
k+1

k � r̂

�

h). For semi-

global practical stability we need to prove that the term within

parenthesis that pre-multiplies k�̂
k+1

k is negative. In the first

part of the proof we have already shown that

�
�+ 2

^

k

2

^

k

1

k

^

�

k

k+ 2

^

k

2

^

k

2

1

r̂

�

k

^

�

k

k

2

< g(h) < 0

whenever b
0

and h are small enough. Therefore, �V
2

< 0 for

all k�
k+1

k > (r̂

�

+ 2F=

^

k

1

)h. The proof for the finite-time

convergence mimics the corresponding part of the proof of

Theorem 4.

The following theorem relates the solutions of the discrete-

time system (32) to the ones of an associated continuous-time

system. A detailed proof may be found in [29, x6.3]

Theorem 6 (Convergence of the discrete-time solutions).

Let (�

k

; ~q

k

) be a solution of the closed-loop discrete-time

system (32) and let the functions

�

h

(t) := �

k+1

+

t

k+1

� t

h

(�

k

� �

k+1

) ;

~q

h

(t) := ~q

k+1

+

t

k+1

� t

h

(~q

k

� ~q

k+1

);

for all t 2 [t

k

; t

k+1

), be the piecewise-linear approximations

of �
k

and ~q

k

respectively. Then, (�
h

; ~q

h

) converges to (�; ~q)

as the sampling time h decreases to zero, where (�; ~q) is a

solution of

M(q(t)) _�(t) + C (q(t); _q(t)) �(t)

+K

�

�(t) + �(t; �(t); ~q(t)) = �
�(t); (62a)

�(t) 2 �� (�(t)) ; (62b)

_

~q(t) = �(t) � �~q(t) (62c)

with �(0) = �

0

and ~q(0) = ~q

0

.

Sketch of the proof. By the boundedness of the discrete it-

erations, it is possible to approximate �

k

and q

k

by piece-

wise linear and step functions. By the Arzela-Ascoli and

Banach-Alaoglu Theorems [25, Theorems 1.3.8, 2.4.3], these

converge (strongly in L

2

([0; T ℄;R

n

)) to limit functions �

and q. The relevant assumptions are that the derivative of

F (�; q; _q) maps bounded sets of L2

([0; T ℄;R

n

) into bounded

sets of L2

([0; T ℄;R

n

), and that the operator �� is maximal

monotone. Under these assumptions, a direct application of [6,

Chapter 3.1, Proposition 2] guarantees that the limits are

solutions of (62).

In other words, the time-discretization chosen in Sec-

tion VI-A is a suitable approximation of the continuous-time

dynamics. This is an important conclusion since the discrete-

time controller is designed from an approximation of the

continuous-time plant (24). More on the closed-loop behaviour

depending on h is illustrated by examples in the next section.

VII. NUMERICAL EXAMPLE

Consider the two-link planar elbow manipulator depicted in

Fig. 1. Its dynamics are given by (6) with
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Fig. 1: A two-link planar elbow manipulator.

‘Real’ parameters

m

1

1:5 kg m

2

1:0 kg
l

1

0:4 m l

2

0:3 m
l


1

0:2 m l


2

0:2 m

I

1

0:08 kg m2

I

2

0:03 kg m2

Nominal parameters

m̂

1

1:6 kg m̂

2

0:8 kg
^

l

1

0:4 m ^

l

2

0:3 m
^

l


1

0:25 m ^

l


2

0:15 m
^

I

1

0:0853 kg m2

^

I

2

0:0240 kg m2

TABLE I: Parameters of the two-link planar elbow

M(q) =

�

m

1

l

2


1

+m

2

a+ I

1

+ I

2

m

12

m

12

m

2

l

2


2

+ I

2

�

;

C(q; _q) = �m

2

l

1

l


2

sin(q

2

)

�

_q

2

_q

1

+ _q

2

� _q

1

0

�

;

G(q) =

�

(m

1

l


1

+m

2

l

1

)g 
os(q

1

) +m

2

l


2

g 
os(q

1

+ q

2

)

m

2

l


2


os(q

1

+ q

2

)

�

;

where m
i

represents the mass of the i-th link; m
12

= m

2

(l

2


2

+

l

1

l


2


os(q

2

))+ I

2

and a := l

2

1

+ l

2


2

+2l

1

l


2

(l


2

+
os(q

2

)); l
i

and l

i

, are the length of the i-th link and the distance from the

base of the i-th link to its center of mass, respectively; I
i

is

the inertia moment of the i-th link, i = 1; 2. The constant g =

9:81m=s

2 is the acceleration due to gravity. The parameters

of the ‘real’ plant and of the nominal model are as shown in

Tab. I.

Our control objective is to track the trajectory q

d

(t) =

�

2

�

sin(t) + 1; � 
os(t)

�

>

, We suppose that the system is

subject to the disturbance

F (t; q; _q) = 0:25

�


os(�t) sin(t)

0:5 sin(

p

2t) sin(t=3) 
os(t)

�

+ 0:5

�

tanh( _q

1

)

tanh(q

2

) 
os(q

1

+ q

2

)

�

;

The gains of the controller are set as:

K

�

= 2

�

5 �4

�4 5

�

; � =

�

5 �0:5

�0:5 8

�

;


 = 0:5; � = 1:

In all this section we set �(x) = �kxk

1

(but other choices

are possible). Hence,

��(x) =

�

sgn(x

1

) sgn(x

2

) : : : sgn(x

n

))

�

T

10
-4

10
-3

10
-2

10
-0.9

10
-0.8

10
-0.7

Fig. 2: Evolution of the lim sup

t!1

k�

h

(t)k of the sliding

variable �

h

as a function of h in a logarithmic scale.

with sgn(0) = [�1; 1℄. With this choice of �, the algo-

rithm (39) for the computation of the control law is imple-

mented for each k 2 N using the successive approximations

method as follows:

1) Set � > 0 small enough such that 0 <

^

A

k

+

^

A

>

k

�

�

^

A

>

k

^

A

k

holds.

2) Set j = 0 and set x0 2 R

n .

3) Compute x

j+1 as

v

j

= (I � �

^

A

k

)x

j

+ �

^

M

k

�

k

;

x

j+1

= v

j

� �Proj

[�
;
℄

n

�

v

j

�

�

;

where 
 = h
� and the set [�
; 
℄

n represents the n-

cube in Rn centered at the origin with edge length equal

to 2
.

4) If kxj+1

� x

j

k > ", then increase j and go to step 3.

Else, set �̂
k+1

= x

j+1 and stop.

In the previous algorithm, the variable " represents the preci-

sion of the algorithm; it was set to 10

�9 in all the simulations.

The simulations were performed using the continuous-time

plant (6), but the feedback control was implemented using

the stepwise discrete-time scheme (29)-(30). The initial con-

ditions were set as [q

>

0

; _q

>

0

℄ = [�=3;��=4; �=3; �=8℄

>. The

trajectories obtained in simulation are shown in Figs. 3-5 for

several sampling times. Note that the discrete-time sliding

phase, �̂
k

= 0 for all k large enough, cannot be reached

(even with precise knowledge of system parameters) because

of the plant’s discretization error. This fact induces an error

in the set-valued input, which explains the appearance of

chattering that is absent in the discrete/discrete setting. It is

also worth mentioning that this numerical chattering appears

when h = 10

�2 s (Fig. 3) but vanishes for smaller sampling

periods. Fig. 2 depicts how the norm of the sliding variable �
h

,

associated with the continuous plant/discrete controller setting,

evolves as a function of the sampling time h > 0. We can see

that the order of convergence is not constant and, moreover,

it tends to zero as h decreases to zero.

Finally, in order to set-up a benchmark for evaluating the

implicit discretization scheme, we present the case when the

controller is discretized in an explicit way, i.e., when (30) is

replaced by

�u

k

2 K

�

�

k

+ 
��(�

k

): (63)

Notice that in the explicit case there is no need for the

scheme (32), since the variable �
k

is assumed to be known at

time t

k

.
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0
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Fig. 3: Evolution of the sliding variable �

h

(left) and the

control input �
h

(right) for the closed-loop system (6), (29)

and (30) with sampling time h = 10

�2 s.

0 5 10 15 20 25 30

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
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-15

-10

-5

0

5
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Fig. 4: Evolution of the sliding variable �

h

(left) and the

control input �
h

(right) for the closed-loop system (6), (29)

and (30) with sampling time h = 10

�3 s.

Figure 6 illustrates how the numerical chattering effect

appears in the input and the output of the closed-loop system

when the explicit method is used. On the other hand, chattering

is almost suppressed with the implicit controller, even for the

same values of h (see Figs. 4 and 5). Moreover, we see that

the error in the sliding variable �
h

and the chattering effect in

both the input �
h

and the output �
h

, is much larger (under

the same sampling rate) with the explicit algorithm (63).

Finally, it is worth to mention that, when h = 10

�2 s, the

resulting closed-loop system with the explicit controller (63)

shows an unstable behavior (a phenomenon already observed

for different plants and controllers in [20], [27]), while the

implicit algorithm keeps the input and output bounded (see

Fig. 3). The implicit discrete-time controller (30) supersedes

the explicit one (63), since the former allows much smaller

sampling rates and exhibits a significantly better chattering

Fig. 5: Evolution of the sliding variable �

h

(left) and the

control input �
h

(right) for the closed-loop system (6), (29)

and (30) with sampling time h = 10

�4 s.
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Fig. 6: Evolution of sliding variable (left) and the control

input (right) for the closed-loop system (6) and (29) (63) with

sampling time h = 10

�3 s.

alleviation together with smaller error amplitudes. Thus, the

conclusions drawn in [18], [19], [20] from experimental data

extend to the nonlinear uncertain case analyzed in this article.

VIII. CONCLUSIONS AND FURTHER RESEARCH

The main objective of this article was the analysis of a

family of implicit discrete-time set-valued sliding-mode con-

trollers for trajectory tracking in fully actuated Euler-Lagrange

systems. First, continuous-time controllers were studied for

systems with exogenous disturbances and parametric uncer-

tainties. Well-posedness together with stability results were

established. Subsequently, the analysis of the implicit discrete-

time scheme was carried out. Interesting features were ob-

tained: finite-time convergence for the nominal (unperturbed)

sliding variable, robustness against external and parametric

uncertainties, convergence of solutions of the discrete-time

system to solutions of the continuous-time closed-loop system

and input and output chattering alleviation.

Simulations validate the theoretical results and allow to

better understand the limitations of the proposed scheme.

REFERENCES

[1] V. Acary and B. Brogliato. Implicit Euler numerical scheme and
chattering-free implementation of sliding mode systems. Systems &

Control Letters, 59(5):284-293, 2010.
[2] V. Acary, B. Brogliato, and Y. V. Orlov. Chattering-free digital sliding-

mode control with state observer and disturbance rejection. Automatic

Control, IEEE Transactions on, 57(5):1087-1101, 2012.
[3] K. Addi, B. Brogliato, and D. Goeleven. A qualitative mathemat-

ical analysis of a class of linear variational inequalities via semi-
complementarity problems: applications in electronics. Mathematical
Programming, 126(1):31-67, 2011.

[4] S. Adly, B. Brogliato, and B. K. Le. Well-posedness, robustness, and
stability analysis of a set-valued controller for Lagrangian systems.
SIAM Journal on Control and Optimization, 51(2):1592-1614, 2013.

[5] S. Adly, B. Brogliato, and B. K. Le. Implicit Euler time-discretization of
a class of Lagrangian systems with set-valued robust controller. Journal

of Convex Analysis, 23(1-2-3), 2016.
[6] J. Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps

and Viability Theory. Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg, 1984.

[7] J. Bastien and M. Schatzman. Numerical precision for differential
inclusions with uniqueness. ESAIM: Mathematical Modelling and

Numerical Analysis-Modélisation Mathématique et Analyse Numérique,
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