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SET-VALUED SLIDING-MODE CONTROL OF UNCERTAIN LINEAR
SYSTEMS: CONTINUOUS AND DISCRETE-TIME ANALYSIS

FELIX A. MIRANDA-VILLATORO*, BERNARD BROGLIATO', AND FERNANDO
CASTANOS*

Abstract. In this paper we study the closed-loop dynamics of linear time-invariant systems
with feedback control laws that are described by set-valued maximal monotone maps. The class of
systems considered in this work is subject to both, unknown exogenous disturbances and parameter
uncertainty. It is shown how the design of conventional sliding-mode controllers can be achieved using
maximal monotone operators (which include but are not limited to the set-valued signum function).
Two cases are analyzed: continuous-time and discrete-time controllers. In both cases well-posedness
together with stability results are presented. In discrete time, we show how the implicit scheme
proposed for the selection of control actions results in the chattering effect being almost suppressed,
even with uncertainty in the system.

Key words. Differential inclusions, robust control, maximal monotone maps, sliding-mode
control, discrete-time systems, linear uncertain systems, Lyapunov stability.
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1. Introduction. Since its appearance in the late fifties, the so-called sliding
modes have been associated with switching control laws. The main idea arises from
the behavior of the electrical relay, i.e., the input switches between a finite number
of possible values depending on the region of the phase-space in which the system is
evolving. This approach works well in principle, but for real-life applications some
problems arise due to the intrinsic imperfections in the elements that constitute the
controller, as for example: time-delays in the reaction of the components, boundaries
in the operation region (finite switching frequency), etc. Among the most dangerous
effects resulting from these imperfections we can find the so-called chattering effect.
The catastrophic consequences of chattering include component degradation, poor
response and, in the worst case, destruction of the system.

On the other hand, the closed-loop features that sliding-mode control offers are
very attractive: finite-time convergence, order reduction, robustness against paramet-
ric and external disturbances, simple gain tuning. For that reason many research
efforts have been directed towards the study of attenuation of the chattering effect.
Among these studies we can find adaptive schemes with variable gains [46], high-order
sliding modes [33], regularization techniques [49] and suitable discrete-time implemen-
tation [1, 2, 25, 26, 27, 48].

Since the work of Filippov [21] sliding-mode control systems have been associated
with differential inclusions. More precisely, the solutions of a dynamical system with a
discontinuous right-hand side are interpreted as solutions of an associated differential
inclusion. The work of Filippov provides conditions ensuring the existence of solutions
(in the sense of Filippov) for sliding-mode control systems. Surprisingly, there are only
a few studies that use the set-valued setting provided by Filippov for the design of
the control law that will produce the sliding phenomenon [1, 2, 25, 26, 27, 48].

The objective of this paper is twofold. First, a family of set-valued controllers
—which is suitable for the design of sliding-mode controllers— is introduced using
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2 F. A. MIRANDA-VILLATORO, B. BROGLIATO AND F. CASTANOS

the so-called maximal monotone operators. The design procedure is revisited for
the continuous-time context considering parametric uncertainty and external distur-
bances. It is shown that the set-valued approach is consistent with the classical design
methodology and powerful, allowing us to approach the multivariable problem in a
natural way as well as the regularization of the set-valued map. The second aim is
to show, step-by-step, the methodology design for the discrete-time case when the
set-valued maximal monotone operators are used together with the implicit scheme
proposed in [1, 2, 25] (see also [29] for a similar approach of discrete-time sliding
mode control). We show how this mathematical formulation is well-posed, providing
a better understanding of discrete-time sliding-mode systems.

The main contribution of this paper relies on the inclusion of parametric uncer-
tainty, i.e., we extend the results in [1, 2, 25] by considering the fact that, in most
real life applications, the dynamic model of the plant is not accurate. It is notewor-
thy that the addition of this uncertainty in the plant is not trivial, and that in the
aforementioned works the controller depends on the exact knowledge of the parame-
ters. This paper also shows that any maximal monotone set-valued map —different
from the commonly used signum set-valued function— can be used in order to achieve
the sliding regime. Moreover, the maximal monotone operators allow us to cover, in
one setting, several well-known formulations such as the componentwise control or
the unit vector control [45]. Thus, to some extent, the tools presented in this paper
unify the design of sliding-mode controllers in the framework of set-valued maximal
monotone operators. The mathematical framework used in this work for explaining
the sliding-mode phenomenon relies on differential inclusions, where (contrary to the
conservative thinking of switching) we are giving emphasis to the proper selection of
the control values as the main tool towards chattering suppression. Namely, regard-
ing the discrete-time context, the intrinsic properties of maximal monotone operators,
together with the differential inclusion formulation of the sliding-mode phenomenon
and the implicit discretization approach, allow us to make a unique selection for the
control values that will compensate for the disturbances and parametric uncertainties
with a considerable reduction of chattering in both, the input and the sliding variable,
whenever the frequency of sampling is sufficiently high when compared to the external
disturbance variations.

The main results, stated in terms of global asymptotic stability and semi-global
practical stability of the origin are presented in Theorems 24, 37 and their corollaries
for the continuous and discrete-time cases respectively. In addition, a proof of the
consistency of the implicit discretization is presented in Section 4.5.

This paper is organized as follows. In Section 2 we recall some preliminaries from
convex analysis together with some notation. Section 3 is devoted to the design and
well-posedness, in continuous-time, of set-valued controllers using maximal monotone
operators. Some results concerning the robustness in the face of parametric and
external disturbances of the resulting closed-loop system are presented. The discrete-
time counterpart is exposed in Section 4, where the use of the implicit discretization
for achieving the discrete-time sliding phase is exposed, together with some stability
results and the convergence of the solutions of the discrete-time closed-loop system to
a solution of the continuous-time system. Finally, Section 5 depicts the effectiveness
of the family of set-valued controllers proposed in Sections 3 and 4 through the use
of a numerical example, whereas the Appendix contains most of the proofs.

2. Preliminaries and notation. Let X be a Hilbert space with inner product
denoted as (-,-) and the corresponding norm || - ||. A multivalued map M : X = Y

This manuscript is for review purposes only.



116
117
118
119
120
121
122

123

129
130

SET-VALUED SLIDING-MODE CONTROL OF UNCERTAIN LINEAR SYSTEMS 3

is a map that is valued over the sets of Y, that is, for any x € X, M(z) C Y. The
graph of a set-valued map is given as GraphM := {(z,y) € X xY |y € M(z)}. A
set-valued map M : X = X is called monotone if it satisfies (y1 — y2,21 — 22) > 0
for all (z1,y1), (z2,y2) € Graph M and it is called mazimal monotone if its graph is
not contained in the graph of any other monotone map. The resolvent with index
w, p > 0, associated with a maximal monotone map M is a single-valued Lipschitz
continuous map Jh; : X — X given as

Je(x) == (I + pM) " (z).

Moreover, the resolvent J}; is non-expansive, i.e., ||[Jyg(z1) — Jhp(x2)|| < ||z — 22|
for all 1,22 € X. A detailed study of the properties of the resolvent can be found
in [4, 9, 41]. Related to the resolvent of M is the so-called Yosida approximation of
index u of the set-valued map M.

DEFINITION 1. The Yosida approximation of a mazximal monotone map is given
by

1
(1) MH(z) = M (I = Jp) ().
Roughly speaking, the Yosida approximation of M is a maximal monotone and

Lipschitz continuous single-valued function which approzimates the graph of M from
below. Formally we have that for all z € Dom M,

(2) [M*(@)[| < || Proja. (0)]]
and
(3) M"(x) = Projay(,)(0) as p 10,

where Projyy,) 1 X — M(x) refers to the conventional projection operator, that is,

Projyg(y)(y) == argmin |ly — £
§EM(z)

In words, the Yosida approximation of M converges to the element of minimum norm
in the closed convex set M(x). See, e.g., [4, 9] for a proof of the previous statement
and more properties about the Yosida approximation. The next result (taken from [4,
Proposition 2, p.141]) states an important topological property concerning the graph
of maximal monotone operators.

PROPOSITION 2. The graph of a set-valued mazimal monotone operator M : X =
X is strongly-weakly closed in the sense that if x, — x strongly in X and if y, €
M(x,,) converges weakly to y, then y € M(x).

DEFINITION 3. Let f : X — RU{+4o00} be a proper, convez, lower semicontinuous
function. The subdifferential of f at x € Dom f is given by the set:

Of(x) ={¢ € X*"(¢(,:n — =) < f(n) — f(x), for alln e X},
where X* refers to the dual space of X.

The proof of the following result can be found in [40].

PROPOSITION 4. The subdifferential of a proper, convex, lower semicontinuous
function is a maximal monotone operator.
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4 F. A. MIRANDA-VILLATORO, B. BROGLIATO AND F. CASTANOS

DEFINITION 5. Let f : X — RU{+4o00} be a proper, convez, lower semicontinuous
function. The prozimal map Proxy : X — X is the unique minimizer of f(w)+ 3|z —
w||?, that is,

F(Prosy() + o = Proxy(a)]? = min { (w) + e = wl?}.

Along all this work we denote the identity matrix in R"*" as I,,. The set B,, :=
{z € R" | ||z|| < 1} represents the unit closed ball with center at the origin in R"
with the Euclidean norm. The boundary of a set S is denoted bd(S). Let A € R"*™,
the induced norm of A is given by [|A]| := supj, =1 [42] = v/ Amax(AT A), where
Amax(B) = max;eq1,. n3{N\i € 0(B)} and o(B) is the spectrum of the matrix B €
R™ " Let B € R™*"™ be a symmetric matrix, B is called positive definite, B > 0, if
for any # € R"\ {0}, " Bz > 0. It is positive semidefinite, B > 0, if 2T Bz > 0. Let
A= AT and B = BT be square matrices, the inequality A > B stands for A— B > 0,
i.e., A — B is positive definite. Let A = AT > 0, the A-norm of a vector z € R" is
given by ||z[|4 = 2" Az. In the case where 1 < p < co the norm ||z, = (3, |:1:1-|p)1/p
for p € [1,00) and ||z|oo := max; |z;].

PROPOSITION 6 (Schur’s complement formula). Let Dy = D{ € Rm*™ Dy =
Dj € R™X"2 gnd Dy € R™*"2 be given matrices. Then, the following three state-
ments are equivalent,

Di D3
N
2. D1 >0 and Dy — D D;' D3 > 0.
3. Dy >0 and D1 — D3D;'DJ > 0.

3. Design of sliding-mode controllers in continuous-time using maximal
monotone maps.

3.1. The robust control problem. In this section we make a review of the
conventional methodology design for sliding-mode controllers. This review will be use-
ful for two reasons. First, we show that the family of set-valued maximal monotone
operators can be used in the design of controllers that guarantee the sliding mo-
tion. Second, the concepts recalled here are used for introducing their discrete-time
counterpart. We start analyzing a linear time-invariant system with both parametric
uncertainty and external disturbances. Specifically, in this work we focus on the case
in which the input matrix B € R™*"™ is known and the dynamics of the plant is
affected by a time and state-dependent additive uncertainty A (¢, z) € R™*™ which
is a nonlinear time-varying term. The system is characterized in state-space form as

(4) i(t) = (A4 Aa(t,z(t))z(t) + B(u(t) +w(t,z(t))), x(0) =z,

where x(t) € R™ represents the state variable, u(t) € R™ is the control input,
whereas w(t,z(t)) € R™ accounts for an external disturbance considered unknown
but bounded in the L* sense. The matrix A represents the nominal values of the
parameters of the plant, which are assumed to be known. Notice that, in general, the
addition of the term A 4 (¢, z) generates a nonlinear, time-varying, and state-dependent
mismatched disturbance. Along all this paper, we assume the following.

Assumption 7. The pair (A, B) is stabilizable.

Assumption 8. The matrix B € R™*™, where m < n, has full column rank.

This manuscript is for review purposes only.
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Assumption 9. For all t € [0,+00) the uncertainty matrix-function A4(t,-) is
locally Lipschitz continuous and satisfies A4 (t,2)AA ) (¢, z) < I,, for all x € R™ and
for some known symmetric positive definite matrix A € R™"*".

Assumption 10. For all ¢t € [0,4+00) the external disturbance w(t,-) is locally
Lipschitz continuous. Moreover, there exists W > 0 such that sup,s [|w(t,z)|] <
W < +o0.

Notice that Assumption 9 implies that A4 (¢, z) is uniformly bounded. Namely,
according to Proposition 6 the matrix inequality in Assumption 9 is equivalent to
Al (t,2)As(t,x) < A7L. Consequently, [[Aa(t,2)]> < 1/Amin(A) = Amax(A™1) for
all (t,xz) € Ry x R™. It is also noteworthy that the kind of parametric disturbances
considered in this work embraces time-varying systems and a family of nonlinear
systems. The proof of the following proposition can be consulted in [8, Section 7.2.1].

PROPOSITION 11. Assumption 7 holds if and only if for some a > 0 there exists
a symmetric positive definite matriz P € R™*" satisfying the following linear matrix
inequality (LMI):

(5) B] (AP + PA" +2aP) B, <0,

where B, € R™("=m) denotes an orthogonal complement of the matriz B, i.e., B
is a full column rank matriz whose columns are formed by basis vectors of the null
space of BT .

The design of sliding-mode controllers is accomplished by selecting two central
objects: the sliding surface and the control law. The former refers to a submanifold on
the state-space in which all the trajectories will converge in finite-time by the action of
the control law, and the closed-loop system constrained to the sliding surface satisfies
the performance requirements. Moreover, once the sliding surface has been reached,
the task of the controller is to maintain the trajectories inside it despite the presence of
disturbances (sliding phase). In this work the design of the control law is performed
using a two-step design methodology. Namely, in the former stage we compute a
nominal control, denoted as ©™°™, that guarantees the invariance of the sliding surface
o = 0 in the absence of the uncertainties, i.e., w = 0 and A4 = 0,,xn. After that,
we propose the set-valued component of the controller, denoted by «V, which will be
responsible for attaining the sliding surface as well as providing robustness against
matched disturbances. That is, we have split the control input as u = u™°™ 4 u%V. A
crucial point to consider is related to the proper design of the sliding surface which
will guarantee the performance of the system in the sliding phase. It was proved
in [14, 17, 39] that the correct design of the sliding surface helps to diminish the
effects caused by mismatched disturbances and in some special cases (when some
structure of the disturbance is imposed) even suppression of the disturbance can be
accomplished [18]. More important is the fact that the wrong selection of this surface
could increase the effects of the disturbance [14], which in our context implies higher
gains. Throughout this work we consider the sliding surface as a hyperplane of the
form H := {z € R" | Cz = 0}.

Assumption 12. The matrix C € R™*™ is such that the product C'B is nonsin-
gular.

Assumption 12 guarantees the uniqueness of the equivalent control as well as
the uniqueness of the nominal control. It is noteworthy that the two-step design
methodology described above is sometimes called equivalent-control-based method and
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6 F. A. MIRANDA-VILLATORO, B. BROGLIATO AND F. CASTANOS
the part of the controller denoted by u™°™ is called the equivalent control. In this
work the concept of equivalent control is used as in [45], i.e., it is the control that
maintains the state in sliding motion in the presence of disturbances. It follows that
the term u"°™ is a nominal equivalent control, but we prefer to call it merely nominal
in order to avoid confusion.

3.2. Design of the sliding surface. In this subsection we follow the lines of
[14], analyzing the effect of the design of the sliding surface H over the mismatched
disturbance. We start studying how the dynamics in sliding phase is affected by
the disturbance A4(t,z)z. To this end we use the equivalent control method [44].
Namely, we compute the control that maintains the sliding regime and we will see
how the mismatched disturbance affects the closed-loop system. We introduce the
so-called sliding variable as o(x) := Cxz. Thus, the equivalent control is computed
from the invariance condition 6 = 0 as

(6) C(Az°Y+ B(u®'+w) + AA(t xcq)xcq) =0,
—(CB)7'C (Az®t + A 4(t, 2°Y)z°Y) — w.

Substitution of the equivalent control into (4) leads to the expression of the dynamics
in sliding phase,

(7) @ = (I, — B(CB)"'C) Az*® + (I,, — B(CB)~'C) Ax(t, z°%)z

from which it becomes clear that the matrix characterizing the sliding hyperplane
plays a role into the equivalent disturbance (I, — B(CB)™'C) A4(t,z)x. In [14] the
authors proved that the correct design of such hyperplane guarantees that no am-
plification of the disturbance occurs by using surfaces with C = BT or C = B,
where B* stands for the left-inverse of the matrix B, i.e., BY = (BT B)"!B . In this
work we modify such selection of the surface considering instead C' = BT P! and
also C = (BTP~'B)"'BTP~! where P is a solution of (5). First we show that this
selection of C' gives an equivalent disturbance with minimum P~'-norm. Afterwards
we show how the proper choice of P dominates the mismatched disturbance during
the sliding phase.

LEMMA 13. Let C; = BTP~! and Cy = (B"P~'B)"'BTP~! where P=PT >
0. Then, both C;, i = 1,2, minimize the P~ -norm of the equivalent disturbance
(I, — B(CB)"1C)AA(t, z°9)xcd.

Proof. Let ¢°1 = A4 (t,2°1)z°L. Then, the optimization problem

(8) oluin

(I = BCB)™'0) ¢y = min 6 = Bz,

where z = (CB)~1C¢%4, has the unique solution z* = (BT P~1B)"!BT P~1¢°d. From
the definition of z it follows that C' = BT P~! achieves the minimum in (8) as well as
C=(B"P'B)"'BTP L O

Notice that both selections of C' stated in Lemma 13 satisfy Assumption 12.
Throughout this section we will set C = (BT P~1B)~!BT P!, In the next subsection
we design the control law that assures the sliding motion.

3.3. Design of the control law. Recalling from the above lines that the two-
step control design methodology adopted in this paper splits the control input into two
components, that is, u = u™°™ + «*¥, we start with the computation of the nominal
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™ whereas the set-valued part of the controller is deferred to the next

control u"°
subsection.
The computation of the nominal control u is accomplished from the invariance

condition ¢ = 0 in the ideal case, i.e., w = 0, vV =0 and A4 = 0, as

nom

9 & = Ci"™ = C (Az"™™ + Bu™™) =0 = "™ = —(CB)"'C Az™"™.
9)

Notice that the nominal control is nothing more than a linear feedback law of the
form y"°™ = —T'z"°™ with I' = (CB)~!CA. Substitution of the nominal control (9)
into the system (4), changing z™°™ by the real state x, yields,

(10) i = (I, — B(CB)™'C) Az + B(u™ + w) + Aa(t, z)z,

where u®¥ is the set-valued part of the controller. In order to obtain the dynamics of
the system in the sliding phase, we consider the nonsingular transformation,

B] ~1 T 1
(11) T = (BTP—lB)L_lBTP—l , T~'=[PBL.(B[PB.)"" B].
Remark 14. Tt is worth to mention that from the product T—!'T we obtain the
identity,

(12) PB, (B! PB,) 'B] + B(B"P'B)"'B"P 1 =1,.
From the application of (12) to the term ¢ := A4 (¢, x)z it follows that
¢=PB, (B[] PB,) 'B]{¢+B(B"P'B)"'B"P~'¢ = PB| ¢, + Bém,

where ¢, := (B] PB,.)"'B[ ¢ and ¢,, := (BT P71B)"!BTP~1¢ are called the un-
matched and the matched components of ¢ respectively.

The next step in our design consists in a change of coordinates of the form z = Tz
applied to (10). Notice that, because of the structure of T', we can split the new

state variable z as z = [le ZQT}T, where R"™™ 3 z; = Blx and R™ 3 2z, =
(BTP™'B)"'BTP~l2 = Cz = o. Therefore, recalling that u = u"™ + u*¥ with
u™®™ = —C Az, the change of variables z = Tz leads to the regular form [45],

(132) 4 = B] (A + At z)) PB, (BIPB,) 'z + B] (A + At z)) Bo

(13b) & =u® +(t, 2) + dm(t, 2),

where, Aa(t,z) == Aa(t, T '2), w(t, 2) == w(t, T~ 2) and ¢ (t, 2) := ¢ (t, T 12).
One comment is in place here. From (13b) it follows that the dynamics of the sliding
variable is only affected by the matched part of the original disturbance A4(t,x)x.
Hence, in order to achieve the sliding regime it is necessary to take into account only
the matched part of the disturbance in the design of u®V [14].

In the next lines provide conditions for the matrix P so that the reduced order
dynamics z; is asymptotically stable with decay rate a, in the ideal sliding phase,
under the influence of the parametric uncertainty Ay. To this end, let us consider
the reduced order system

(14) 4 =B] (A + A, z)) PB, (BIPB.) '»

This manuscript is for review purposes only.
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with the Lyapunov-function candidate V(21) = 1z (B] PB1) 'z. Taking the
derivative of V' along the trajectories of (14) yields

V=2 (B]PBy) 4
1 R
(15) = 521731 (AP+PAT)B,z +z B[AsPB, 7,

where z; = (BIPBJ_)_l 2. Applying (5), together with the inequality 2p" X TYq <
pT XTUXp+q'YTUYyq, for some ¥ = W' > 0, it follows that

. 1 N 1
(16) V < —az B[ PB 7 + EEIBIAA\IJAXBLQ + 52{BIP\IJ—1PB@1.
Taking ¥ = A where A = AT > 0 is defined in Assumption 9 gives,

: 1 1
V < —az/ B[ PB 7 + 521TBIBl21 + 5leIPA—lpBg1

1 1
(17) — BT <aP ST 5pAlp) Bz,

From (17) the asymptotic stability of the reduced system (14) in sliding phase follows
if

1 1
(18) B! <aP — 5l - 5PA1P> By >0,

Along all this section we will assume that the matrix P satisfies (5) and a stronger
version of (18). Namely,

_ [Bl (aP -1, - $PA"'P) B, —3B[AB
(19) Q_|: —%BTAzTBJ_ K_%BTA—IB >07

where K = KT € R™*™ is a positive definite matrix. Notice that, as stated, the
matrix inequality (19) has to be solved in the variables P and K. Furthermore, from
a direct application of the Schur’s complement formula (19) it can be expressed as an
LMTI in the variables P, K and A as

Bl (aP-1,)B, —3B[AB B[P 0n_mxn

—1BTATB, K 0 BT

2 mXxXn

(20) PB, O 20 Open | O
O’Il)(’ﬂ—’ln B O’Il)(’ﬂ 2A

The justification for considering (19) instead of (18) comes from the proof of Theorem
22 below, where the complete system (13) is analyzed. Remark that in the case when
the pair (A, B) is controllable, the parameter a is free and the LMI (20) is feasible
for a > 0 large enough and K, A sufficiently large too (in the order imposed by the
positive definiteness, that is, K1 > K> if and only if K1 — K3 > 0). On the other
hand, when the system is only stabilizable, the decay rate a is constrained by the
uncontrollable part of the system, setting a lower bound on the norm of the matrices
K and A. This last condition translates into the consideration of small parametric
uncertainties A 4, see Assumption 9.
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SET-VALUED SLIDING-MODE CONTROL OF UNCERTAIN LINEAR SYSTEMS 9

PRrROPOSITION 15. The disturbance term (ng(t,z) satisfies the linear growth con-
dition ||om (¢, 2)|| < VE||2||, where

-1
o) e e TP )
Proof. From the definition of ém we have that
16m(t,2)| = (BT P™'B) ' BTPT Au(t,2)T 2|
< [[(BTP'B) " BTPV2||P V2| At )T 2.
Recalling that the induced Euclidean norm coincides with the spectral norm and

making use of the Assumption 9, after simple computations we obtain

N AI'Ila)((jxil)
||¢m(taz)|| < \/)\min(BTP_lB))\min(P)

172

On the other hand, recalling that for the matrix norm induced by the Euclidean norm
we have that | T|| = ||T7||, see e.g., [32, Theorem 5.4.2], from (11) it follows that

~ BTPB,)'BT P/
i < | [ B | e
BTPB,) ! 0
= )\max(P))\max (|:< L 0 L) BTP_lB:|>
and the result follows. a

3.3.1. Set-valued controller. In this subsection we study the family of set-
valued maximal monotone operators used as feedback control laws for system (13).
First, some results about the existence and (in some cases) uniqueness of solutions
are presented. Subsequently, we prove how a subfamily of the family of maximal
monotone controllers yields finite-time stable sliding modes. We start setting the
remaining term «*V in (13b) as

(22) —u™(t) € Ko(t) +v(=(t) M(o(t)),

where K € R™*™ is a positive definite matrix satisfying (20), v : R” — R} is a
positive function depending on the system state z, and M : R™ =% R™ is a set-valued
maximal monotone operator. Thus, from (22) it follows that there exists ¢ € M(o)
such that —u®¥ = Ko 4+ ~(2)¢. Hence, the evolution of the sliding variable is dictated
by the differential inclusion

(23) {ef(t) = —Ko(t) = y(z(t))¢(t) + @t 2) + dm(t,2), o(0) =00
¢(t) € M(o(t)).

In the case when the function - is constant, the differential inclusion (23) belongs to
the class of differential inclusions with maximal monotone right-hand side for which
numerous results have been proposed, see e.g., [4, 6, 9, 11, 12, 36, 38] and it embraces
several mathematical formulations [10]. The existence and uniqueness of solutions
of (23) for the case where v is constant has been studied assuming the Lipschitz (local)
continuity of @(t,-) and ¢(t,-), see e.g., [9, 12, 15]. For a solution of (23) we mean
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an absolutely continuous function o : Ry — R™ that satisfies 0(0) = 09 € DomM
together with (23) almost everywhere on [0, 4+00), that is, we consider solutions of
differential inclusion (23) in the sense of Caratheodory [19]. It is worth to mention
that in the case where v is a function of the state, the uniqueness of solutions of (23)
is not guaranteed, this comes from the fact that, in general, the map v(z)M (o) is not
maximal monotone. Here, we present some examples about the different choices of
the set-valued map M.

Ezample 16. Let M be the subdifferential of f(o) :
M(o), is the vector set-valued signum function,

ol = Z?:l |o;|. Then,

1, if oy > 0,
[M(U)]z = [_17 1]7 if 0 = 07
-1 if o; < 0.

In this case the control scheme agrees with the so-called componentwise sliding mode
design, see e.g., [45].

Ezample 17. Let M be the subdifferential of f(o) := ||o|l2. Then M(o) is the
set-valued vector function,

By, if o] =0,
Mio) = { if [|o]

ﬁ , otherwise.

In this case the control scheme coincides with the so-called wunit vector approach
[37, 42].
Example 18. Let g be the indicator function of the closed convex set S, i.e.,

Us(o) =0,if 0 € S and ¥g(0o) = 400 otherwise. Let o(0) be inside the set S and
let M be the subdifferential of the indicator function, that is,

M(o)={C e R™|{¢,n—0) <0, for all n € S} = Ns(0).

Here Ng(o) denotes the normal cone to the set S at the point 0. Then the closed-
loop system (13b), (22) is well-posed and by Theorem 24 below the sliding mode is
reached in finite time. The study of this kind of controllers has been reported in
[34, 35]. Moreover, if S = S(t) is a Lipschitz continuous set-valued mapping, then
the closed-loop system (13b), (22) represents a perturbed Moreau’s sweeping process
[13, 20].

In what follows we consider the next condition on the set-valued operator M.
Assumption 19. The set-valued maximal monotone map M satisfies 0 € int M(0).

Remark 20. Assumption 19 is known as a condition for dry friction in the me-
chanics literature. It is strongly linked to the finite-time convergence property, see
Theorem 24 and Corollary 40 below. In [3, 5] the same condition was used for proving
the finite-time stability of nonlinear oscillators in both, continuous and discrete-time
settings.

It is worth to mention that Assumption 19 rules out linear controllers, since we ask
for maps M that must be set-valued at the origin. For example, in the case when M =
0® where the function & is proper, convex and lower semicontinuous, Assumption 19
asks for functions ® which are nonsmooth at the origin, so that int M(0) # 0, as
for example, the norm function | - ||, 1 < p < co. This last comment reveals that
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the maximal monotone operators suit perfectly as a tool that unifies the different
generalizations of the signum multifunction in the design of sliding mode controllers
in the multivariable case.

PROPOSITION 21. Let Assumption 19 hold. Then for any (x,y) € Graph M there
exists an € > 0 such that,

(24) (x,y) = ellz|.

Proof. From Assumption 19, it follows that there exists € > 0 such that for all
p € eB,,, (0,p) € Graph M. Then, from the definition of a maximal monotone map it
follows that for any (z,y) € GraphM and any p € eB,,,, 0 < (y — p, ). Consequently,
SUpecp,, (0 ) < (y,z). The conclusion follows. O

3.4. Well-posedness and stability of the closed-loop system. In this sub-
section we show the well-posedness of the closed-loop system (13), (22) in the case
when 7 is a state-dependent gain by imposing some conditions on P, in the form
of LMI’s, such that the unmatched part of the disturbance is dominated, and hence
assuring the asymptotic stability of the fixed-point 2§ = 0. After that, we show how
the sliding phase is reached in finite time with an appropriate selection of the gain .
Finally some results about stability and uniqueness of solutions in the case where ~
is constant are established.

THEOREM 22. Let Assumptions 7-10 and 19 hold. Then the closed-loop sys-
tem (13), (22), where M : DomM = R™ is a set-valued mazimal monotone map
that satisfies Dom M = R™, has at least one solution (in Caratheodory’s sense [19]),
whenever P = PT > 0 satisfies the LMI’s (5), (20) and, in addition, for some p > 0
we have

(25) ey(z) = p+ W+ VEllz(@)]l,

where k is as in (21), W is the upper bound given in Assumption 10, and € > 0 is as
in Proposition 21.

Proof. See the Appendix. d

Remark 23. Notice that the assumption DomM = R™ rules out multivalued
controllers with compact domain as those introduced in Example 18. However, the
use of set-valued maps whose domain is not all R™ is possible using v > 0 constant,
since we fall in the case of differential inclusion with maximal monotone right-hand
side, see e.g., [9, 15].

THEOREM 24. Let the assumptions of Theorem 22 hold. Then, the origin of the

subsystem (13b) with the set-valued controller (22) is globally finite-time Lyapunov
stable whenever

(26) ey(2) = p+ W + Villz]|,

where € is given in (24) and p > 0 is an arbitrary constant.

Proof. We consider the positive definite function of o, V(0) = 26T o. From the
proof of Theorem 22 we have that z1 is bounded. So, differentiating V' along the
trajectories of (13b) resultsin V=0"6 =o' (u% +w + ¢,,). From (22) there exists

a ¢ € M(o) such that u*¥ = —Ko — v(z)¢ and then,
V< —0"Ko—7(2)0 ¢+ [lw+ dmlllo]
< = (ev(z) =W = Vllzll) [lo ],

This manuscript is for review purposes only.
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where we have used (24) and the fact that K > 0. Hence, if (26) holds, then V <
—pllo]|- Finally, after integration of both sides of the last inequality an upper-bound
for the time t* such that o(¢) = 0 for all ¢ > ¢* is obtained as t* < /2V(0)/p. O

It is worth to mention that Theorem 24 does not make mention of the uniqueness of
solutions, but we have proved instead that all the solutions converge to the sliding
surface. The next step consists in showing the asymptotic stability of the whole
system (13), (22).

THEOREM 25. Let the assumptions of Theorem 22 hold. Then, the origin of the
closed-loop system (13), (22) is globally asymptotically stable.

Proof. Consider the Lyapunov-function candidate
L 1/ pT -1 L T
(27) V(z1,0) := 571 (B PBy) "z1 + 30 ©
Let ¢ be an element in M(o), differentiating (27) along the system trajectories yields

V<A@ + 07 (<) + (2, 2) + bin(t, )
“Auin( @I = (1) = (W + V=) o]

—a2]l?,

(28)

VARVAN

where & = Amin(Q) > 0, the matrix Q = QT > 0 is defined in (79) and we made use
of (24). This concludes the proof. 0

According to Theorem 25 the stability of the origin is in fact exponential. How-
ever, notice that at the light of Theorem 24 the sliding variable ¢ converges to the
origin of R™ in finite time, whereas z; decays exponentially to zero.

An important case arises when we ask for a constant gain v > 0. In this case the
existence of solutions has been deeply studied (see, e.g., [9], [15], [20]) and from the
practical point of view, we sacrifice the global stability for semi-global stability and
the uniqueness of solutions is retrieved.

COROLLARY 26. Let the Assumptions 7-19 hold, let & >0, 8 >0 and P = P be
such that (5), (20) hold, and let L. C R™ be a compact set specified below in the proof.
Then, for each initial condition that satisfies (21(0),0(0)) € L, for some ¢ > 0, the
origin of the closed-loop system (13) with set-valued controller

(29) —u®V € Ko +~vM(o),
where K = KT > 0 satisfies (19), is semi-globally asymptotically stable whenever
(30) ey = p+ Wt Vimas {|l2]},

where z = [2{ ,0 "7, Kk is given in (21), and p > 0 is an arbitrary constant.

Proof. Consider the positive definite function V(z1,0) as in (27) and let
L.:={(z1,0) e R"|V(z1,0) < ¢}

be the level sets of V. As first step we prove the positive invariance of the set L..
To this end we take the time derivative of V' along the system trajectories, yielding
again (28) with v(z) replaced by . In the light of (30), we can conclude that V' < 0

This manuscript is for review purposes only.
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SET-VALUED SLIDING-MODE CONTROL OF UNCERTAIN LINEAR SYSTEMS 13

for all o € bd(L.) and the positive invariance follows. Now, let (z1(0),0(0)) € L,
for some ¢ > 0, then from (28) and the fact that the maximum in (30) is attained
in the boundary of L. it follows that V' < —al|z||? for all t > 0 and we arrive at the
conclusion. O

From Corollary 26 it follows that the multivalued controller (29) drives the sys-
tem (13) into the sliding surface {z € R™ | o(x) = 0} in finite time. Moreover, as
a consequence of the maximal monotonicity of the set-valued map vM(-) we have
uniqueness of solutions of the closed-loop system (13), (29). Indeed, consider the
following differential inclusion

(31) Z € f(t,2) —N(2),

where

B (A + A, z)) PB, (B]PB,)"" B (A + A z)) B

f(t,Z)Z 0 K

-]
+ Lb(t, 2) +0<z3m(ta Z)]

is a locally Lipschitz function in its second argument and IN : R™ = R” is a maximal
monotone set-valued map described by z — [0,¢{]T and ¢ € M(o). Thus, a direct
application of Proposition 3.13 in [9] leads us to the uniqueness of solutions.

It is a well known fact that in the continuous-time setting the selection of the
values that maintain the sliding regime depends explicitly on the values of the dis-
turbances w and (;Aﬁm, which are by definition unknown. For that reason, in practical
applications it is common to use a regularized version of the controller (22), which
leads to the concept of boundary layer control [46]. In general, the regularization
is made in an arbitrary way. In our context the regularization is well defined by
means of the Yosida regularization and, as was shown in the proof of Theorem 22,
this approach leads to trajectories that are in a neighbourhood of one solution of the
differential inclusion (13). In the sequel we present an example for the case of the
unit vector approach.

Consider the set-valued map M as in Example 17 and a constant gain v > 0.
From the proof of Theorem 22, it follows that our regularized control is given by the
maximal monotone single-valued map M#, which in this case is given by

B2 M) = VI0) = o = Proxus (o)) = {ﬁ it o] > .

20 otherwise.

It is worth to mention that (32) differs from the commonly used regularization m

with p > 0 sufficiently small. Therefore, in the maximal monotone approach we
have a unique way of computing the regularized controller coming from a set-valued
maximal monotone map leading to a closed-loop system whose trajectories converge
into a neighborhood of the origin. In the next section we shall study the design of
this kind of maximal monotone controllers in the discrete-time setting.

4. Design of discrete-time sliding-mode controllers by using maximal
monotone maps. In this section we present a methodology for the digital imple-
mentation of discrete-time sliding-mode controllers using maximal monotone maps.
The design process is revisited step-by-step in order to show how the implicit discrete-
time scheme proposed in [1, 2] allows us to make a proper selection of the values of

This manuscript is for review purposes only.
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the control input at each sampling instant, and consequently reduces drastically the
chattering effect at high sampling rates.

4.1. The plant representation. We start considering the discrete-time model
of (4) through the use of the Euler’s method, i.e., we take a constant sampling time
tx+1 —tr = h > 0 for all £ > 0 and obtain

(33) Try1 = (In + hA)z + hB(ur + w(k, z)) + hA A (k, zi) ).

It is worth to mention that in the absence of the parametric disturbances, A4 (k, z) =
0, the system (33) becomes linear and the ZOH (Zero-Order Hold) method can be
applied in order to obtain the equations of the dynamics in discrete time. Neverthe-
less, that is not the general case analyzed in this paper. Note that, because of the
presence of the nonlinear term A 4 (k, zx ), it is not possible to compute, in general, the
equations of the ZOH discretization in a closed-form, which requires the knowledge of
the solution of the nonlinear system, as well as the exact value of the parameters. In-
stead, the first order approximation described by the explicit Euler algorithm is used
in this work for the discretization of the plant dynamics. In addition, just as stated
in [28, Theorem 2|, under the assumption that the sampling time is small enough, the
property of stability is independent of the number of terms considered in the exact
ZOH of the nonlinear system. That is, the property of stability for the discrete-time
closed-loop system (47) is the same as the stability of an exact ZOH method whenever
the sampling time h > 0 is sufficiently small.

Along all this section we also consider that Assumptions 7 through 19 hold. In
the discrete-time context the counterpart of Proposition 11 is given as:

PROPOSITION 27. Assumption 7 implies that for some a > 0 such that 0 < 2ha <
1, there exists a symmetric positive definite matrix X € R"*™ satisfying the matric
inequality:

(34) B! (AX +XA" +2aX) B, +hB/ (XATBl (BIXBL)_l BIAX) B; <0.

Proof. Stabilizability of the system (33) is equivalent to the existence of a matrix
K € R™*™ guch that for any 2ha € (0,1), there exists a matrix, D; € R**" D; =
D] > 0 satisfying the discrete-time Lyapunov equation

(1—2ha)Dy — (I + hA—hBK)' Dy (I +hA—hBK) > 0.
Pre and post multiplying by D 1 and setting Dy = K Dy ! yields,
— h(2aD7t + AD' + D7YAT — BDy — DS BT)
— 12 (AD;' = BDy) ' Dy (AD' = BD,) > 0.
Hence, applying Schur’s complement formula we obtain the LMI

—h(2aD7' + AD;' + DyAT — BDy — Dy BT) h(D;'AT — DJ B) ~0
h(AD;* — BD») Dt '

Recalling that B, € R™*("=™) has full column rank, it follows that the previous
inequality implies

(35) {—hBI(QaDll +ADT '+ Di'ATYB, hB]D;'ATB,

hBTAD'B, BID{'B, } >0,

This manuscript is for review purposes only.
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SET-VALUED SLIDING-MODE CONTROL OF UNCERTAIN LINEAR SYSTEMS 15

where we have applied the full row rank congruence transformation

BI On—mxn 2(n—m)x2n
Onxn—m BI €R -

Finally, applying once again the Schur’s complement formula to (35) and setting
X = D;! we obtain the desired result. O

Notice that any solution of (34) is also a solution of (5) for any h > 0, and when
h = 0 the left-hand sides of (34) and (5) coincide.

To finish this subsection we compute a bound for A 4(k, ) that will be useful in
the forthcoming sections.

PROPOSITION 28. Let X = X ' > 0 be such that

(36) X -1,>0,
then,
(37) A= Ay(k,xp) " BL(B] XB1 ) 'B] A(k,x1) > 0.

Proof. From Assumption 9 together with the bound on X imposed by (36) it
follows that
AA(]C, xk)AAA(k, fEk)T < X.

Since B, has full column rank, it follows that
B XB, — Bl Aa(k,zx)AAA(K,21) "By > 0.
Using the Schur’s complement formula we obtain,

BIXBJ_ BIAA(k,xk)

AA(k,Ik)TBL AT >0,

and applying once again the Schur’s complement formula we obtain the desired result.O

In the sequel we will assume that X satisfies (34) together with (36) and conse-
quently (37) also holds.

4.2. Design of the sliding surface. In this subsection the methodology for
the design of the sliding surface mimics its continuous counterpart. First, we start
with a sliding manifold of the form H := {xz € R" | Sz = 0} and conditions on the
matrix S are derived. In fact, it is shown that the resulting hyperplane has the same
structure as its continuous-time analog H. We make the following assumption,

Assumption 29. The product SB is nonsingular.

Analogous to the continuous-time context, we start computing the equivalent
control in order to see how the disturbance affects the sliding regime. In the discrete-
time case, the sliding variable is given as o := Sz and the necessary sliding condition
¢ = 0 is transformed into the fixed-point condition o417 = oy, from which we obtain
the equivalent control as'

(38) upt = %(SB)71 (o — S(I, + hA)xr, — hSAA(k, xi)xk) — w(k, zy)

L As alluded above, what we call the equivalent control here is not the same as what is called the
equivalent control in [25].
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Notice that the fixed-point condition ox41 = oy is usually neglected and changed for
the condition o1 = 0. We will see that the fixed-point condition is well fitted for
the estimation of the control law that will achieve the sliding motion. The equivalent
closed-loop dynamics in sliding mode results in

(39) a3, = (I, — B(SB)™'S) (In + hA)z}* + B(SB) ' oy
+ h (I, — B(SB)™'S) Aa(k, zy)wy.

From (39) it becomes clear that the structure of the sliding surface will be the
same as in the continuous-time framework, i.e., throughout this section we set S =
(BTX~'B)~!BTX~!. Notice that both surfaces (C' and S) are not exactly the same
since P satisfies (5) and X satisfies (34) instead, but S tends to C' as h decreases to
Z€ro.

4.3. Controller design. In this subsection we follow the discrete version of the
two-steps design methodology used in the previous section. The main difference with
the continuous part relies on the discretization scheme used for the control u®V. It
is shown that the implicit discretization approach inherits the robustness provided
by the maximal monotone operators presented in Section 3. The first step consists
in computing the nominal control using the fixed-point condition ox+1 = o), which
leads to

(40) upo™ = —(SB) ! (o — S(I,, + hA)xy) .

> =

Substitution of (40) into the discrete-time dynamics (33) yields
Tpy1 = (In — B(SB)_ls') (I, + hA) 2, +B(SB) Yo, +hB (v} + wi)+hAa(k, z1)x).
Consider the coordinates transformation zy = T'z), with T given in (11) but changing

the matrix P by its discrete-time counterpart X. Hence, after simple computations
we get the closed-loop system in regular form,

(41a) by = BT (In + hA + hAa(k, )X B, (BIXB,) " 2}
+ B[ (I, + hA 4+ hA a(k, z1.)) Boy,
(41b) Ohs1 = op + h(u) + bk, zi) + i),

where Aa(k, z) := Aa(k, T 2;), w(k, z;) := w(k, T~ 2;), and the term 7" refers to
the matched part of the disturbance AA(k, 2k)T 2, that is, ni* = SA, (k, zi) T~ 12,
with S = (BT X"1B)"!BT X! see Remark 14. It is noteworthy that system (41) is
the discrete-time counterpart of (13). It is clear that the disturbance term 7" satisfies
a linear growth condition similar to that associated with the term ¢,,, as stated in

following.
PROPOSITION 30. The disturbance term n)* satisfies the linear growth condition
i I < VE||2ell, where

= Amax(X)Amax (Ail) 1
42 = - -
W) = B X B (%) "\ A (BT XB1)

,Amax(BTxlB)} .

This manuscript is for review purposes only.
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4.3.1. The set-valued controller. We continue with the design of the multi-
valued part of the controller. The main difference with the continuous-time part is
contained here where, because of the discretization method employed, it is possible to
make a selection for the values of the controller that will compensate for the distur-
bances that affect the resulting closed-loop system. Specifically, we use the implicit
Euler’s method and we show how the system automatically makes the selection of
the values that will compensate for the disturbance. As a motivation of the implicit
scheme used, we study first the following equivalent controller,

(43) —uy’ € YM(ok+1),

where v > 0 is considered constant.

Remark 31. Note that unlike the continuous-time case, the operator y M is max-
imal monotone. The main reason why we are considering a constant gain v > 0
is that, whereas the lack of the maximal monotonicity was not a problem in the
continuous-time setting, it becomes a critical issue in the discrete-time case since it
implies the well-posedness of the resolvent and Yosida approximations, both of which,
as is revealed below, are used for the computation of the explicit values of the feedback
control.

At this point two important questions arise: is the proposed set-valued con-
troller (43) non-anticipative? and why is it called ‘equivalent’? The label ‘equivalent’
corresponds to the fact that, during the sliding phase, u}" is equal to u}* — up°™. In
other words, the control action u, = up°™ + uj’, with uj’ satisfying (43), coincides
with the equivalent control (38). Indeed, consider the closed-loop system (41Db), (43).
It follows that,

(44) Ok — Ok+1 + h(?f)(k, Zk) + 77/@) S h’yM(UIH_l) <~
Ok+1 = JﬁM(Uk + h(w(k, zk) + 1K),

where J,}YIM refers to the resolvent of the maximal monotone map vM of index h.
Hence, the discrete-time closed-loop dynamics of the sliding variable results in the
difference equation (44). An explicit expression for the controller is obtained after
substitution of (44) into (41b) as

(45) ! = 7 (I~ Jlng) (o + h(ib(k, 24) + 7)) = ~ M (o + (0o, 26) + )
where the map ./\/lg refers to the Yosida approximation of the set-valued map vM
of index h. At this point it is worth to mention that the selection process was done
automatically by the system, i.e., the closed-loop system selects one and only one
input from the maximal monotone map M in order to compensate for the disturbance
term w(k, z) + ng'. Thus, in ideal sliding mode op41 = op = 0 implies uf’ =
—%(I— J,’YLM)(h(QI)(k, zk)+n)). Now, assuming that w(k, zx) +np* € YM(0) it follows
that uj’ = —(k, zx) — 1p" (since J'y\;(w) = 0 for all w € YM(0)). Therefore, uy =
upo™ 4w’ = uy’. The previous development reveals that the implicit controller (43)
makes sense.

Now we introduce the missing term w3 using an implicit approach, which has been
studied theoretically in [1, 2, 25] and tested experimentally in [26, 27, 48], showing to
be a very efficient way to deal with the chattering effect on both the input and the
output signals. It is clear that in a real implementation setting the selection procedure
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cannot be achieved directly, because if we try to mimic the same steps presented in
the previous situation, we will have to impose the unreal assumption that we know
perfectly the disturbance term 1wy + n}*, see (45). Therefore, some modification to
the discrete-time controller (43) must be done. Roughly speaking, we consider the
discrete-time scheme proposed in [1, 2, 25] in which a virtual nominal system is created
and from which the selection process is achieved. Next, the controller computed from
the virtual nominal system is applied to the original discrete-time plant. Formally,
instead of (41), (43), we consider the extended system,

(46a) by = BL(In + hA+ hAs(k, 2))X B, (BIXB,) ' 2}
+ B[ (I, + hA+ hA A(k, z1,)) Boy,

(46Db) Oky1 = Opg1 + h(W(k, z) +11")

(46¢) Fror1 = ok + huf)

(464) Y € K&t + M(G1s1),

where K € R™*™ ig a symmetric positive definite matrix specified below. Sys-
tem (46) represents the implementable discrete-time dynamics associated with the
real continuous-time system (13). The variable 6441 may be seen as the state of a
nominal, undisturbed system, or as a dumb variable allowing to calculate the controller
uz’. In this approach, the control selection is made using the virtual undisturbed sys-
tem (46¢)-(46d), and the perturbation term is implicitly taken into account through
the use of the real state o in (46¢). Following the same steps as in (44), we have

o — Og+1 € hKog41 + h’yM(&kJrl) < o) € (I—|— h(K—F’}/M)) (5’k+1)
= Gpp1 = (I + h(K +yM)) " (0%)
(47) = Gy = JG(on),

where K = KT > 0 is an m x m matrix and the set-valued map N := K + vM that
maps p— {¢g ER™ |qg= Kp+~(, ¢ € M(p)} is also maximal monotone [41, Exercise
12.4]. Tt follows from (46¢) that the input selection applied to the system is explicitly
given by

(48) Wy = _% (T — J4) (or) = —N" (o),

where N refers to the Yosida approximation of N of index h. Equation (48) shows the
non-anticipation and the uniqueness of the control (46d) (since N is single valued).
Hence, the discrete-time closed-loop subsystem (46b)-(46d) is equivalent to
Okt1 = Opq1 + h(W(k, z) + 0"),
(49) R
Ok+1 = JN(Uk)-

In this context the variable oy, is called the discrete sliding variable and, when 64, =
0 for all n > 1 and some k < 400, we say that the system is in the discrete-time sliding
phase [25].

Remark 32. Note that we have shown that the implicit discretization scheme (46)
is well-posed and implementable. Indeed, the values of the controller were obtained
explicitly from the unique solution of (46¢)-(46d), that is, (48). It is also worth to
mention that, under the proposed scheme, u$" is a function of the current state oy,
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and design parameters, i.e., K, v and M. Hence, the controller is implementable and
the closed-loop system reduces to,

1

(50a) Zhpr = Bl (In + hA+hAa(k,2))XBL (B[ XBL) 2
+ B[ (I, + hA + hA (k, z1,)) Boy,
(50Db) Ok+1 —Uk—Nh(Uk)+h( (k, z1) +ni")-

In the next section the stability properties of the closed-loop (50), equivalently (46),
are studied in detail.

4.4. Stability of the closed-loop. In this section the stability of system (46)
is proved. We start by computing the necessary conditions that the matrices X and
K must satisfy under the assumption of ideal sliding phase, that is, o = 0. This step
allows us to compare the discrete-time and the continuous-time approaches showing
their similarities, and also providing some convergence results. To this end, we start
considering the following discrete-time reduced order system
(51) 21 =Bl (I, + hA+hAa(k,2))X B, (BIXB,) ™ 2}

together with the Lyapunov-function candidate V(z}) = 121" (B] XB1) '21. Com-

puting the difference AV := V(z}, ;) —V(z},) along the trajectories of (51) and setting
G .= BTXBJ_ and sy 1= G_lz,i yields

-1 1 -1

AV = zk+1 (BIXB1)  zpq— 5,2,? (BIXB1) =

h
= 551 pBl (AX + XA" + hXA"B,G "B/ AX) B, s,
+ hsg B] Aa(k, 21) X Byisy, + h%s) Bl XAT"BLG'B] Aa(k, )X By sk
h? .
(52) + s TBIXAA(k,z) " BLGT*BT A 4 (k, zx) X BL sp..

Making use of the inequality 2p'Z'Yq < p" ZTWZp + ¢"Y TU~1Yq, where U =
UT >0, gives the bounds

o 1 o o
(53) S;—BIAA(/C, Zk)XBLSk < isgBIAA(ka Zk)\lllAA(k, Zk)TBLSk

—sk F B XUT'XB, s,

. 1
(54) szETG_lBIAA(k,zk)XBLsk < —sTETG_lllsz_lEsk

—sk fBI XAk, 2) " BLUy Bl Aa(k, 2) X By sy,
where E = BIXATBL. Setting ¥, = A and ¥y = G, where A is any positive definite

matrix that satisfies Assumption 9, and then applying the results from Propositions 27
and 28 transforms (52) into

1 1
(55) AV < —hs] B] <ax — 5l - 5XA*X —hXAT'X

h .
—5XATBL (BIXB.) " BIAX) Bl sy.
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Therefore, AV < 0 if

1 1
(56) BJ <ax — 5l - 5XA*X —hXATX

h _
—5XATBL (BIXBy) " BIAX) B, > 0.

Notice the resemblance of (56) with (18). In fact, once again we have that any solution
of (56) is a solution of (18) and in the special case when h = 0 the right-hand sides of
both matrix inequalities coincide. Similarly to the continuous-time case, we will ask
for a stronger version of (56). Namely,

A C:?u Q12
(57) Q= [QE Q22} > 0,
where

, 1
Qi1 := B/ <aX — L= S XATIX — R (2XATIX 4+ XATBLGlBIAX)> By,

_ 1 h
Q12 == —EBIAB - EBIXATBLG*BIAB,

Qo = K — %BTA*B —hBT <2A1 + gATBLGlBIA> B.

It is also worth to notice that for any h > 0, a solution (X, K) of the matrix in-
equality (57) is also a solution of the matrix inequality (19). Additionally, in analogy
with the continuous-time context, repeated application of Schur’s complement formula
gives us the equivalence between the matrix inequality (57) and the LMI

Ri1 Rio
58 > 0,
( ) |:R1|'2 R22:|
where,
[B] (aX —I,)B. —iB[AB —-hB[XATB,
Rll = —%BTATBL K —hBTATBL
i —hBIAXBJ_ —hBIAB 2hBIXBJ_
_—hBIXATBL 0 BIX 0
R12 = 0 —hBTATBJ_ 0 BT
i 0 0 0 0
?hBIXBL 0 0 0
Ry 0 hBIXBL 0 0
2 0 0 H%A 2O
L 0 0 0 —1+2hA

Assumption 33. Along all this section we will assume that X and K are such
that (34), (36) and (58) hold.

The following result gives conditions for achieving the discrete-time sliding phase
(Gk+1 = 0% = 0 for all k > k* for some 0 < k* < +00).
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LEMMA 34. Let Assumption 19 hold. The following two statements are equiva-
lent:

1) or € hyM(0) for some k € N.

2) G1 = 0.
In addition, if for some kg € N, 6,11 = 0, then Gry+n = 0 for all n > 1, whenever
w(k, zi) + 0t € YM(0) for all k > ko.

Proof. The equivalence between 1) and 2) is clear from (49). Namely, 6x+1 = 0
is equivalent to Jf(ox) = 0, which in fact is the same as oy, € (I + h(K +vM))(0).
For the second part of the proof we start from the assumption that, for some kg € N,
Fke+1 = 0. Hence, again from (49) it follows that

(59) Tho+1 = Okot1 + h(wie + 1%y) = h(wk, + 1iy) € hyM(0).
Therefore, applying the first part of the lemma we obtain 6,42 = 0. The results
follows by induction. 0

The following result supports the use of the scheme proposed in [1, 2].

COROLLARY 35. Let the matched disturbance w(k, zi) +n;* € YM(0) for all k >
k* for some 0 < k* < 4+00. Then, in the discrete-time sliding phase the control input

uy’ satisfies
up = Wk—1 + M-
Proof. Since in sliding phase 6441 = &) = 0 it follows from (48) that uf’ = —%
and from (49) we have that o, = h(wr—1 + 1} ,) and the result follows. 0

In words, the input obtained from the implicit scheme (46) compensates for the
disturbance with a delay of one step once the discrete-time sliding phase has been
reached. Moreover, it is worth to notice that in the discrete-time sliding phase the
input u}’ is independent of the gain +, a crucial fact that is experimentally verified
in [26, 27]. This last property becomes fundamental in the application of the control
scheme (46) since it helps to drastically reduce the chattering effect of the closed-loop
system.

Remark 36. Tt is worth to mention that the scheme proposed in [1], [2] and stated
in (46) for the computation of the control input seems to be connected to the approach
of integral sliding modes for the estimation of the disturbance [47]. Indeed, we can see
that equation (46c¢) represents some sort of nominal system from which the control
input is obtained instead of using the perturbed system (46b). Moreover, Corollary
35 confirms that, as a consequence of taking the implicit discretization, the obtained
controller is automatically compensating the matched disturbance terms with a one-
step delay.

Practical stability of the difference equation (46) is proved by the following the-
orem.

THEOREM 37. Let Assumptions 7-29 hold. Consider the closed-loop system (46)
where X = X7 >0 and K = KT > 0 are such that Assumption 33 holds. In addition,
let L, C R™ be the compact set

o e {[]ew
1T T

Then, for any initial condition zo = [20 oo }T which lies in L. for some ¢ > 0,
there exists h > 0 small enough and fixed such that for v > 0 satisfying

(61) ve =p+ W + (V& + 20| K|?)z,

1 - 1
52” (BJT_XBL) ! 2P+ EO'TO' < 02} .
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where Z := max{||z||,z € Lc} and p > 0 is an arbitrary constant, the origin of the
discrete-time closed-loop system (46a)-(46d) is semi-globally practically stable. In fact,
for any initial condition zo € L. the trajectories converge to a ball c;B,, where cj, < ¢
is specified below in the proof and limy_,o c; = 0.

Proof. See the Appendix. d

Remark 38. Roughly speaking, semiglobal practical stability of the origin refers
to the stability of a set (containing the origin) in which, the size of the set can be
made arbitrary small and the region of attraction can be made arbitrary large by
suitably adjusting a set of parameters (in our case the parameters are the sampling
time A > 0 and the controller gain v > 0). The reader is addressed to [16] for a
detailed exposition of the concept and related results.

Remark 39. Practical stability fits within the boundary layer approach [45]. In
our case we add the prefix semi-global because the disturbance is not uniformly
bounded, so the gain v would have to depend on the state for global stability.

COROLLARY 40. Let all conditions and assumptions of Theorem 37 hold. Also,
let the gain v > 0 satisfy
W+ VEz)?
(62) 752p—|—(1—i—a)(r—i—W—i—\/Ez)+max{2h||K||2z,#}
for some constants p,r > 0 and € > 0 such that €B,, C M(0). Then, there exists
ko > 0, ko = ko(«, ), which is finite and such that the variable ¢, = 0. Moreover,

o = 0 for all k > kg, that is, the discrete-time sliding phase is reached in a finite
number of steps.

Proof. From Theorem 37 it follows that for all £ > 0 the state zj is uniformly
bounded (since z;, € L, for all k > 0). This boundedness property allows us to analyze
the subsystem (49) and to take the disturbance term w(k,zx) + np* as uniformly
bounded. Let us consider first the case where |[opq1| > h (r + W + V/E2) for some
k € N and some r > 0 as in (62). Notice that this implies ||Gx+1]| > hr. Consider the
Lyapunov-function candidate V, = 10,7 0. From (87) we have that

AVy < —h(ve = [k, 21) + 0 ) 1Gk1 ]l + B2 (K, 22) + ni ||

(63) <-h (75 — (W + \/Eg) — M)

15k

Thus, AV, < 0 whenever |lox41] > b (r + W 4+ v/Ez). It follows that dist(ox, h(r +
W + VEZ)By,) — 0 as k — oo. Hence, there exists a finite ko(a, ) > 0 such that
okl < (1 + a)h(r + W + /&Z) for all k > ko, and

o
h

(64) <A+ a)(r+W+VEz) < e

Since by assumption €B,, C M(0) a direct application of Lemma 34 gives us the
desired result. On the other hand, if |log11] < h(r + W + v/kZ) we have that

gkl <r+W +Viz < e,

and the proof is complete. O
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4.5. Convergence of the discrete-time solutions. Here we prove that the
trajectories of the closed-loop discrete-time system (46) converge to trajectories of the
closed-loop continuous-time system (13) as the sampling rate A > 0 decreases to zero.
To this end consider the following piecewise continuous functions:

t—ty

(65a) 2t (t) == 2z + 5 (2hr — 2p) forall t € [tg, trga]

(65b) on(t) :=op + Ll

(og+1 —ox) for all t € [tg, tgt1],

together with the step functions

(66&) o (t) = &k+1 for all t € (tk, tk+1]
(66b) o (t) =0 forallte (tk, tk+1]
(66¢) zp"(t) ==z, for all t € (g, thy1]-

* ¥ %

From Theorem 37 it follows that for a given initial condition [2}(0)",04,(0)T]" € R™
the trajectories z,lI and o, are maintained for all times ¢ > 0 inside a compact set
L. for some ¢ > 0. Hence, they are uniformly bounded. Moreover, we have that the
derivatives of z} and o}, exist for almost all ¢ > 0, and satisfy

Zh1 — P
(67a) A (t) = +T, for all t € (tx, tkt1)

@, for all t € (tg, trt1)-

(67b) Oh (t) =
It follows from (46a) and the continuity of A4 (k, zy) that %} is uniformly bounded.
On the other hand, by (49) we have that

Gt + h((k, z1) + n) — I (ow) — .
L = Tkt (( ;k) M) = ok _ N(Ukh) TE ok, 21) + 7

(68) = —N"(o) +w(k, z) + 0,

where A" is defined in (48). Thus, from the fact that [N (op)| < || Projn (s, (0)[] [4,
Theorem 2 p. 144] and recalling that 7" = SAA(k, z)T 'z together with the
uniform boundedness of A 4(k, z,) and w(k, z;,) (Assumptions 9 and 10 respectively),
it follows that ¢y, is uniformly bounded too. Hence, we have a pair of equicontinuous
sequences of functions {zp,}n~0 and {op},-, and using a similar argument as the one
used in the proof of Theorem 22, we get the existence of continuous functions z' and
o such that [zp, 0] — [z, 0], strongly in L5([0, T]; R™) and [2p, 6n] — [, 6] weakly in
L5([0,T]; R™) for any T > 0. Additionally, we have

N-1 tpin
* (12 20 4 2
o = il = 2 [ (=P lon(0] e
k=0 tx

N-—1 t
t— )3 |
< C? t—t)”
=1 Z 3 .
k=0 k
C2Th?
< —7
- 3
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where Cy > 0 is an upperbound of ||6,||. Hence o} — o as h | 0. In a similar fashion,
we also have z;, — z as h | 0. Moreover, as was pointed out above, any solution X of
the matrix inequalities (34), (57) converges to a matrix P, solution of (5) and (19),
as h decreases to zero. Therefore, from (67) and (46) we get

ih=BL (A+Dak,z0)) XBL (BIXBL) 2 + BI (A+Aalk, ) ) Boj,
~B] (A + AA(k,zk)) PB, (B[ PB.) '2'+B] (A + AA(k,zk)) Bo = !

and
op —wy, —npt > —w—¢, as hl0,

both weakly in Lo([0,T];R™™™) and L2([0, T]; R™), respectively. Finally, from (68)
we have that —dy, +wj +n"* = N"(0}) and J&(0o}) — o strongly in £2([0, T]; R™).
Indeed,

lo = IR (@i)] < llo = JK (@)l + [ T&(0) = IR (on)]
< WV @) + llo = a7
< h|[Projne) (0| + llo = apl;

where we used the non-expansivity of the resolvent. It follows that J&(o}) — o
uniformly in C([0,7T];R™) as h | 0 (and consequently, strongly in £5([0,T]; R™)).
Consequently, using the fact that N(o}) € N(J&(07)), where N = K + yM [4,
Theorem 2 p.144], after the application of Proposition 2 in Section 2 we conclude that
the pair (21, 0) is a solution of the differential inclusion (13).

Remark 41. Previous developments reveal that the implicit discretization scheme
for the set-valued part of the controller uj" makes sense and at the same time allows
us to inherit the robustness of the continuous-time closed-loop system.

In the next section we present some numerical examples, showing the robustness
of the implemented discrete-time controller as well as the suppression of the chattering
effect.

5. Numerical example. Consider the following benchmark dynamical system

0 1 0 0 0 0 0
0 0O 1 0 O 1 0
(69) i=|0 0 01 olzt]0 0]y
0 0O 0 0 1 0 1
-1 -2 3 1 2 1 1
x € R?, u € R?, with the parametric uncertainty
0.1cosxq 0.1 —0.1 —0.1 0
0 0.1sinxo 0.2 0.3 —-0.4
(70)  Aa(t,z)=| 0.33 0.1 0 0 —0.1sinzs
0 0 0.14cost 0.2 0
1 0.4 0.1sinxy 0 0.1

In addition, we take into account the effects of a matched and bounded external
disturbance w(t) = [2sin(t) 5sin(0.63¢)] T First, we show the continuous-time case
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with the regularized control law provided by the Yosida approximation of the set-
valued map M and, after that, the discrete-time case is exposed. In this example
we consider the set-valued map M as the subdifferential of the infinity norm, i.e., let
f(o) = ||lo|lcc = max; |o;|. Hence,

M(o) = 0f(0) :={C € R™ [ f(n) = f(o) = ((,n — o), for all n € R™}
(71) = conv{df'(o)|i € I(0)},

where fi(c) := |o;| and I(0) := {i € {1,...,n}|f' (o) = f(o)} is the set of indices
where the maximum is achieved [41, Exercise 8.31]. For the continuous-time case
we use the regularized controller given by the Yosida approximation to the maximal
monotone operator M. Notice that, in the continuous-time case, the selection of
the values for reaching the sliding phase will depend of the disturbance terms and
therefore there is no suitable selection process. Invoking [7, Example 23.3] we have
that Jj; = Prox,s, where Prox,; refers to the proximal map of the function s f
defined in Section 2. In order to compute the Yosida approximation first notice that
the Moreau’s decomposition Theorem [7, Theorem 14.3] gives

M) = =1 = 3) (o) = Proxy. (2.

So we proceed to compute the conjugate function f*(o) := sup,cpm{(z,0) — f(z)}.
Let us first consider the case when o is such that ), |o;| < 1. Then we have

0=1(0,0) = f(0) < f*(0) = sup {(z,0) = [|2[loc}

zeR

m
sup {Zlfnlll‘il - IIIlloo}
zeR™

=1

sup | oo ol —1 =0.
2 {e (B

Hence, f*(o) = 0 whenever |o|l; < 1. On the other hand, consider the case where
> loil > 1. In this case we have

fr(o) = sup {(z,0) = [lz]lo}

reR™

IN

IN

sign(a1)||o o

m
sup 4 oibsign(0i)||o e — b
beR i=1

Y

sign(om ) o]]oo

sup ¢ b|lol|eo o;| —1 = +o0.
o e~ (5 )}

It follows that f*(c) = Wg (o), where B}, := {z € R™|||z||; < 1} and the function
U denotes the indicator function of the set C'. Therefore,

M*(o) = Proxy,, (f) = Projp: (f) .

The next step consists in the computation of C. Following the steps described in
Section 3 we have that C = (B'P~!B)BTP~! where P = P' > 0 is a solution

o0
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of (5), (20). Using the software package CVX [24] together with the solver SeDuMi
[43] to solve the LMIs (5) and (20) we obtain

2.3075  —3.3999 —1.4020 2.5063  —2.0431
—3.3999 18.3866 1.4443 —9.7181  9.8744
P=1-14020 1.4443 13.8392 —19.8470 -9.7614] ,
2.5063 —9.7181 —19.8470 70.0849  38.7141
—2.0431 9.8744  —-9.7614  38.7141  38.7003

together with

K— 14.6386 —2.411
T |—2.4111 14.2337|°

It follows that

- 1.5052  0.9790 0.0350 —0.0210 0.0210
~|—0.0019 —1.7935 0.3140 —0.7935 1.7935|°

Figure 1 shows the trajectories, the sliding variable and the control input of the
closed-loop system (69) with regularized control input u = u®*™ — Ko — v(z)M* (o),

taking p = 0.001, a = 1.4, whereas the gain y(z) is as given in (25), with values
v(z) = 7+ 29.28||z|| and the initial condition z(0) = [I -1 1 0 —1]T. The

simulations were carried up in Matlab using a Dormand-Prince solver (ode45) with
variable time-step and relative tolerance of 1076, Also it is worth to mention that
there is no chattering present neither in the input nor in the output o, since the
control input is Lipschitz continuous, see (48), and well-posed over all R™, see Figure

15 ‘ . 20 ‘ ‘
0 PO AACORAANT DA
1 —
=
20
05 S
a0 |
0r 60 L
= 0 5 t 10 15
= 10°
05 1 2 T
4 i
-1 —
=
= o f%()&\/()”(;\fKXE/\iX)‘t{QXX;\yg
1.5 ©
a6 i
2 ‘ ‘ »

. .
0 5 t 10 15 0 5 t 10 15

Fig. 1: Time evolution of the control input u = u®™ — Ko — v(z)M* (o) and the
corresponding system trajectories and sliding variable with p = 0.001.

For the discrete-time setting, we simulate the continuous-time plant with a ZOH
sampling mechanism and we implement the discrete-time controller described in Sec-
tion 4.3. We use the set-valued maximal monotone map M defined in (71). In this con-
text, instead of computing the Yosida approximation of N = K+~M, we introduce an-
other way of computing the control input vV from the Yosida approximation of the set-
valued map M. From (46¢)-(46d) it follows that (I, + hK)Gg41 — o € —hyM(F)11)
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or, equivalently,
Ooy, — 0(I, + hK)op41 € OhyM(Gky1)
)
Oo, + (I, — 01, — OhK) 511 € (I + O0hyM) (6k+1)
)
(72) Grr1 = JI (B0, + (I, — O(I, + hK))5ps1) .

We claim that the right-hand side of (72) is a contraction for 6 > 0 sufficiently small.
Indeed, recalling that the resolvent J}; is non-expansive for any p > 0 it follows that

[ (B + (L = 01+ hE))oky) = I (B + (L = 01+ hE))3 1) |
< 1 = 6L + RN 51 = 524

Hence, taking # > 0 small enough we have that ||I,, — 0(I, + hK)|| < 1 and then
Jg/? 7 is a contraction. Consequently, the method of successive approximations can be
applied in order to find the fixed point 6441 of (72) and the control input u}’ at each
sampling instant. We set three different sampling periods, h € {50 ms, 5 ms, 0.5 ms},
a = 1.4, whereas v was computed from (61) as v = 237.77 for h = 50 ms, v = 51.17
for h =5 ms and y = 49.63 for h = 0.5 ms, and 2o = [I —1 1 0 —1]  as before.
In the three cases we solve (34), (36) and (58) and we obtain the following sliding
surfaces Hy, := {x € R" | Sjz = 0}:

g - [1.4759 0.9867 0.0042 —0.0133 0.0133]
h = 0.1065 —1.6527 0.6364 —0.6527 1.6527
g - (1.4733  0.9912 0.0266 —0.0088 0.0088]
he = 0.0317 —1.7821 0.3248 —0.7821 1.7821]
5 - [1.4701  0.9977 0.0332 —0.0023 0.0023]
37 10.0280 —1.7837 0.3083 —0.7837 1.7837]|"

For the simulation of the system, we use the same Matlab configuration setting as in
the previous case. Figures 2-3 show the evolution of the trajectories of the closed-loop
system (69) with a control scheme dictated by (46), as well as the evolution in time
of the sliding variable and the control input. The subindices in the labels of the plots
indicate the sampling time A for the current variable. Notice that in all the three cases
there is no chattering at all, neither in the input nor in the output, c.f. Figure 4. It
is noteworthy that the control compensates for the disturbance as stated in Corollary
35.

Finally, Figure 4 shows the plots of the control input, sliding variable and system
trajectories of the closed-loop system (69) when the conventional unit vector control
is applied using an explicit discretization for the set-valued part of the controller, that
is, u(ty) = u*™(tg) — Ko(ty) — ”y% on [tg, tk+1) with sampling time h =5
ms. Notice that, when we regularize the control input in the conventional way there
is no selection procedure, which in the end results in the appearance of chattering in
the system. Numerical chattering (i.e., the chattering due to the time-discretization)
is known to be intrinsic to explicit discretizations [22, 23, 27].

6. Concluding remarks. In this work we present a family of set-valued sliding-
mode controllers making use of the so-called maximal monotone operators. The pro-
posed methodology has the advantage of embracing the two main approaches which
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E— Ty = 50ms ———— hy = bms— hs = 0.5ms |

smmmmmes iy = 50 ms
- hy =5ms |

— ——— h3 =0.5ms

-4 L L " L L
0 5 t 10 15 0 5 t 10 15

emeeeees By = 50mMs
--==== hy = 5ms
hz =0.5ms []

-10 L : 0.5 .
0 5 t 10 15 0 5 t

L
10 15

Fig. 2: Time evolution of the control input uy = up™ + ;¥ (left) and the associated
sliding variable (right), for the sampling times h € {50 ms, 5 ms, 0.5 ms}.

hy = 50ms

-2 ————hy=>5ms

hs = 0.5ms

0 5 t 10 15

Fig. 3: Time evolution of the piecewise linear trajectories x(t) of the discrete-time
system (46) for the sampling times h € {50 ms, 5ms, 0.5 ms}.

exist in the literature of sliding-mode control, namely, the unit vector control and the
componentwise control, among others. Additionally, the proposed scheme allows us
to deal with the multivariable case without any modification and provides a unique
and well-posed way of regularization of the set-valued controller through the use of
the Yosida approximation.

All along the article we deal with parametric and matched external disturbances.
A study for both the continuous and discrete-time cases was presented. In the
continuous-time case it was shown that the proposed set-valued controller is well-
posed even in the case when the right-hand side is not maximal monotone. Moreover,
the convergence of the trajectories as the Yosida approximation converges to the
set-valued control was established. On the other hand, the implementation of the
controllers obtained from the continuous-time setting was analyzed. It was shown
that the use of the implicit discretization for the set-valued part of the controller is
well-posed, and allows us to make a selection for the values of the controller that
will compensate for the disturbances in a unique fashion. The advantage of making
a selection rather than switching is translated into the suppression of the chatter-
ing effect, confirming previous analytical and experimental results obtained in a less
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Fig. 4: Time evolution of the control input v = u"°™ — Ko — vo/(||o|| + 0.001) and
the corresponding system trajectories and sliding variable with a sampling step h = 5
ms.

general framework not encompassing parametric uncertainties.
Appendix A. Appendix.

A.1. Proof of Theorem 22.

Proof. The proof follows a classical approach. Namely, first we approximate the
solutions of the differential inclusion (13),(22) by using differential equations. After
that, the boundedness of the solutions of the differential equation for all times t €
[0, +00) is proved. Finally, the application of the Arzela-Ascoli [31, Theorem 1.3.8]
and the Banach-Alaoglu [31, Theorem 2.4.3] theorems gives us the convergence of
the sequence formed from the solutions of the differential equation to one solution of
the differential inclusion (13),(22), see e.g., [3]. We start with the proof as follows.
Consider first the differential equation

(738 2 = B] (A + At z“)) PB, (BIPB,) " 2+ B] (A + At z“)) Bo*
(T3H) 6 = K% + (t, 2) + (2, ) — () MP (o),

where z# = [24 TU“T]T and the map M*# : R™ — R™ refers to the Yosida approxima-
tion of index p > 0 of the map M (see Definition 1). It is a well known fact that the
Yosida approximation is a Lipschitz continuous function with constant 1/p. Hence,
it follows that there exists one solution to (73) in [0,7") for some T' > 0. Next, using

a Lyapunov analysis we show that the solution of (73) exists for all times ¢ > 0. To
this end, consider the positive definite function

1 1
(74) Vil ot) = 54”(3113&)—12;* + 50’”—0“,

where we recall that B is full column rank and hence BIPB 1 > 0. Deriving V
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along the trajectories of (73) leads to
V=2'"(BIPB) i oM T
= (BIPBL) ' BL (A+ At #) PBL(B] PBL) "2t
“T(BIPB,) BT (A + A, z“)) Bo" — 0T Ko

+ 01T (<)M (0") + b (t, 2#) + (2, 7))

1 "
< 5zlﬂBL (AP + PAT)B " + 2T B] ABo" + 2" Bl As(t, z*)PB, z"
+z2TB] A4(t, 2")Bo* — o' T Ko
(75) +onT (—'y(z“)/\/l“(o“) +(t, 2*) + Gt z“)) ,
where, z' = (B] PB,)~'z{'. The next step consists in finding bounds for the terms

that involve the unknown matrlx Ay Using the inequality 2p " X TY¢ < p" X TW X p+
q"YTU1Yq where U = U > 0, gives us the bounds

A 1 1

(76) ZTBI A PB, 2 < §z1TBIAA\IfA B, 7" + §leBIP\IJ 'PB, &
1 1

(77) "B AsBo* < §z’”BIAA\1/ATBM + 20*”3%*130#.

Taking ¥ = A where A = AT > 0 satisfies Assumption 9, the substitution of (76)-(77)
into (75) yields

. 1
V<-z"B] <aP -I, - 5PA—lp) B, #' +z B] ABo*

—otT <K — %BTA1B> ot +otT (—’y(z“)./\/l“(a”) + W(t, 2") + dm (t, z"))

(78) ~
< Amin (@2 = ()0 T M () + (W + VRl 1) "]

where Q € R"*" is given as
- BTPB.)™' 0 BTPB.)™' 0
(79) sz[(LOL) I}Q[(LOL) 1 1=0

and @ is defined in (19). We proceed to analyze the term (o#, M*(c*)) as follows.
From the definition of the Yosida approximation (Definition 1 in Section 2) we have
that o# = pMH(o*) + Jig(o*), and (Jhs(o*), MH(o#)) € Graph M. Hence, making
use of both previous facts together with (24) in Proposition 21 gives
(o, MM (")) = plM(a")]|* + (g (o"), MH ("))
> pl| M) + e[ Jyg (o)
= pM(a)|? +ello” — pM*(aM)]].

Now, recalling that ||o#* — pMH*(a®)|| > ||o*]| — p||MH(o*)||, we have

(80) (o, M (")) = ello”|| + p M* ()] (IM*(a")]| =€) -
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Substitution of (80) into (78) results in

V < = Amin(@12 17 + " [(W + VE[2]) = ~(=) (el o]l
+ | MH (@) ([M* (o)) =€)
< (@217 = (e7(=") = W = Vil|2"]]) [lo*|
(81) — () MH ()| (IMH ()] = )).

Now we continue with the proof showing that for all o# ¢ peB,, the term || MH(o*)||—¢
is nonnegative. To this end, first notice that for any v € ueB,,, C pM(0), the resolvent
Jyx at the point v is zero. Indeed, let € > 0 be such that eéB,,, C M(0). Then, it follows
that for any v € peB,,, v € uM(0) = (I + pM)(0). Therefore, Jy;(v) = 0. From the
non-expansiveness property of the resolvent it follows that || Jy;(c#)|| < [|o* — ]|, for

ot

all v € peB,,. So, from the definition of the Yosida approximation, taking v = ue Cak

and recalling that we are analyzing the case where ||o#| > ue, we have

1
1

Y

1
IMEC) = 2l = (@) = = (o[l = 11 Tn (e D)
o
UH__METg__

1
HZE )
. o]
1
1! (noﬂn— (1— he )noﬂn) e
. T

Previous developments show that it is sufficient to consider only the case when the
sliding variable o# € eulB,, (since for the case o* ¢ euB,, we have already shown
that (81) is strictly negative). Hence, letting ||o#| < pe and recalling that in this
case Jyg(o*) = 0, it follows that M#(o*) = %a“ and (81) transforms into

7 < Ainl @I = (er(4) = W = VR o =2l (121 )
0"
I

< (@77 = (e7(z") = W = V&[[2#]) 0" ]| = (") +(e")e?p.
Let L. = {z* e R" | V(2*) < ¢, } be the level sets of the function V' and let ¢ > 0 be
such that the initial condition zg € L. and rB,, C L. for some r > 0. Then () is
uniformly bounded in L. by some 4 > 0, and for any z € L. \ B,, we have that

(82)

. ~ 752
V< (Amm@) —_ “) 12917 = (ev(z#) = W = VR[|2#]) o™ = 7(=)

s
r2 '

From (82) we conclude that, for all ¢ > 0 small enough such that

TZAmin *

(83) pe el

the set L. is positively invariant (since V < 0 in bd L.) and boundedness of the
trajectories on the time interval [0, 7] follows. A classical argument by contradiction
proves the existence of solutions of (73) for all T > 0. It remains to show that
for any 2#(0) = z(0) = 2o € R™ the sequences {z/"},>0 formed by the solutions
of (73) converge to a solution of (13),(22) as p | 0. Continuing with the proof,
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let zl) € R™ be fixed, then there exists a ¢ > 0 such that 2#(0) € L., and we
have that any solution of (73) satisfies z# € C([0,T];R") for any T > 0, where
C([0,T);R™) refers to the Banach space of continuous functions from [0,7] to R™
with norm [ly[| = sup,co,7y [[y(t)[|. Further, the sequence of trajectories {z"},~0 is
uniformly bounded for all 0 < pu < p*, where pu* satisfies (83) (recall that the set L.
is positively invariant). On the other hand, from the assumption that the domain of
M is all R™ it follows that M*(o#(¢)) is uniformly bounded. Actually, from the fact
that the set L. is a compact subset of R, it follows that there exist a compact subset
L. C R™ such that o*(t) € L. for all t > 0 and all 0 < p < p*, and a finite collection
of open sets {O;} C R™ such that:
1.‘56 C:LJ£:1()h
2. For each i € {1,...,7}, M(O;) C b;B,, for some 0 < b; < +00.

Consequently, M(c#(t)) C Ui_;M(O;) C max;eqs,....r} biB,n. Hence, invoking (2) it
follows that ||[M* (" ()| < || Projani(en ) (0)|| < maxieqr,.. 3 bi. Therefore, from
Assumption 9, together with (73) and the conclusion about the boundedness of its
solutions it follows that, for any 0 < p < p*, 2# € Loo([0,T];R™) is uniformly
bounded. Hence, we have that the sequence {2/}, is equicontinuous. By a direct
application of the Arzela-Ascoli Theorem [31, Theorem 1.3.8] we get that there exists a
subsequence {z*},~0 such that z# — z for some z € C([0, T]; R™) uniformly in [0, 7.
On the other hand, because 2# € L, ([0,T]; R™), an application of the Banach-Alaoglu
Theorem [31, Theorem 2.4.3] shows that there exists a function ¢ € L ([0, T];R"™)
such that z#* — ¢ in the weak™® topology, i.e.,

lim T(é“(t) —q(t),s(t))dt =0 for all s € L£1([0,T];R"™).
10 Jo

Moreover, from the fact that z(t) = z(0) + fOT q(t)dt we infer that ¢ = 2 almost
everywhere. Notice that, since the considered time domain is bounded, we have that
Lo([0, T);R™) C L£4([0, T];R™) [30, Corollary 1, Chapter VIII]. Hence, 2* converges
weakly in Ly ([0,T]; R"). From the continuity assumption of A4 and the convergence
of z# and Z* to z and # respectively, it becomes clear that z satisfies (13a). In fact,

# = Bl (A+Au(t,2)PB, (BIPB.) " 2+ BT (A+ Aa(t,2")) Bo" —
BI(A+ Au(t,2)PBy (BIPBL)_l 2+ B (A+ Aa(t,2) Bo = 4.

Additionally, setting 0% := ¢#+ K o ——,,, we have that, for any © € Lo([0, T]; R™),
T
01 (t) ot >
/0 <7(2”(t)) 7(2(1))

- /OT (m@) ~em) @O /OT (" o)

From (25) if follows that v(z) > £ for any z € R™. Thus, there exists a i > 0 such
that, for all & < p* we have

TR e
(84) /o<v<zu<t>> w(z(t»””“)>‘”

TWEQ i i 716 o _
< [ Sl = =oNo Ol + [ 5070 o). o(0) i
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where L., > 0 refers to the Lipschitz constant of the function . Hence,

L O KaP — it 2") — byt 2P
(85) ("= () 7

6+ Ko —w(t,z) — dm(t, 2)
(2)

=:( asiul0

weakly in Lo([0,T];R™) for any T > 0. Finally, from [4, p. 146] it follows that
the set-valued map M seen as a set-valued map from L3([0,7],R™) to the sub-
sets of L2([0,7],R™) is also maximal monotone. Since Jy;(c#) — o uniformly in
C([0,T],R™) [4, p.144], and consequently strongly in Ly([0,T];R™), the left-hand
side of (85) is equal to ¢* = MF(o#) and M#(c#) € M(Jh;(c")) [4, p. 144]. In-
voking Proposition 2 in Section 2 allows us to conclude that ( € M(o), that is, the
differential inclusion (13),(22) is satisfied. This finishes the proof. O

A.2. Proof of Theorem 37.

Proof. Mimicking (27), let us consider the Lyapunov function candidate V*(z) =
VE+VE where VE = 22]T(BTXB ) 'z} and VF := Lol o). Let AV = AV, +AV,
where AV, := VF*1 — V¥ and AV,1 := VA — V. We split the proof into two parts.
The first part consists in finding a proper upper-bound for the difference AV,. After
this, we continue analyzing the term AV,:. Finally we put all terms together and the
practical stability follows. Consider the positive definite function V¥ = %@Iék and
its respective difference AV = VF! — V¥ Then, making use of (46¢) and (46d) it
follows that

1

T - 1. 1.
AVz = =6} 15k41 — 504 Ok
2 2
~T ~ 1~T~ 1"’T
= 5041 (Okt1 = Ok) — 504 Ok + 50k410k
2 2 2
- - 1_+. . 1.+ .
= 0—]1—4*1 (ki1 — o) — 50201@ + Ul—chrlO'k - §U;—+10k+1
(86) < —hby 1 (KGki1 + YCesr) + Vo — VE,

where (i1 € M(Gk+1) and we have used the inequality 26,04 < &), 1Gkt1 + 0}, Ok
in the last step. Adding and subtracting the term V! 4 V&k‘Irl in (86) yields

. . . 1 1.+ .
AVs < —ha,;rHKakH - h”ya,;rHCkH + 50,;r+1ak+1 - ga;ﬂakﬂ + AV; — AV,

which, after substitution of (46¢) into (46b), leads to
AVo < =& KGks1 = MGGt = 500410kt

Lo A m ~ A m
+ 5 (e + R (@(k, 2) + 1k N Grir + D (@(k, 2) + )

(87)
= —hGy 1 K1 — By g Crogr + hEyy (0(k, z) + mit) + W2 (|l (k, zx) + ngt ||

From (46¢) and (46d) it follows that 6541 = o — hKGk11 — hyCe1 with (ey1 €
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M(6x+1). Then (87) transforms into

AV, < —h(ok = hE Gt — hyCrin) | K (o — hKGri1 — hyCer1) — vy 1 Crin
+ hag oy (0K, z) + 1) + W2 |d(k, zi) + 0|
< —hoj Koy, +2h%0) K (Kog41 +7Crt1)
— WY& Gt + s (@(k, 2) + i) + ||k, zi) + 0 ||
(88) < —hoy Koy — h (ye — [[i(k, z&) + 0| — 28] K || ||lo]|) |55+l

h? .
+ 20 | K (|G lllowll + - (s 2i) + i 17,
where we made use of Proposition 21 in the last step. On the other hand, let us recall

that G = (B] XB,) and let us set s; := G~'z}. Substitution of (46a) into AV,
after some simple algebra, leads to

1 1
AV, 52&11(}'_12%“ — 52,?(}'_12%

1 .
=3 (BI(In +hA+ hAA(k, 2)) X By sy
R T
+ B (I, + hA + hA s (k, zk))Bak> Gt (BI(In +hA
. R 1
+ hAa(k, 2£)) X Bis, + Bl (I, + hA+ hA a(k, zk))Bak> - §sgcsk
LorpT A T -13T
= 351 BIX (In + hA + A (K, zk)) BLG'B] (I, + hA
. 1
+ hAA(k, Zk))XBLSk - gszGSk

. T .
+sI BT X (In + A+ hAA(k, zk)) BLG BT (hA+ hA(k, z)) Boy
2

h A T A
(89) + TU;BT (A + Aa(k, zk)) BIG'B(A+ Au(k,z))Bog.

Notice that the first two terms in (89) are equal to (52). Then, from (55) it follows
that
(90)

1 1 h
AV, < —hs) B] <aX — 5l - <5 + h) XATX - §XATBLG1BIAX) By si

+ hs) B] ABoy, + hs) Bl Aa(k, z)Boy + h®s] Bl XAT B, G"'B] ABoy,
+ h%s) Bl XAa(k,z) " BLG™*B] A (k, z1,) Boy,

+h%s{ BIXAT"B,G*B] A A(k, z;.) Boy,
N h2
+h2?sf Bl XAa(k,2,)" BLG'B] ABoy, + ?U,IBTATBLG*BIABUR
h? . .
+ 7a,jBTAA(/c, 2t) "BLGTYB A4 (K, 2;)Boy

+h%0 BTATB, G™'B] A 4(k, z.) Boy.
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Applying the inequality 2pTUTZIJVq <p'UTWUp+q"VTU Vg, where U =¥ T >
0, to every cross term in which A4 (k, zx) appears in (89), yields the following bounds

sy B Aa(k, z5)Boy, <

1 A A 1
Es;—BIAA(k, 26) U1 AL (K, 21) T By sy + Ea;BTw;lBak,

sp Bl XTI By G™'B[11,Boy, <
1
5s[BIXHIJﬁG*l\IJQG*lBImXBLSk

1
+ EU,IBTHQTBL\I/;BIHQBU;C,

o BTATB, G BT A ,(k, z)Boy, <
%UJBTATBLG_l\IlgG_lBIABok
+ %a;{BTAA(k, 21) " BLYS B A (K, 2) Boy,
where we set II; = A or II; = AA(k,zk) according to the term in question and

similarly for II5. Setting ¥; = A and ¥y = G, the substitution of previous bounds
into (90) gives

(91)
TRT 1 1 -1 bt -15T
AVir < —hs{B] (aX = 51, — (5 +h) XAT'X ~ SXATB,GT'B[AX | BLsy

+ thBIABak + gsgBIAA(k, zk)AAA(k, zk)TBlsk + gakBTAleak

+h?sf B]XA"B, G 'B]| ABoy,

+h2s{ Bl XAA(k, ) " BLG'B] Ax(k, ) X BL sy,

+ %szBIXATBLG_lBIAXBLsk + LfagBTATBLG‘lBIABok
+2h%0] BTA4(k, z) " BLG B As(k, z) Bog.

Taking into account (37) together with Assumption 9 reduces (91) into

1
AV, < —hs) B| <aX -1, - <5 + 2h) XATX - hXATBLGlBIAX) By si

+ hs) B] ABoy, + h*s{ Bl XATB,G'B| ABo,
(92)  +hoyBT ((% + 2h> A4 %hATBL (BIXB,)™ BIA) Boy,
Addition of (87) and (92) leads to
(93) AV < —hz Qzk — h (ve — |k, z1) + ni | = 2R/ K[|l ok]]) 5411

h? m
+ 202 [ K[ Cesa el + = (R, 2) + i 12,
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where Q = QT € R"*" is given as

(BTXB,)™ O}[(BIXBL)I 0

@ 0 I,

(94) Q= 0 I

>0,

and @ is defined in (57). Now, let L. := {(2},0%) € R" |V (2}, 0%) < ¢?} be such that
(28,00) € Le and ||zx|| > r in the boundary of L. for some fixed r > 0. We proceed to
show that L. is invariant. To this end, first notice that (x+1 € M(Gx+1) is bounded
in L.. Indeed, from (49) and the non-expansiveness property of the resolvent, it
follows that 641 is bounded in L.. Additionally, recalling that M is defined over
all R™ it follows that M is bounded on bounded sets [41, Corollary 12.38] and
consequently Cpy1 € M(Gyy1) is bounded in L. by some ¢ > 0. Moreover, it follows
from Proposition 30 that, in L, ||w(k, zi) + || < W++/Ez, where z := max{]|z|, z €
L.}. Consequently, for any (z},0%) € bd(L.) we have that

AV < ~hAmin(Q)l1z6) = b (v = W = Viz = 28| K|[%2) 041 |
_ h? _ 2
+ 20| K S 2ell + 55 (W + VEllzl)
95) < —hAwn(@lzl = b (ve = W = VRz = 20][K]22) [Fhsa ]| + B2,

where [, := 27| K||[|C|z2+ 5 (W + \/Eé)z. Two cases arise:
lc).. From (61) and (95) it follows that the difference

Case 1, (Jla]? > 51—
min(Q)
AV is strictly negative. Hence, if z; € L. it follows that z4; € Le.

Case 2, (||zk||2 < lc).. In this case (95) lead us to,
min(Q)

(96) VL < VR 4 p2,.

Roughly speaking, in this case the Lyapunov function may fail to be decreasing.
However, if it increases, it will be in small quantities in such a way that the system’s
state stays inside L.. Formally, letting A > 0 be such that

(97) 2> max V(z) + R,

2<_—h
Il < @y e

will imply VAt < ¢2, that is, zx.1 € L.. Hence, selecting ¢ > 0 big enough and

h > 0 small enough, it follows that zg € L. \ 3 'h(Q) [B,. Thus, we fall in Case 1

and z; € L.. Let k* € N be such that z;« € , /%@chn (if that k* does not exists,

then we are always in Case 1 and the state will converge asymptotically to the ball
\ /A_L@)ZCIB%" and we are done). So, we fall in Case 2 and condition (97) will assure

Zk++1 € Le. Indeed, from (96) it follows that the state zg«y; remains inside the ball
c; B, with ¢ given as

1 1
98 ¢? = | max ( ) 1) ~ TR | hle,
( ) h ( /\min(BIXBL) )\min (Q) )

from where practical stability follows. This concludes the proof. a
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