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Abstract— The dynamics of many physical processes can be predominance of control techniques that respect, and -effec

suitably described by Port—Hamiltonian (PH) models, where the
importance of the energy function, the interconnection pattern
and the dissipation of the system is underscored. To regulate
the behavior of PH systems it is natural to adopt a Passivity—
Based Control (PBC) perspective, where the control objectes
are achieved shaping the energy function and adding dissipation.
In this paper we consider the PBC techniques of Control by
Interconnection (CbI) and Standard PBC. In CbI the controller
is another PH system connected to the plant (through a power—
preserving interconnection) to add up their energy functions,
while in Standard PBC energy shaping is achieved via static
state feedback. In spite of the conceptual appeal of formulatip
the control problem as the interaction of dynamical systems,
the current version of Cbl imposes a severe restriction on
the plant dissipation structure that stymies its practical appli-
cation. On the other hand, Standard PBC, which is usually
derived from a uninspiring and non-intuitive “passive output
generation” viewpoint, is one of the most successful controller
design techniques. The main objectives of this paper are: (1) To
extend the CbI method to make it more widely applicable—in
particular, to overcome the aforementioned dissipation obstacle.
(2) To show that various popular variants of Standard PBC can
be derived proceeding from a unified perspective. (3) To establis
the connections betweenCbl and Standard PBC proving that
the latter is obtained restricting the former to a suitable subset—
providing a nice geometric interpretation to Standard PBC—and
comparing the size of the set of PH plants for which they are
applicable.

Index Terms— Passivity, nonlinear systems, stabilization, inter-
connection, passivity—based control, Hamiltonian systems.

I. INTRODUCTION

In the last few years we have witnessed in the contr
literature, both theoretical and applied, an ever increpsi

This work was partially supported by HYCON, IFCPAR and CONAC
(México).

tively exploit, the structure of the system over the more
classical techniques that try to impose some predetermined
dynamic behavior—usually through nonlinearity cancediati
and high gain. The property of passivity plays a central iole
most of these developments. Passivity—Based Control (PBC)
is a generic name, introduced in [26], to define a controller
design methodology which achieves the control objectig, e
stabilization, by rendering the system passive with respec
to a desired storage function and injecting damping. There
are many variations of the basic PBC idea, and we refer the
interested reader to [8], [23], [29], [32], [34] for furthdetails

and a list of references.

In this paper we are interested in the control of dynamical
systems endowed with a special geometric structure, called
Port—-Hamiltonian (PH) model. As shown in [33], [34], PH
models provide a suitable representation of many physical
processes and have the essential feature of underscoeng th
importance of the energy function, the interconnectiortigpat
and the dissipation of the systéniThere are many possible
representations of PH models, here we will consider the so—
called input—state—output form, where the state is assumed
finite dimensional and the port variables are the input and
output vectors, which satisfy a cyclo—passivity ineqyalithe
distinction between cyclo—passivity and the more standard
passivity property will be discussed later.) To regulate th
behavior of PH systems it is natural then to adopt a PBC
perspective.

We consider in this paper the PBC techniques of Control
by Interconnection (Cbl ) [6], [24] and Standard PBC [3],,[8]

3], [25], [26], [29], [32]. In CbI the controller is another

1Central to the formulation of PH models is the geometric notiba Birac
structure. We will not elaborate any further on this powecfincept here and
refer the reader to [33] for more information.
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PH system with its own state variables and energy functiagechnique? Finally, it is shown that ifCbI can stabilize a
The regulator and the plant are interconnected in a powagiven plant then this is also possible with the correspamdin
preserving way, that is, through a loss—less subsystem.Standard PBC—proving that, from the stabilization viewpoin
straightforward application of the passivity theorem [[ipws there is no advantage in considering dynamic feedback.

that the overall system is still cyclo—passive with new gger The remaining of the paper is organized as follows. In
function the sum of the energy functions of the plant and tt&ection Il we review the basic scheme@é! for PH systems
controller. To assign to the overall energy function a dmkir and exhibit the dissipation obstacle. Section 1l is dedote
shape, it is necessary to “relate” the states of the plant atedthe generation of new cyclo—passivity properties for the
the controller via the generation of invariant sets—defingd system and apphCbI to these new cyclo—passive systems
so—called, Casimir functions. In its basic formulatiafib/ in Section IV. The use of state—modulated interconnections
assumes that only the plant output is measurable and cosside CbI is presented in Section V. The derivation of various
the classical output feedback interconnection. In thiectiee Standard PBCs, proceeding from the selection of the desired
Casimir functions are fully determined by the plant, whicllissipation, is carried out in Section VI, while the conmnats
imposes a severe restriction on the plant dissipation tstreic  betweenCbI and Standard PBC are established in Section
It has been shown in [24] that, roughly speaking, “dissiguati VII. Some illustrative academic examples are presented in
cannot be present on the coordinates to be shaped”. This, S@etion VIII and we wrap—up the paper with concluding
called, dissipation obstacle stymies the use’df for appli- remarks and future research in Section IX. For ease of
cations other than mechanical systems where the coordinakference, a list of acronyms (that, alas, plague this p&per
to be shaped are typically positions, which are unaffected given in the appendix.

friction.

The first objective of our work is to extend the conceptuallidotation All vectors defined in the paper amolumn vec-
appealingCbI method to make it more widely applicable—tors, even the gradient of a scalar function that we denote
in particular, to overcome the aforementioned dissipatiowth the operatorV, = %. When clear from the context
obstacle. Towards this end, we introduce two extensions tfee subindex of the operatdv and the arguments of the
the method. First, exploiting the non-uniqueness of the Hhnctions will be omitted. For vector functiong : R" =
representation of the system, we propose a procedure to gBfi-, we define its (transposed) Jacobian maftig (z) =
erate new cyclo—passive outputs (with new storage fungfion|VFi(z), ..., VF,(x)] and, for a distinguished element
Applying CbI through these new port variables overcomegn we denoteF, 2 F(z,).
the dissipation obstacle, but still rules out several ggdng
physical examples—not surprisingly since this is still atpati ~ |I. CONTROL BY INTERCONNECTION OFPH SYSTEMS

feedback control strategy. Our second, and key modification In order to make this paper self-contained, after presgntin
assumes that the plant state variables are available for mpai models, we briefly review in this section the basic version

surement, and proposes to replace the simple output feledbgtthe C'bI method, and discuss its limitations in the presence
by a suitably defined state—modulated interconnectionhiB t of dissipation.

way, the conditions for existence of Casimir functions can b
further relaxed, enlarging the class of PH plants for whih t A, Cyclo—Passivity of Port—Hamiltonian Systems

method is applicable. PH models of power—conserving physical systems were
We also consider in the paper Standard PBC, where enef@ioduced in [21], see [24], [33], [34] for a review. The irtp

shaping is achieved via static state feedback and damp'n%ﬂéte—output representation of PH systems is of the form
injected feeding back the passive output. Standard PBGhwhi

is usually derived from a uninspiring and non-intuitive ¢pa %3, { T = [Z(w) — R(2)|VH (z) + g(z)u 1)

sive output generation” viewpoint, is currently one of thesn b y = g (@)VH(2),

successful controller design techniques, that includessdgsn- wherex € R™ is the state vectory € R™, m < n, is the

Balancing (EB), Interconnection and Damping Assignmegpntrol action,” : R" — R is the total stored energy/, R :

(IDA) and Power—Shaping (PS) PBC. A second objective &* — R™*", with 7 = -7 " andR = R" > 0, are the

this paper is to show that all these variants of Standard PB@tural interconnection and damping matrices, respdygtive

can be naturally derived in a systematic way: selecting thyec R™, are conjugated variables whose product has units of

desired closed-loop dissipation. power andg : R® — R™*™ is assumed full rank. We bring to
The third objective of the paper is to relate and compatke readers attention the important fact thais not assumed

CbI and Standard PBC, which is done with three differerto be positive semi—definite (nor bounded from below). Also,

criteria. First, comparing the size of the set of PH plants f¢o simplify the notation in the sequel we define the matrix

which they are applicable—this is in its turn determined by : R” — R™*"

the size of the solution set of the partial differential etipres A

(PDEs) that need to be solved for each of the methods. Second, Fz) = J(z) = R(w),

proving that the (static feedback) Standard PBC laws are théat a more fundamental level, viewing Standard PBC as (a réisnic

restriction of the (dynamic feedbacl()’b[ on the invariant ©f) interconnected subsystems is consistent with the beteviramework
22], which rightfully claims that the classical input—tas#tput assignment

sets def!ne.d by the CaSimir f_unCtionS' This prOVideS. a nié@rspective is unsuitable to deal, at an appropriately rgétevel, with the
geometric interpretation to this successful controllesigie basic tenets of systems theory.
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which clearly satisfies +U -
F T=_92R<0. I
+F 2R <0 ) y : .
The power conservation property of PH systems is captured - s
by the power—balance equation [ A
yIeP : ! T T X () w | ' ye >0
H=—-(VH) RVH+u'y. 3) _ | o
|
Using the fact thaR > 0 we obtain the bound : S |
H<uly, @ 7777 )

. .. . . Fig. 1. Block diagram of th€'bI scheme with external port variablés, y).
that, following the original denomination of [36], we refas ts,9)

cyclo—passivity inequality. Systems satisfying such agiral-
ity are called cyclo—passive, which should be distinguishe

from passive systems whefé is positive semi—definitd. We choose the dynamics of the controller to be a simple set
Remark 1:In words, a system is cyclo—passive when #f (possibly nonlinear) integrators, that is,

cannot create energy over closed paths in the state—space. | i = w

might, however, produce energy along some initial portion e { e — VCHC(C) (6)

of such a trajectory; if so, it would not be passive. On the
other hand, every passive system is cyclo—passive. It hers behere ¢, u.,y. € R™, and H. : R™ — R is the controllers
shown in [11] that, similarly to passive systems, one camergy function—to be defined by the designer. From

use storage functions and passivity inequalities to chewize
cyclo—passivity provided we eliminate the restrictionttthese

storage functions be non—negative. we see thak, is cyclo—passive (actually, cyclo—lossless). In its

Remark 2:Although the paper considers only systems d&jmplest formulationC'bI assumes that we measure only the
scribed by PH models (1) some of the results are applicabjg\n output and fixe®; to be the standard negative feedback

Hc = U(—;ryc, (7)

to the more general class of cyclo—passive systems interconnection
& = f(x)+g(@)u -1,
L s {[2]-[h w )] e
y = g (@)VV(z), U m 0 Ye 0

where f : R” — R™ andV : R® — R satisfy fTVV < 0. which clearly satisfies (5), witlf,,, the m x m unitary matrix.
(This class has been considered, for instance, in [11].)endCombining (4), (5) and (7), we obtain that the interconnecte
which conditionsf can be expressed d&VV, for someF system is also cyclo—passive with port variablesy) and
verifying F + F'T < 0, is a difficult question. An affirmative energy function the sum of the energy functions of the plant
(constructive) answer has been given in [27], but the pregosand the controller, that is
F has singularities. See also [18], [29], [35] and the disicuss . . -
in Subsection 4.2.2 of [34]. H+H.<vy. ©)
To complete the shaping of the energy functi@hl invokes
B. Energy Shaping via Control by Interconnection the Energy—Casimir method—well-known in Hamiltonian
As indicated above, in PBC the control objective is achievesystems analysis, see e.g. [6], [19]—and looks for conserved
rendering the system passive with respect to a desiredgstorguantities (dynamical invariants) of the overall systefsuich
function and injecting damping. For the basic problem of stquantities can be found we can generate Lyapunov function
bilization, the desired energy function should have a mimm candidates combining the conserved quantities and thggner
at the equilibrium and the damping injection insures that tHunction. We will look, in particular, for conserved quédigs
function is non-increasing. In this way, the energy functiothat areindependenbf the energy functiond/ and H.—such
qualifies as a Lyapunov function. We now briefly review théunctions are called Casimir.
PBC method ofCb1 for stabilization of PH systems, we refer The application of the Energy—Casimir method for stability
the reader to [33], [34] for further details and extensioftse analysis of (output feedback)b/ is summarized below.
configuration used folCbI is shown in Fig. 1, where the Proposition 1: Consider the PH system,,, , (1) coupled
controller,X, is a PH system, coupled with the plahl,, .y, with the PH controllerE. (6) through the power—preserving
via the interconnection subsystem,, that we select to be interconnection subsyster®t; (8). Assume there exists a

power—preserving. That is, such that, for @tk 0, vector functionC : R™ — R™ such that
Tu(t) +y) (Huet) =y (¢ FT
y Du(t) +ye (Hue(t) =y (Do), (5) o ve- g (10)

where v is an external signal that we introduce to define
the port variables of the interconnected system and (plgysibThen, for all functionsd : R™ — R, the functioniW : R™ x
inject additional damping. R™ — R

3In [24], [27] we referred to cyclo—passive systems as endrghgacing. W(z,() = H(z)+ H.(¢) + ®(C(z) — (), (12)



SUBMITTED TO IEEE TRANS. AUTOMAT. CONTRFEBRUARY 2007) 4

is such that . output for the overall system [34fgsymptoticstability of
W <vly. (12) the equilibrium can be enforced adding damping, i.e., regetti
- T . — "
Hence, the system is cyclo—passive with storage fundtian v =—Kypy, K, = K, >0, and fixing the initial conditions

: : of the controller states as
Proof: The dynamics of the interconnected system IS

given by ¢(0) = ¢ +C(x(0)) — C(xx).
[ @ ] B { F —g } { VH } N { gu } This initialization is needed to ensure that the trajeciarts
¢ gt 0 VH, 0 | (and remains) in the invariant s, , with x, 26— C(x,),
Now, that contains the desired equilibrium. See point iv) of Bect
. T i IX for a discussion on this critical point.
C—¢=[ (VO | —In ] { ¢ } Remark 7:Interestingly, it is possible to show that we

annot generate Casimirs and at the same time add damping

Evaluating along the closed-loop dynamics above and invqth- - ; :
. . 7 . ough the controller unle e increase the dimensioheof t
ing (10), yieldsC — ¢ =0, for all H and H.. Hence,® = 0. roug uniess we | S ! S!

. . dynamic extension, which was taken here to be equahto

This, together with (9) and (11).completes .the proof. m Indeed, replacing = —R.V H. +u, in (6) and repeating the
eﬁggﬁg 3\}5?1;5:5,{;(2; ?r?éa(t)l;) dnér%r;dtowkl)tg eSOLT;Ie t(l)ofseofalculations for the computation of the Casimirs (with= 0)

gumber 01: inputs. If we lef € R", for anyr S/ 3ve should yields the necessary _conditio(l’V__C)TRVC_ . -_RC' Whi(-:h

| the int ) y b ¢ 8 b+ ’ cannot be satisfied with a positive semi—definite mafix
replace the interconnection subsystem (8) by See Section 3.2 of [23] and Example 4.3.3 of [34] for cases
u | | 0 -« Yol where damping propagation from the controller is possible
ue | | a0 Ye 0|’ with a dynamic extension of dimensiagreaterthanm.

where o € R™*", All derivations in this section, i.e., the The Dissipation Obstacl

restriction imposed by the dissipation obstacle and the SDDE' € Dissipation Lbstacle

to be solved (10), remained unchanged—replagjrigy go, Proposition 1 shows that, via the selection/f and ®, it

which amounts to a redefinition of the plant inputs. In SectidS Possible to shape the energy function of the intercomuiect

V we show that setting' = m and selectingy a function System—provided we can generate Casimir functions. That is,

of the plant stater the conditions for Casimir generation ardf we can solve the PDEs (10). Unfortunately, the solvapilit

simplified. A discussion on this issue may be found in [34Pf the latter imposes a serious constraint on the dissipatio

See also Remark 7 and point iii) in Section IX. structure of the system, which was calléidsipation obstacle
Remark 4:Necessary and sufficient conditions for the solvl [24]. _ _

ability of the PDEs (10), in terms of regularity and involity Proposition 2: If (10) admits a solution then

of certain distributions, are given in P.roposit.ion 3 of [5]. RV, ®(C(z) — ¢) =0, (13)
Remark 5:In [24] the energy shaping action @fb] was

viewed from an alternative perspective—geometric instefad 11 all ® : R™ — R. Consequently, energy cannot be shaped

Lyapunov—-based—that proceeds as follows. First, we notit@ coordinates that are affected by physical damping.

that the level sets of the Casimir functions,~ C(z), are Proof: Spelling out (10) and combining them we get
invariant sets for the interconnected system. That is, ¢ie s F'VC=g, ¢'VC=0 = (VC)TFTVC —0

Q2 {(2,Q) € R" x R™[ (= C(x) + &}, K ER ~ RVC=0.
are invariant for the overall dynamiésThen, projecting the The proof is completed noting that, ® = VCV®. [

system orf2,; yields the reduced dynamids= F'V H,, where fI:riS also DOSSible_LO EXFretis thle ditssi;ipe;ﬂon obsttaﬁlerml\s/tle
A of the energy provided to the plant by the controller. More
Hy(z) = H(x)+ Hc[C(x)+ 1] plays the role of shaped energy ecisely, we will now show that a PH system with full rank

. . . L 2pr
funct!qn. Even though with a proper selection of the |n|t|a% is stabilizable viaCbI only if the power extracted from the
conditions of the controller we can set= 0, the fact that . e

%ontroller is zero at the equilibrium.

the shaped energy function depends on this constant isrrat eProposition 3: Let z, be the equilibrium of the PH system

unnatural, thus we have presented the result using a Lyapuref) 0 be stabilized vi&'bI, andu,, y, the corresponding input

approach. . ; .
Remark 6:In Proposition 1, and actually throughout mos?gd output. If (10) admits a solution arfd s full rank then

of the paper, we have concentrated on the abilityCil b y*P?og.f' First note that SINCERYC — 0 we have that
to shape the energy function, without particular concern TVC — g is equivalent t0FVC = —g. Hence, (10) is

the stability property. Clearlyi? will qualify as a Lyapunov equivalent to
function if we can ensure that the desired equilibrium pointc1
(24, Cs) Is an isolated minimum of¥ (z, ¢). If y is a detectable FVC=—g, ¢'VC=0. (14)

4We recall that a seR,. C R™ x R™ is invariant if (2(0), ¢(0)) € Q. = Consequently, since the inverse Bf exists, we haveVC =

(z(t),¢(t)) € Q. for all t > 0. A necessary and sufficient condition for all —F'~1¢, which replaced ifRVC = 0 yields
sets(,;, called the foliation of the manifolo, to be invariant is precisely N
¢(=¢C. RF g=0, (15)
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that is anecessarycondition for the existence of Casimirs. satisfies the cyclo—passivity inequality
Now, evaluatingt = F'V H + gu at the equilibrium we have )
the following chain of implications Hps < u' yps. (20)
_ Proof: Poincare’s Lemma states that (18) is necessary
_ _ 1
0=RKVH +gu. < VH, =-F"gu. and sufficient for the existence dfps such that
R.VH, = —R.F, ' g.u,

R.VH, =0 VHps = F; 'FVH, (21)
V'HR,VH, =0,

G4l

which is equivalent to (17). We then have the following chain
where we have invoked (15) to get the third implicatiorof implications
Replacing the latter in the power balance equation (3), and
evaluating at the equilibrium, yields the desired result. FyVHps = FVH
[ ]

Remark 8: It is shown in [33] that the dissipation obstacle is
intrinsic, in the sense that it is determined only by the disgp
interconnection structure and is independent of the avalat
of the damping elements.

T = FdVHps + aqu

Fy'a =VHps + F; 'gu

i Fyli = Hes + 3" Fy ' gu
= 0> Hps+ ' F;'gu,

vl

where the last inequality is obtained using (16) and the fact
that A+ AT <0 & A1+ A~T <0, for any full rank matrix

[1l. GENERATING NEW CYCLO—PASSIVITY PROPERTIES . . L
o - A. The proof is completed replacing and the definition of
To overcome the dissipation obstacle we propose in tlf;ﬁs in (19) in the latter inequality. -

section to exploit the non—uniqueness of the PH representat pomark 9:Under the assumption that is full rank we

to generate new cyclo—passive outputs. More precisely, We Wypain 4 trivial solution of (18) settingy; = F'. In this case,
1 . n nxn 1

look for full rank matricesFy; : R" — R"*", with Hps = H and we obtain the new power—balance equation

Fy(z) + Fj (z) <0, 16 :
a(x) a4 () < (16) H::tTF_ld3+uTyps-

and storage function&lps : R™ — R such that
_ i Comparing with (3) we see that the new passive output is

F(z)VH(z) = Fu(w)V Hes (). @7 obtained swapping the damping—as first observed in [15]. In
It is clear that, if (16) and (17) hold, then the systam= that paper it is also shown that, for electromechanicalesyst
FVH + gu with outputg ™ V Hps will be cyclo—passive with with input voltage sources in series with leaky inductors,
storage functiorps. It turns out thay " V Hps is not adequate yps results from the application of the classical Thevenin—
to overcome the dissipation obstacle and another cyclaiqgas Norton equivalent of electrical circuits. See also the gxam
output—that, being related with the power shaping procedure Subsection VIII-B.
of [28], we callyss—must be generated. Interestingly, we also Remark 10:The construction proposed in [28] for power—
prove that in the single input case a necessary and sufficightiping can be used also here to provide solutions of (18),
condition for the new cyclo—passive outpyt to be equal to provided F is full rank. Namely, it is easy to show that for
the “natural” outputg " V Hpg is precisely the absence of theall matricesM : R” — R™*", with M(z) = M (x) and all
dissipation obstacle. A € R, such that

A. Construction ofyps M(z) 2 %[(V2H($))M(x) + V(M (2)VH(x)) + 21,

The procedure to identify the new cyclo—passive outputs is }
contained in the following proposition, which requirés to is full rank, £, ' = M F~! solves (18). The resulting storage
be full rank and relies on a direct application of Poincarefsinction beingHps = \H + (VH)" MVH.

Lemma® Remark 11:In [33] it is shown that PH systems with feed—
Proposition 4: For all solutionsF, of the PDE through term take the form
_ _ T
V(F;'FVH) = [V (F;'FVH)| (18) i = F(z)VH(x)+ g(z)u
verifying (16) there exists a storage functiéhs such that the Swa) § ¥ = l9(@) +2P(2)]T VHps(w) +
PH systerh +[T(2) + S(@)]u,
& = F(x)VH(z)+g(z)u where S = ST, T = —T7 and the dissipation structure
Suw) 3 Ys = —g (@)F; (z)F(z)VH(z) — (defined in calz, u)) is captured by
— g (@)F; T (2) + g(x)u
(19) R P,
PT S | =

SPoincare’s Lemma: Giverf : R® — R”, f € Cl. There existsy :
R™ — R such thatVey = fifand only if Vf = (Vf)T. . 1 T ool To-T

6We are using here the definition of PH systems with feed—tiraegn  S€tting, P = —s(I+F, F; )g,.T =0 an? S=-g F; g
introduced in [33]. we see that (19) belongs to this class wijtk= ps.
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B. When isyps = g " VHps? The Role of Dissipation IV. CONTROL BY INTERCONNECTION WITHY(y, 4.)

As indicated above, if (16) and (17) hold, then V Hps In this section we apply th€'bI methodology to the new PH
is a cyclo—passive output and we could apglyl for the SystemX, ) and show that, in this way, we can shape even
system with the port variable(m,gTVHps) Introducing the the coordinates where dissipation is present. More prgcise
natural notationFy(z) = J4(z) — Ra(z), with J; = —J, We will remove the second condition for existence of Casmir
andR, = R} > 0, and doing some simple calculations wéh (10), obviating the dissipation obstacle (13). To diffetiate

can prove that in this case a necessary condition for gearratthis controller from the one obtained usiag,, ,) we refer to
of Casimirs is it as C'blps. Moreover, we distinguish two variations, when

-1 Fy; = F, that we call Basi@blpg, and whenF,; # F' that we
Raky "9 =0, @2)  rofer asChlps.

which still imposes a restriction on the damping—compare

with (15). We will show in the next section that applyiath! A. Cblps Overcomes the Dissipation Obstacle

to yps, instead ofg " V Hpg, this restriction is removed. Inter- Proposition 6: Assume the PDE (18) admits a solutiéh
estingly, the proposition below proves that the constaunctf ver|fy|ng (16) and such that

Proposition 4 will generate new passive outputs if and ohly i

(22) does not hold. FyVC = —yg, (24)

We require the following basic lemma. for some vector functiorC : R* — R™. Consider the PH

S Tp-T, _ _ Tp-Tp -l
Lemma 1:g F; g=—g F; Raly g system (19) coupled with the PH controll&;, (6) through
Proof: We compute the power—preserving interconnection subsystem
1 _
TET, = LT _1 u 0 I, Yps v
F = —J(F;T+F Ps _
s - et {18 E1[]15) e
1 _
= §9TF (Fa+Fj)F;'g. Then, for all functions® : R™ — R, the following cyclo—
passivity inequality is satisfied
The proof is completed withi;, + F] = —2R,. [

T T
Proposition 5: In the single input single output case the Wes < v yes, (26)
new cyclo—passive outpubs is equal tog ' V Hps if and only  where the storage functioitps : R" x R™ — R is defined as
if the dissipation obstacle for the PH system with port Valga A
(u,g" VHps) is absent, that is Wes (2, ) = Hps(w) + Hc(¢) + @(C(z) — ¢), (27)

RaF;'g = 0 with Hys = [(F, ' FVH)dz. y
Proof: The proof directly mimics the proof of Proposition
= 1. The dynamics of the interconnected system are described
g VHps = *gTFJT(FdVHps +gu) (= yps). by
Proof: From the definition ofyps in (19) and (17) we .
have Yps ( ) ( ) l’ Fd —g VHPS N
¢ —g"F;"Fs g'F;'g || VH,
ws = —g Fy (FaVHps+gu) g Vs N { 9 ] ;
= —g Fy (Fy+F])VHes — g Fy "gu+ —9'F; g
+ g VHpg Computing the time derivatives

= ¢ F; "R4(2VHyps + Fy  gu) + g V Hps, 6 ¢

[(VO)T | —I, ] [ z }
where we have added and subtracgeéd’ Hps in the first line )
and invoked Lemma 1 to obtain the third identity. The proof = [ —g"F; " | —I ] { z ] =0.
is completed noting that the sum of the first and the second ¢

right hand term in the last equation is zero if and only ifyhere the second equation is obtained from (24), and the last

RaF;'g=0. B equation holds for alHss, H,. Hence,® = 0. This, together
Remark 12:SettingFy; = F we obtain as a simple corollary with (7), (20) and (27) completes the proof. "]
of Proposition 5 the equivalence Remark 13:The key difference between Propositions 1 and
. 6 is that the second condition for generation of Casimirs in
RE™ g =04y = yes. (23)  the former, namely " VC = 0, is conspicuously absent in the

latter. As pointed out in Subsection II-C if both conditians
ﬁO) are satisfied then the dissipation obstacle conditan f
CbI appears—see also (15). This restriction is not imposed in

“In this subsection we assume that the system is single ingutye = 1 Cbles,
in this caseg is a column vector. For the multi-input case the ’conditi’on is Remark 14:In [20] the cyclo—passive outpuls was ob-

only sufficient. tained, in the context of stability analysis of PH systemighw

The sufficiency part of this equivalence had been estaldlish
before in [16].
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the following alternative construction. Suppose we can €ind
satisfying

FVC+g=0. (28)

Construct now the interconnection and dissipation magradfe
an augmented systeas

A J JVC _ T
Ja = { (VO)TT (VC)TIVC ] =—Jas
A R RVC T
Ra = { (VO)TR (VC)TRVC ] =Ra 20
By construction
[ (VC)T ‘ _Im ]ja = [ (VC)T | _Im ]Ra = 07

implying thatC — ¢ are Casimirs for the PH dynamics

o _ VH(x)
{ ¢ } = (o~ Ra) { VH.(Q) ] '
Furthermore, because of (28),
J—-R -9
Ja = Ra = { (g— 2RVC)T (VC)T(J — R)VC } :

Thus, the augmented systems is the unitary feedback imerco

nection of the nonlinear integrators (6) with the PH plarthwi
a different output, that turns out to hgs for Fy; = F! It is

A. Energy Shaping vi&'bI"
Proposition 7: Assume the PDE

|: gLFT

gT
admits a solution for some vector functiegh: R — R™,
Consider the PH syste, . (1) coupled with the PH con-
troller X, (6) through thestate—modulateghower—preserving
interconnection

} Ve =0, (30)

M u | 0 —a(x) Yy v
AR S I
(31)
wherea : R™” — R™*™ is defined as
o= —(ng)_lgTFTVC. (32)

Then, for all functions® : R™ — R, the cyclo—passivity
inequality (12) with storage function (11) is satisfied.

Proof: The proof goes along the same lines as the proof
of Proposition 1, therefore is only sketched here. The dyosam
of the interconnected system is given by
z F VH
HE RIS

—ga
0

g
0

interesting to note that these derivations do not presurae th

invertibility of F.
Remark 15:From the definition ofyps in (19) and (24) we
see that, if the Casimirs exisgps = C, which in its turn

VH,
Computing C — ¢, and noting that, in view of Lemma 2,
gtFTVC = 0 and (32) are equivalent t& ' VC = —ga,
completes the proof. [ ]

is equal to¢. Hence, if we introduce the partial change of Remark 16:lt is clear that the set of solutions of (30) is

coordinatesz = C(x) — ¢, we getz = 0. This is another
way of viewing that the controller is rendering all the s@ts
invariant. See Remark 6.

V. CONTROL BY STATE-MODULATED INTERCONNECTION
In this section we will replace the simple negative feedba

o
interconnectiort; by a state—modulated interconnection [34],

strictly larger than the one of (10). Indeed, (30) is necgssa
but not sufficient, for (10). The inclusion of state modudati

in the interconnection has allowed, through the additiothef
matrix «, to significantly extend the class of systems for which
the CbI method is applicable. However, it is easy to show that
the controller above still suffers from the dissipation talote,
mely: (30)= RVC = 0.

as suggested in Remark 3. In this way we will further relax

the condition for existence of Casimirs: (10) for th&I of
Section Il, and (24) for theCblps of Section V. We will
call the new controllersCbI" for the former and, for the
controllers usingyes, Basic CbIsy if Fy = F and CbI5y if
F,+F.

The following elementary, though somehow overlooke
result will be used in the sequel.

Lemma 2:Let ¢ € R™™, m < n with rankg = m.
Definegt € R("~™)*" as a full rank left annihilator of, that
is, g9 = 0 and rank{g*} = n—m. Foranyb € R", 4 € R™
g*b 0
a —(g"g)gTb
1

} e R™*" is full rank. Hence,

b+gi=0 < { (29)

Proof: The matrix[ gT
g

gL
b+gi=0 < [ g7 } (b+ga)=0.
The proof is completed using the annihilating propertyy6f

and noting that the square matgX g is full rank. [ ]

B. Energy Shaping vi@'bI5}

A similar result is obtained forCblps, whose proof is
omitted for brevity.
Proposition 8: Assume the PDE (18) admits a solutiéh

(yerifying (16) and such that

g FvC =0, (33)

for some vector functiorC : R — R™. Consider the PH
system (19) coupled with the PH controligf. (6) through the
state—modulateg@ower—preserving interconnection subsystem

(][ 0 E L

T(x)
a=—(g"g) g FaVC. (35)

u
Ue

—a(x)
0

v

0

Yps
Ye

wherea : R® — R™*™ js defined as

Then, for all functions® : R™ — R, the cyclo—passivity
inequality (26) with storage function (27) is satisfied.
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VI. STANDARD PASSIVITY—BASED CONTROL REVISITED Corollary 1: Consider the PH system,,, , (1) in closed—
In [24] we introduced the following: loop with u = @(z) + v. Then (36) holds iff
Definition 1: Consider the PH system (1) verifying the VH] (FVH +gi) = —dg (41)
power—balance equation (3), that we repeat here for ease of 2 = ¢'vH, (42)
reference
H=u"y—d, for some functiond; : R — R.

_ A S In view of Corollary 1, that fixes the new passive output
with d = (VH)"RVH > 0 the open-loop dissipation. A . via (42), our problem is now to findH,, dg, @) that will
control actionu = i(x) +v solves theStandard PBC problem solve (41) for a given tripld F, g, H). We propose to select
if the closed-loop system satisfies the desired power-talafhe desired damping, to be able to define a control signal
equation . ti—function of H;—so that (41) becomes knear PDE in

Hy=v"z—dq, (36) the unknownassignableenergy functionsi,. For solvability

where H, : R" — R, is the desired energy function purposes, the qualifier “linear” in the PDE is essential ia th
. + )

o . . : s procedure.
da : R — Ry Is the desired damping, ande R™ is a new Remark 17:For linear time—invariant systems,= Ax +
passive output. .

Bu, with

The problem abpve hag too many “degrees of freedom",'i.e., 0=Kaz, Hy= lepd% dg = leRdx
Hy,dg, 2, 4.2 In spite of this, in the present section we derive 2
from a unified perspectivdour solutions to this problem. (41) becomes the Lyapunov equation
Namely, we will show that selecting various desired dissi- Py(A+ BK) + (A+BK)TPd — _R,.

pation functionsq, generates different versions of Standard L. 14rk 18:A version of Hill-Moylan's Lemma for sys-
PBC, which were previously obtained independently invgkintems with direct throughput may be found in [11], [32].

other (:|9n5|derat|on|s. The definition below is instrumental . simplicity, we have decided to consider systems without
strearfﬁ ne o;'r resfg tS. headded functi throughput. This is done without loss of generality because
Definition 2: Define theaddedenergy function for our purposes, the key equation to be verified is (39) that

Ho(z) 2 Hy(z) — H(z). (37) "emains unchanged.

A state feedback that solves the Standard PBC problesn Energy—Balancing PBC

satisfies the Energy—Balancing (EB) property—for short, is Proposition 9: Fix dy = d — —VHTFVH, and denote
EB—if the added energyi, equals the energy supplied to, _ . ' ’

. L UEB
the system by the environment, that is, if (i) The control lawiiss = —(gTg)~1gT FTVH,, with H,
H,=—i'y. (38) solution of the PDEs
1T
Consequently, the total energy functidfy is the difference { g 5 } VH, =0, (43)
g

between the stored and the supplied energies.
solves the Standard PBC problem.
(i) The controller is EB, that is, (38) holds.

i ) _ (i) EB-PBC suffers from thedissipation obstacle More
Before presenting the main results of the section we find precisely,

convenient to recall the fundamental Hill-Moylan’s Lemma (43) = RVH, = 0. (44)
[11] whose proof, in the present formulation, may be found in  proof: \We will verify that (41) holds. Thus,

[32]. We also present a corollary to Hill-Moylan’s Lemma,

that is instrumental for the solution of the Standard PBE) Withds =d & VH, (FVH + gigs) = VH' FVH

A. Preliminary Results and Proposed Approach

problem, as well as the proposed approach. & VH, gigg = -VH] FVH
Lemma 3:The system N VHTgﬁEB — _VHT'FVH
&= f(z)+ g(z)u, y = h(x) & VHT(FTVH, + gig) =0, (45)

is cyclo—passive with storage functidn: R* — R, V e ¢!, Where we used ' VH, = 0 to obtain the third equivalence.
i.e.V < u'y, iff there exists @amping functionl : R* — R, Applying Lemma 2 to the term in parenthesis we get the

such that proposed solution
VVif = —d (39) g FTVH, =0, fdg=—(gg) "¢ FTVH,.
g'VV = h. (40) To establish the EB property we have
8To ensure stability of an equilibriuma, we imposez, = argmin Hy, QTVHa =0 = z= Y

and for asymptotic stability should be a detectable output—see Remark 6.
9Condition (40) justifies the choice of output made in Remarkt2s| . T
important o underscore thatis a function of the state. = H,= -y ugs,

= Hy=y'v—d
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where we have used = g'VH, in the first implication,  Proposition 11: Fix dy = —VH,] F;VH, with F;+F,] <

dy = d in the second andd = y ' (tgs + v) — d for the 0, and denotei = dp,.

last one. Finally, fromF'"VH, = —giigs, premultiplying by () The control law

VH,], and usingg' VH, = 0 yields VH FTVH, = 0,

which is equivalent taeRV H, = 0. ™ i = (9" 9) "9  [FaVH, + (Fq — F)VH],
Remark 19:EB-PBC are widely popular for potential en- with I solution of the PDE

ergy shaping of mechanical systems. In this case ¢

gLFdVHa :gL(F_Fd)VI—L (46)
r = { q } , H(q,p) = lpTMfl(q)IH_ V(q), ) solves the Standar_d PBC problem. _
p 2 (iiy If v =0, the damping is left unchanged and there is no
Fo_ { 0 I ] o) = [ 0 } dissipation obstacle, i.e.,
-1 —-R |’ G(g) |’ 1 -
R=—=(F;+F RVH, =0,
and the added energy i8,(q) = Va(q) — V(q), where(q, p) 2( atFa), v
are the generalized coordinates and momehfa= M ™ > 0 then IDA—PBC is EB.

is the inertia matrix,R = R' > 0 is the dissipation due

to friction, G is the input matrix andV,V; are the open— Remark 22:Applying Lemma 2 to the equations in point
loop and desired potential energies, respectively. Somgplsi (i) of Proposition 10 we conclude thafVH, = gigm,
calculations show that (43) becomés-(VV; — VV) = 0, hence the closed—loop system for Basic IDA—PBCiis=
which is known as the potential energy matching equatigny i, + gv, that is, only the energy is shaped. On the other
(3], [25]. hand, proceeding analogously for IDA-PBC we have that the
Remark 20:The restriction imposed by the dissipation capclosed—loop is now: = F;V Hy + gv, whereF,; contains the

tured by (44) is of the same nature as the one imposeddgsired interconnection and damping matrices—motivatieg t
CbI, namely, (13). In both cases, we are unable to shape thgme IDA.

coordinates where dissipation is directly present. In Sctien
[1I-B we proved that the construction afs used forCblps .
yielded the same output, i.eyps = vy, iff the dissipation D. Power—Shaping PBC
obstacle is absent—that is, when there is no need for the newet us briefly recall the methodology of Power Shaping (PS)
output! Interestingly, we will show in the next subsectitiatt PBC that was introduced in [28] as an alternative to energy
Standard PBCs that do not suffer from this limitation will bghaping PBC for stabilization of nonlinear RLC circuitsdan
EB, precisely if the dissipation obstacle is absent. In oth@as later extended for general nonlinear systems of the form
words, for bothCbI and Standard PBC, our ability to ensurez = f(z) + g(z)u in [9]. The name, Power Shaping, was
that the difference between the energies is a non—incigasiRotivated by the fact that, in the case of RLC circuits, the
function is determined by the nature of the dissipation. ~ storage functions havenits of power as opposed to energy
Remark 21:In [24] EB-PBC was derived looking for func- as is normally the case in PBC of PH systems.
tions H, and that satisfy (38). This is, of course, equivalent The starting point for PS-PBC of RLC circuits is to describe
to solving the PDE(VH,)  (FVH + gugs) = ugg' VH, the system using, so—called, Brayton—Moser models [4] &her
which is the first line in (45). the state coordinates are the co—energy variables (vsliage
capacitors and currents in inductors) as opposed to energy
variables (charges in capacitors and fluxes in inductonsighwv
are used in PH models. With this choice of state variables it

We derive in the propositions below the two versions Q& possible to show that, for a large class of nonlinear RLC
IDA-PBC reported in [27]: when the interconnection andjrcuits, the dynamics are described'by

damping matrices are left unchanged, called Basic IDA-PBC, )
and when they are modified, that we simply call IDA-PBC. Q(z)i = VP(z) + Bu, (47)

As shovyn i_n [27], neither one of the schemes is_ _Iimi_ted b\)(/hereu € R™ consists of voltage and current sources;
the dissipation obstacle. The proofs of the propositior®® pn _ prxn i 4 full rank block diagonal matrix containing

similar to the proof of Proposition 9, are omitted for theezsakthe generalized inductance and the generalized capagitanc

of brevity. matrices, and® : R™ — R—which has units of power, and is
. - - N called the mixed potential function—captures the intereman
) Proposition 10: Fix dg = —VH, F'VHg, and denotei = tion structure and the dissipation. This should be cordghst
UBIDA- with PH models, wherg" contains the interconnection and
() The control lawisms = (9'9)"'g" FVH,, with H, damping matrices andl is the energy functioft
solution of the PDEy- FVH, = 0, solves the Standard
PBC problem. 10To avoid cluttering we use the same symhbal,to denote the new state

(i) If v =0 and there is no dissipation obstacle, i.e., i‘faiilaRb(Ie?z:t.ionships between the two descriptions have beenestudi [13]
RVH, = 0 then Basic IDA-PBC is EB. See also [33] for a general procedure to transform from oneeitadthe

other via the Legendre transform. See also the example in &idos&/111-B.

C. Interconnection and Damping Assignment PBC
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Stabilization via PS—PBC proceeds in two steps, first, thdii) Showing that if CbI can stabilize a given plant then this

selection of a paifQ, P) such that, is also possible with the corresponding Standard PBC—
. < o= showing that, from the stabilization viewpoint, there is
QT VP=Q7VP no advantage in considering dynamic feedback.

(¢ V(Q@™'vP) = [V(QQ'VP)T)  (48)
A. Domain of Applicability

with Q + QT < 0. In this way, we can prove that the system
can be written in the form We find convenient to recall the PDEs that need to be
- L solved for each one of the PBC methdds.
Qt=VP+ QQ " Bu,

and clearly satisfies the cyclo—passivity inequéfity Control by Interconnection

P<u'y, §2BTQ Qi « (CbI)
This first step is, obviously, identical to the procedure for Z“; }VC — { -9 } )
generation ofyps of Proposition 4. More precisely, identifying g 0
F=Q', F; = Q' and Hps = P equation (48) coincides (CbIsM)
with (18). ) gLF
In the second step we shape the power funcitdoy adding [ g7 ] Ve =0.
a functionP, : R® — R, solution of the PDE

B*QQ VP, =0, (49)

which, together with a suitably defined control, yields the )
closed-loop dynamic€i = V(P + P,). Identifying g = ¢ (BasicCbIig
Q!B andF; as above, the PDE (49) reduces to (33), proving gTFVC =0.
the equivalence of PS—PBC aiithlps.

PS-PBC can also be derived, like the previous Standard® (Cblps)
PBCs, fixing a desired dissipation. Again, in the interest of FqVC = —g,
brevity, we omit the proof of the proposition.

o (BasicCblps)
FVC = —g.

. X . ) plus (18).
Proposition 12: Consider the solutions F;,  with . (CbIS
F; + Ff < 0, of (18). Fix dy = —(FVH + Fe Lpve -0
gies) "F;H(FVH + giips), and denoted = ips. The g Ve =15
control law iips = (g g)"'g" F4VH,, with H, solution of plus (18).
the PDE gL Fy;VH, = 0 and Hy(z) £ H,(x) + Hes(x),
solves the Standard PBC problem. Standard PBC

Remark 23:1t is also possible to relate PS-PBC and IDA- (EB)
PBC, viewing the former as a two step procedure to solve the g F
PDE of IDA-PBC, (46), which can be written a8 F;VH,; = [ g7 ] VH, =0.
g FVH.While in IDA-PBC wefix F;, in PS—PBC we obtain
it from the solution of (18). This ensurdsVH = F;V Hps, « (Basic IDA)
which replaced in the equation above yieldsF,VH, = 0. It gtFVH, =0.
is important to note that (46) may have solutions even though

Fd‘lFVH is not a gradient of some function—as required by * (PS) N
(18). g F4VH, =0,
VIl. CBl AND STANDARD PBC: RELATIONSHIPS AND EIBZ)(B)'

COMPARISONS

In this section we relate and compat®/ and Standard
PBC using three different criteria. The relationship between all these schemes is summarized

i) Comparing the “size” of the set of PH plants for whichn the implications diagram of Fig. 2. The notatich— B
they are applicable—this is determined by the “size” aheans that the set of solutions of the PDEs of B is strictly
the solution set of the PDEs that need to be solved farger than the one of A, consequently the set of plants to
each of the methods. which B is applicable is also strictly larger. Also, we sdy—

i) Proving that the (static feedback) Standard PBC lawB if the PDEs are the same. We observe that, in this sense, the
are the restriction of the (dynamic feedback)I to the more general method is IDA-PBC that has no “Cbl version”.
invariant sets defined by the Casimir functions.

g F,;VH, = g*(F — F;)VH.

Bwe recall that we defined : R* — R™, while H, : R* — R.
12In the Brayton—Moser model for RLC circuits the matr@ is sign  However, in the light of Remark 3, we can always take the ordethe
indefinite, hence this step is needed to establish the cyaksivity. dynamic extension to be one, agdwill be a scalar function.
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CbI — Basic Cblps —» Cblpg Replacing in the matching equation (52) yields
Fd[VHps — (VC)’LALIDA] =F,VH; & VH, = —(VC)IALIDA,

which is satisfied with the expressions Hf, anddp, given
in the proposition. |
CbI ™ — Basic CbI 5y —» Chl s

C. Stabilization viaCbI = Stabilization via Standard PBC

Throughout the paper we have concentrated our attention on
the ability of the various PBCs to modify the energy function
EB —— BasicIDA ——» PS ——» IDA without particular concern to stabilization. As indicatdabve,
stability will be ensured if a strict minimum is assigned
to the total energy functioniy/ (or Wss) for Cbl and Hy
for Standard PBC, at the desired equilibrium point. The
proposition below shows that the use ofsealar dynamic

Fig. 2. Relationship between the different control schemeshfthe point
of view of domain of applicability.

B. Standard PBC as a Restriction of Cbl extension inCbI, i.e., when we add only one integrator
The following proposition shows that, restricting the dy(equivalently, generate only one Casimir function), does n
namics ofCbI to the setQ, yields an EB—PBC. provide any additional freedom for minimum assignment to

Proposition 13: Assume the PDEs (10) admit a solutionth€ corresponding static state—feedback solutions ofdatan

Then, for all functionsH, : R™ — R, the PH system PBC N ) )
Sy (1) in closed—loop with the static state—feedback control Proposition 15: Consider the functions

u = Ugp() + v, Wheredg(z) = -V H.(C(z)), satisfies the N
cyclo—passivity inequality W(z,¢) N H(z) + He(C) + @(C(x) = ¢)
Hy<vly (50) Hq(z) = H(z)+ H(C(z)),
where H; = H + H, with with ¢ e R andC : R®™ — R. Then
Ho(x) 2 H.(C(x)). (51) VW.=0 and VW, >0

= (VHy), =0 and (V2Hy), > 0.

Furthermore, the controller is EB.
Proof: Compute

Proof: Computing from (51) the time derivative

/
= (VeHA(0) (VO) (FVH + gu) vw— | Vi | v v e,
= (VeHe(C)'g'VH ‘
= —agy, where (-)" denotes differentiation of a function of a scalar

. o . . argument. Now,
where the second identity is obtained using (10) and the last

one replacingiizs and the definition ofy. This establishes VW, =0 = &, = (H.), = V,W, =(VHy), =0.
the EB claim. The cyclo—passivity inequality (50) follows
replacingu = dgg(x) + v in (4), using the definition off, On the other hand,

and the last identity above. [ ] V2H, = VZ2H + Hév2c + Hﬁ'VCVCT
Similarly to CbI, Cblps also admits a static state feedback , V2H 4 ‘q),vgc 0
realization. Now, the resulting control law and storagecfion VW = [ 0 H } +
are solutions of the matching equation of IDA-PBC. - N
Proposition 14: Assume the PDEs af'blps, (18) and (24), = 4+ { VCVCT —-Ve }
are satisfied. Then, for alti, : R™ — R, the state—feedback —-Vve 1
controller iy (z) = —VeH:(C(x)), ensures that the IDA- Now,
PBC matching condition .
FVH + giips — FyVH,y (52) { é |vvcc|2 ]VZW { é |VVCC|2 ] _
is satisfied withH; = Hps + H, and H, given by (51). V2H + ®'V2C + H'VCVCT  «
Proof: For ease of reference, we repeat here the PDEs { " ‘ « }
of Cblps:
From Sylvester's Law of Inertia we have th&2W and
FVH = FuVHss the right hand side matrix above have the same inertia.
FNVC = —g. Consequently,

141, is, up to an additive constant, the restriction1df (11) to the set VW, >0 = V2H + &'V3C H”VCVCT >0
¢ = C(z). Clearly, the “free” functionsb and H, play the same role in the * ( + +H )«

energy—shaping—as will be further clarified in SubsectidhG/ = (V2Hd)* > 0,
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and the control objective is to stabilize a given equilibriu

pointz, € &.

The dissipation obstacle hampers the applicatiofiaf and
EBC. Indeed, the condition (13) farvl is not satisfied due
to the presence of;/z; in the damping matrixk and the
fact that the first coordinate has to be shaped. EBC is also
~y not applicable because the control at the equilibriug=
%\/52* # 0—for all non-trivial points—hence, the power

pafﬁ T extracted at the equilibriura,y, # 0.
We now consider Basi€blps and start by investigating the
Tank

Tank 2,

condition for generation of new cyclo—passive outputs (23)
—g201 T
This yieldsRF~lg = ax w2 | oL (), hence,yps #
0

y. Unfortunately, the condition for existence of Casimirs fo
Basic Cblpg, i.€., (24) withF; = F, is not satisfied. Indeed,
Fig. 3. The two-tank system as can be easily verified, the vector

-1 az/T
. . F g_[ 1 i922a1@1’
where we used the fact thd@t, = (H.), in the last equiva- asv/z, a2 @2
lence. B s not the gradient of a function.

Remark 24:Proposition 15 proves that i/ has a station-  The fact below, which ensureSblps (with F; # F) is

ary point at(z,,¢.) and it is locally strictly convex around applicable, can be verified via direct substitution.
this point, then the same is true féf,—with respect tac,.

Fact 1: The full rank constant matri¥; ' =
with

a a
0 d
VIIl. EXAMPLES

a>0, 4d>a, (53)

A. Two—Tanks Level Regulation Problem
venﬂes F,VHps = FVH and F,; + F] < 0, where

Consider the two-tank system depicted in Fig 3 with a
input flow split between the tanks via a valve. The state V Hps — aq1yV/ Ty
variablesz; > 0 and zy > 0 represent the water level in dagy/,
the lower and upper tank, respectively, and the controbacti W& compute the Casimirs fof'h s using (24), that we
@ > 0 is the flow pumped from the reservoir. The valvéePeat here for ease of referemtévc = —g. This yields

parameter is the constamte [0, 1], with v = 0 if the valve is C(x) = *wl + dgos.
fully open andy = 1 if the valve is closed. We will assume v
in the sequel that > 0. The next step is to determine the functidids and® to assign

Using Torricelli's law the dynamics of the system can bthe desired minimum to
written in PH form (1) with
Wes (2, ) = Hps(v) + He(C) + @ ’yxl +dgawa — ¢

0 a2\/Ty . ., . .
J = —ay\/T, 0 ’ which, upon addition of a constant, will then qualify as a
Va0 1 Lyapunov function for the controlled system. Some simple
R = { @ 03?1 } . g= [ } calculations prove that

0 g2
VWPS(x*vc*) =0 & 9 ( ( ) C*) = —Uyx = Hﬁ(@)
(mass) energy functiodd = x; + T2, and cyclo—passive

(constant) outputy = . The system parameters are all N Hessian is given by
positive and defined as aoy \} 0 0
Ty
V2 1- VW = 0 doa L0 | 4
aiéa G,i:1,2, 92277, Fs 2 \/52 "
A; ¥ 0 0 H,
whereaq;, A; are the cross—sections of the outlet holes and the 3" vC [ veT g ]
tanks respectively(= is the gravitation constant, we defined -1 '
A
u = 4-u and, to simplify notation, we assumeti = A4, The first matrix in the right hand side is positive definite
The achievable equilibrium set is the line for all H, such thatH, > 0, while the second matrix is
2 positive semi—definite provided” > 0. This suggests the
VANRPE 2 _ aq _ . .
E={TeR) | T2 = [ (1- 7)] 71}, simple choice
a2

15See [17], and references therein, for further details omibeel.

1 2
(C C*_u*>» ¢ = —u,(C - (),
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+
H'(x)

e

with x > 0, which clearly satisfies the minimum conditions z

above. MM
R
|Zx

The CbIs controller is obtained using (19) and settiqg-
yps, u = —H! (with v = 0) to get the nonlinear dynamic u 6)
state—feedback controlfér -

( = —ZaVa, + (% - dgg) ag\/Ty +
PS |
Yo + 27 + (% + dg%) [us — K(¢ — ()] Fig. 4. Nonlinear RC circuit.
u = ux— K= G)s

where the free parametetsandd should satisfy (53), and is
an arbitrary positive number. This controller ensures, tfat

anyz, € £, and any(, € R, (z4, () is a stable equilibrium of +
the closed—loop system with Lyapunov functitiss(z, ¢) — u ( H'
O

Whs(z4, (). See [30] for the modifications required to ensure
asymptotic stability.

It is interesting to remark that, even though Ba&l6/5}
incorporates more information about the plant, is not appgig. 5
cable for this problem. Indeed, although the Casimir fuorcti
can be determined from-FVC = 0, it is easy to see that

the HessianV2Wss is rank deficient, independently of the ] ] )
functions H, and ®. In this case, the port variables are the voltagend the passive

= . )
We wrap—up this example showing that we can consideraiflytPuty = 7 H', while the power balance equation becomes

Norton equivalent of the nonlinear RC circuit.

simplify the design, restricting the dynamics 6bIps to the 1 1
set¢ = C(x) to obtain IDA—-PBC—as suggested in Subsection H= _E(H )+ H B
VII-B. Towards this end, we set Even though, as expected, all the terms in this equation have
Gipa(z) = =VeH (C(z)), Hy(x) = H,(C(z)), units of power, the physical interpretation of this rediiza
is best understood appealing to the Thevenin—Norton trans-
Hy(x) = Hes(x) + Ha(). formed systems represented in Fig. 5. The control objective
The simplest choicél. = —u,C ensurese, = arg min Hy(z) is, a_gain, to stabilize a given equilibriu_m poinf € R _
and yields the constant open loop contigh, = u,. A more It is straightforward to see that there is idhat satisfies the
interesting option is to select Casimir conditions—+C’ = +, +C' = 0, so this problem
K can not be solved using'dl.
He=5(C~ Co)® —u(C—Cy), K>0 For any desired equilibrium point*, the corresponding
. ; s
which ensures that the linear controller I;*pylit i* 1 I({}/I)f)* :ggcgtjﬁ:tygon di}fjbic()ln{t*)y** y;elgly trt:gczglv:r;/
G = [ k1 ko | (2 — 24) + s, for EB-PBC, can only be satisfied if the capacitor voltage at
the equilibrium is zero. The fact th&®F g = —% # 0

guarantees asymptotic stability of, for_all k1 < 0 and implies thaty = yps, S0 we will try theCbIps technique.
4ks < govki. This controller was derived, following the It is worth mentioning that the generalbl s, where we

classical IDA—-PBC methodology in the interesting papeﬂ.[l?Iook for F, H, satisfying (16) and (17), yields new storage
functions of the formf H, R, > 0. Since scaling the energy

B. A Nonlinear RC Circuit function does not change its minima, we stay with Basic
Consider the circuit depicted in Fig. 4 consisting of a linea”bIps, i.e. F; = F. The new system is thus
resistor, a nonlinear capacitor and a voltage sourc@he i o= L(—H 1)
capacitor is described by its electric energy functiéifz), (w,yss) ° { _ B (54)
yes = w(—H +u),

with 2 the charge, and the constitutive relatiairs= < and _ _
H' = v, wherev andi are the capacitors voltage and currenthereHes = H. We bring to the readers attention the fact that
respectively. One way to represent the system in PH form(f&4) is an alternative, actually more natural, realizatibrthe

selecting system of Fig. 4, picking up as port variables voltagg gnd
T—0. R— 1 _ 1 current ), which is equal toyps. The Casimirs forCbl pg
7 “®R TR are solutions ofF'C’ = —g, which in this example becomes

1o __ 1

16 . . . . . i #C'= 5, s0
In spite of its apparent complexity the control has a simple émgnta:
tion, namely,

Clx)==x
will be a Casimir. We look now for function&l., ® such that

the function
with the constants, d; taking values on some suitably defined ranges. This
can, of course, be further simplified selectigg= 0. Woes(z,() = H(z) + H.(() + @ (z — ()

1
u = T—&-l[dlﬁl + dov/To + d3(ux + kCx)] + usx + KCx,
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Cﬁ v L get )
T (D— AW H'o = —(—v+u),
¢ c + R + R
C. e S .
- u H'(2) which is in the Brayton-Moser form (47) witlf)(v) =
. B ~ —H' (v) the, so—called, generalized capacitanfe,= —1,
input the currentiu and mixed potentialP(v) = ;=v?, the
power dissipated in the resistor. See Fig. 5.
Fig. 6. Nonlinear RC circuit with controller. Multiplying by @, and assuming thatl > 0, we obtain
the cyclo—passivity inequality
has an isolated minimum at a given equilibrium pdint, 0)— R
where, for simplicity, we have takef), = 0. We have It is interesting to note that the characterization of eleat
& = _u circuits that verify this kind of cyclo—passivity inequizis (or
(VWes), =0 & { (H’.): _ _u: : (55) the dualP < vu) is an essential step in the solution of the

power factor compensation problem of energy transformatio
Some simple computations show that the HesSIai p5 > 0 systems [10].

if and only if
_H'3" IX. CONCLUDING REMARKS AND FUTURE RESEARCH

H +d&" (56) We have investigated in this paper the relationships betwee
For the sake of simplicity, let us fix again a quadratic CbI and §tandard PBC. We have concentrated our Qttentlon
on the ability of the methods to shape the energy function and
H.= L(C — Ceouy)?, the role of dissipation to fulfill this task. Energy—shapiisg

2C, of course, the key step for the successful application of $BC
with C,. € R, which satisfies the second condition of (55)and, similarly to all existing methods for nonlinear syssem
For ® we propose the second order polynomib(z) = controller (or observer) design, requires the solution skt
gZQ + vz, where 3 and v are constants to be defined. The@f PDEs. In the case af'bI the solutions of the PDEs are the
first condition of (55) imposes the following constraint teet Casimir functionsC and, eventuallyFy;. On the other hand,
free parametersSz, + v = —u,. Evaluating conditions (56) for Standard PBC their solution directly provides the “adide

® >-H, H, >

at the equilibrium turns into energy functionH,, with F; a free parameter for IDA—PBC or
" a solution of another PDE for PS—PBC. The various methods
8> —H:, 1. I,{* g 7 have been classified comparing the size of the solution $ets o
Ce H +p these PDEs.

To enlarge the domain of application 61 several varia-
tions of the method have been considered—all of them consid-
ering the simples—th order) nonlinear integrator controller
subsystemX:,. given in (6). Also, various popular Standard

from where it is easy to see thathf, > 0, we can takg? = 0
and the equilibriun{z,, 0) will be stable, for allC. > 0, with
Lyapunov functionWps(z, () — (Wps)«, Where

Wos(z,¢) = H(z) + 1 (¢ — Cou)? — up(z — Q). PBCs have been derived adopting a unified perspective, i.e.,
2C. fixing the desired dissipation and writing a linear PDE fag th
The controller is given by unknown added energy function.
. L , 1 There are many open question and topics for further inves-
S 4 XS { ¢ = E(_Hl e — g ¢+ v) tigation including:
u = u— gt i) It is well known [29], that the flexibility provided by
As shown in Fig. 6, it has a physical interpretation as a  the free parametefF; in IDA-PBC is essential to solve
capacitor with chargeé and capacitanc€, in series with a many practical problems. As seen from the diagram of
constant voltage souree,, coupled with the system of Fig. 4. Fig. 2 there is na@’bI version of IDA-PBC. What is the

Before wrapping—up this example let us illustrate with it modification toCbI that is needed to add this degree of

the relation between Brayton—-Moser and PH models briefly freedom?

discussed in Subsection VI-D and thoroughly explained ini) As indicated in Remark 23 PS-PBC (or equivalently
[33]. To transform from one to the other we assume the  CDIfs) suggests a two-step procedure to solve the non—
function v = H’(z), is invertible. That is, there exists a homogeneous PDE of IDA-PBC. Instead of fixitg
function #(v) such thatH’(i(v)) = v. Define the Legendre and solving the PDE foi/; as is sometimes done in

transformH(v) év@(v)—H(i(v)). Differentiating the latter IDA_.PBC’ it is proposed to f'ndFd. as a (suitable)
with respect tov and evaluating ati(v),v), it easy to see solution of the new I.DDE (18). This procedure does
thatz = H'(v).}" Differentiating z with respect to time we hot generate al SOIUt'O.n.S of (‘}6)2 HOV\{,ever, given the
intrinsic difficulty of defining a “suitable”F,; that will
YIn the case of a linear capacitoH (z) = 52, #(v) = Cv, and simplify (46), it is interesting to explore the decomposi-
H(v) = 02, tion as an alternative for generationf. In this respect,
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ii)

v)

Vi)

the parametrization of the solutions given in Remark 10
is of particular importance.

For ease of presentation we have fixed the order of
the dynamic extension to be. However, as indicated

in Remark 7 there are some advantages for increasing
their number. Also, for simplicity we have taken simple
nonlinear integrators, further investigations are resglir

to see if other structures could be of use.

We have concentrated our attention on the ability of the
various PBCs to modify the energy function, without
particular concern to stabilization. In particular, we &av
only briefly addressed in Remark 6 the issue of asymp-
totic stabilization, that arises naturally @I where the
sets (2, are rendered invariant. Imposing a constraint
on the controller initial conditions is, of course, not
practically reasonable, and is suggested there only to
illustrate the problem. In [30] we propose two alternative
solutions: an adaptive scheme that “estimatés”and

the addition of damping to the controller.

Proposition 15 shows that, in the single input case,
the use of a dynamic extension does not provide any
additional freedom for minimum assignment to the
corresponding static state—feedback solutions. On tH&l
other hand, the use of dynamic extension certainly has
an impact on performance and might provide simpler
controller expressions. Assessment of the performandé
improvement (or degradation) is a difficult task that will
be investigated in the future. [3]
A special class of PBC has been successfully derived
for systems described by Euler—Lagrange equatior‘{ﬁ]
of motion—which includes, among others, mechanical,
electromechanical and power electronic systems—se[g]
[23] for a summary of the main results. The key struc-
tural property of these systems that is exploited in the
controller design is the presence of work—less forced®
that is well-known in mechanics [26] and captured via
the skew—symmetry of the matrid/ (q) — 2C(q,q9), [T
where M is the inertia matrix and’q are the Coriolis ]
and centrifugal forces. This strong property, which is
independent of passivity of Euler—Lagrange (or PH)
systems [34], has not been usedih/ or Standard PBC [°]
and it would, certainly, be interesting to incorporate it
in these designs.

vii) The procedure to generate new cyclo—passive outputs(#fl

Section Il is of interest independently of its application
to Cbl. Indeed, several control problems can be recast
in terms of identification of “suitable” (cyclo—)passivellll
outputs, which are known to be easy to be regulated—for
instance with a simple PI law. Two practical applicationg2]
where this idea has been applied are reported in [12],
[31].

viii) As explained in Subsection VI-D our research on powet3]

shaping was motivated by the study of Brayton—Moser
models of nonlinear RLC circuits, for which the solutior} 4
of the critical PDE (18) is simplified. It is interesting
to explore modelling procedures for other classes of
physical systems, e.g., mechanical systems, that |]I
yield this kind of structures. See [14] for some results
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along this direction.

APPENDIX

TABLE |
LIST OF ACRONYMS

BIDA Basic IDA
Cbl Control by interconnection
CbI™  Control with state modulated interconnection
Cblps CBI with power shaping output
CbIS}  Control with power shaping output
and state modulated interconnection
EB Energy—balancing
IDA Interconnection and damping assignment
PBC Passivity—based control
PDE Partial differential equation
PS Power shaping

Yps Power shaping output
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