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Abstract— The dynamics of many physical processes can be
suitably described by Port–Hamiltonian (PH) models, where the
importance of the energy function, the interconnection pattern
and the dissipation of the system is underscored. To regulate
the behavior of PH systems it is natural to adopt a Passivity–
Based Control (PBC) perspective, where the control objectives
are achieved shaping the energy function and adding dissipation.
In this paper we consider the PBC techniques of Control by
Interconnection (CbI) and Standard PBC. In CbI the controller
is another PH system connected to the plant (through a power–
preserving interconnection) to add up their energy functions,
while in Standard PBC energy shaping is achieved via static
state feedback. In spite of the conceptual appeal of formulating
the control problem as the interaction of dynamical systems,
the current version of CbI imposes a severe restriction on
the plant dissipation structure that stymies its practical appli-
cation. On the other hand, Standard PBC, which is usually
derived from a uninspiring and non–intuitive “passive output
generation” viewpoint, is one of the most successful controller
design techniques. The main objectives of this paper are: (1) To
extend the CbI method to make it more widely applicable—in
particular, to overcome the aforementioned dissipation obstacle.
(2) To show that various popular variants of Standard PBC can
be derived proceeding from a unified perspective. (3) To establish
the connections betweenCbI and Standard PBC proving that
the latter is obtained restricting the former to a suitable subset—
providing a nice geometric interpretation to Standard PBC—and
comparing the size of the set of PH plants for which they are
applicable.

Index Terms— Passivity, nonlinear systems, stabilization, inter-
connection, passivity–based control, Hamiltonian systems.

I. I NTRODUCTION

In the last few years we have witnessed in the control
literature, both theoretical and applied, an ever increasing

This work was partially supported by HYCON, IFCPAR and CONACYT
(México).

predominance of control techniques that respect, and effec-
tively exploit, the structure of the system over the more
classical techniques that try to impose some predetermined
dynamic behavior—usually through nonlinearity cancellation
and high gain. The property of passivity plays a central rolein
most of these developments. Passivity–Based Control (PBC)
is a generic name, introduced in [26], to define a controller
design methodology which achieves the control objective, e.g.,
stabilization, by rendering the system passive with respect
to a desired storage function and injecting damping. There
are many variations of the basic PBC idea, and we refer the
interested reader to [8], [23], [29], [32], [34] for furtherdetails
and a list of references.

In this paper we are interested in the control of dynamical
systems endowed with a special geometric structure, calleda
Port–Hamiltonian (PH) model. As shown in [33], [34], PH
models provide a suitable representation of many physical
processes and have the essential feature of underscoring the
importance of the energy function, the interconnection pattern
and the dissipation of the system.1 There are many possible
representations of PH models, here we will consider the so–
called input–state–output form, where the state is assumed
finite dimensional and the port variables are the input and
output vectors, which satisfy a cyclo–passivity inequality. (The
distinction between cyclo–passivity and the more standard
passivity property will be discussed later.) To regulate the
behavior of PH systems it is natural then to adopt a PBC
perspective.

We consider in this paper the PBC techniques of Control
by Interconnection (CbI ) [6], [24] and Standard PBC [3], [8],
[23], [25], [26], [29], [32]. In CbI the controller is another

1Central to the formulation of PH models is the geometric notion of a Dirac
structure. We will not elaborate any further on this powerful concept here and
refer the reader to [33] for more information.
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PH system with its own state variables and energy function.
The regulator and the plant are interconnected in a power–
preserving way, that is, through a loss–less subsystem. A
straightforward application of the passivity theorem [7] shows
that the overall system is still cyclo–passive with new energy
function the sum of the energy functions of the plant and the
controller. To assign to the overall energy function a desired
shape, it is necessary to “relate” the states of the plant and
the controller via the generation of invariant sets—defined by,
so–called, Casimir functions. In its basic formulation,CbI

assumes that only the plant output is measurable and considers
the classical output feedback interconnection. In this case, the
Casimir functions are fully determined by the plant, which
imposes a severe restriction on the plant dissipation structure.
It has been shown in [24] that, roughly speaking, “dissipation
cannot be present on the coordinates to be shaped”. This, so–
called, dissipation obstacle stymies the use ofCbI for appli-
cations other than mechanical systems where the coordinates
to be shaped are typically positions, which are unaffected by
friction.

The first objective of our work is to extend the conceptually
appealingCbI method to make it more widely applicable—
in particular, to overcome the aforementioned dissipation
obstacle. Towards this end, we introduce two extensions to
the method. First, exploiting the non–uniqueness of the PH
representation of the system, we propose a procedure to gen-
erate new cyclo–passive outputs (with new storage functions).
Applying CbI through these new port variables overcomes
the dissipation obstacle, but still rules out several interesting
physical examples—not surprisingly since this is still an output
feedback control strategy. Our second, and key modification,
assumes that the plant state variables are available for mea-
surement, and proposes to replace the simple output feedback
by a suitably defined state–modulated interconnection. In this
way, the conditions for existence of Casimir functions can be
further relaxed, enlarging the class of PH plants for which the
method is applicable.

We also consider in the paper Standard PBC, where energy
shaping is achieved via static state feedback and damping is
injected feeding back the passive output. Standard PBC, which
is usually derived from a uninspiring and non–intuitive “pas-
sive output generation” viewpoint, is currently one of the most
successful controller design techniques, that includes Energy–
Balancing (EB), Interconnection and Damping Assignment
(IDA) and Power–Shaping (PS) PBC. A second objective of
this paper is to show that all these variants of Standard PBC
can be naturally derived in a systematic way: selecting the
desired closed–loop dissipation.

The third objective of the paper is to relate and compare
CbI and Standard PBC, which is done with three different
criteria. First, comparing the size of the set of PH plants for
which they are applicable—this is in its turn determined by
the size of the solution set of the partial differential equations
(PDEs) that need to be solved for each of the methods. Second,
proving that the (static feedback) Standard PBC laws are the
restriction of the (dynamic feedback)CbI on the invariant
sets defined by the Casimir functions. This provides a nice
geometric interpretation to this successful controller design

technique.2 Finally, it is shown that ifCbI can stabilize a
given plant then this is also possible with the corresponding
Standard PBC—proving that, from the stabilization viewpoint,
there is no advantage in considering dynamic feedback.

The remaining of the paper is organized as follows. In
Section II we review the basic scheme ofCbI for PH systems
and exhibit the dissipation obstacle. Section III is devoted
to the generation of new cyclo–passivity properties for the
system and applyCbI to these new cyclo–passive systems
in Section IV. The use of state–modulated interconnections
in CbI is presented in Section V. The derivation of various
Standard PBCs, proceeding from the selection of the desired
dissipation, is carried out in Section VI, while the connections
betweenCbI and Standard PBC are established in Section
VII. Some illustrative academic examples are presented in
Section VIII and we wrap–up the paper with concluding
remarks and future research in Section IX. For ease of
reference, a list of acronyms (that, alas, plague this paper) is
given in the appendix.

Notation All vectors defined in the paper arecolumn vec-
tors, even the gradient of a scalar function that we denote
with the operator∇x = ∂

∂x
. When clear from the context

the subindex of the operator∇ and the arguments of the
functions will be omitted. For vector functionsF : R

n →
R

m, we define its (transposed) Jacobian matrix∇F(x)
△
=

[∇F1(x), . . . ,∇Fm(x)] and, for a distinguished elementx⋆ ∈
R

n, we denoteF⋆
△
= F(x⋆).

II. CONTROL BY INTERCONNECTION OFPH SYSTEMS

In order to make this paper self–contained, after presenting
PH models, we briefly review in this section the basic version
of theCbI method, and discuss its limitations in the presence
of dissipation.

A. Cyclo–Passivity of Port–Hamiltonian Systems

PH models of power–conserving physical systems were
introduced in [21], see [24], [33], [34] for a review. The input–
state–output representation of PH systems is of the form

Σ(u,y)

{

ẋ = [J (x) −R(x)]∇H(x) + g(x)u
y = g⊤(x)∇H(x),

(1)

wherex ∈ R
n is the state vector,u ∈ R

m, m ≤ n, is the
control action,H : R

n → R is the total stored energy,J ,R :
R

n → R
n×n, with J = −J⊤ and R = R⊤ ≥ 0, are the

natural interconnection and damping matrices, respectively, u,
y ∈ R

m, are conjugated variables whose product has units of
power andg : R

n → R
n×m is assumed full rank. We bring to

the readers attention the important fact thatH is not assumed
to be positive semi–definite (nor bounded from below). Also,
to simplify the notation in the sequel we define the matrix
F : R

n → R
n×n

F (x)
△
= J (x) −R(x),

2At a more fundamental level, viewing Standard PBC as (a restriction
of) interconnected subsystems is consistent with the behavioral framework
[22], which rightfully claims that the classical input–to–output assignment
perspective is unsuitable to deal, at an appropriately general level, with the
basic tenets of systems theory.



SUBMITTED TO IEEE TRANS. AUTOMAT. CONTR.(FEBRUARY 2007) 3

which clearly satisfies

F + F⊤ = −2R ≤ 0. (2)

The power conservation property of PH systems is captured
by the power–balance equation

Ḣ = − (∇H)
⊤ R∇H + u⊤y. (3)

Using the fact thatR ≥ 0 we obtain the bound

Ḣ ≤ u⊤y, (4)

that, following the original denomination of [36], we referas
cyclo–passivity inequality. Systems satisfying such an inequal-
ity are called cyclo–passive, which should be distinguished
from passive systems whereH is positive semi–definite.3

Remark 1: In words, a system is cyclo–passive when it
cannot create energy over closed paths in the state–space. It
might, however, produce energy along some initial portion
of such a trajectory; if so, it would not be passive. On the
other hand, every passive system is cyclo–passive. It has been
shown in [11] that, similarly to passive systems, one can
use storage functions and passivity inequalities to characterize
cyclo–passivity provided we eliminate the restriction that these
storage functions be non–negative.

Remark 2:Although the paper considers only systems de-
scribed by PH models (1) some of the results are applicable
to the more general class of cyclo–passive systems

ẋ = f(x) + g(x)u

y = g⊤(x)∇V (x),

wheref : R
n → R

n and V : R
n → R satisfy f⊤∇V ≤ 0.

(This class has been considered, for instance, in [11].) Under
which conditionsf can be expressed asF∇V , for someF

verifying F + F⊤ ≤ 0, is a difficult question. An affirmative
(constructive) answer has been given in [27], but the proposed
F has singularities. See also [18], [29], [35] and the discussion
in Subsection 4.2.2 of [34].

B. Energy Shaping via Control by Interconnection

As indicated above, in PBC the control objective is achieved
rendering the system passive with respect to a desired storage
function and injecting damping. For the basic problem of sta-
bilization, the desired energy function should have a minimum
at the equilibrium and the damping injection insures that the
function is non–increasing. In this way, the energy function
qualifies as a Lyapunov function. We now briefly review the
PBC method ofCbI for stabilization of PH systems, we refer
the reader to [33], [34] for further details and extensions.The
configuration used forCbI is shown in Fig. 1, where the
controller,Σc, is a PH system, coupled with the plant,Σ(u,y),
via the interconnection subsystem,ΣI , that we select to be
power–preserving. That is, such that, for allt ≥ 0,

y⊤(t)u(t) + y⊤
c (t)uc(t) = y⊤(t)v(t), (5)

where v is an external signal that we introduce to define
the port variables of the interconnected system and (possibly)
inject additional damping.

3In [24], [27] we referred to cyclo–passive systems as energy–balancing.
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Fig. 1. Block diagram of theCbI scheme with external port variables(v, y).

We choose the dynamics of the controller to be a simple set
of (possibly nonlinear) integrators, that is,

Σc :

{

ζ̇ = uc

yc = ∇Hc(ζ),
(6)

whereζ, uc, yc ∈ R
m, and Hc : R

m → R is the controllers
energy function—to be defined by the designer. From

Ḣc = u⊤
c yc, (7)

we see thatΣc is cyclo–passive (actually, cyclo–lossless). In its
simplest formulation,CbI assumes that we measure only the
plant output and fixesΣI to be the standard negative feedback
interconnection

ΣI :

{ [

u

uc

]

=

[

0 −Im

Im 0

] [

y

yc

]

+

[

v

0

]

, (8)

which clearly satisfies (5), withIm them×m unitary matrix.
Combining (4), (5) and (7), we obtain that the interconnected
system is also cyclo–passive with port variables(v, y) and
energy function the sum of the energy functions of the plant
and the controller, that is

Ḣ + Ḣc ≤ v⊤y. (9)

To complete the shaping of the energy functionCbI invokes
the Energy–Casimir method—well–known in Hamiltonian
systems analysis, see e.g. [6], [19]—and looks for conserved
quantities (dynamical invariants) of the overall system. If such
quantities can be found we can generate Lyapunov function
candidates combining the conserved quantities and the energy
function. We will look, in particular, for conserved quantities
that areindependentof the energy functionsH andHc—such
functions are called Casimir.

The application of the Energy–Casimir method for stability
analysis of (output feedback)CbI is summarized below.

Proposition 1: Consider the PH systemΣ(u,y) (1) coupled
with the PH controllerΣc (6) through the power–preserving
interconnection subsystemΣI (8). Assume there exists a
vector functionC : R

n → R
m such that

[

F⊤

g⊤

]

∇C =

[

g

0

]

(10)

Then, for all functionsΦ : R
m → R, the functionW : R

n ×
R

m → R

W (x, ζ)
△
= H(x) + Hc(ζ) + Φ(C(x) − ζ), (11)
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is such that
Ẇ ≤ v⊤y. (12)

Hence, the system is cyclo–passive with storage functionW .
Proof: The dynamics of the interconnected system is

given by
[

ẋ

ζ̇

]

=

[

F −g

g⊤ 0

] [

∇H

∇Hc

]

+

[

gv

0

]

.

Now,

Ċ − ζ̇ =
[

(∇C)⊤ | −Im

]

[

ẋ

ζ̇

]

.

Evaluating along the closed–loop dynamics above and invok-
ing (10), yieldsĊ − ζ̇ = 0, for all H andHc. Hence,Φ̇ = 0.
This, together with (9) and (11) completes the proof.

Remark 3:For ease of notation, and with some loss of
generality, we have taken the order ofΣc to be equal to the
number of inputs. If we letζ ∈ R

r, for anyr ∈ Z+, we should
replace the interconnection subsystem (8) by

[

u

uc

]

=

[

0 −α

α⊤ 0

] [

y

yc

]

+

[

v

0

]

,

where α ∈ R
m×r. All derivations in this section, i.e., the

restriction imposed by the dissipation obstacle and the PDEs
to be solved (10), remained unchanged—replacingg by gα,
which amounts to a redefinition of the plant inputs. In Section
V we show that settingr = m and selectingα a function
of the plant statex the conditions for Casimir generation are
simplified. A discussion on this issue may be found in [34].
See also Remark 7 and point iii) in Section IX.

Remark 4:Necessary and sufficient conditions for the solv-
ability of the PDEs (10), in terms of regularity and involutivity
of certain distributions, are given in Proposition 3 of [5].

Remark 5: In [24] the energy shaping action ofCbI was
viewed from an alternative perspective—geometric instead of
Lyapunov–based—that proceeds as follows. First, we notice
that the level sets of the Casimir functions,ζ − C(x), are
invariant sets for the interconnected system. That is, the sets

Ωκ
△
= {(x, ζ) ∈ R

n × R
m| ζ = C(x) + κ}, κ ∈ R

are invariant for the overall dynamics.4 Then, projecting the
system onΩκ yields the reduced dynamicsẋ = F∇Hs, where

Hs(x)
△
= H(x)+Hc[C(x)+κ] plays the role of shaped energy

function. Even though with a proper selection of the initial
conditions of the controller we can setκ = 0, the fact that
the shaped energy function depends on this constant is rather
unnatural, thus we have presented the result using a Lyapunov
approach.

Remark 6: In Proposition 1, and actually throughout most
of the paper, we have concentrated on the ability ofCbI

to shape the energy function, without particular concern of
the stability property. Clearly,W will qualify as a Lyapunov
function if we can ensure that the desired equilibrium point
(x⋆, ζ⋆) is an isolated minimum ofW (x, ζ). If y is a detectable

4We recall that a setΩκ ⊂ R
n ×R

m is invariant if (x(0), ζ(0)) ∈ Ωκ ⇒
(x(t), ζ(t)) ∈ Ωκ for all t ≥ 0. A necessary and sufficient condition for all
setsΩκ, called the foliation of the manifoldΩ0, to be invariant is precisely
ζ̇ = Ċ.

output for the overall system [34],asymptoticstability of
the equilibrium can be enforced adding damping, i.e., setting
v = −Kpy, Kp = K⊤

p > 0, and fixing the initial conditions
of the controller states as

ζ(0) = ζ⋆ + C(x(0)) − C(x⋆).

This initialization is needed to ensure that the trajectorystarts

(and remains) in the invariant setΩκ⋆
, with κ⋆

△
= ζ⋆ −C(x⋆),

that contains the desired equilibrium. See point iv) of Section
IX for a discussion on this critical point.

Remark 7: Interestingly, it is possible to show that we
cannot generate Casimirs and at the same time add damping
through the controller unless we increase the dimension of the
dynamic extension, which was taken here to be equal tom.
Indeed, replacinġζ = −Rc∇Hc +uc in (6) and repeating the
calculations for the computation of the Casimirs (withv = 0)
yields the necessary condition(∇C)⊤R∇C = −Rc, which
cannot be satisfied with a positive semi–definite matrixRc.
See Section 3.2 of [23] and Example 4.3.3 of [34] for cases
where damping propagation from the controller is possible
with a dynamic extension of dimensiongreater thanm.

C. The Dissipation Obstacle

Proposition 1 shows that, via the selection ofHc andΦ, it
is possible to shape the energy function of the interconnected
system—provided we can generate Casimir functions. That is,
if we can solve the PDEs (10). Unfortunately, the solvability
of the latter imposes a serious constraint on the dissipation
structure of the system, which was calleddissipation obstacle
in [24].

Proposition 2: If (10) admits a solution then

R∇xΦ(C(x) − ζ) = 0, (13)

for all Φ : R
m → R. Consequently, energy cannot be shaped

for coordinates that are affected by physical damping.
Proof: Spelling out (10) and combining them we get

F⊤∇C = g, g⊤∇C = 0 ⇒ (∇C)⊤F⊤∇C = 0

⇒ R∇C = 0.

The proof is completed noting that∇xΦ = ∇C∇Φ.
It is also possible to express the dissipation obstacle in terms

of the energy provided to the plant by the controller. More
precisely, we will now show that a PH system with full rank
F is stabilizable viaCbI only if the power extracted from the
controller is zero at the equilibrium.

Proposition 3: Let x⋆ be the equilibrium of the PH system
(1) to be stabilized viaCbI, andu⋆, y⋆ the corresponding input
and output. If (10) admits a solution andF is full rank then
u⊤

⋆ y⋆ = 0.
Proof: First, note that sinceR∇C = 0 we have that

F⊤∇C = g is equivalent toF∇C = −g. Hence, (10) is
equivalent to

F∇C = −g, g⊤∇C = 0. (14)

Consequently, since the inverse ofF exists, we have∇C =
−F−1g, which replaced inR∇C = 0 yields

RF−1g = 0, (15)
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that is anecessarycondition for the existence of Casimirs.
Now, evaluatingẋ = F∇H+gu at the equilibrium we have

the following chain of implications

0 = F⋆∇H⋆ + g⋆u⋆ ⇔ ∇H⋆ = −F−1
⋆ g⋆u⋆

⇒ R⋆∇H⋆ = −R⋆F
−1
⋆ g⋆u⋆

⇒ R⋆∇H⋆ = 0

⇒ ∇⊤H⋆R⋆∇H⋆ = 0,

where we have invoked (15) to get the third implication.
Replacing the latter in the power balance equation (3), and
evaluating at the equilibrium, yields the desired result.

Remark 8: It is shown in [33] that the dissipation obstacle is
intrinsic, in the sense that it is determined only by the damping
interconnection structure and is independent of the actualvalue
of the damping elements.

III. G ENERATING NEW CYCLO–PASSIVITY PROPERTIES

To overcome the dissipation obstacle we propose in this
section to exploit the non–uniqueness of the PH representation
to generate new cyclo–passive outputs. More precisely, we will
look for full rank matricesFd : R

n → R
n×n, with

Fd(x) + F⊤
d (x) ≤ 0, (16)

and storage functionsHPS : R
n → R such that

F (x)∇H(x) = Fd(x)∇HPS(x). (17)

It is clear that, if (16) and (17) hold, then the systemẋ =
F∇H + gu with outputg⊤∇HPS will be cyclo–passive with
storage functionHPS. It turns out thatg⊤∇HPS is not adequate
to overcome the dissipation obstacle and another cyclo–passive
output—that, being related with the power shaping procedure
of [28], we callyPS—must be generated. Interestingly, we also
prove that in the single input case a necessary and sufficient
condition for the new cyclo–passive outputyPS to be equal to
the “natural” outputg⊤∇HPS is precisely the absence of the
dissipation obstacle.

A. Construction ofyPS
The procedure to identify the new cyclo–passive outputs is

contained in the following proposition, which requiresFd to
be full rank and relies on a direct application of Poincare’s
Lemma.5

Proposition 4: For all solutionsFd of the PDE

∇
(

F−1
d F∇H

)

=
[

∇
(

F−1
d F∇H

)]⊤
, (18)

verifying (16) there exists a storage functionHPS such that the
PH system6

Σ(u,yPS)







ẋ = F (x)∇H(x) + g(x)u

yPS = −g⊤(x)F−⊤
d (x)F (x)∇H(x) −

− g⊤(x)F−⊤
d (x) + g(x)u

(19)

5Poincare’s Lemma: Givenf : R
n → R

n, f ∈ C1. There existsψ :
R

n → R such that∇ψ = f if and only if ∇f = (∇f)⊤.
6We are using here the definition of PH systems with feed–through term

introduced in [33].

satisfies the cyclo–passivity inequality

ḢPS ≤ u⊤yPS. (20)
Proof: Poincare’s Lemma states that (18) is necessary

and sufficient for the existence ofHPS such that

∇HPS = F−1
d F∇H, (21)

which is equivalent to (17). We then have the following chain
of implications

Fd∇HPS = F∇H ⇒ ẋ = Fd∇HPS + gu

⇔ F−1
d ẋ = ∇HPS + F−1

d gu

⇒ ẋ⊤F−1
d ẋ = ḢPS + ẋ⊤F−1

d gu

⇒ 0 ≥ ḢPS + ẋ⊤F−1
d gu,

where the last inequality is obtained using (16) and the fact
thatA+A⊤ ≤ 0 ⇔ A−1+A−⊤ ≤ 0, for any full rank matrix
A. The proof is completed replacinġx and the definition of
yPS in (19) in the latter inequality.

Remark 9:Under the assumption thatF is full rank we
obtain a trivial solution of (18) settingFd = F . In this case,
HPS = H and we obtain the new power–balance equation

Ḣ = ẋ⊤F−1ẋ + u⊤yPS.

Comparing with (3) we see that the new passive output is
obtained swapping the damping—as first observed in [15]. In
that paper it is also shown that, for electromechanical systems
with input voltage sources in series with leaky inductors,
yPS results from the application of the classical Thevenin–
Norton equivalent of electrical circuits. See also the example
in Subsection VIII-B.

Remark 10:The construction proposed in [28] for power–
shaping can be used also here to provide solutions of (18),
providedF is full rank. Namely, it is easy to show that for
all matricesM : R

n → R
n×n, with M(x) = M⊤(x) and all

λ ∈ R, such that

M̃(x)
△
=

1

2
[(∇2H(x))M(x) + ∇(M(x)∇H(x)) + 2λIn]

is full rank, F−1
d = M̃F−1 solves (18). The resulting storage

function beingHPS = λH + (∇H)⊤M∇H.
Remark 11:In [33] it is shown that PH systems with feed–

through term take the form

Σ(u,ỹ)







ẋ = F (x)∇H(x) + g(x)u
ỹ = [g(x) + 2P (x)]⊤∇HPS(x) +

+ [T (x) + S(x)]u,

where S = S⊤, T = −T⊤ and the dissipation structure
(defined in col(x, u)) is captured by

[

R P

P⊤ S

]

≥ 0.

Setting,P = − 1
2 (I + F⊤

d F−1
d )g, T = 0 andS = −g⊤F−⊤

d g

we see that (19) belongs to this class withỹ = yPS.
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B. When isyPS = g⊤∇HPS? The Role of Dissipation

As indicated above, if (16) and (17) hold, theng⊤∇HPS

is a cyclo–passive output and we could applyCbI for the
system with the port variables(u, g⊤∇HPS). Introducing the
natural notationFd(x) = Jd(x) − Rd(x), with Jd = −J⊤

d

andRd = R⊤
d ≥ 0, and doing some simple calculations we

can prove that in this case a necessary condition for generation
of Casimirs is

RdF
−1
d g = 0, (22)

which still imposes a restriction on the damping—compare
with (15). We will show in the next section that applyingCbI

to yPS, instead ofg⊤∇HPS, this restriction is removed. Inter-
estingly, the proposition below proves that the construction of
Proposition 4 will generate new passive outputs if and only if
(22) does not hold.7

We require the following basic lemma.
Lemma 1:g⊤F−⊤

d g = −g⊤F−⊤
d RdF

−1
d g.

Proof: We compute

g⊤F−⊤
d g =

1

2
g⊤(F−⊤

d + F−1
d )g

=
1

2
g⊤F−⊤

d (Fd + F⊤
d )F−1

d g.

The proof is completed withFd + F⊤
d = −2Rd.

Proposition 5: In the single input single output case the
new cyclo–passive outputyPS is equal tog⊤∇HPS if and only
if the dissipation obstacle for the PH system with port variables
(u, g⊤∇HPS) is absent, that is

RdF
−1
d g = 0

⇔
g⊤∇HPS = −g⊤F−⊤

d (Fd∇HPS + gu) (= yPS).

Proof: From the definition ofyPS in (19) and (17) we
have

yPS = −g⊤F−⊤
d (Fd∇HPS + gu) ± g⊤∇HPS

= −g⊤F−⊤
d (Fd + F⊤

d )∇HPS − g⊤F−⊤
d gu +

+ g⊤∇HPS

= g⊤F−⊤
d Rd(2∇HPS + F−1

d gu) + g⊤∇HPS,

where we have added and subtractedg⊤∇HPS in the first line
and invoked Lemma 1 to obtain the third identity. The proof
is completed noting that the sum of the first and the second
right hand term in the last equation is zero if and only if
RdF

−1
d g = 0.

Remark 12:SettingFd = F we obtain as a simple corollary
of Proposition 5 the equivalence

RF−1g = 0 ⇔ y = yPS. (23)

The sufficiency part of this equivalence had been established
before in [16].

7In this subsection we assume that the system is single input, e.g., m = 1,
in this case,g is a column vector. For the multi–input case the condition is
only sufficient.

IV. CONTROL BY INTERCONNECTION WITHΣ(u,yPS)

In this section we apply theCbI methodology to the new PH
systemΣ(u,yPS) and show that, in this way, we can shape even
the coordinates where dissipation is present. More precisely,
we will remove the second condition for existence of Casimirs
in (10), obviating the dissipation obstacle (13). To differentiate
this controller from the one obtained usingΣ(u,y) we refer to
it as CbIPS. Moreover, we distinguish two variations, when
Fd = F , that we call BasicCbIPS, and whenFd 6= F that we
refer asCbIPS.

A. CbIPS Overcomes the Dissipation Obstacle

Proposition 6: Assume the PDE (18) admits a solutionFd

verifying (16) and such that

Fd∇C = −g, (24)

for some vector functionC : R
n → R

m. Consider the PH
system (19) coupled with the PH controllerΣc (6) through
the power–preserving interconnection subsystem

ΣPS

I :

{ [

u

uc

]

=

[

0 −Im

Im 0

] [

yPS
yc

]

+

[

v

0

]

. (25)

Then, for all functionsΦ : R
m → R, the following cyclo–

passivity inequality is satisfied

ẆPS ≤ v⊤yPS, (26)

where the storage functionWPS : R
n ×R

m → R is defined as

WPS(x, ζ)
△
= HPS(x) + Hc(ζ) + Φ(C(x) − ζ), (27)

with HPS =
∫

(F−1
d F∇H)dx.

Proof: The proof directly mimics the proof of Proposition
1. The dynamics of the interconnected system are described
by

[

ẋ

ζ̇

]

=

[

Fd −g

−g⊤F−⊤
d Fd g⊤F−⊤

d g

] [

∇HPS

∇Hc

]

+

+

[

g

−g⊤F−⊤
d g

]

v.

Computing the time derivatives

Ċ − ζ̇ =
[

(∇C)⊤ | −Im

]

[

ẋ

ζ̇

]

=
[

−g⊤F−⊤
d | −Im

]

[

ẋ

ζ̇

]

= 0.

where the second equation is obtained from (24), and the last
equation holds for allHPS, Hc. Hence,Φ̇ = 0. This, together
with (7), (20) and (27) completes the proof.

Remark 13:The key difference between Propositions 1 and
6 is that the second condition for generation of Casimirs in
the former, namelyg⊤∇C = 0, is conspicuously absent in the
latter. As pointed out in Subsection II-C if both conditionsin
(10) are satisfied then the dissipation obstacle condition for
CbI appears—see also (15). This restriction is not imposed in
CbIPS.

Remark 14:In [20] the cyclo–passive outputyPS was ob-
tained, in the context of stability analysis of PH systems, with
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the following alternative construction. Suppose we can findC
satisfying

F∇C + g = 0. (28)

Construct now the interconnection and dissipation matrices of
an augmented systemas

Ja
△
=

[

J J∇C
(∇C)⊤J (∇C)⊤J∇C

]

= −J⊤
a ,

Ra
△
=

[

R R∇C
(∇C)⊤R (∇C)⊤R∇C

]

= R⊤
a ≥ 0.

By construction
[

(∇C)⊤ | −Im

]

Ja =
[

(∇C)⊤ | −Im

]

Ra = 0,

implying thatC − ζ are Casimirs for the PH dynamics
[

ẋ

ζ̇

]

= (Ja −Ra)

[

∇H(x)
∇Hc(ζ)

]

.

Furthermore, because of (28),

Ja −Ra =

[

J −R −g

(g − 2R∇C)⊤ (∇C)⊤(J −R)∇C

]

.

Thus, the augmented systems is the unitary feedback intercon-
nection of the nonlinear integrators (6) with the PH plant with
a different output, that turns out to beyPS for Fd = F ! It is
interesting to note that these derivations do not presume the
invertibility of F .

Remark 15:From the definition ofyPS in (19) and (24) we
see that, if the Casimirs exist,yPS = Ċ, which in its turn
is equal toζ̇. Hence, if we introduce the partial change of
coordinatesz = C(x) − ζ, we get ż = 0. This is another
way of viewing that the controller is rendering all the setsΩκ

invariant. See Remark 6.

V. CONTROL BY STATE–MODULATED INTERCONNECTION

In this section we will replace the simple negative feedback
interconnectionΣI by a state–modulated interconnection [34],
as suggested in Remark 3. In this way we will further relax
the condition for existence of Casimirs: (10) for theCbI of
Section II, and (24) for theCbIPS of Section IV. We will
call the new controllersCbISM for the former and, for the
controllers usingyPS, Basic CbISM

PS
if Fd = F and CbISM

PS
if

Fd 6= F .
The following elementary, though somehow overlooked,

result will be used in the sequel.
Lemma 2:Let g ∈ R

n×m, m < n with rank g = m.
Defineg⊥ ∈ R

(n−m)×n as a full rank left annihilator ofg, that
is, g⊥g = 0 and rank{g⊥} = n−m. For anyb ∈ R

n, û ∈ R
m

b + gû = 0 ⇔
{

g⊥b = 0
û = −(g⊤g)−1g⊤b

(29)

Proof: The matrix

[

g⊥

g⊤

]

∈ R
n×n is full rank. Hence,

b + gû = 0 ⇔
[

g⊥

g⊤

]

(b + gû) = 0.

The proof is completed using the annihilating property ofg⊥

and noting that the square matrixg⊤g is full rank.

A. Energy Shaping viaCbISM

Proposition 7: Assume the PDE
[

g⊥F⊤

g⊤

]

∇C = 0, (30)

admits a solution for some vector functionC : R
n → R

m.
Consider the PH systemΣ(u,y) (1) coupled with the PH con-
troller Σc (6) through thestate–modulatedpower–preserving
interconnection

ΣSM

I :

{ [

u

uc

]

=

[

0 −α(x)
α⊤(x) 0

] [

y

yc

]

+

[

v

0

]

,

(31)
whereα : R

n → R
m×m is defined as

α = −(g⊤g)−1g⊤F⊤∇C. (32)

Then, for all functionsΦ : R
m → R, the cyclo–passivity

inequality (12) with storage function (11) is satisfied.

Proof: The proof goes along the same lines as the proof
of Proposition 1, therefore is only sketched here. The dynamics
of the interconnected system is given by

[

ẋ

ζ̇

]

=

[

F −gα

α⊤g⊤ 0

] [

∇H

∇Hc

]

+

[

g

0

]

v.

Computing Ċ − ζ̇, and noting that, in view of Lemma 2,
g⊥F⊤∇C = 0 and (32) are equivalent toF⊤∇C = −gα,
completes the proof.

Remark 16:It is clear that the set of solutions of (30) is
strictly larger than the one of (10). Indeed, (30) is necessary,
but not sufficient, for (10). The inclusion of state modulation
in the interconnection has allowed, through the addition ofthe
matrixα, to significantly extend the class of systems for which
theCbI method is applicable. However, it is easy to show that
the controller above still suffers from the dissipation obstacle,
namely: (30)⇒ R∇C = 0.

B. Energy Shaping viaCbISM
PS

A similar result is obtained forCbIPS, whose proof is
omitted for brevity.

Proposition 8: Assume the PDE (18) admits a solutionFd

verifying (16) and such that

g⊥Fd∇C = 0, (33)

for some vector functionC : R
n → R

m. Consider the PH
system (19) coupled with the PH controllerΣc (6) through the
state–modulatedpower–preserving interconnection subsystem

ΣPS−SM

I :

{[

u

uc

]

=

[

0 −α(x)
α⊤(x) 0

] [

yPS
yc

]

+

[

v

0

]

,

(34)
whereα : R

n → R
m×m is defined as

α = −(g⊤g)−1g⊤Fd∇C. (35)

Then, for all functionsΦ : R
m → R, the cyclo–passivity

inequality (26) with storage function (27) is satisfied.
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VI. STANDARD PASSIVITY–BASED CONTROL REVISITED

In [24] we introduced the following:
Definition 1: Consider the PH system (1) verifying the

power–balance equation (3), that we repeat here for ease of
reference

Ḣ = u⊤y − d,

with d
△
= (∇H)⊤R∇H ≥ 0 the open–loop dissipation. A

control actionu = û(x)+v solves theStandard PBC problem
if the closed–loop system satisfies the desired power–balance
equation

Ḣd = v⊤z − dd, (36)

where Hd : R
n → R+ is the desired energy function,

dd : R
n → R+ is the desired damping, andz ∈ R

m is a new
passive output.

The problem above has too many “degrees of freedom”, i.e.,
Hd, dd, z, û.8 In spite of this, in the present section we derive
from a unified perspectivefour solutions to this problem.
Namely, we will show that selecting various desired dissi-
pation functions,dd, generates different versions of Standard
PBC, which were previously obtained independently invoking
other considerations. The definition below is instrumentalto
streamline our results.

Definition 2: Define theaddedenergy function

Ha(x)
△
= Hd(x) − H(x). (37)

A state feedback that solves the Standard PBC problem
satisfies the Energy–Balancing (EB) property—for short, is
EB—if the added energyHa equals the energy supplied to
the system by the environment, that is, if

Ḣa = −û⊤y. (38)

Consequently, the total energy functionHd is the difference
between the stored and the supplied energies.

A. Preliminary Results and Proposed Approach

Before presenting the main results of the section we find
convenient to recall the fundamental Hill–Moylan’s Lemma
[11] whose proof, in the present formulation, may be found in
[32]. We also present a corollary to Hill–Moylan’s Lemma,
that is instrumental for the solution of the Standard PBC
problem, as well as the proposed approach.

Lemma 3:The system

ẋ = f(x) + g(x)u, y = h(x)

is cyclo–passive with storage functionV : R
n → R, V ∈ C1,

i.e. V̇ ≤ u⊤y, iff there exists adamping functiond : R
n → R+

such that9

∇V ⊤f = −d (39)

g⊤∇V = h. (40)

8To ensure stability of an equilibriumx⋆ we imposex⋆ = arg min Hd,
and for asymptotic stabilityz should be a detectable output—see Remark 6.

9Condition (40) justifies the choice of output made in Remark 2. It is
important o underscore thatd is a function of the state.

Corollary 1: Consider the PH systemΣ(u,y) (1) in closed–
loop with u = û(x) + v. Then (36) holds iff

∇H⊤
d (F∇H + gû) = −dd (41)

z = g⊤∇Hd, (42)

for some functiondd : R
n → R+.

In view of Corollary 1, that fixes the new passive output
z via (42), our problem is now to find(Hd, dd, û) that will
solve (41) for a given triple(F, g,H). We propose to select
the desired dampingdd to be able to define a control signal
û—function of Hd—so that (41) becomes alinear PDE in
the unknownassignableenergy functionsHd. For solvability
purposes, the qualifier “linear” in the PDE is essential in the
procedure.

Remark 17:For linear time–invariant systems,ẋ = Ax +
Bu, with

û = Kx, Hd =
1

2
x⊤Pdx, dd =

1

2
x⊤Rdx

(41) becomes the Lyapunov equation

Pd(A + BK) + (A + BK)⊤Pd = −Rd.

Remark 18:A version of Hill–Moylan’s Lemma for sys-
tems with direct throughput may be found in [11], [32].
For simplicity, we have decided to consider systems without
throughput. This is done without loss of generality because,
for our purposes, the key equation to be verified is (39) that
remains unchanged.

B. Energy–Balancing PBC

Proposition 9: Fix dd = d = −∇H⊤F∇H, and denote
û = ûEB.
(i) The control lawûEB = −(g⊤g)−1g⊤F⊤∇Ha, with Ha

solution of the PDEs
[

g⊥F⊤

g⊤

]

∇Ha = 0, (43)

solves the Standard PBC problem.
(ii) The controller is EB, that is, (38) holds.

(iii) EB–PBC suffers from thedissipation obstacle. More
precisely,

(43) ⇒ R∇Ha = 0. (44)
Proof: We will verify that (41) holds. Thus,

(41) with dd = d ⇔ ∇H⊤
d (F∇H + gûEB) = ∇H⊤F∇H

⇔ ∇H⊤
d gûEB = −∇H⊤

a F∇H

⇔ ∇H⊤gûEB = −∇H⊤
a F∇H

⇔ ∇H⊤(F⊤∇Ha + gûEB) = 0, (45)

where we usedg⊤∇Ha = 0 to obtain the third equivalence.
Applying Lemma 2 to the term in parenthesis we get the
proposed solution

g⊥F⊤∇Ha = 0, ûEB = −(g⊤g)−1g⊤F⊤∇Ha.

To establish the EB property we have

g⊤∇Ha = 0 ⇒ z = y

⇒ Ḣd = y⊤v − d

⇒ Ḣa = −y⊤ûEB,
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where we have usedz = g⊤∇Hd in the first implication,
dd = d in the second andḢ = y⊤(ûEB + v) − d for the
last one. Finally, fromF⊤∇Ha = −gûEB, premultiplying by
∇H⊤

a , and usingg⊤∇Ha = 0 yields ∇H⊤
a F⊤∇Ha = 0,

which is equivalent toR∇Ha = 0.
Remark 19:EB–PBC are widely popular for potential en-

ergy shaping of mechanical systems. In this case

x =

[

q

p

]

, H(q, p) =
1

2
p⊤M−1(q)p + V (q),

F =

[

0 I

−I −R

]

, g(q) =

[

0
G(q)

]

,

and the added energy isHa(q) = Vd(q)− V (q), where(q, p)
are the generalized coordinates and momenta,M = M⊤ > 0
is the inertia matrix,R = R⊤ ≥ 0 is the dissipation due
to friction, G is the input matrix andV, Vd are the open–
loop and desired potential energies, respectively. Some simple
calculations show that (43) becomesG⊥(∇Vd − ∇V ) = 0,
which is known as the potential energy matching equation
[3], [25].

Remark 20:The restriction imposed by the dissipation cap-
tured by (44) is of the same nature as the one imposed to
CbI, namely, (13). In both cases, we are unable to shape the
coordinates where dissipation is directly present. In Subsection
III-B we proved that the construction ofyPS used forCbIPS
yielded the same output, i.e.,yPS = y, iff the dissipation
obstacle is absent—that is, when there is no need for the new
output! Interestingly, we will show in the next subsection that
Standard PBCs that do not suffer from this limitation will be
EB, precisely if the dissipation obstacle is absent. In other
words, for bothCbI and Standard PBC, our ability to ensure
that the difference between the energies is a non–increasing
function is determined by the nature of the dissipation.

Remark 21:In [24] EB–PBC was derived looking for func-
tionsHa andû that satisfy (38). This is, of course, equivalent
to solving the PDE(∇Ha)⊤(F∇H + guEB) = u⊤

EB
g⊤∇H,

which is the first line in (45).

C. Interconnection and Damping Assignment PBC

We derive in the propositions below the two versions of
IDA–PBC reported in [27]: when the interconnection and
damping matrices are left unchanged, called Basic IDA–PBC,
and when they are modified, that we simply call IDA–PBC.
As shown in [27], neither one of the schemes is limited by
the dissipation obstacle. The proofs of the propositions, being
similar to the proof of Proposition 9, are omitted for the sake
of brevity.

Proposition 10: Fix dd = −∇H⊤
d F∇Hd, and denotêu =

ûBIDA.

(i) The control law ûBIDA = (g⊤g)−1g⊤F∇Ha, with Ha

solution of the PDEg⊥F∇Ha = 0, solves the Standard
PBC problem.

(ii) If v = 0 and there is no dissipation obstacle, i.e., if
R∇Ha = 0 then Basic IDA–PBC is EB.

Proposition 11: Fix dd = −∇H⊤
d Fd∇Hd with Fd +F⊤

d ≤
0, and denotêu = ûIDA.

(i) The control law

ûIDA = (g⊤g)−1g⊤[Fd∇Ha + (Fd − F )∇H],

with Ha solution of the PDE

g⊥Fd∇Ha = g⊥(F − Fd)∇H, (46)

solves the Standard PBC problem.
(ii) If v = 0, the damping is left unchanged and there is no

dissipation obstacle, i.e.,

R = −1

2
(Fd + F⊤

d ), R∇Ha = 0,

then IDA–PBC is EB.

Remark 22:Applying Lemma 2 to the equations in point
(i) of Proposition 10 we conclude thatF∇Ha = gûBIDA,
hence the closed–loop system for Basic IDA–PBC isẋ =
F∇Hd + gv, that is, only the energy is shaped. On the other
hand, proceeding analogously for IDA–PBC we have that the
closed–loop is noẇx = Fd∇Hd + gv, whereFd contains the
desired interconnection and damping matrices—motivating the
name IDA.

D. Power–Shaping PBC

Let us briefly recall the methodology of Power Shaping (PS)
PBC that was introduced in [28] as an alternative to energy
shaping PBC for stabilization of nonlinear RLC circuits, and
was later extended for general nonlinear systems of the form
ẋ = f(x) + g(x)u in [9]. The name, Power Shaping, was
motivated by the fact that, in the case of RLC circuits, the
storage functions haveunits of power, as opposed to energy
as is normally the case in PBC of PH systems.

The starting point for PS–PBC of RLC circuits is to describe
the system using, so–called, Brayton–Moser models [4] where
the state coordinates are the co–energy variables (voltages in
capacitors and currents in inductors) as opposed to energy
variables (charges in capacitors and fluxes in inductors), which
are used in PH models. With this choice of state variables it
is possible to show that, for a large class of nonlinear RLC
circuits, the dynamics are described by10

Q(x)ẋ = ∇P (x) + Bu, (47)

whereu ∈ R
m consists of voltage and current sources,Q :

R
n → R

n×n is a full rank block diagonal matrix containing
the generalized inductance and the generalized capacitance
matrices, andP : R

n → R—which has units of power, and is
called the mixed potential function—captures the interconnec-
tion structure and the dissipation. This should be contrasted
with PH models, whereF contains the interconnection and
damping matrices andH is the energy function.11

10To avoid cluttering we use the same symbol,x, to denote the new state
variables.

11Relationships between the two descriptions have been studied in [13].
See also [33] for a general procedure to transform from one model to the
other via the Legendre transform. See also the example in Subsection VIII-B.
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Stabilization via PS–PBC proceeds in two steps, first, the
selection of a pair(Q̃, P̃ ) such that,

Q−1∇P = Q̃−1∇P̃
(

⇔ ∇(Q̃Q−1∇P ) = [∇(Q̃Q−1∇P )]⊤
)

(48)

with Q̃ + Q̃⊤ ≤ 0. In this way, we can prove that the system
can be written in the form

Q̃ẋ = ∇P̃ + Q̃Q−1Bu,

and clearly satisfies the cyclo–passivity inequality12

˙̃
P ≤ u⊤ỹ, ỹ

△
= B⊤Q−⊤Q̃⊤ẋ.

This first step is, obviously, identical to the procedure for
generation ofyPS of Proposition 4. More precisely, identifying
F = Q−1, Fd = Q̃−1 and HPS = P̃ equation (48) coincides
with (18).

In the second step we shape the power functionP̃ by adding
a functionPa : R

n → R, solution of the PDE

B⊥QQ̃−1∇Pa = 0, (49)

which, together with a suitably defined control, yields the
closed–loop dynamics̃Qẋ = ∇(P̃ + Pa). Identifying g =
Q−1B andFd as above, the PDE (49) reduces to (33), proving
the equivalence of PS–PBC andCbIPS.

PS–PBC can also be derived, like the previous Standard
PBCs, fixing a desired dissipation. Again, in the interest of
brevity, we omit the proof of the proposition.

Proposition 12: Consider the solutions Fd, with
Fd + F⊤

d ≤ 0, of (18). Fix dd = −(F∇H +
gûPS)

⊤F−1
d (F∇H + gûPS), and denoteû = ûPS. The

control law ûPS = (g⊤g)−1g⊤Fd∇H̃a, with H̃a solution of

the PDE g⊥Fd∇H̃a = 0 and H̃d(x)
△
= Ha(x) + HPS(x),

solves the Standard PBC problem.
Remark 23:It is also possible to relate PS–PBC and IDA–

PBC, viewing the former as a two step procedure to solve the
PDE of IDA–PBC, (46), which can be written asg⊥Fd∇Hd =
g⊥F∇H. While in IDA–PBC wefix Fd, in PS–PBC we obtain
it from the solution of (18). This ensuresF∇H = Fd∇HPS,
which replaced in the equation above yieldsg⊥Fd∇H̃a = 0. It
is important to note that (46) may have solutions even though
F−1

d F∇H is not a gradient of some function—as required by
(18).

VII. C BI AND STANDARD PBC: RELATIONSHIPS AND

COMPARISONS

In this section we relate and compareCbI and Standard
PBC using three different criteria.

i) Comparing the “size” of the set of PH plants for which
they are applicable—this is determined by the “size” of
the solution set of the PDEs that need to be solved for
each of the methods.

ii) Proving that the (static feedback) Standard PBC laws
are the restriction of the (dynamic feedback)CbI to the
invariant sets defined by the Casimir functions.

12In the Brayton–Moser model for RLC circuits the matrixQ is sign
indefinite, hence this step is needed to establish the cyclo–passivity.

iii) Showing that ifCbI can stabilize a given plant then this
is also possible with the corresponding Standard PBC—
showing that, from the stabilization viewpoint, there is
no advantage in considering dynamic feedback.

A. Domain of Applicability

We find convenient to recall the PDEs that need to be
solved for each one of the PBC methods.13

Control by Interconnection

• (CbI)
[

F

g⊤

]

∇C =

[

−g

0

]

.

• (CbISM)
[

g⊥F

g⊤

]

∇C = 0.

• (BasicCbIPS)
F∇C = −g.

• (BasicCbISM
PS

)
g⊥F∇C = 0.

• (CbIPS)
Fd∇C = −g,

plus (18).
• (CbISM

PS
)

g⊥Fd∇C = 0,

plus (18).

Standard PBC

• (EB)
[

g⊥F

g⊤

]

∇Ha = 0.

• (Basic IDA)
g⊥F∇Ha = 0.

• (PS)
g⊥Fd∇Ha = 0,

plus (18).
• (IDA)

g⊥Fd∇Ha = g⊥(F − Fd)∇H.

The relationship between all these schemes is summarized
in the implications diagram of Fig. 2. The notationA → B

means that the set of solutions of the PDEs of B is strictly
larger than the one of A, consequently the set of plants to
which B is applicable is also strictly larger. Also, we sayA ↔
B if the PDEs are the same. We observe that, in this sense, the
more general method is IDA–PBC that has no “CbI version”.

13We recall that we definedC : R
n → R

m, while Ha : R
n → R.

However, in the light of Remark 3, we can always take the order of the
dynamic extension to be one, andC will be a scalar function.
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CbI - Basic CbI PS - CbI PS

CbI SM
?

- Basic CbI SM
PS

?
- CbI SM

PS

?

EB
?

6

- Basic IDA
?

6

- PS
?

6

- IDA

Fig. 2. Relationship between the different control schemes from the point
of view of domain of applicability.

B. Standard PBC as a Restriction of CbI

The following proposition shows that, restricting the dy-
namics ofCbI to the setΩ0, yields an EB–PBC.

Proposition 13: Assume the PDEs (10) admit a solution.
Then, for all functionsHc : R

m → R, the PH system
Σ(u,y) (1) in closed–loop with the static state–feedback control
u = ûEB(x) + v, whereûEB(x) = −∇CHc(C(x)), satisfies the
cyclo–passivity inequality

Ḣd ≤ v⊤y, (50)

whereHd = H + Ha with14

Ha(x)
△
= Hc(C(x)). (51)

Furthermore, the controller is EB.
Proof: Computing from (51) the time derivative

Ḣa = (∇CHc(C))⊤(∇C)⊤(F∇H + gu)

= (∇CHc(C))⊤g⊤∇H

= −û⊤
EB

y,

where the second identity is obtained using (10) and the last
one replacingûEB and the definition ofy. This establishes
the EB claim. The cyclo–passivity inequality (50) follows
replacingu = ûEB(x) + v in (4), using the definition ofHd

and the last identity above.
Similarly to CbI, CbIPS also admits a static state feedback

realization. Now, the resulting control law and storage function
are solutions of the matching equation of IDA–PBC.

Proposition 14: Assume the PDEs ofCbIPS, (18) and (24),
are satisfied. Then, for allHc : R

m → R, the state–feedback
controller ûIDA(x) = −∇CHc(C(x)), ensures that the IDA–
PBC matching condition

F∇H + gûIDA = Fd∇Hd (52)

is satisfied withHd = HPS + Ha andHa given by (51).
Proof: For ease of reference, we repeat here the PDEs

of CbIPS:

F∇H = Fd∇HPS

Fd∇C = −g.

14Hd is, up to an additive constant, the restriction ofW (11) to the set
ζ = C(x). Clearly, the “free” functionsΦ andHc play the same role in the
energy–shaping—as will be further clarified in Subsection VII-C.

Replacing in the matching equation (52) yields

Fd[∇HPS − (∇C)ûIDA] = Fd∇Hd ⇔ ∇Ha = −(∇C)ûIDA,

which is satisfied with the expressions ofHa and ûIDA given
in the proposition.

C. Stabilization viaCbI ⇒ Stabilization via Standard PBC

Throughout the paper we have concentrated our attention on
the ability of the various PBCs to modify the energy function,
without particular concern to stabilization. As indicatedabove,
stability will be ensured if a strict minimum is assigned
to the total energy function,W (or WPS) for CbI and Hd

for Standard PBC, at the desired equilibrium point. The
proposition below shows that the use of ascalar dynamic
extension inCbI, i.e., when we add only one integrator
(equivalently, generate only one Casimir function), does not
provide any additional freedom for minimum assignment to
the corresponding static state–feedback solutions of Standard
PBC.

Proposition 15: Consider the functions

W (x, ζ)
△
= H(x) + Hc(ζ) + Φ(C(x) − ζ)

Hd(x)
△
= H(x) + Hc(C(x)),

with ζ ∈ R andC : R
n → R. Then

∇W⋆ = 0 and ∇2W⋆ > 0

⇒ (∇Hd)⋆ = 0 and (∇2Hd)⋆ > 0.

Proof: Compute

∇W =

[

∇H + Φ′∇C
H ′

c − Φ′

]

, ∇Hd = ∇H + H ′
c∇C,

where (·)′ denotes differentiation of a function of a scalar
argument. Now,

∇W⋆ = 0 ⇒ Φ′
⋆ = (H ′

c)⋆ ⇒ ∇xW⋆ = (∇Hd)⋆ = 0.

On the other hand,

∇2Hd = ∇2H + H ′
c∇2C + H ′′

c ∇C∇C⊤

∇2W =

[

∇2H + Φ′∇2C 0
0 H ′′

c

]

+

= + Φ′′
[

∇C∇C⊤ −∇C
−∇C⊤ 1

]

Now,

[

I ∇C
0 |∇C|2

]

∇2W

[

I ∇C
0 |∇C|2

]⊤
=

[

∇2H + Φ′∇2C + H ′′
c ∇C∇C⊤ ∗

∗ ∗

]

From Sylvester’s Law of Inertia we have that∇2W and
the right hand side matrix above have the same inertia.
Consequently,

∇2W⋆ > 0 ⇒ (∇2H + Φ′∇2C + H ′′
c ∇C∇C⊤)⋆ > 0

⇔ (∇2Hd)⋆ > 0,
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ũ
Pump

γ

Tank 1

Tank 2

x1

x2

Fig. 3. The two-tank system

where we used the fact thatΦ′
⋆ = (H ′

c)⋆ in the last equiva-
lence.

Remark 24:Proposition 15 proves that ifW has a station-
ary point at(x⋆, ζ⋆) and it is locally strictly convex around
this point, then the same is true forHd—with respect tox⋆.

VIII. E XAMPLES

A. Two–Tanks Level Regulation Problem

Consider the two–tank system depicted in Fig 3 with an
input flow split between the tanks via a valve. The state
variablesx1 > 0 and x2 > 0 represent the water level in
the lower and upper tank, respectively, and the control action
ũ ≥ 0 is the flow pumped from the reservoir. The valve
parameter is the constantγ ∈ [0, 1], with γ = 0 if the valve is
fully open andγ = 1 if the valve is closed. We will assume
in the sequel thatγ > 0.

Using Torricelli’s law the dynamics of the system can be
written in PH form (1) with

J =

[

0 α2
√

x2

−α2
√

x2 0

]

,

R =

[

α1
√

x1 0
0 0

]

, g =

[

1
g2

]

(mass) energy functionH = x1 + A2

A1

x2, and cyclo–passive
(constant) outputy = 1

γ
. The system parameters are all

positive and defined as

αi
△
=

ai

√
2G

Ai

, i = 1, 2, g2
△
=

1 − γ

γ
,

whereai, Ai are the cross–sections of the outlet holes and the
tanks respectively,G is the gravitation constant, we defined

u
△
= γ

A1

ũ and, to simplify notation, we assumedA1 = A2.15

The achievable equilibrium set is the line

E △
= {x̄ ∈ R

2
>0 | x̄2 =

[

a1

a2
(1 − γ)

]2

x̄1},

15See [17], and references therein, for further details on themodel.

and the control objective is to stabilize a given equilibrium
point x⋆ ∈ E .

The dissipation obstacle hampers the application ofCbI and
EBC. Indeed, the condition (13) forCbI is not satisfied due
to the presence ofα1

√
x1 in the damping matrixR and the

fact that the first coordinate has to be shaped. EBC is also
not applicable because the control at the equilibriumu⋆ =
α2

g2

√
x2⋆ 6= 0—for all non–trivial points—hence, the power

extracted at the equilibriumu⋆y⋆ 6= 0.
We now consider BasicCbIPS and start by investigating the

condition for generation of new cyclo–passive outputs (23).

This yieldsRF−1g =

[

−g2α1

α2

√

x1

x2

0

]

6= 0, hence,yPS 6=

y. Unfortunately, the condition for existence of Casimirs for
BasicCbIPS, i.e., (24) withFd = F , is not satisfied. Indeed,
as can be easily verified, the vector

F−1g =

[ −g2

α2

√
x
2

1
α2

√
x
2

− g2α1

α2

2

√
x
1

x2

]

,

is not the gradient of a function.
The fact below, which ensuresCbIPS (with Fd 6= F ) is

applicable, can be verified via direct substitution.

Fact 1: The full rank constant matrixF−1
d = −

[

a a

0 d

]

,

with
a > 0, 4d > a, (53)

verifiesFd∇HPS = F∇H andFd + F⊤
d < 0, where

∇HPS =

[

aα1
√

x1

dα2
√

x2

]

.

We compute the Casimirs forCbIPS using (24), that we
repeat here for ease of reference,Fd∇C = −g. This yields

C(x) =
a

γ
x1 + dg2x2.

The next step is to determine the functionsHc andΦ to assign
the desired minimum to

WPS(x, ζ) = HPS(x) + Hc(ζ) + Φ

(

a

γ
x1 + dg2x2 − ζ

)

,

which, upon addition of a constant, will then qualify as a
Lyapunov function for the controlled system. Some simple
calculations prove that

∇WPS(x⋆, ζ⋆) = 0 ⇔ Φ′(C(x⋆) − ζ⋆) = −u⋆ = H ′
c(ζ⋆).

The Hessian is given by

∇2WPS =







aα1

2
1√
x
1

0 0

0 dα2

2
1√
x
2

0

0 0 H
′′

c






+

Φ
′′

[

∇C
−1

]

[

∇C⊤ −1
]

.

The first matrix in the right hand side is positive definite
for all Hc such thatH

′′

c > 0, while the second matrix is
positive semi–definite providedΦ

′′ ≥ 0. This suggests the
simple choice

Hc =
κ

2

(

ζ − ζ⋆ −
1

κ
u⋆

)2

, Φ = −u⋆(C − ζ),
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with κ > 0, which clearly satisfies the minimum conditions
above.

TheCbIPS controller is obtained using (19) and settingζ̇ =
yPS, u = −H ′

c (with v = 0) to get the nonlinear dynamic
state–feedback controller16

Σc + ΣPS

I :















ζ̇ = − a
γ
α1

√
x1 +

(

a
γ
− dg2

)

α2
√

x2 +

+
(

a
γ

+ dg2
2

)

[u⋆ − κ(ζ − ζ⋆)]

u = u⋆ − κ(ζ − ζ⋆),

where the free parametersa andd should satisfy (53), andκ is
an arbitrary positive number. This controller ensures that, for
anyx⋆ ∈ E , and anyζ⋆ ∈ R, (x⋆, ζ⋆) is a stable equilibrium of
the closed–loop system with Lyapunov functionWPS(x, ζ) −
WPS(x⋆, ζ⋆). See [30] for the modifications required to ensure
asymptotic stability.

It is interesting to remark that, even though BasicCbISM
PS

incorporates more information about the plant, is not appli-
cable for this problem. Indeed, although the Casimir function
can be determined fromg⊥F∇C = 0, it is easy to see that
the Hessian∇2WPS is rank deficient, independently of the
functionsHc andΦ.

We wrap–up this example showing that we can considerably
simplify the design, restricting the dynamics ofCbIPS to the
setζ = C(x) to obtain IDA–PBC—as suggested in Subsection
VII-B. Towards this end, we set

ûIDA(x) = −∇CHc(C(x)), Ha(x) = Hc(C(x)),

Hd(x) = HPS(x) + Ha(x).

The simplest choiceHc = −u⋆C ensuresx⋆ = arg minHd(x)
and yields the constant open loop controlûIDA = u⋆. A more
interesting option is to select

Hc =
κ

2
(C − C⋆)

2 − u⋆(C − C⋆), κ > 0

which ensures that the linear controller

ûIDA =
[

k1 k2

]

(x − x⋆) + u⋆,

guarantees asymptotic stability ofx⋆ for all k1 < 0 and
4k2 < g2γk1. This controller was derived, following the
classical IDA–PBC methodology in the interesting paper [17].

B. A Nonlinear RC Circuit

Consider the circuit depicted in Fig. 4 consisting of a linear
resistor, a nonlinear capacitor and a voltage sourceu. The
capacitor is described by its electric energy functionH(x),
with x the charge, and the constitutive relationsẋ = i and
H ′ = v, wherev andi are the capacitors voltage and current,
respectively. One way to represent the system in PH form is
selecting

J = 0, R =
1

R
, g =

1

R
.

16In spite of its apparent complexity the control has a simple implementa-
tion, namely,

u =
1

τs + 1
[d1

√
x1 + d2

√
x2 + d3(u⋆ + κζ⋆)] + u⋆ + κζ⋆,

with the constantsτ, di taking values on some suitably defined ranges. This
can, of course, be further simplified selectingζ⋆ = 0.

+

–

R

ẋ

H ′(x)u

Fig. 4. Nonlinear RC circuit.

+

–
R

ẋ

H ′(x)
H′

R
u
R

Fig. 5. Norton equivalent of the nonlinear RC circuit.

In this case, the port variables are the voltageu and the passive
outputy = 1

R
H ′, while the power balance equation becomes

Ḣ = − 1

R
(H ′)2 + H ′ 1

R
u.

Even though, as expected, all the terms in this equation have
units of power, the physical interpretation of this realization
is best understood appealing to the Thevenin—Norton trans-
formed systems represented in Fig. 5. The control objective
is, again, to stabilize a given equilibrium pointx⋆ ∈ R.

It is straightforward to see that there is noC that satisfies the
Casimir conditions:− 1

R
C′ = 1

R
, 1

R
C′ = 0, so this problem

can not be solved usingCbI.
For any desired equilibrium pointx⋆, the corresponding

input u⋆ = (H ′)⋆ and outputy⋆ = 1
R

(H ′)⋆ yield the power
u⋆y⋆ = 1

R
(H ′)2⋆. Hence, the conditionu⋆y⋆ = 0, necessary

for EB–PBC, can only be satisfied if the capacitor voltage at
the equilibrium is zero. The fact thatRF−1g = − 1

R
6= 0

implies thaty 6= y PS, so we will try theCbI PS technique.
It is worth mentioning that the generalCbI PS, where we

look for Fd,Hd satisfying (16) and (17), yields new storage
functions of the formRd

R
H, Rd > 0. Since scaling the energy

function does not change its minima, we stay with Basic
CbI PS, i.e. Fd = F . The new system is thus

Σ(u,y PS) :

{

ẋ = 1
R

(−H ′ + u)
y PS = 1

R
(−H ′ + u),

(54)

whereHPS = H. We bring to the readers attention the fact that
(54) is an alternative, actually more natural, realizationof the
system of Fig. 4, picking up as port variables voltage (u) and
current (̇x), which is equal toy PS. The Casimirs forCbI PS
are solutions ofFC′ = −g, which in this example becomes
1
R
C′ = 1

R
, so

C(x) = x

will be a Casimir. We look now for functionsHc,Φ such that
the function

W PS(x, ζ) = H(x) + Hc(ζ) + Φ (x − ζ)
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+
+ +

–

– –

RCc

ẋζ̇

H ′(x)

1
Cc

ζ

u

u⋆

v

Fig. 6. Nonlinear RC circuit with controller.

has an isolated minimum at a given equilibrium point(x⋆, 0)—
where, for simplicity, we have takenζ⋆ = 0. We have

(∇W PS)⋆ = 0 ⇔
{

Φ′
⋆ = −u⋆

(H ′
c)⋆ = −u⋆

. (55)

Some simple computations show that the Hessian∇2W PS > 0
if and only if

Φ
′′

> −H
′′

, H
′′

c >
−H

′′

Φ
′′

H
′′ + Φ′′

. (56)

For the sake of simplicity, let us fix again a quadratic

Hc =
1

2Cc

(ζ − Ccu⋆)
2,

with Cc ∈ R+, which satisfies the second condition of (55).
For Φ we propose the second order polynomialΦ(z) =
β
2 z2 + γz, whereβ and γ are constants to be defined. The
first condition of (55) imposes the following constraint to the
free parameters:βx⋆ + γ = −u⋆. Evaluating conditions (56)
at the equilibrium turns into

β > −H
′′

⋆ ,
1

Cc

> − H
′′

⋆ β

H
′′

⋆ + β
,

from where it is easy to see that ifH
′′

⋆ > 0, we can takeβ = 0
and the equilibrium(x⋆, 0) will be stable, for allCc > 0, with
Lyapunov functionW PS(x, ζ) − (W PS)⋆, where

W PS(x, ζ) = H(x) +
1

2Cc

(ζ − Ccu⋆)
2 − u⋆(x − ζ).

The controller is given by

Σc + ΣPS

I :

{

ζ̇ = 1
R

(−H ′ + u⋆ − 1
Cc

ζ + v)

u = u⋆ − 1
Cc

ζ + v.

As shown in Fig. 6, it has a physical interpretation as a
capacitor with chargeζ and capacitanceCc in series with a
constant voltage sourceu⋆, coupled with the system of Fig. 4.

Before wrapping–up this example let us illustrate with it
the relation between Brayton–Moser and PH models briefly
discussed in Subsection VI-D and thoroughly explained in
[33]. To transform from one to the other we assume the
function v = H ′(x), is invertible. That is, there exists a
function x̂(v) such thatH ′(x̂(v)) = v. Define the Legendre

transformH̃(v)
△
= vx̂(v)−H(x̂(v)). Differentiating the latter

with respect tov and evaluating at(x̂(v), v), it easy to see
that x = H̃ ′(v).17 Differentiating x with respect to time we

17In the case of a linear capacitor,H(x) = 1

2C
x2, x̂(v) = Cv, and

H̃(v) = C

2
v2.

get

H̃
′′

v̇ =
1

R
(−v + u),

which is in the Brayton–Moser form (47) withQ(v) =
−H̃

′′

(v) the, so–called, generalized capacitance,B = −1,
input the current1

R
u and mixed potential,P (v) = 1

2R
v2, the

power dissipated in the resistor. See Fig. 5.
Multiplying by v̇, and assuming that̃H

′′ ≥ 0, we obtain
the cyclo–passivity inequality

Ṗ ≤ 1

R
uv̇.

It is interesting to note that the characterization of electrical
circuits that verify this kind of cyclo–passivity inequalities (or
the dual ˙̃

P ≤ vu̇) is an essential step in the solution of the
power factor compensation problem of energy transformation
systems [10].

IX. CONCLUDING REMARKS AND FUTURE RESEARCH

We have investigated in this paper the relationships between
CbI and Standard PBC. We have concentrated our attention
on the ability of the methods to shape the energy function and
the role of dissipation to fulfill this task. Energy–shapingis,
of course, the key step for the successful application of PBCs
and, similarly to all existing methods for nonlinear systems
controller (or observer) design, requires the solution of aset
of PDEs. In the case ofCbI the solutions of the PDEs are the
Casimir functionsC and, eventually,Fd. On the other hand,
for Standard PBC their solution directly provides the “added”
energy functionHa, with Fd a free parameter for IDA–PBC or
a solution of another PDE for PS–PBC. The various methods
have been classified comparing the size of the solution sets of
these PDEs.

To enlarge the domain of application ofCbI several varia-
tions of the method have been considered—all of them consid-
ering the simple (m–th order) nonlinear integrator controller
subsystemΣc given in (6). Also, various popular Standard
PBCs have been derived adopting a unified perspective, i.e.,
fixing the desired dissipation and writing a linear PDE for the
unknown added energy function.

There are many open question and topics for further inves-
tigation including:

i) It is well known [29], that the flexibility provided by
the free parameterFd in IDA–PBC is essential to solve
many practical problems. As seen from the diagram of
Fig. 2 there is noCbI version of IDA–PBC. What is the
modification toCbI that is needed to add this degree of
freedom?

ii) As indicated in Remark 23 PS–PBC (or equivalently
CbISM

PS
) suggests a two–step procedure to solve the non–

homogeneous PDE of IDA–PBC. Instead of fixingFd

and solving the PDE forHd as is sometimes done in
IDA–PBC, it is proposed to findFd as a (suitable)
solution of the new PDE (18). This procedure does
not generate all solutions of (46). However, given the
intrinsic difficulty of defining a “suitable”Fd that will
simplify (46), it is interesting to explore the decomposi-
tion as an alternative for generation ofFd. In this respect,
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the parametrization of the solutions given in Remark 10
is of particular importance.

iii) For ease of presentation we have fixed the order of
the dynamic extension to bem. However, as indicated
in Remark 7 there are some advantages for increasing
their number. Also, for simplicity we have taken simple
nonlinear integrators, further investigations are required
to see if other structures could be of use.

iv) We have concentrated our attention on the ability of the
various PBCs to modify the energy function, without
particular concern to stabilization. In particular, we have
only briefly addressed in Remark 6 the issue of asymp-
totic stabilization, that arises naturally inCbI where the
setsΩκ are rendered invariant. Imposing a constraint
on the controller initial conditions is, of course, not
practically reasonable, and is suggested there only to
illustrate the problem. In [30] we propose two alternative
solutions: an adaptive scheme that “estimates”ζ⋆, and
the addition of damping to the controller.

v) Proposition 15 shows that, in the single input case,
the use of a dynamic extension does not provide any
additional freedom for minimum assignment to the
corresponding static state–feedback solutions. On the
other hand, the use of dynamic extension certainly has
an impact on performance and might provide simpler
controller expressions. Assessment of the performance
improvement (or degradation) is a difficult task that will
be investigated in the future.

vi) A special class of PBC has been successfully derived
for systems described by Euler–Lagrange equations
of motion—which includes, among others, mechanical,
electromechanical and power electronic systems—see
[23] for a summary of the main results. The key struc-
tural property of these systems that is exploited in the
controller design is the presence of work–less forces,
that is well–known in mechanics [26] and captured via
the skew–symmetry of the matrixṀ(q) − 2C(q, q̇),
whereM is the inertia matrix andCq̇ are the Coriolis
and centrifugal forces. This strong property, which is
independent of passivity of Euler–Lagrange (or PH)
systems [34], has not been used inCbI or Standard PBC
and it would, certainly, be interesting to incorporate it
in these designs.

vii) The procedure to generate new cyclo–passive outputs of
Section III is of interest independently of its application
to CbI. Indeed, several control problems can be recast
in terms of identification of “suitable” (cyclo–)passive
outputs, which are known to be easy to be regulated—for
instance with a simple PI law. Two practical applications
where this idea has been applied are reported in [12],
[31].

viii) As explained in Subsection VI-D our research on power
shaping was motivated by the study of Brayton–Moser
models of nonlinear RLC circuits, for which the solution
of the critical PDE (18) is simplified. It is interesting
to explore modelling procedures for other classes of
physical systems, e.g., mechanical systems, that will
yield this kind of structures. See [14] for some results

along this direction.

APPENDIX

TABLE I

L IST OF ACRONYMS

BIDA Basic IDA
CbI Control by interconnection
CbISM Control with state modulated interconnection
CbIPS CBI with power shaping output
CbISM

PS
Control with power shaping output
and state modulated interconnection

EB Energy–balancing
IDA Interconnection and damping assignment
PBC Passivity–based control
PDE Partial differential equation
PS Power shaping
yPS Power shaping output
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