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Analysis and Design of Integral Sliding Manifolds for

Systems with Unmatched Perturbations

Fernando Castaños and Leonid Fridman

Abstract

The robustness properties of integral sliding mode controllers are studied. This note shows how

to select the projection matrix in such a way that the euclidean norm of the resulting perturbation is

minimal. It is also shown that when the minimum is attained, the resulting perturbation is not amplified.

This selection is particularly useful if integral sliding mode control is to be combined with other methods

to further robustify against unmatched perturbations.H∞ is taken as a special case. Simulations support

the general analysis and show the effectiveness of this particular combination.

I. I NTRODUCTION

Sliding mode control [1] is a robust technique, well known for its ability to withstand external

disturbances and model uncertainties satisfying thematching condition, that is, perturbations that

enter the state equation at the same point as the control input (e.g. the case of completely actuated

systems). Sliding mode control (SMC) has other advantages aswell, like ease of implementation

and reduction in the order of the state equation. The latter property clearly simplifies the control

design problem.

Roughly speaking, the conventional SMC design methodology comprises two steps: first

design a sliding manifold such that the system’s motion along the manifold meets the spec-

ified performance; second, design a (discontinuous) control law, such that the system’s state is

driven towards the manifold and stays there for all future time, regardless of disturbances or

uncertainties. The resulting controller, although robustagainst matched perturbations, has some
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de Apoyo a Proyectos de Investigación e Innovacíon Tecnoĺogica (PAPIIT), UNAM, grant no. 117103.
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disadvantages. Among them we have: the need to measure the whole state; the lack of robustness

against unmatched perturbations; and thereaching phase, i.e. an initial period of time in which

the system has not yet reached the sliding manifold and it is sensitive, even to perturbations

satisfying the matching condition.

Several strategies have been proposed to solve these problems. See for example [2], [3], [4],

[5], [6] where the need to measure the whole state is relaxed.To address the issue of robustness

against unmatched perturbations the main strategy has beenthe combination of SMC with other

robust techniques, e.g. [7], [8], [9].

In order to solve the reaching phase problem anintegral sliding mode design concept was

proposed [10], [11]. The basic idea is to define the control law as the sum of a continuous nominal

control and a discontinuous control. The nominal control isresponsible for the performance of

the nominal system, i.e. without perturbations; and the discontinuous control is used to reject

the perturbations. An integral term is included in the sliding manifold, this guarantees that the

system trajectories will start in the manifold from the firsttime instant.

A. Motivation

To solve the problems of the reaching phase and of the robustness against unmatched per-

turbations simultaneously (e.g. in the case of sub-actuated systems), the main idea –as in the

conventional sliding mode case– has been the combination ofintegral sliding mode control and

other robust techniques. The particular combination depends of course on the specific nature of

each problem, and each particular combination has a set of details that needs to be properly

addressed. In the case of multi-model uncertain systems [12], [13] a multi-model decomposition

becomes the essential problem; in the case of nonlinear systems with unknown unmatched

uncertainties [14] Lyapunov’s direct method becomes a key feature; if integral sliding mode

control is to be combined with LMI based control techniques,the selection of the equivalent

matched dynamics would be the main issue. For systems with time delay the essential problem

is that the nominal control should contain a delayed component [15].

In all of the above mentioned cases the selection of the projection matrix plays a key role in

the design of the sliding manifold. In this note we address the need for a universal choice of

such matrix. The results are then complemented with anH∞ approach.
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B. Main Contribution

In this work we show the following:

• At an integral sliding mode, the discontinuous control completely compensates the matched

perturbations, but the unmatched ones are replaced by another (which we shall call equiv-

alent) disturbance.

• There is a set of projection matrices for which the norm of theequivalent disturbance is

minimal.

• For any projection matrix in this set, the gain of the discontinuous action is also minimal

and the equivalent disturbance equals the unmatched one, i.e. there is no amplification of

the unmatched disturbance.

All the above means that an integral sliding mode controller, if improperly designed, while

eliminating the matched perturbations, could lead to amplification of the unmatched ones.

The main results are general and can be applied whenever ISMCis to be combined with

other techniques to robustify against unmatched disturbances. In this noteH∞ control is taken

as a specific case. Simulations support the validity of the analysis developed and show that the

performance of anH∞ controller can be increased by this particular combination.

C. Paper’s Structure

In the next section we present a short review of ISMC and statethe problem formally. In

section III the problem statement is solved and different interpretations are given to the results.

In section IV we analyze the combination of ISM withH∞ control. The conclusions are given

in section V.

II. PROBLEM STATEMENT

A. Preliminaries, ISMC

Consider a nonlinear system of the form

ẋ = f(x, t) + Bu(x, t) + φ(x, t), (1)

wherex ∈ R
n is the state,t ∈ R represents time,u(x, t) ∈ R

m is the control action andφ(x, t)

is a perturbation due to model uncertainties or external disturbances. The following assumptions

are made:
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Assumption 1:rank B = m.

Assumption 2:The actual value ofφ(x, t) is of course unknown, but it is bounded by a known

function φ̄(x, t) ∈ L∞, i.e. ‖φ(x, t)‖ ≤ φ̄(x, t) for all x and t.

In the ISMC approach, a law of the form

u(x, t) = u0(x, t) + u1(x, t)

is proposed. The nominal controlu0(x, t) is responsible for the performance of the nominal

system;u1(x, t) is a discontinuous control action that rejects the perturbations by ensuring the

sliding motion. The sliding manifold is defined by the set{x | s(x, t) = 0}, with

s(x, t) = G
[

x(t) − x(t0) −

∫ t

t0

(
f(x, τ) + Bu0(x, τ)

)
dτ

]

. (2)

G ∈ R
m×n is a projection matrix which must satisfy

Assumption 3:The matrix productGB is invertible.

The term

x(t0) +

∫ t

t0

(
f(x, τ) + Bu0(x, τ)

)
dτ

in (2) can be thought as a trajectory of the system in the absence of perturbations and in the

presence of the nominal controlu0, that is, as a nominal trajectory for a given initial condition

x(t0). With this remark in mind,s(x, t) can be considered a penalizing factor of the difference

between the actual and the nominal trajectories, projectedalongG (hence the nameprojection

matrix, not to be confused with a projection operator). Notice thatat t = t0, s(x, t) = 0, so the

system always starts at the sliding manifold.

The discontinuous controlu1 is usually selected as

u1(x, t) = −ρ(x, t)
(GB)T s(x, t)

‖(GB)T s(x, t)‖
, (3)

whereρ(x, t) is a gain high enough to enforce the sliding motion. To simplify notation we will

omit some of the functions’ arguments from now on.

B. Analysis of the Unmatched Perturbation

Before we analyse the effect of the unmatched perturbation itis convenient to introduce the

following proposition
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Proposition 1: For any matrixB ∈ ℜn×m satisfying Assumption 1, the identity

In = BB+ + B⊥B⊥+

holds, whereB+ is understood as the left inverse ofB, that is B+ = (BT B)−1BT and the

columns ofB⊥ ∈ R
n×(n−m) span the null space ofBT .

Proof: Consider a matrix

P =




B+

B⊥+



 .

This matrix is clearly non-singular since it’s inverse is given byP−1 =
[

B B⊥

]

, that is

P · P−1 =




B+B 0

0 B⊥+B⊥



 =




Im 0

0 In−m



 .

By reversing the order of the operands we getP−1 · P = BB+ + B⊥B⊥+ = In.

Now we can project the perturbationφ into the matched and unmatched spaces

φ = φm + φu, φm , BB+φ, φu , B⊥B⊥+φ,

whereφm andφu are the components that belong to the matched and unmatched spaces respec-

tively.

To determine the motion equations at the sliding manifold weuse the equivalent control

method [1]. The derivative ofs along time is

ṡ = G
[
f + B(u0 + u1) + BB+φ + B⊥B⊥+φ

]
− G [f + Bu0]

= GB(u1 + B+φ) + Gφu.

The equivalent control is obtained by solving the equationṡ = 0 for u1

u1eq = −B+φ − (GB)−1Gφu. (4)

Remark 1: In the majority of the papers dealing with SMC, perturbationsare assumed to be

matched and the term on the far right is usually ignored.

By substitutingu1eq for u1 in (1) we obtain the sliding dynamics

ẋeq = f + B(u0 − B+φ − (GB)−1Gφu) + BB+φ + B⊥B⊥+φ

= f + Bu0 +
[
I − B(GB)−1G

]
φu. (5)
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From the last equation we can draw several conclusions. First, the dynamics at the sliding

manifold do not contain the matched perturbation: it has been successfully rejected. Second, with

respect to conventional SMC, we have gained some extra degrees of freedom. We can useu0

to stabilize the nominal system and to treat the unmatched perturbation. The projection matrix

G can now be considered a free parameter. Third, the order of the equivalent dynamics is equal

to that of the original system, that is, there isno order reduction. This is the “price” we pay in

return for the extra degrees of freedom and the elimination of the reaching phase. And fourth,

the unmatched perturbation is now multiplied by a matrix

Γ ,
[
I − B(GB)−1G

]
.

Another way to look at this, is that we have traded the original perturbationφm + φu, for a new

one:φeq , Γφu.

C. Specific Questions

Matrix Γ is the main concern of this note. We would like to pose two specific questions

regardingΓ:

1) Is there aG∗, such that norm of the equivalent perturbationφeq is minimal?

2) Does matrixΓ amplify the unmatched perturbation? i.e. is the norm ofφeq greater than

the norm ofφu?

These questions make sense whenever we are considering unmatched perturbations andu0 is to

be designed with robustness against unmatched uncertaintyin mind.

III. M AIN RESULTS

In this section we answer the questions formulated in the problem statement and make some

comments on the answers.

Proposition 2: BT is a matrix which minimizes the norm ofφeq, i.e.

G∗ = BT = arg min
G∈Rm×n

∥
∥
[
I − B (GB)−1 G

]
φu

∥
∥

2
(6)

Proof: Notice first that

∥
∥
[
I − B (GB)−1 G

]
φu

∥
∥

2
= ‖φu − Bϕ‖2
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whereϕ = (GB)−1 Gφu. Thus, problem (6) can be rewritten in the form:

ϕ∗ = arg min
ϕ∈ℜm

‖φu − Bϕ‖2 ,

which, according to the Projection theorem [16, p. 51] hasϕ∗ = B+φu as a solution. Making

G = BT we will have:

ϕ =
(
BT B

)−1
BT φu = B+φu = ϕ∗

which implies (6).

Notice that forG = B+ we also haveϕ = B+φu, so B+ also minimizesφeq.

Proposition 3: Given m < n and a minimizingG∗, the resultingΓ∗ = I −B (B+B)
−1

B+ =

I − BB+ has euclidean norm equal to one. Moreover, the resulting equivalent perturbationφeq

is equal to the original unmatched perturbationφu.

Proof: Notice first that

Γ∗T Γ∗ =
[
I − BB+

] [
I − BB+

]
= I − BB+ − BB+ + BB+BB+

= I − BB+ = Γ∗,

which means thatΓ∗ is a symmetric matrix and therefore all the eigen-values arereal. Suppose

that v is an eigen-vector associated to any eigen-valueλ of Γ∗, that is,

Γ∗v = λv ⇒ vT Γ∗T Γ∗v = λ2‖v‖2. (7)

But, sinceΓ∗T Γ∗ = Γ∗ we have

vT Γ∗T Γ∗v = vT Γ∗v = λ‖v‖2. (8)

From (7) and (8), it is clear that the eigen-values ofΓ must satisfyλ2 = λ. The last equation has

two solutions,λ = 0 andλ = 1. Sincerank(BB+) < n, the rank ofI − BB+ cannot be zero.

This means thatΓ∗ must have at least one eigen-value different from zero, thatis, the maximum

eigen-value is one. The last sentence implies that‖Γ∗‖ = 1.

The second statement of the proposition follows directly from the fact that atG = B+ (or

G = BT ) the productGφu equals zero.

A possible interpretation of the previous theorems is that in order to avoid amplification we

should only penalize the difference between the actual and nominal trajectories, projected into

the matched space. Notice that forG = B+ the equivalent control (4) becomesu1eq = −B+φ,
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so, it should only contain the matched perturbations: any attempt to compensate the unmatched

perturbations with the discontinuous control would only make matters worst.

The selectionG = B+ has other advantages. First, the discontinuous control (3)is simplified

to

u1 = −ρ
s

‖s‖
.

Second, the gainρ and as a consequence the amplitude of the chattering can be reduced. Consider

the candidate Lyapunov functionV = ‖s‖2/2. At G = B+ the derivative ofs is

ṡ = −ρ
s

‖s‖
+ B+φ,

and the derivative ofV is

V̇ = sT

(

−ρ
s

‖s‖
+ B+φ

)

≤ −‖s‖(ρ − ‖B+φ‖) (9)

In order to guarantee the sliding motion the discontinuous action only has to major the matched

disturbance. In the general case, the derivative of the Lyapunov function is

V̇ = sT

(

GB

(

−ρ
(GB)T s

‖(GB)T s‖
+ B+φ

)

+ Gφu

)

≤ −‖(GB)T s‖(ρ − ‖B+φ − (GB)−1Gφu‖) (10)

So it is reasonable to selectG = B+. We close this section by writing the dynamics at the

sliding manifold

ẋeq = f + Bu0 + φu. (11)

IV. CASE OFSTUDY: ISM AND H∞ CONTROL

In this section we analyze the specific combination of ISMC and another robust method.

The main goal of this section is to support the previous analysis and propositions 2 and 3. For

simplicity we have chosen a linear technique:H∞ control.

A. Background,H∞ control

Within the classical framework, when the full state is available the plants under consideration

have the form

ẋ = Ax + Bww + Bu (12a)

z = Cx + Du, z ∈ ℜn+m (12b)
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wherez is an artificial penalty variable, matricesC and D are of appropriate dimension and

establish a compromise between the cost associated to the state and the cost of the control used

to keep the state within some bounds. The goal is to minimize the H∞ norm of the transfer

matrix Tzw that goes fromw to z.

The following assumption is typical:

Assumption 4:(A,B) is stabilizable,(C,A) is detectable andDT
[

C D
]

=
[

0 I
]

.

The first part of assumption 4 is obvious and the second guarantees the boundedness of the

state. The last part means thatz has no cross weighting between the state and control, and

that the control weight matrix is the identity. The latter can be relaxed by a suitable coordinate

transformation.

The following theorem (given without proof) is a standard result of H∞ control [17].

Theorem 1 (Doyleet al.): Given assumption 4, there exist a controller satisfying

‖Tzw‖∞ < γ

iff there exists a real, symmetric, positive semi-definite matrix X satisfying the Riccati equation

XA + AT X − X(BBT − γ−2BwBT
w)X + CT C = 0. (13)

Moreover, when this condition holds, one such controller is

u = −BT Xx. (14)

In [18], [19] it is shown that theH∞ norm in the frequency domain and the (truncated)L2

induced norm of a linear system in the time domain are equivalent, i.e., if the conditions of

Theorem 1 are satisfied, then
∫ T

t0

‖z‖2dτ ≤ γ2

∫ T

t0

‖w‖2dτ (15)

holds for all T ≥ t0. This equivalence allows to understand theH∞ problem in terms of

disturbance attenuation, to generalize theH∞ control objective to nonlinear systems and to

restate theH∞ control problem in the following terms: minimize the system’s performance

index, where the performance indexγ, is understood as a truncatedL2 gain.
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B. Proposed Methodology

The basic idea is to use an ISMC to reject the matched perturbation and design the nominal

control usingH∞ techniques to attenuate the unmatched one. Suppose that a control is to be

designed for system (12). In terms of (1) we havef(x, t) = Ax and φ = Bww. According

to (11), the system’s dynamics at the sliding manifold isẋ = Ax + B⊥B⊥+Bww + Bu0, where

φu = B⊥B⊥+Bww was used to derive the previous equation. Notice that the discontinuous

control u1 is already fixed, so we need to replaceu by u0 in the definition of the penalty

variablez, that is

z0 = Cx + Du0.

The problem now becomes that of finding a minimumγ and a semi-definite matrixX that

satisfies (13), but withBw substituted byB⊥B⊥+Bw.

The controlu1 is used to keep the state within some bounds and the cost of it should be

taken into account if a comparison with the standardH∞ control strategy is to be made, in

other words: for comparison purposes the original definition of z should be used. Whether

or not the discontinuous controlu1 improves the over all performance index is not an easy

question to answer, for it depends mainly on the weightC assigned to the state. We can however,

make a (rather informal) remark: notice that by orthogonality ‖B⊥B⊥+Bww‖2 = ‖Bww‖2 −

‖BB+Bww‖2. Since the squared norm of the unmatched perturbation is notbigger than the

original one, we should expect a better performance index ifthe weight given to the state is

“high-enough”.

We summarize the proposed methodology in the following algorithm:

1) Solve the Riccati equation

XA + AT X − X
(
BBT − γ−2B̄wB̄T

w

)
X + CT C = 0, (16)

whereB̄w , B⊥B⊥+Bw.

2) Set the sliding manifold as

s = B+

[

x(t) − x(t0) −

∫ t

t0

(A − BBT X)x(τ)dτ

]

3) and the control as

u = −BT Xx − ρ
s

‖s‖
, ρ > ‖B+Bww‖.
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C. Numerical Example

Consider the following LTI system:









ẋ1

ẋ2

ẋ3

ẋ4










=










0 0 1 0

0 0 0 1

−1 0 −2 0

2 −1 0 2



















x1

x2

x3

x4










+










0 0

0 0

0 1

1 0










︸ ︷︷ ︸

Bw




w1

w2



 +










0

0

0

1










︸︷︷︸

B

u. (17)

We define the error variable as

z0 =




diag(5, 5, 10, 10)

0





︸ ︷︷ ︸

C

x +




0

1





︸︷︷︸

D

u0

1) H∞ control alone: Equation (13) has

X =










70.35 −2.43 20.53 2.24

−2.43 57.62 −7.17 4.29

20.53 −7.17 70.46 −0.47

2.24 4.29 −0.47 12.83










as a solution, where the optimal valueγ = 5.9337 was calculated up to four decimal places.

The resulting controller is then,

u = −BT Xx =
[

−2.24 −4.29 0.47 −12.82
]

x

2) ISMC plusH∞: The disturbances are first decomposed as

Bww =










0 0

0 0

0 0

1 0










︸ ︷︷ ︸

BB+Bw

w +










0 0

0 0

0 1

0 0










︸ ︷︷ ︸

B⊥B⊥+Bw

w.

The first part is matched and will be eliminated by the discontinuous controlu1; the second is

unmatched and will be treated using the continuous controlu0, designed using theH∞ technique.
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The solution to (16) is given by

X =










70.25 −2.34 20.41 2.17

−2.34 57.39 −6.94 4.23

20.41 −6.94 70.34 −0.45

2.17 4.23 −0.45 12.61










, and γ = 5.9291 .

The nominal control is

u0 = −BT Xx =
[

−2.17 −4.23 0.45 −12.61
]

x

and the sliding manifold is

s(x, t) = B+

[

x(t) − x(t0) −

∫ t

t0

(Ax + Bu0)dτ

]

.

D. Simulation results

Three simulations were carried out. In all cases the system was perturbed by the signal

w = cos(πt)
[

1 −0.6
]T

(18)

and the initial conditions were set at the origin. The first simulation was made using theH∞

controller. The second one was made using the combination ‘ISMC plusH∞’, but with G set

different fromB+:

G =
[

2 2 2 0.5
]

The third simulation was made using the optimal valueG = B+. The system’s states are shown

in Fig. 1. The time histories ofx1 andx3 are the same in all cases because the control has no

influence on them. Notice however that forG = B+ there is an attenuation of the amplitudes

of x2 andx4 with respect to theH∞ controller and there is an increase of the amplitudes when

G 6= B+.

In the second simulation the gainρ needed to enforce the sliding mode was obtained using (10)

and was set to 3.6 . In the last simulation it was obtained using (9) and was set to 1.2 . The

discontinuous controls were approximated by

u1 = −3.6
s

|s| + 0.0001
and u1 = −1.2

s

|s| + 0.0001

respectively. It can be seen in Fig. 2 that whenG 6= B+ the control acts in the opposite direction,

i.e. it’s effect iscounter effective.
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1

x
2
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3

x
4

Fig. 1. System’s states. Simulation results for theH∞ controller (dashed-line) and the “ISM plusH∞” controller for two

cases:G 6= B+ (dotted-line) andG = B+ (solid-line). The time histories ofx1 andx3 are too similar to appreciate a difference.

0 0.5 1 1.5 2

-1

0

1

u
1

Fig. 2. High frequency controls.u1 = −3.6s/(|s| + 0.0001) for G 6= B+ (dotted) andu1 = −1.2s/(|s| + 0.0001) for

G = B+ (solid).

For comparison purposes we have in Fig. 3 a plot of‖z‖L2
/‖w‖L2

for each controller. When

G is selected improperly, the value isincreaseddue to the amplification ofφu. When G is

selected properly, the value is, after a short transient, lower than the one obtained byH∞

alone, even though the discontinuous component was included in the penalty variable (i.e.z =

Cx + D(u0 + u1)).

V. CONCLUSIONS

In this note we studied the effects that the projection matrix has on the resulting (equivalent)

perturbation. It was shown that in the presence of unmatcheddisturbances the projection matrix of

an ISM controller should be selected carefully, for the resulting controller could amplify them.

Two propositions provide a way for selecting the projectionmatrix correctly. The proposed
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0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

‖z
‖ L

2
/‖

w
‖ L

2

Fig. 3. Actual values of theL2 gains for perturbations (18).

parameters ensure that the effect of the unmatched disturbance will not be amplifiedby the

discontinuous control. It is also shown that the discontinuous control can not attenuate the

unmatched disturbances.

The analysis is aimed at combining ISMC with other robust techniques.H∞ control was

selected as a specific case, but other techniques could be used as well. Simulation results support

the analysis developed.
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