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Robust Output Regulation of

Strongly Passive Linear Systems with

Multivalued Maximally Monotone Controls
F. A. Miranda-Villatoro and Fernando Castaños

Abstract—The use of multivalued controls derived from a
special maximally monotone operator are studied in this paper.
Starting with a strongly passive linear system (with possible
parametric uncertainty and external disturbances) a multivalued
control law is derived, ensuring regulation of the output to
a desired value. The methodology used falls in a passivity-
based control context, where we study how the multivalued
control affects the dissipation equation of the closed-loop system,
from which we derive its robustness properties. Finally, some
numerical examples together with implementation issues are
presented to support the main result.

Index Terms—Passivity-based control; Multivalued control;
Robust control; Differential inclusions; Convex analysis; Hemi-
variational inequalities.

I. INTRODUCTION

SOMETIMES it is useful to have an interpretation of the

action of the controller in terms of energy exchange.

Among the most important methodologies of passivity-based

control (PBC) that achieve this interpretation are the so-called

energy-shaping techniques. The purpose of energy shaping,

as its name suggests, is to change the energy function by

means of the control action in such a way that stabilization

and performance objectives are satisfied. Although energy-

shaping strategies have proved to be very useful yielding

an easy interpretation of the controller in terms of energy

exchange (see, e.g., [1], [2], [3]), robustness against external

perturbations and model uncertainty is still a topic of research.

Among the most common energy-shaping techniques one

finds energy-balancing passivity-based control and intercon-

nection and damping assignment (IDA) [3]. In the energy-

balancing approach, energy shaping is accomplished by writ-

ing the total energy of the closed-loop system as the sum of

the energy of the open-loop system and the energy of the con-

troller [1], [4]. It can be shown that, for mechanical systems,

this approach is limited to the shaping of the potential energy

alone. In the second approach, the to-be-controlled system

is assumed to be port-Hamiltonian with given Hamiltonian

(energy) function and interconnection and damping matrices.

Energy shaping is accomplished by matching the closed-

loop system to another port-Hamiltonian system with desired

parameters. The question of whether or not it is possible to

establish an energy balance for the controller is disregarded.
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For mechanical systems, this approach allows to modify both

the potential and the kinetic energies. The interested reader is

addressed towards [1], [5], [6], [7] for detailed accounts on

passivity-based control.

The study of differential inclusions for modelling and anal-

ysis of processes in control theory is extensive (e.g. [8], [9],

[10], [11]), whereas the problem of designing a multivalued

control in order to achieve a desired response is less explored,

except for the case of sliding-mode control [12], which takes

advantage of the multivalued nature of the signum multifunc-

tion to ensure robustness of the closed-loop system.

An important family of differential inclusions (more general

than those obtained by using sliding-mode techniques) are

those for which its right-hand side is represented by maxi-

mally monotone operators. In the case of linear plants, the

closed-loop system is sometimes called a multivalued Lur’e

dynamical system, and results about existence and uniqueness

of solutions have been proved in [13], [14], [15], [16]. This

kind of systems are related to complementarity and projected

dynamical systems [17], which makes its study important for a

broad range of applications coming from different fields such

as automatic control, economics, mechanics etc.

Recently, the use of maximally monotone operators for the

control of systems was presented in [18], where the authors

consider the design of a state feedback control law for systems

of Lur’e type with multivalued right-hand side and developed

a static and a dynamic control law which depends on both the

system parameters and the system state.

The main contribution of this paper consists of a design

procedure for a multivalued-control — where the multivalued

part is represented by the subdifferential of some proper,

convex and lower semicontinuous function — which achieves

finite-time regulation of the desired output together with

insensitivity in the face of a family of bounded and unmatched

perturbations.

The proposed multivalued control strategy differs remark-

ably from those which are common in sliding-mode control in

the sense that we obtain finite-time regulation and disturbance

rejection without a discontinuous right-hand side and therefore

without the necessity of solutions of the associated system in

the sense of Filippov. Moreover, in this work we focus on

systems with zero-relative degree (i.e., the output of the system

depends explicitly on the control input) which, to the best of

the authors knowledge, cannot be treated using conventional

sliding-modes techniques.

This paper is organized as follows. In Section II the class
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of systems that we consider is established in conjunction with

the class of perturbations that will be treated. The multivalued

structure of the controller is presented and well-posedness

of the closed-loop system is established. In Section III we

introduce the main result of this paper. Namely, robustness and

finite-time convergence of the closed-loop system are demon-

strated. Section IV touches the point about implementation of

the multivalued control law by introducing a regularization of

the multivalued map. Some examples are presented showing

the properties of the closed loop. The paper ends with some

conclusions and future research lines in Section V.

A. Notation and preliminaries

Throughout this paper, all vectors are column vectors, even

the gradient of a scalar function that we denote by ∇H(x) =
∂H(x)
∂x

.

A matrix A ∈ R
n×n is called positive definite, denoted as

A > 0, if w⊤Aw > 0 for all w ∈ R
n\{0}1. The minimum and

the maximum eigenvalues of a symmetric matrix B ∈ R
n×n

are denoted as λmin(B) and λmax(B) respectively.

A set-valued function or multifunction F : Rn → 2R
n

is a

map that associates with any w ∈ R
n a subset F(w) ⊂ R

n.

The domain of F is given by

DomF = {w ∈ R
n : F(w) 6= ∅} .

Related to the definition of a multifunction is the concept of

its graph,

GraphF = {(w, z) ∈ R
n × R

n : z ∈ F(w)} .

The graph is used to define the concept of monotonicity in the

following way: A set-valued function F is said to be monotone

if for all (w, z) ∈ GraphF and all (w′, z′) ∈ GraphF the

relation

〈z − z′, w − w′〉 ≥ 0

is preserved, where 〈·, ·〉 denotes the usual scalar product on

R
n. A monotone map F is called maximally monotone if,

for every pair (ŵ, ẑ) ∈ R
n × R

n \ GraphF, there exists

(w, z) ∈ GraphF with 〈z− ẑ, w− ŵ〉 < 0, or in other words,

if no enlargement of its graph is possible in R
n ×R

n without

destroying monotonicity.

Let f : Rn → R ∪ {+∞} be a proper, convex and lower

semi-continuous function. The effective domain of f is given

by

Dom f = {w ∈ R
n : f(w) <∞} .

We say that f is proper if its effective domain is non empty.

The subdifferential ∂f(w) of f(·) at w ∈ R
n is defined by

∂f(w) = {ζ ∈ R
n : f(σ)− f(w) ≥ 〈ζ, σ − w〉

for all σ ∈ R
n} .

1According to this definition, a matrix A is positive definite if, and only if,
its symmetric part is positive definite. For convenience, most authors assume
that A is already symmetric. However, for our purposes it will be more
convenient not to make such assumption (see, e.g., [19]).

An important convex function is the indicator function of a

convex set S, defined by

ψS(w) =

{

0 if w ∈ S

+∞ if w /∈ S
.

It is easy to see that, when f(·) is equal to the indicator

function of a closed convex set S, then the subdifferential

coincides with the normal cone of the set S at the point w ∈ S,

i.e.,

∂ψS(w) = NS(w) = {ξ ∈ R
n : 0 ≥ 〈ξ, σ − w〉

for all σ ∈ S} .

Note that if w is in the interior of S then NS(w) = {0}. If

w /∈ S then NS(w) = ∅.

II. THE OUTPUT REGULATION PROBLEM

Consider the following affine system:

Σ :

{

ẋ(t) = Ax(t) +Buu1(t) +Bvv(t)

y1(t) = Cx(t) +Du1(t)
, (1)

where x ∈ R
n denotes the system state, u1, y1 ∈ R

m are

the port variables available for interconnection, and matrices

A,Bu, Bv, C,D are constant and of suitable dimensions. The

term v ∈ R
m accounts for an uncertain exogenous input which

is considered bounded in the L∞ sense, i.e., supt∈R+
‖v(t)‖ <

∞. Moreover, without loss of generality, the external signal

v(t) can be decomposed as the sum of a constant term v+ and

a bounded signal ν(t).
The robust output regulation problem consists in regulating

the output y1 to a desired value yd, even in the presence of

the external perturbation v(t) and of parametric uncertainties.

Remark 1. Notice that, for D = 0 and Bu = Bv, the

problem reduces to a standard sliding-mode control problem

with matched disturbances. We depart from these standard

assumptions and make the following instead.

Assumption 1. System (1) is a minimal realization and is

strongly passive. That is, there exists a (possibly unknown)

matrix P = P⊤ > 0 such that

R =

[

PA+A⊤P PBu − C⊤

B⊤
u P − C −(D +D⊤)

]

< 0 . (2)

Consider the function H0(x) = 1
2x

⊤Px with P satisfy-

ing (2). Taking the time-derivative of H0 along the system

trajectories (with v(t) = 0, for all t) gives the energy balance

Ḣ0(x) = x⊤P ẋ

=
1

2
x⊤(A⊤P + PA)x+ u⊤1 B

⊤
u Px

+ u⊤1 (y1 − Cx−Du1)

=
1

2
w⊤Rw + u⊤1 y1 ,

where w⊤ =
[

x⊤ u⊤1
]

and with R as in (2). Hence, H0 is

a storage function for system (1). Moreover, from the energy

balance we obtain

Ḣ0(x) ≤ −
λmin(−R)

2
‖x‖2 + u⊤1 y1 −

λmin(−R)

2
‖u1‖

2 .
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Therefore, the strong passivity assumption (2) implies input

strict passivity together with a positive definite dissipation

term. See [20] for more details.

Notice that (2) also implies that D is positive definite

(hence non singular). Depending on the application at hand,

the somewhat stringent condition on the invertibility of D can

be circumvented in several ways. If the plant is passive with an

output of relative degree equal to one (D = 0). It is possible

to generate a complete family of passive outputs with relative

degree equal to zero and parametrized precisely by D (see [4]

for the nonlinear Hamiltonian case). Another possibility is to

take the first i successive derivatives of y = Cx such that y(i)

depends explicitly on u. Then take y(i) as the new output and

test for strong passivity.

It is worth noting that, in the linear case, the class of passive

systems is equivalent to the class of port-Hamiltonian (PH)

systems described in [5, Ch. 4], i.e., Σ can be written as

ẋ = F∇H0(x) + guu1 + gvv

y1 = h(x) + ju1

with F = AP−1 = J −R, where J = −J⊤ and R = R⊤ ≥
0 are the so-called interconnection and dissipation matrices,

respectively, gu = Bu, gv = Bv, h(x) = Cx and j = D.

Along this paper we will use both representations of Σ with the

purpose of expressing the related computations in the context

of basic IDA [3], [5].

A. Multivalued control law

In this subsection a multivalued control law is introduced by

using maximally monotone operators. It will be shown later

that these are robust in the face of parametric and additive

uncertainties.

Let u2 ∈ R
m and y2 ∈ R

m be the controller port variables.

The multivalued control input is defined in terms of the graph

of a multifunction U : Rm → 2R
m

by

(u2, y2) ∈ GraphU .

Remark 2. It is worth mentioning that, in the case when the

multifunction U is monotone, the relation (u2, y2) ∈ GraphU
defines a static, incrementally passive map2. Furthermore, if

0 ∈ U(0), then the relation between u2 and y2 defines a static

passive map inasmuch as

〈u2, y2〉 ≥ 0 for all (u2, y2) ∈ GraphU .

Previous lines motivate the following assumption.

Assumption 2. The multifunction U is maximally monotone

and defines a static passive relation between the input u2 and

the output y2, i.e., 0 ∈ U(0).

The multivalued nature of the proposed control motivates us

to depart from the classical intelligent control paradigm and

to instead make use of the behavioural framework proposed

by Willems [22]. In this context, the plant and the controller

2A static multivalued map F is incrementally passive if 〈y−y′, u−u′〉 ≥ 0
for all (u, y), (u′, y′) ∈ GraphF. The interested reader is kindly addressed
to [21] for details on dynamical incrementally passive maps.

+

-

+

-

Fig. 1. Interconnection of a controller to a plant.

are interconnected using a power preserving pattern as shown

in Figure 1, satisfying y1 = y2 =: y, −u1 = u2 =: u and

therefore u1y1 + u2y2 = 0.

The interconnected system (plant and controller) results in

ẋ = Ax−Buu+Bvv (3a)

y = Cx−Du (3b)

u ∈ U(y) , (3c)

where our task is to determine U(y) such that y is regulated

to some fixed value yd, even in the presence of uncertainties

in the system parameters and the external perturbation v. Note

that the previous constraint rules out the trivial control u =
D−1(Cx− yd). In fact, even if all the system parameters and

the state x were known, that control would not be admissible,

since it is not passive (see Assumption 2).

It is well known that, when U(y) is given as the subdiffer-

ential of a proper, convex and lower semicontinuous function

Φ(·) (i.e., when U(y) = ∂Φ(y)), it is a maximally monotone

operator [23, Cor. 31.5.2]. Therefore, we will focus on controls

of the form

u(t) ∈ ∂Φ(y(t)) for all t ≥ 0 , (4)

with Φ : Rm → R ∪ {+∞} some proper, convex and lower

semicontinuous function. More specifically, in Section III

we will prove that, for some closed convex set S, robust

regulation of the output y is obtained for the case when

Φ(y) = (ϕ + ψS)(y), where ϕ(·) is proper, convex and

lower semicontinuous with effective domain containing S and

satisfying 0 ∈ ∂ϕ(0). The function ψS(·) is the indicator

function of the set S. In other words, Φ is the restriction of

ϕ to S.

B. Well-posedness

Before presenting the main result on the robustness of the

closed-loop system (3), it is important first to establish its

well-posedness. Specifically, well-posedness of the closed-

loop system comprises two issues. The first question is: Is

there always a control input u ∈ ∂Φ(y)? and the second one

is about uniqueness and existence of solutions of the associated

differential inclusion (3).

Regarding the second issue, about a solution of the dif-

ferential inclusion (3), well-posedness was proved previously

in [14], [15], where the subdifferential of the conjugate func-

tion of Φ(y) together with passivity of the associated system

play a crucial role.
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The first issue deserves more explanation. At first we need

y(t) ∈ S for all time t, this comes from the definition of the

subdifferential, i.e., u(t) ∈ ∂Φ(y(t)) is equivalent to

Φ(σ) − Φ(y) ≥ 〈u, σ − y〉 for all σ ∈ R
m ,

where we have omitted the time argument. In the case of

Φ(y) = (ϕ+ ψS)(y) we have

ϕ(σ)− ϕ(y) + ψS(σ)− ψS(y) ≥ 〈u, σ − y〉 for all σ ∈ R
m ,
(5)

and it is clear that if y /∈ S, then we will have ∂Φ(y) =
∅. Thus, we must guarantee that, no matter what the initial

conditions are, it is possible to find an output y ∈ S such that

u ∈ ∂Φ(y) is well defined.

In the case where ϕ ≡ 0 and D is symmetric, well-

posedness is easy to show. Since u ∈ ∂ψS(y) = NS(y), from

the definition of a normal cone we have

0 ≥ 〈u, σ − y〉 for all σ ∈ S ,

which in view of (3b) translates into

0 ≥ 〈D−1(Cx − y), σ − y〉 = 〈Cx − y, σ − y〉D−1

for all σ ∈ S, with the inner product weighted by D−1

(recall that D−1 is well defined in view of Assumption 1).

From [24, p. 117] we have that the above inequality is the

characterization of the projection of Cx onto the set S with

the induced norm ‖ · ‖D−1 , i.e.,

y = ProjD
−1

S (Cx) = argmin
σ∈S

‖Cx− σ‖D−1 , (6)

and the control input u transforms into

u = D−1
(

Cx− ProjD
−1

S (Cx)
)

∈ NS(y) . (7)

Therefore, when D is symmetric we can find an expression for

the output y in terms of the projection operator ProjD
−1

S (·)
(note that this implies y ∈ S independently of the state x).

Moreover, due to the Lipschitzian property of the projection

operator [24, p. 118], substitution of u in (3) leads to a

well-posed ordinary differential equation (not a differential

inclusion!) with a Lipschitzian right-hand side (see [25] for

a detailed development in the scalar case).

For the general case where ϕ is not the zero function, and

removing the assumption about the symmetry of D, from (5)

we have that the problem consists of finding y ∈ S such that

0 ≤ 〈D−1y −D−1Cx, σ − y〉+Φ(σ)− Φ(y) for all σ ∈ S ,
(8)

where we made use of (3b). The inequality (8) is an hemi-

variational inequality3 for which existence and uniqueness of

solutions can be deduced from the invertibility of D, as the

following lemma shows.

Lemma 1. [27, Lemma 5.2.1] Suppose that F (y) is continu-

ous and strongly monotone, i.e.

〈F (y)− F (y′), y − y′〉 ≥ α‖y − y′‖2

3The interested reader is referred to [26], [27], [28], and references therein
for more information and properties about variational and hemivariational
inequalities.

for all y, y′ ∈ R
m and some α > 0 and let Φ : R

m →
R ∪ {+∞} be a proper, convex and lower semicontinuous

function with effective domain S ⊂ R
m. Then, for each g ∈ R

n

there exists a unique solution y∗ ∈ S

〈F (y)− g, σ − y〉+Φ(σ)− Φ(y) ≥ 0 for all σ ∈ S .

Applying the previous Lemma to our problem (8), we have

that existence and uniqueness of solutions is immediate. Since

D is positive definite, it is straightforward to see that D−1 is

positive definite too. Furthermore, the linear map y 7→ D−1y
is strongly monotone. Indeed,

〈D−1(y1 − y2), y1 − y2〉 = (y1 − y2)
⊤D−1

S (y1 − y2)

≥ λmin

(

D−1
S

)

‖y1 − y2‖
2 ,

where D−1
S = (D−1+D−⊤)/2 is the symmetric part of D−1.

Consequently, the hemivariational inequality (8) has a unique

solution for each state x. In other words: For all x ∈ R
n, there

always exists a unique y ∈ S such that the control u ∈ ∂Φ(y)
is well defined.

Remark 3. The computation of the control input which forces

y ∈ S obviously depends on the solution of the hemivariational

inequality (8) and therefore it depends implicitly on the actual

state of the plant x. This dependency on the state induces a

partition in the phase space and leads to a hybrid system.

Remark 4. For the case when ϕ ≡ 0 and D is symmetric,

we might be tempted to use (7) as a control input (because it

is passive) but, unfortunately, it is not implementable in our

setting because it depends explicitly on the system parameters

and state. The role of (7) is analogous to the role of the

equivalent control in sliding modes [12], in the sense that it

is not implementable but it helps to determine the dynamics

associated to the closed-loop system. See [25] for an example

on the use of the control (7) in the scalar case and some

implementation issues.

Following the steps in [25], the control that results from

the solution of the hemivariational inequality (8) will act as

an equivalent control, in the sense of Remark 4 and is not

implementable under the assumption that the state and the

plant parameters are unknown. The implemented control is

described in Section IV.

III. FINITE-TIME PERFECT OUTPUT REGULATION

The main result of this paper is presented in this section.

Namely, from an energy-shaping point of view, we show that

the multivalued control (4) can be expressed as a basic IDA

controller plus a robustifying term denoted by η, affecting

directly the dissipation of the closed-loop system and yielding

to the output regulation despite the presence of external and

parametric disturbances.

Through the rest of this paper we will consider the in-

terconnected system (3) with multivalued control (4) and

Φ(·) = (ϕ+ψS)(·) with S some convex set. The perturbation

input v(t), decomposed as a constant term v+ and a bounded

unknown signal ν(t), affects the dissipation equation in the

following way.
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Let x̄ be the equilibrium point of (3a) associated to a

constant perturbation (ν(t) ≡ 0) and input u = 0, i.e.,

0 = Ax̄+Bvv
+ , (9)

and let H0 be the storage function of system (3a)–(3b) (i.e.,

H0(x) =
1
2x

⊤Px with P satisfying (2)). We obtain

0 = F∇H0(x̄) +Bvv
+

= F∇H0(x̄)± F∇H0(x) +Bvv
+

= −F (∇H1(x)−∇H0(x)) +Bvv
+

with H1(x) =
1
2 (x − x̄)⊤P (x − x̄). Now, defining Ha(x) =

H1(x)−H0(x) we have the basic IDA controller equation [4]

for v+ as

F∇Ha(x) = Bvv
+ .

Thus, we have that the term v+ acts as an energy-shaping

control changing the storage function of the uncontrolled

system H0 to H1 and therefore changing the equilibrium of

the system. The closed-loop system results in

ẋ = F∇H1(x)−Buu+Bvν (10a)

y = Cx−Du (10b)

u ∈ ∂Φ(y) (10c)

For the case ν = 0, a control input can be designed in order

to obtain the asymptotic regulation of the output y to yd using

an energy-shaping interpretation as follows.

Lemma 2. For system (10a)–(10b), assume that x∗ is an

admissible equilibrium associated to the constant control

ū = D−1(Cx∗ − yd), i.e., x∗ satisfies

0 = Ax∗ −BuD
−1(Cx∗ − yd) +Bvv

+ . (11)

Then, ū achieves regulation of the output to yd when ν = 0.

Furthermore, ū is a basic IDA controller and satisfies

F∇Hb(x) = −Buū

with Hb(x) = H2(x) −H1(x) and

H2(x) =
1

2
(x− x∗)

⊤P (x− x∗) .

Proof. Let x∗ be an equilibrium of system (10) satisfying (11).

Then, from (9) we have that

0 = A(x∗ − x̄)−BuD
−1(Cx∗ − yd)

or, in terms of the storage functions H1 and H2,

0 = −F (∇H2(x) −∇H1(x)) −BuD
−1(Cx∗ − yd) .

Therefore, we obtain a change in the storage function from

H1(x) with minimum at x̄ to H2(x) with minimum at x∗,

which implies convergence of the state x to x∗. Also, for u =
ū in (10b) we have

y = Cx −DD−1(Cx∗ − yd) = C(x− x∗) + yd

and y → yd as x→ x∗.

The control ū described in Lemma 2 shapes the energy by

changing the storage function. For the new storage function

H2 we have that the control input u = ū + η, where

η : [0,+∞) → R
m and is specified below, establishes a new

dissipation equation as

Ḣ2(x) = ∇H2(x)
⊤ẋ

= ∇H2(x)
⊤F∇H2(x) −∇H2(x)

⊤Buη

+∇H2(x)
⊤Bvν

=
1

2
(x− x∗)

⊤(A⊤P + PA)(x− x∗)

− (x− x∗)
⊤PBuη − (y − Cx+D(ū+ η))⊤η

+ (x− x∗)
⊤PBvν

=
1

2

[

(x− x∗)
⊤ −η⊤

]

R

[

x− x∗
−η

]

− (y − yd)
⊤η + (x− x∗)

⊤PBvν . (12)

In the case ν = 0 we obtain the energy-balancing equation

changing the output to −(y − yd).

Remark 5. The control ū achieves the asymptotic regulation

of the output y via a change in the storage function H1(x)
but, once again, ū is not implementable, as it requires perfect

knowledge of the state and system parameters and would lead

to a closed-loop system which is not robust.

In Section II-B it was established that, when Φ(y) = ψS(y)
and D is symmetric, we have

y = ProjD
−1

S (Cx) .

This equation evidently shows the robustness property of the

multivalued control law u ∈ NS(y), since it is not necessary to

maintain the state x at a precise point. Instead, it is sufficient

to maintain x in the set of points for which its projection

over S is equal to yd. This property obviously depends on the

shape of the set S and, in order to achieve robust regulation,

it is necessary to have yd ∈ ∂S and intNS(yd) 6= ∅ (see

Figures 2, 3 below).

Assumption 3. The set S ⊂ R
m is closed and convex.

Moreover, yd ∈ S is such that intNS(yd) 6= ∅.

The previous argument can be extended to the more general

case where u ∈ ∂Φ(y) with Φ(y) = (ϕ + ψS)(y) and ϕ an

arbitrary proper, convex and lower semicontinuous function,

i.e., we can achieve robust output regulation for a family of

controls parametrized by ϕ.

Theorem 1 (Main result). Consider system (10), suppose

that Assumption 1 holds and consider the family of controls

u ∈ ∂Φ(y), parametrized by ϕ as Φ(y) = (ϕ + ψS)(y),
with ϕ proper, convex, lower semicontinuous and such that

0 ∈ ∂ϕ(0). S is some closed convex set specified along

the proof. Then, the control (10c) yields the robust output

regulation y = yd in finite time whenever

〈D−1(yd − Cx∗), yd〉 < Dϕ(yd,−yd) , (13)

and

‖ν‖ ≤ B

for some B > 0, also specified along the proof. Here,

Dϕ(y0, d) is the directional derivative of the function ϕ at the
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point y0 in the direction d and x∗ is the equilibrium associated

to the basic IDA design (Lemma 2).

Proof. Applying the control input u ∈ ∂Φ(y) automatically

implies that y ∈ S (see Subsection II-B). Then, if we want

the regulation of y to yd, a necessary condition is yd ∈ S.

Consider the following convex set

S = conv{0, yd} , (14)

where the operator conv{a, b} refers to the convex hull of two

points a ∈ R
m and b ∈ R

m, i.e.,

conv{a, b} = {c ∈ R
m : c = λa+ (1− λ)b, λ ∈ [0, 1]} ,

and consider the half-space

Ωd = {x ∈ R
n : 〈D−1(yd − Cx), yd〉 ≤ Dϕ(yd,−yd)} .

Our first goal is to show that the value of the output y is

equal to yd if, and only if, x ∈ Ωd. The inclusion x ∈ Ωd

implies

〈D−1(yd − Cx), yd〉 ≤ Dϕ(yd,−yd)

= lim
ρ↓0

ϕ(yd − ρyd)− ϕ(yd)

ρ

≤
ϕ(yd − ρyd)− ϕ(yd)

ρ
for all ρ > 0 ,

where in the last inequality we have used the fact that, for a

convex function, the map t 7→ ϕ(v+td)−ϕ(v)
t

is increasing [29,

Prop. 17.2]. From the last inequality it is possible to obtain a

new one in terms of the elements of S. First, we restrict the

values of ρ to the interval (0, 1] and introduce the new variable

µ := 1− ρ ≥ 0. It follows that µ ∈ [0, 1) and that

〈D−1(yd − Cx), yd〉 ≤
ϕ(µyd)− ϕ(yd)

1− µ
for all µ ∈ [0, 1) .

Multiplying both sides by 1− µ > 0 yields

〈D−1(yd − Cx), (1 − µ)yd〉 ≤

ϕ(µyd)− ϕ(yd) for all µ ∈ [0, 1] .

Furthermore, each element of S can be represented as σ =
µyd ∈ S for some µ ∈ [0, 1], therefore

〈D−1(yd −Cx), σ − yd〉+ ϕ(σ)− ϕ(yd) ≥ 0 for all σ ∈ S .

That is, yd is a solution of the hemivariational inequality (8)

when x ∈ Ωd and, considering the uniqueness of solutions,

the output y must be equal to yd. Conversely, taking y = yd
from (8) we have that

−〈D−1(yd − Cx), σ − yd〉 ≤ ϕ(σ) − ϕ(yd)

holds for all σ ∈ S. From (14) we have that σ = µyd for

some µ ∈ [0, 1], so the previous inequality is equivalent to

〈D−1(yd − Cx), yd〉 ≤
ϕ(µyd)− ϕ(yd)

1− µ

for all µ ∈ [0, 1). Hence, making the change of variables ρ =
1−µ and considering the increasing property of the map t 7→
ϕ(v+td)−ϕ(v)

t
, the desired result is obtained.

It remains to show that (even in the presence of the external

perturbation ν), the system state x enters the interior of the

set Ωd in finite time and remains therein for all future time. In

terms of the equilibrium x∗, we have from (13) that x∗ ∈ Ωd.

We will prove that, for some δ > 0 small enough, there exists

an ellipsoid E = {x ∈ R
n : (x−x∗)

⊤P (x−x∗) ≤ δ} ⊂ intΩd

around x∗ that is attractive and invariant.

Considering the dissipation equation (12), it is clear that η =
u− ū is well defined, where ū is the basic IDA control from

Lemma 2, and u ∈ ∂Φ(y). Then, equation (12) transforms

into

Ḣ2(x) =
1

2

[

(x− x∗)
⊤ −(u− ū)⊤

]

R

[

x− x∗
−(u− ū)

]

− (y − yd)
⊤(u− ū) + (x− x∗)

⊤PBvν ,

where the term −(y− yd)
⊤(u− ū) is negative for all y 6= yd

(i.e., for all x /∈ Ωd). Indeed, we have from (13) and Lemma 2

that

−〈ū, yd〉 < Dϕ(yd,−yd) ,

and from the definition of a subdifferential we have

u ∈ ∂Φ(y) ⇔ ϕ(σ)− ϕ(y) ≥ 〈u, σ − y〉 for all σ ∈ S .

Specifically, for σ = yd we obtain −〈u, y − yd〉 ≤ ϕ(yd) −
ϕ(y). Moreover, for all y ∈ S \ {yd} we can write y = µyd
with µ ∈ [0, 1). Thus,

−(y − yd)
⊤(u− ū) ≤ ϕ(yd)− ϕ(µyd)− (1− µ)y⊤d ū

< ϕ(yd)− ϕ(µyd)

+ (1− µ) inf
ρ>0

ϕ(yd − ρyd)− ϕ(yd)

ρ

≤ ϕ(yd)− ϕ(µyd)

+ (1− µ)
ϕ(yd − ρyd)− ϕ(yd)

ρ

for all ρ > 0. Setting ρ = 1−µ > 0 we obtain −(y−yd)⊤(u−
ū) < 0 for all y 6= yd.

From (10b) we have that u must satisfy u = D−1 (Cx− y).
Substituting u and ū in (12) and applying the Lambda inequal-

ity to the term (x−x∗)⊤PBvν (see, e.g., Section 12.1 in [30]),

we have

Ḣ2 ≤ −
1

2
w⊤Rw − (y − yd)

⊤(u− ū)+

(x− x∗)
⊤Λ(x− x∗) + ν⊤BvPΛ

−1PBvν ,

where Λ = Λ⊤ > 0 and

w⊤ =
[

(x − x∗)⊤ (y − yd)
⊤D−⊤

]

R = −

[

I −C⊤D−⊤

0 I

]

R

[

I 0
−D−1C I

]

.

It follows that R > 0. Now, setting Λ such that

RΛ = R−

[

Λ 0
0 0

]

> 0 ,

we have

Ḣ2(x) ≤ −
1

2
w⊤RΛw−(y−yd)

⊤(u−ū)+ν⊤BvPΛ
−1PBvν
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and therefore

Ḣ2(x) ≤ −
1

2
λmin(RΛ)‖w‖

2 + λmax(BvPΛ
−1PBv)‖ν‖

2

≤ −
1

2
λmin(RΛ)‖x− x∗‖

2

+ λmax(BvPΛ
−1PBv)‖ν‖

2 .

Recall that we are establishing the stability of the ellipsoid E ,

defined above. We have that, for all x /∈ E ,

‖x− x∗‖
2 >

δ

λmax(P )
,

and therefore, if ν satisfies

‖ν‖2 ≤
δλmin(RΛ)

2λmax(P )λmax(B⊤
v PΛ

−1PBv)
= B2 ,

we conclude that Ḣ2 < 0 for all x /∈ E . That is, the set E is

attractive and invariant [31].

Finally, finite-time convergence of the output is obtained

automatically from the proof. Namely, E ⊂ intΩd together

with attractivity and invariance of E implies that there exists

a time t∗ < ∞ such that the state will cross the boundary of

Ωd and will remain inside of Ωd for all t > t∗.

Figures 2 and 3 show an example of how the term Cx
converges to the interior of the set {yd}+NS(yd) in the output

space when S = conv{0, yd} and S = conv{[0, 0], [0, yd1]}×
conv{[0, 0], [0, yd2

]}, respectively, and when ϕ = 0, D = In
and m = 2. Note that, Cx − yd ∈ NS(yd) is equivalent to

yd = ProjS(Cx) and from (6) we obtain y = yd.

Fig. 2. Trajectory of Cx converging to interior of {yd}+NS(yd) with the
multivalued control u ∈ NS(y) and S = conv{0, yd}. This implies that y
converges to yd.

Remark 6. From Figure 2 it is possible to see that, if x∗ satis-

fies the condition (13) for yd ∈ S, then we can achieve robust

output regulation for any other desired value ȳd in the relative

interior of S by redefining the set S to S̄ = conv{0, ȳd}.

Moreover, in a more general setting, condition (13) allows us

to attack the problem of robust tracking in the following way.

Let yd(t) be the desired reference signal. If, for all values of

the function yd : R → R
m, condition (13) is satisfied together

with the bound in ν(t), then robust output tracking is possible

as shown in Example 1 below.

Remark 7. A similar result can be obtained (with possibly

different bounds in the external perturbation and different

condition in x∗), if we change the form of the set S. For

example, for Φ(y) = ψS(y) a possible set S could be as

the one given in Figure 3, where the point yd is still at the

boundary of S and the interior of the normal cone to S at yd
is not empty. The details are left to the reader.

Fig. 3. Trajectory Cx converging to interior of {yd} + NS(yd) with
the multivalued control u ∈ NS(y) and S = conv{[0, 0], [0, yd1]} ×
conv{[0, 0], [0, yd2

]}.

Remark 8. When ϕ ≡ 0 and D is symmetric, the con-

trol law (7) yields robust output regulation without apparent

knowledge of a disturbance model. That is, the necessary

conditions stated by the internal model principle (IMP) [32]

do not seem to hold. A possible explanation is that, although

the control law is continuous, the vector field associated to

the closed-loop system is nonsmooth. This transgresses a

fundamental hypothesis in the IMP literature. The IMP in the

nonsmooth setting is an under-explored topic that deserves

further research.

It is worth noting that, although the controller alone is

set-valued (cf. (4)), the interconnected system (3) admits a

unique control input u ∈ ∂Φ(y). This is easily seen when

ϕ = 0 and D is symmetric and positive definite. In such case,

the controller is given by the inclusion u ∈ NC(y), but the

interconnection only admits the single-valued expression (7).

A similar result is obtained in the general case where D
is not necessarily symmetric and ϕ is an arbitrary proper,

convex, lower semicontinuous function. More precisely, it can

be shown that the solution of the hemivariational inequality (8)

(i.e., y∗), determines a unique control u = D−1(Cx − y∗)
— which under our uncertainty assumptions is not directly

implementable as it stands (see Remarks 3 and 4).

Before finishing this section, we state the following propo-

sition showing the continuity of the resulting controller.

Proposition 1. The control input η resulting from the closed-

loop system (3) and (4) is Lipschitz continuous with respect

to the system state x.

Proof. Since η = u−ū with ū as in Lemma 2 and u ∈ ∂Φ(y),
it is clear that η and u will have the same continuity properties.

Since u ∈ ∂Φ(y) must satisfy (3b), the hemivariational

inequality (8) must be satisfied as well. Therefore, for any
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y1 ∈ S and y2 ∈ S,

〈D−1(Cx1 − y1), σ1 − y1〉 ≤ ϕ(σ1)− ϕ(y1)

〈D−1(Cx2 − y2), σ2 − y2〉 ≤ ϕ(σ2)− ϕ(y2)

are satisfied for all σ1 ∈ S and σ2 ∈ S. Taking σ1 = y2 and

σ2 = y1 and adding both inequalities yields to

〈D−1(y1 − y2), y1 − y2〉 ≤ 〈D−1C(x1 − x2), y1 − y2〉

for all yi ∈ S and xi ∈ R
n, i ∈ {1, 2}. From the positiveness

assumption about D, we have

‖y1 − y2‖ ≤ L‖x1 − x2‖

with L = ‖D−1C‖/λmin(D
−1
S ). Finally, the control u satisfies

‖u1 − u2‖ = ‖D−1(Cx1 − y1)−D−1(Cx2 − y2)‖

≤ ‖D−1C‖‖x1 − x2‖+ ‖D−1‖‖y1 − y2‖

≤ L̃‖x1 − x2‖

with L̃ =
(

1 + ‖D−1‖

λmin(D
−1

S
)

)

‖D−1C‖.

IV. IMPLEMENTATION ISSUES AND EXAMPLES

A. Regularization

Up to this point we have shown that, whenever u ∈ ∂Φ(y),
the membership of y to the set S and the robust output

regulation are assured. Our next step is to develop a way to

recover an explicit expression for the values of the control

input u in terms of the measured output y alone.

Note that exact values of u can be computed by solving

the hemivariational inequality (8) at each time instant t and

making use of (10b), but this approach requires knowledge

of the system parameters and state x. It is worth noting that

searching for continuous selections does not yield the desired

features either. For example, in the case of ϕ = 0, a continuous

selection of the multifunction ∂Φ(·) = NS(·) is u = 0, (in

fact u = 0 is the unique continuous selection). However,

with that control the storage function of (10) is given by H1

with minimum at x̄ and, consequently, neither robust output

regulation nor y ∈ S are in general obtained. Similar results

can be obtained when ϕ ∈ C1, since u = ∇ϕ(·) is always a

continuous selection of ∂Φ(·).
Instead of looking for continuous selections of ∂Φ(·), we

will focus on a regularization of Graph ∂Φ in the sense used

in [25]. More precisely,

ũ−∇ϕ(y) ∈ NS(y − ε [ũ−∇ϕ(y)]) (15)

is a regularization of the inclusion u ∈ ∂Φ(y). Note that,

for ε = 0, we recover ũ ∈ ∂Φ(y) (this is because ∂Φ(y) =
∇ϕ(y) + NS(y)). Moreover, with the previous definition we

allow initial outputs y not necessarily in S. Instead we now

require y ∈ {ε [ũ−∇ϕ(y)]}+ S.

The well-posedness of inclusion (15) together with a single-

valued expression for ũ are established below in Theorem 2.

The following lemma will be useful when proving it.

Lemma 3. The map f : Rm → R
m given by

f(z) := (I + εD−1)−1z ,

where D−1 > 0 is a contraction for all ε > 0.

Proof. After defining

ζ = f(z) ,

we have (I + εD−1)ζ = z. Direct computation gives

‖z1 − z2‖
2 = ‖(I + εD−1)(ζ1 − ζ2)‖

2

= ‖ζ1 − ζ2‖
2 + ε(ζ1 − ζ2)

⊤D−1
S (ζ1 − ζ2)

+ ε2(ζ1 − ζ2)
⊤D−⊤D−1(ζ1 − ζ2)

≥ ‖ζ1 − ζ2‖
2 + ελmin(D

−1
S )‖ζ1 − ζ2‖

2

+ ε2λmin(D
−⊤D−1)‖ζ1 − ζ2‖

2 .

Therefore,

‖f(z1)− f(z2)‖ ≤
1

β
‖z1 − z2‖

with

β =
√

1 + ελmin (D−1 +D−⊤) + ε2λmin (D−⊤D−1) .

Theorem 2. Let ϕ be a strictly convex, lower semicontinuous

C1 function that satisfies

• ϕ(y) ≥ ϕ(0) for all y ∈ S.

• ∇ϕ : Rm → R
m is Lipschitz continuous with constant

L such that

L < λmin

(

D−1
S

2

)

.

Then, for ε > 0 sufficiently small, the regularized control ũ
can be expressed as

ũ =
y − ProjS(y)

ε
+∇ϕ(y). (16)

Furthermore, the map y 7→ ũ is passive.

Proof. From (15) we have that, for all σ ∈ S,

0 ≥ 〈ũ−∇ϕ(y), σ − y + ε [ũ−∇ϕ(y)]〉 . (17)

Multiplying by ε > 0 and adding and subtracting y on the

left-hand side of the inner product we obtain

0 ≥ 〈y − y + ε [ũ−∇ϕ(y)] , σ − y + ε [ũ−∇ϕ(y)]〉 .

Therefore,

y − ε [ũ−∇ϕ(y)] = ProjS(y) ,

from which we obtain (16). Now we show that the interconnec-

tion of the plant (10a)–(10b) with the regularized control (16)

is well-posed. It is easy to see that well-posedness of the

closed-loop system is equivalent to proving that, for any state

x ∈ R
n, the equations

ũ =
y − ProjS(y)

ε
+∇ϕ(y)

ũ = D−1 (Cx− y)

have a unique solution. Proceeding with the substitution of the

second equation and after some manipulations we have

y =
(

I + εD−1
)−1 [

ProjS(y)− ε∇ϕ(y) + εD−1Cx
]

= (f ◦ g) (y) ,
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with f as in Lemma 3 and g : Rm → R
m given by

g(z) = ProjS(z)− ε∇ϕ(z) + εD−1Cx .

We argue that the composition mapping f ◦ g is a contraction

for ε sufficiently small. Indeed, making use of Lemma 3 we

have that

∥

∥ (f ◦ g) (y1)− (f ◦ g) (y2)
∥

∥ ≤
1

β(ε)
‖g(y1)− g(y2)‖

≤
1 + εL

β(ε)
‖y1 − y2‖

where β(ε) is defined in the proof of Lemma 3. Note that the

term (1 + εL)/β(ε) is equal to 1 for ε = 0 and

d

dε

(

1 + εL

β(ε)

)
∣

∣

∣

∣

ε=0

= L− λmin

(

D−1
S

2

)

< 0 ,

i.e., the term (1 + εL)/β(ε) is strictly decreasing in a neigh-

bourhood of ε = 0 and thus it is less than 1 for ε sufficiently

small. Therefore, f ◦g is a contraction and the interconnection

is well-posed.

It only rests to prove the passivity property of (ũ, y).
From (17) we have, for σ = 0 ∈ S,

〈ũ, y〉 ≥ 〈∇ϕ(y), y〉+ ε‖ũ−∇ϕ(y)‖2 .

Note that for ε = 0 we have y ∈ S and from the strict

convexity assumption [24, p. 183],

〈∇ϕ(y), y〉 > ϕ(y)− ϕ(0) ≥ 0 for all y ∈ S .

In other words, we have

lim
ε↓0

〈∇ϕ(y), y〉+ ε‖ũ−∇ϕ(y)‖2 > 0 .

Consequently, 〈ũ, y〉 ≥ 0 for some ε > 0 sufficiently small.

Remark 9. Note that Theorem 2 is still true if we change the

first assumption by ϕ(y) ≥ ϕ(0) for all y ∈ Domϕ with ϕ a

convex function.

From Theorem 2 we have that the regularized control (15)

is in fact single-valued, Lipschitz continuous and independent

of the system parameters and state (cf. (16)).

B. Example 1

Consider the circuit described by the diagram of Figure 4.

We wish to regulate the outputs y1 and y2 to a desired value yd.

Taking as state variables the fluxes in inductors and charges in

capacitors, we have the following state-space representation:

ẋ =











− 1
R1C1

− 1
L1

− 1
R1C2

0
1
C1

−
R2+R3+RL1

L1
0 R3

L2

− 1
R1C1

0 − 1
R1C2

− 1
L2

0 R3

L1

1
C2

−
R3+RL2

L2











x

+









0 0
RL1

0
0 0
0 RL2









u+









1
R1

0
1
R1

0









v (18a)

y =

[

0
RL1

L1
0 0

0 0 0
RL2

L2

]

x+

[

RL1
0

0 RL2

]

u (18b)

where x =
[

x1 x2 x3 x4
]⊤

are the charge in capacitor

C1, flux in inductor L1, charge in capacitor C2 and flux in

inductor L2, respectively, u =
[

u1 u2
]⊤

are the control

inputs (currents) and y =
[

y1 y2
]⊤

are the voltages in

resistances RL1
and RL2

, respectively. Assume that we want

to steer the outputs to yd =
[

1 f(t)
]⊤

, where f(t) is a

sawtooth wave function with amplitude 0.5 and frequency of

2 Hz.

The system is passive because it is the result of the inter-

connection of passive elements. Values of system parameters

are R1 = R2 = R3 = 1Ω, RL1
= 2Ω, RL2

= 3Ω, L1 = 1H,

L2 = 2H, C1 = 1F, C2 = 3F, v = 10+50 sin(t) sign(sin(πt)).
Taking the convex function ϕ = 0 (i.e., u ∈ NS(y)), simple

algebra shows that condition (13) is equivalent to

〈D−1(yd − Cx∗), yd〉 = −4− 4f(t) +
5

6
f(t)2 ,

which is negative for values of f(t) ∈ (−0.849, 5.649). The

implemented control takes the form (16) with ε = 1 × 10−3

and S the convex, time-varying set

S(t) = conv

{[

0
0

]

,

[

1
f(t)

]}

.

Figure 5 shows the convergence of the output to the desired

reference, even in the presence of the external perturbation v.

Moreover, it is easy to see that the condition y ∈ S is satisfied.

The computed control input is shown in Figure 6.

C. Example 2

Consider the following affine system

ẋ = Ax+Buu1 +Bvv (19a)

y1 = Cx+Du1 (19b)

+

-

+

-

Fig. 4. Circuit diagram of Example 1, where the goal is to regulate the voltage
at the outputs y1 and y2.
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Fig. 5. Output response of plant (18) with the regularized control (16). The
picture shows convergence to the desired output yd (with ε = 1× 10−3 and
ϕ = 0) subject to the perturbation v(t) = 10 + 50 sin(t) sign(sin(πt)).
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Fig. 6. Time history of the regularized control (16) with ε = 1× 10−3 and
ϕ = 0.

with

A =









−3.7036 1.9043 −0.9735 0.4164
−0.2421 −5.1187 −0.0478 0.0269
−0.9915 −1.0461 −5.5232 −0.5318
0.4376 2.1467 −0.5948 −3.6545









,

Bu =









−0.6918 −1.4410
0.8580 0.5711
1.2540 −0.3999
−1.5937 0.6900









, Bv =









0.8147 1.4345
0.9058 2.5464
−0.1270 0
0.9134 −1.0453









,

C =

[

0.0652 0.4889 0.6820 0.9166
0.7134 0.6677 0.1996 0.8659

]

,

D =

[

1.0823 0.3899
−0.1315 0.088

]

,

where the external perturbation signal v(t) is decomposed as

v(t) =

[

4
0

]

+

[

f1(t)
f2(t)

]

(20)

with f1(t) a sinusoidal function with amplitude 2 and fre-

quency of 10 Hz and f2(t) corresponds to a sawtooth wave

with amplitude 3 and frequency of π Hz. Suppose that we

want to regulate the output to the set-point yd =
[

−1 2
]

.

Let us verify the assumptions of Theorem 1. The equilib-

rium point x∗ is

x∗ =
[

2.7809 0.1184 −0.2779 0.4877
]⊤

.

and it satisfies

〈D−1(yd − Cx∗), yd〉 = −9.2810 .

Taking, for example, the convex function

ϕ(y) = log (ey1 + ey2) ,

which is proper and C1, we have that

Dϕ(yd,−yd) = −〈∇ϕ(yd), yd〉 = −1.8577 .

Condition (13) is satisfied. Using the SDPT3 software to

solve (2) we obtain

P =









1.8765 1.8706 −0.5249 1.3338
1.8706 3.8984 −0.4599 0.9207
−0.5249 −0.4599 2.4211 0.4920
1.3338 0.9207 0.4920 2.0056









,

which is positive definite with eigenvalues 0.23, 1.54, 2.74,

5.69. Figure 7 shows the output response for a regularized

control ũ with ε = 1 × 10−4, where finite-time convergence

towards the desired set-point can be verified despite the ex-

ternal and parametric disturbances of the system. Control and

state trajectories are shown in Figures 8 and 9, respectively.
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Fig. 7. Time history of the output for plant (19). It illustrates the convergence
to the desired value yd = [−1 2]⊤.
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Fig. 8. Time history of the regularized control (16) applied to the plant (19)
with ε = 1× 10−4 and ϕ = log(ey1 + ey2).
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Fig. 9. Time histories of the state of regulated plant (19) with the regularized
control (16) (with ε = 1 × 10−4 and ϕ = log(ey1 + ey2)) and
perturbation (20).

V. CONCLUSIONS

This paper presents an extension (for the m-dimensional

case) of the multivalued control presented in [25]. Moreover,

more general multivalued functions of the form u ∈ ∂Φ(y)
are considered, assuring finite-time convergence together with

robust output regulation in the face of parametric and external

(bounded) disturbances.

The effect of the multivalued control relies directly on the

dissipation term modifying the rate of convergence of the

storage function H2 and implying the convergence of x to

x∗, leaving interconnection matrix J unchanged.

Among the main assumptions considered, the fact that D
is invertible plays an essential role. The case without D (i.e.

y = Cx) is a topic of further research.

The implemented control (16) acts in fact as a high gain

controller when y /∈ S and coincides with the continuous

selection of ∂Φ(y) when y ∈ S. However, since the output

contains a feedthrough component of the input, the high gain

does not result in arbitrary large controls. That is, the control

converges to a bounded, well-defined value as ε → 0. It

is worth noting that the resulting controller is passive and

independent of the system parameters and of the system state.

The well-suited structure of port-Hamiltonian systems to-

gether with passivity opens the opportunity to investigate the

robust output regulation problem in the nonlinear setting.
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