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Abstract. In this paper we study the closed-loop dynamics of linear time-invariant systems5
with feedback control laws that are described by set-valued maximal monotone maps. The class of6
systems considered in this work is subject to both, unknown exogenous disturbances and parameter7
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1. Introduction. Since its appearance in the late fifties, the so-called sliding17

modes have been associated with switching control laws. The main idea arises from18

the behavior of the electrical relay, i.e., the input switches between a finite number19

of possible values depending on the region of the phase-space in which the system is20

evolving. This approach works well in principle, but for real-life applications some21

problems arise due to the intrinsic imperfections in the elements that constitute the22

controller, as for example: time-delays in the reaction of the components, boundaries23

in the operation region (finite switching frequency), etc. Among the most dangerous24

effects resulting from these imperfections we can find the so-called chattering effect.25

The catastrophic consequences of chattering include component degradation, poor26

response and, in the worst case, destruction of the system.27

On the other hand, the closed-loop features that sliding-mode control offers are28

very attractive: finite-time convergence, order reduction, robustness against paramet-29

ric and external disturbances, simple gain tuning. For that reason many research30

efforts have been directed towards the study of attenuation of the chattering effect.31

Among these studies we can find adaptive schemes with variable gains [46], high-order32

sliding modes [33], regularization techniques [49] and suitable discrete-time implemen-33

tation [1, 2, 25, 26, 27, 48].34

Since the work of Filippov [21] sliding-mode control systems have been associated35

with differential inclusions. More precisely, the solutions of a dynamical system with a36

discontinuous right-hand side are interpreted as solutions of an associated differential37

inclusion. The work of Filippov provides conditions ensuring the existence of solutions38

(in the sense of Filippov) for sliding-mode control systems. Surprisingly, there are only39

a few studies that use the set-valued setting provided by Filippov for the design of40

the control law that will produce the sliding phenomenon [1, 2, 25, 26, 27, 48].41

The objective of this paper is twofold. First, a family of set-valued controllers42

—which is suitable for the design of sliding-mode controllers— is introduced using43
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07360, Mexico City, Mexico. (fmiranda@ctrl.cinvestav.mx, fcastanos@ctrl.cinvestav.mx).
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2 F. A. MIRANDA-VILLATORO, B. BROGLIATO AND F. CASTAÑOS

the so-called maximal monotone operators. The design procedure is revisited for44

the continuous-time context considering parametric uncertainty and external distur-45

bances. It is shown that the set-valued approach is consistent with the classical design46

methodology and powerful, allowing us to approach the multivariable problem in a47

natural way as well as the regularization of the set-valued map. The second aim is48

to show, step-by-step, the methodology design for the discrete-time case when the49

set-valued maximal monotone operators are used together with the implicit scheme50

proposed in [1, 2, 25] (see also [29] for a similar approach of discrete-time sliding51

mode control). We show how this mathematical formulation is well-posed, providing52

a better understanding of discrete-time sliding-mode systems.53

The main contribution of this paper relies on the inclusion of parametric uncer-54

tainty, i.e., we extend the results in [1, 2, 25] by considering the fact that, in most55

real life applications, the dynamic model of the plant is not accurate. It is notewor-56

thy that the addition of this uncertainty in the plant is not trivial, and that in the57

aforementioned works the controller depends on the exact knowledge of the parame-58

ters. This paper also shows that any maximal monotone set-valued map —different59

from the commonly used signum set-valued function— can be used in order to achieve60

the sliding regime. Moreover, the maximal monotone operators allow us to cover, in61

one setting, several well-known formulations such as the componentwise control or62

the unit vector control [45]. Thus, to some extent, the tools presented in this paper63

unify the design of sliding-mode controllers in the framework of set-valued maximal64

monotone operators. The mathematical framework used in this work for explaining65

the sliding-mode phenomenon relies on differential inclusions, where (contrary to the66

conservative thinking of switching) we are giving emphasis to the proper selection of67

the control values as the main tool towards chattering suppression. Namely, regard-68

ing the discrete-time context, the intrinsic properties of maximal monotone operators,69

together with the differential inclusion formulation of the sliding-mode phenomenon70

and the implicit discretization approach, allow us to make a unique selection for the71

control values that will compensate for the disturbances and parametric uncertainties72

with a considerable reduction of chattering in both, the input and the sliding variable,73

whenever the frequency of sampling is sufficiently high when compared to the external74

disturbance variations.75

The main results, stated in terms of global asymptotic stability and semi-global76

practical stability of the origin are presented in Theorems 24, 37 and their corollaries77

for the continuous and discrete-time cases respectively. In addition, a proof of the78

consistency of the implicit discretization is presented in Section 4.5.79

This paper is organized as follows. In Section 2 we recall some preliminaries from80

convex analysis together with some notation. Section 3 is devoted to the design and81

well-posedness, in continuous-time, of set-valued controllers using maximal monotone82

operators. Some results concerning the robustness in the face of parametric and83

external disturbances of the resulting closed-loop system are presented. The discrete-84

time counterpart is exposed in Section 4, where the use of the implicit discretization85

for achieving the discrete-time sliding phase is exposed, together with some stability86

results and the convergence of the solutions of the discrete-time closed-loop system to87

a solution of the continuous-time system. Finally, Section 5 depicts the effectiveness88

of the family of set-valued controllers proposed in Sections 3 and 4 through the use89

of a numerical example, whereas the Appendix contains most of the proofs.90

2. Preliminaries and notation. Let X be a Hilbert space with inner product91

denoted as 〈·, ·〉 and the corresponding norm ‖ · ‖. A multivalued map M : X ⇒ Y92
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is a map that is valued over the sets of Y , that is, for any x ∈ X , M(x) ⊂ Y . The93

graph of a set-valued map is given as GraphM := {(x, y) ∈ X × Y | y ∈ M(x)}. A94

set-valued map M : X ⇒ X is called monotone if it satisfies 〈y1 − y2, x1 − x2〉 ≥ 095

for all (x1, y1), (x2, y2) ∈ GraphM and it is called maximal monotone if its graph is96

not contained in the graph of any other monotone map. The resolvent with index97

µ, µ > 0, associated with a maximal monotone map M is a single-valued Lipschitz98

continuous map Jµ
M

: X → X given as99

Jµ
M
(x) := (I + µM)−1(x).100

Moreover, the resolvent Jµ
M

is non-expansive, i.e., ‖Jµ
M
(x1) − Jµ

M
(x2)‖ ≤ ‖x1 − x2‖101

for all x1, x2 ∈ X . A detailed study of the properties of the resolvent can be found102

in [4, 9, 41]. Related to the resolvent of M is the so-called Yosida approximation of103

index µ of the set-valued map M.104

Definition 1. The Yosida approximation of a maximal monotone map is given105

by106

(1) Mµ(x) =
1

µ
(I − Jµ

M
) (x).107

Roughly speaking, the Yosida approximation of M is a maximal monotone and108

Lipschitz continuous single-valued function which approximates the graph of M from109

below. Formally we have that for all x ∈ DomM,110

(2) ‖Mµ(x)‖ ≤ ‖Proj
M(x)(0)‖111

and112

(3) Mµ(x) → Proj
M(x)(0) as µ ↓ 0,113

where Proj
M(x) : X → M(x) refers to the conventional projection operator, that is,114

Proj
M(x)(y) := argmin

ξ∈M(x)

‖y − ξ‖.115

In words, the Yosida approximation of M converges to the element of minimum norm116

in the closed convex set M(x). See, e.g., [4, 9] for a proof of the previous statement117

and more properties about the Yosida approximation. The next result (taken from [4,118

Proposition 2, p.141]) states an important topological property concerning the graph119

of maximal monotone operators.120

Proposition 2. The graph of a set-valued maximal monotone operator M : X ⇒121

X is strongly-weakly closed in the sense that if xn → x strongly in X and if yn ∈122

M(xn) converges weakly to y, then y ∈ M(x).123

Definition 3. Let f : X → R∪{+∞} be a proper, convex, lower semicontinuous124

function. The subdifferential of f at x ∈ Dom f is given by the set:125

∂f(x) := {ζ ∈ X∗|〈ζ, η − x〉 ≤ f(η)− f(x), for all η ∈ X} ,126

where X∗ refers to the dual space of X.127

The proof of the following result can be found in [40].128

Proposition 4. The subdifferential of a proper, convex, lower semicontinuous129

function is a maximal monotone operator.130
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Definition 5. Let f : X → R∪{+∞} be a proper, convex, lower semicontinuous131

function. The proximal map Proxf : X → X is the unique minimizer of f(w)+ 1
2‖x−132

w‖2, that is,133

f(Proxf (x)) +
1

2
‖x− Proxf (x)‖2 = min

w∈X

{

f(w) +
1

2
‖x− w‖2

}

.134

Along all this work we denote the identity matrix in R
n×n as In. The set Bn :=135

{x ∈ R
n | ‖x‖ ≤ 1} represents the unit closed ball with center at the origin in R

n136

with the Euclidean norm. The boundary of a set S is denoted bd(S). Let A ∈ R
n×m,137

the induced norm of A is given by ‖A‖ := sup‖x‖=1 ‖Ax‖ =
√

λmax(A⊤A), where138

λmax(B) := maxi∈{1,...n}{λi ∈ σ(B)} and σ(B) is the spectrum of the matrix B ∈139

R
n×n. Let B ∈ R

n×n be a symmetric matrix, B is called positive definite, B > 0, if140

for any x ∈ R
n \ {0}, x⊤Bx > 0. It is positive semidefinite, B ≥ 0, if x⊤Bx ≥ 0. Let141

A = A⊤ and B = B⊤ be square matrices, the inequality A > B stands for A−B > 0,142

i.e., A − B is positive definite. Let A = A⊤ > 0, the A-norm of a vector x ∈ R
n is143

given by ‖x‖2A = x⊤Ax. In the case where 1 ≤ p ≤ ∞ the norm ‖x‖p = (
∑

i |xi|p)1/p144

for p ∈ [1,∞) and ‖x‖∞ := maxi |xi|.145

Proposition 6 (Schur’s complement formula). Let D1 = D⊤
1 ∈ R

n1×n1 , D2 =146

D⊤
2 ∈ R

n2×n2 and D3 ∈ R
n1×n2 be given matrices. Then, the following three state-147

ments are equivalent,148

1.

[

D1 D3

D⊤
3 D2

]

> 0.149

2. D1 > 0 and D2 −D⊤
3 D

−1
1 D3 > 0.150

3. D2 > 0 and D1 −D3D
−1
2 D⊤

3 > 0.151

3. Design of sliding-mode controllers in continuous-time using maximal152

monotone maps.153

3.1. The robust control problem. In this section we make a review of the154

conventional methodology design for sliding-mode controllers. This review will be use-155

ful for two reasons. First, we show that the family of set-valued maximal monotone156

operators can be used in the design of controllers that guarantee the sliding mo-157

tion. Second, the concepts recalled here are used for introducing their discrete-time158

counterpart. We start analyzing a linear time-invariant system with both parametric159

uncertainty and external disturbances. Specifically, in this work we focus on the case160

in which the input matrix B ∈ R
n×m is known and the dynamics of the plant is161

affected by a time and state-dependent additive uncertainty ∆A(t, x) ∈ R
n×n, which162

is a nonlinear time-varying term. The system is characterized in state-space form as163

(4) ẋ(t) = (A+∆A(t, x(t)))x(t) +B
(

u(t) + w(t, x(t))
)

, x(0) = x0,164

where x(t) ∈ R
n represents the state variable, u(t) ∈ R

m is the control input,165

whereas w(t, x(t)) ∈ R
m accounts for an external disturbance considered unknown166

but bounded in the L∞ sense. The matrix A represents the nominal values of the167

parameters of the plant, which are assumed to be known. Notice that, in general, the168

addition of the term ∆A(t, x) generates a nonlinear, time-varying, and state-dependent169

mismatched disturbance. Along all this paper, we assume the following.170

Assumption 7. The pair (A,B) is stabilizable.171

Assumption 8. The matrix B ∈ R
n×m, where m < n, has full column rank.172
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Assumption 9. For all t ∈ [0,+∞) the uncertainty matrix-function ∆A(t, ·) is173

locally Lipschitz continuous and satisfies ∆A(t, x)Λ∆
⊤
A(t, x) < In for all x ∈ R

n and174

for some known symmetric positive definite matrix Λ ∈ R
n×n.175

Assumption 10. For all t ∈ [0,+∞) the external disturbance w(t, ·) is locally176

Lipschitz continuous. Moreover, there exists W > 0 such that supt≥0 ‖w(t, x)‖ ≤177

W < +∞.178

Notice that Assumption 9 implies that ∆A(t, x) is uniformly bounded. Namely,179

according to Proposition 6 the matrix inequality in Assumption 9 is equivalent to180

∆⊤
A(t, x)∆A(t, x) < Λ−1. Consequently, ‖∆A(t, x)‖2 ≤ 1/λmin(Λ) = λmax(Λ

−1) for181

all (t, x) ∈ R+ × R
n. It is also noteworthy that the kind of parametric disturbances182

considered in this work embraces time-varying systems and a family of nonlinear183

systems. The proof of the following proposition can be consulted in [8, Section 7.2.1].184

Proposition 11. Assumption 7 holds if and only if for some a > 0 there exists185

a symmetric positive definite matrix P ∈ R
n×n satisfying the following linear matrix186

inequality (LMI):187

(5) B⊤
⊥

(

AP + PA⊤ + 2aP
)

B⊥ < 0,188

where B⊥ ∈ R
n×(n−m) denotes an orthogonal complement of the matrix B, i.e., B⊥189

is a full column rank matrix whose columns are formed by basis vectors of the null190

space of B⊤.191

The design of sliding-mode controllers is accomplished by selecting two central192

objects: the sliding surface and the control law. The former refers to a submanifold on193

the state-space in which all the trajectories will converge in finite-time by the action of194

the control law, and the closed-loop system constrained to the sliding surface satisfies195

the performance requirements. Moreover, once the sliding surface has been reached,196

the task of the controller is to maintain the trajectories inside it despite the presence of197

disturbances (sliding phase). In this work the design of the control law is performed198

using a two-step design methodology. Namely, in the former stage we compute a199

nominal control, denoted as unom, that guarantees the invariance of the sliding surface200

σ = 0 in the absence of the uncertainties, i.e., w ≡ 0 and ∆A ≡ 0n×n. After that,201

we propose the set-valued component of the controller, denoted by usv, which will be202

responsible for attaining the sliding surface as well as providing robustness against203

matched disturbances. That is, we have split the control input as u = unom + usv. A204

crucial point to consider is related to the proper design of the sliding surface which205

will guarantee the performance of the system in the sliding phase. It was proved206

in [14, 17, 39] that the correct design of the sliding surface helps to diminish the207

effects caused by mismatched disturbances and in some special cases (when some208

structure of the disturbance is imposed) even suppression of the disturbance can be209

accomplished [18]. More important is the fact that the wrong selection of this surface210

could increase the effects of the disturbance [14], which in our context implies higher211

gains. Throughout this work we consider the sliding surface as a hyperplane of the212

form H := {x ∈ R
n | Cx = 0}.213

Assumption 12. The matrix C ∈ R
m×n is such that the product CB is nonsin-214

gular.215

Assumption 12 guarantees the uniqueness of the equivalent control as well as216

the uniqueness of the nominal control. It is noteworthy that the two-step design217

methodology described above is sometimes called equivalent-control-based method and218
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the part of the controller denoted by unom is called the equivalent control. In this219

work the concept of equivalent control is used as in [45], i.e., it is the control that220

maintains the state in sliding motion in the presence of disturbances. It follows that221

the term unom is a nominal equivalent control, but we prefer to call it merely nominal222

in order to avoid confusion.223

3.2. Design of the sliding surface. In this subsection we follow the lines of224

[14], analyzing the effect of the design of the sliding surface H over the mismatched225

disturbance. We start studying how the dynamics in sliding phase is affected by226

the disturbance ∆A(t, x)x. To this end we use the equivalent control method [44].227

Namely, we compute the control that maintains the sliding regime and we will see228

how the mismatched disturbance affects the closed-loop system. We introduce the229

so-called sliding variable as σ(x) := Cx. Thus, the equivalent control is computed230

from the invariance condition σ̇ = 0 as231
232

(6) C(Axeq +B(ueq + w) + ∆A(t, x
eq)xeq) = 0,233

⇒ ueq = −(CB)−1C (Axeq +∆A(t, x
eq)xeq)− w.234235

Substitution of the equivalent control into (4) leads to the expression of the dynamics236

in sliding phase,237

(7) ẋeq =
(

In −B(CB)−1C
)

Axeq +
(

In −B(CB)−1C
)

∆A(t, x
eq)xeq,238

from which it becomes clear that the matrix characterizing the sliding hyperplane239

plays a role into the equivalent disturbance
(

In −B(CB)−1C
)

∆A(t, x)x. In [14] the240

authors proved that the correct design of such hyperplane guarantees that no am-241

plification of the disturbance occurs by using surfaces with C = B⊤ or C = B+,242

where B+ stands for the left-inverse of the matrix B, i.e., B+ = (B⊤B)−1B⊤. In this243

work we modify such selection of the surface considering instead C = B⊤P−1 and244

also C = (B⊤P−1B)−1B⊤P−1, where P is a solution of (5). First we show that this245

selection of C gives an equivalent disturbance with minimum P−1-norm. Afterwards246

we show how the proper choice of P dominates the mismatched disturbance during247

the sliding phase.248

Lemma 13. Let C1 = B⊤P−1 and C2 = (B⊤P−1B)−1B⊤P−1, where P = P⊤ >249

0. Then, both Ci, i = 1, 2, minimize the P−1-norm of the equivalent disturbance250

(In −B(CB)−1C)∆A(t, x
eq)xeq.251

Proof. Let φeq = ∆A(t, x
eq)xeq. Then, the optimization problem252

(8) min
C∈Rm×n

∥

∥

(

In −B(CB)−1C
)

φeq
∥

∥

2

P−1 = min
z∈Rm

‖φeq −Bz‖2P−1,253

where z = (CB)−1Cφeq, has the unique solution z∗ = (B⊤P−1B)−1B⊤P−1φeq. From254

the definition of z it follows that C = B⊤P−1 achieves the minimum in (8) as well as255

C = (B⊤P−1B)−1B⊤P−1.256

Notice that both selections of C stated in Lemma 13 satisfy Assumption 12.257

Throughout this section we will set C = (B⊤P−1B)−1B⊤P−1. In the next subsection258

we design the control law that assures the sliding motion.259

3.3. Design of the control law. Recalling from the above lines that the two-260

step control design methodology adopted in this paper splits the control input into two261

components, that is, u = unom + usv, we start with the computation of the nominal262
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control unom, whereas the set-valued part of the controller is deferred to the next263

subsection.264

The computation of the nominal control unom is accomplished from the invariance265

condition σ̇ = 0 in the ideal case, i.e., w = 0, usv = 0 and ∆A = 0, as266

σ̇ = Cẋnom = C (Axnom +Bunom) = 0 ⇒ unom = −(CB)−1CAxnom.(9)267268

Notice that the nominal control is nothing more than a linear feedback law of the269

form unom = −Γxnom with Γ = (CB)−1CA. Substitution of the nominal control (9)270

into the system (4), changing xnom by the real state x, yields,271

(10) ẋ =
(

In −B(CB)−1C
)

Ax +B(usv + w) + ∆A(t, x)x,272

where usv is the set-valued part of the controller. In order to obtain the dynamics of273

the system in the sliding phase, we consider the nonsingular transformation,274

(11) T =

[

B⊤
⊥

(B⊤P−1B)−1B⊤P−1

]

, T−1 =
[

PB⊥(B
⊤
⊥PB⊥)

−1 B
]

.275

Remark 14. It is worth to mention that from the product T−1T we obtain the276

identity,277

(12) PB⊥(B
⊤
⊥PB⊥)

−1B⊤
⊥ +B(B⊤P−1B)−1B⊤P−1 = In.278

From the application of (12) to the term φ := ∆A(t, x)x it follows that279

φ = PB⊥(B
⊤
⊥PB⊥)

−1B⊤
⊥φ+B(B⊤P−1B)−1B⊤P−1φ = PB⊥φu +Bφm,280

where φu := (B⊤
⊥PB⊥)

−1B⊤
⊥φ and φm := (B⊤P−1B)−1B⊤P−1φ are called the un-281

matched and the matched components of φ respectively.282

The next step in our design consists in a change of coordinates of the form z = Tx283

applied to (10). Notice that, because of the structure of T , we can split the new284

state variable z as z =
[

z⊤1 z⊤2
]⊤

, where R
n−m ∋ z1 = B⊤

⊥x and R
m ∋ z2 =285

(B⊤P−1B)−1B⊤P−1x = Cx = σ. Therefore, recalling that u = unom + usv with286

unom = −CAx, the change of variables z = Tx leads to the regular form [45],287

ż1 = B⊤
⊥

(

A+ ∆̂A(t, z)
)

PB⊥

(

B⊤
⊥PB⊥

)−1
z1 +B⊤

⊥

(

A+ ∆̂A(t, z)
)

Bσ(13a)288

σ̇ = usv + ŵ(t, z) + φ̂m(t, z),(13b)289290

where, ∆̂A(t, z) := ∆A(t, T
−1z), ŵ(t, z) := w(t, T−1z) and φ̂m(t, z) := φm(t, T−1z).291

One comment is in place here. From (13b) it follows that the dynamics of the sliding292

variable is only affected by the matched part of the original disturbance ∆A(t, x)x.293

Hence, in order to achieve the sliding regime it is necessary to take into account only294

the matched part of the disturbance in the design of usv [14].295

In the next lines provide conditions for the matrix P so that the reduced order296

dynamics z1 is asymptotically stable with decay rate a, in the ideal sliding phase,297

under the influence of the parametric uncertainty ∆A. To this end, let us consider298

the reduced order system299

(14) ż1 = B⊤
⊥

(

A+ ∆̂A(t, z)
)

PB⊥

(

B⊤
⊥PB⊥

)−1
z1300
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with the Lyapunov-function candidate V (z1) = 1
2z

⊤
1 (B⊤

⊥PB⊥)
−1z1. Taking the301

derivative of V along the trajectories of (14) yields302

V̇ = z⊤1 (B
⊤
⊥PB⊥)

−1ż1303

=
1

2
z̄⊤1 B

⊤
⊥

(

AP + PA⊤
)

B⊥z̄1 + z̄⊤1 B
⊤
⊥∆̂APB⊥z̄1,(15)304

305

where z̄1 =
(

B⊤
⊥PB⊥

)−1
z1. Applying (5), together with the inequality 2p⊤X⊤Y q ≤306

p⊤X⊤ΨXp+ q⊤Y ⊤Ψ−1Y q, for some Ψ = Ψ⊤ > 0, it follows that307

(16) V̇ ≤ −az̄⊤1 B
⊤
⊥PB⊥z̄1 +

1

2
z̄⊤1 B

⊤
⊥∆̂AΨ∆̂⊤

AB⊥z̄1 +
1

2
z̄⊤1 B

⊤
⊥PΨ−1PB⊥z̄1.308

Taking Ψ = Λ where Λ = Λ⊤ > 0 is defined in Assumption 9 gives,309

V̇ ≤ −az̄⊤1 B
⊤
⊥PB⊥z̄1 +

1

2
z̄⊤1 B

⊤
⊥B⊥z̄1 +

1

2
z̄1B

⊤
⊥PΛ−1PB⊥z̄1310

= −z̄⊤1 B
⊤
⊥

(

aP − 1

2
In − 1

2
PΛ−1P

)

B⊥z̄1.(17)311
312

From (17) the asymptotic stability of the reduced system (14) in sliding phase follows313

if314

(18) B⊤
⊥

(

aP − 1

2
In − 1

2
PΛ−1P

)

B⊥ > 0,315

Along all this section we will assume that the matrix P satisfies (5) and a stronger316

version of (18). Namely,317

(19) Q :=

[

B⊤
⊥

(

aP − In − 1
2PΛ−1P

)

B⊥ − 1
2B

⊤
⊥AB

− 1
2B

⊤A⊤B⊥ K − 1
2B

⊤Λ−1B

]

> 0,318

where K = K⊤ ∈ R
m×m is a positive definite matrix. Notice that, as stated, the319

matrix inequality (19) has to be solved in the variables P and K. Furthermore, from320

a direct application of the Schur’s complement formula (19) it can be expressed as an321

LMI in the variables P,K and Λ as322

(20)









B⊤
⊥ (aP − In)B⊥ − 1

2B
⊤
⊥AB B⊤

⊥P 0n−m×n

− 1
2B

⊤A⊤B⊥ K 0m×n B⊤

PB⊥ 0n×m 2Λ 0n×n

0n×n−m B 0n×n 2Λ









> 0.323

The justification for considering (19) instead of (18) comes from the proof of Theorem324

22 below, where the complete system (13) is analyzed. Remark that in the case when325

the pair (A, B) is controllable, the parameter a is free and the LMI (20) is feasible326

for a > 0 large enough and K,Λ sufficiently large too (in the order imposed by the327

positive definiteness, that is, K1 > K2 if and only if K1 − K2 > 0). On the other328

hand, when the system is only stabilizable, the decay rate a is constrained by the329

uncontrollable part of the system, setting a lower bound on the norm of the matrices330

K and Λ. This last condition translates into the consideration of small parametric331

uncertainties ∆A, see Assumption 9.332

This manuscript is for review purposes only.



SET-VALUED SLIDING-MODE CONTROL OF UNCERTAIN LINEAR SYSTEMS 9

Proposition 15. The disturbance term φ̂m(t, z) satisfies the linear growth con-333

dition ‖φ̂m(t, z)‖ ≤ √
κ‖z‖, where334

(21) κ =
λmax(P )λmax(Λ

−1)

λmin(B⊤P−1B)λmin(P )
max

{

1

λmin(B⊤
⊥PB⊥)

, λmax(B
⊤P−1B)

}

335

Proof. From the definition of φ̂m we have that336

‖φ̂m(t, z)‖ = ‖(B⊤P−1B)−1B⊤P−1∆̂A(t, z)T
−1z‖337

≤ ‖(B⊤P−1B)−1B⊤P−1/2‖‖P−1/2‖‖∆̂A(t, z)‖‖T−1‖‖z‖.338339

Recalling that the induced Euclidean norm coincides with the spectral norm and340

making use of the Assumption 9, after simple computations we obtain341

‖φ̂m(t, z)‖ ≤
√

λmax(Λ−1)

λmin(B⊤P−1B)λmin(P )
‖T−1‖‖z‖.342

On the other hand, recalling that for the matrix norm induced by the Euclidean norm343

we have that ‖T ‖ = ‖T⊤‖, see e.g., [32, Theorem 5.4.2], from (11) it follows that344

‖T−⊤‖2 ≤
∥

∥

∥

∥

[

(B⊤
⊥PB⊥)

−1B⊤
⊥P 1/2

B⊤P−1/2

]
∥

∥

∥

∥

2

‖P 1/2‖2345

= λmax(P )λmax

([

(B⊤
⊥PB⊥)

−1 0
0 B⊤P−1B

])

346
347

and the result follows.348

3.3.1. Set-valued controller. In this subsection we study the family of set-349

valued maximal monotone operators used as feedback control laws for system (13).350

First, some results about the existence and (in some cases) uniqueness of solutions351

are presented. Subsequently, we prove how a subfamily of the family of maximal352

monotone controllers yields finite-time stable sliding modes. We start setting the353

remaining term usv in (13b) as354

(22) − usv(t) ∈ Kσ(t) + γ(z(t))M(σ(t)),355

where K ∈ R
m×m is a positive definite matrix satisfying (20), γ : Rn → R+ is a356

positive function depending on the system state z, and M : Rm
⇒ R

m is a set-valued357

maximal monotone operator. Thus, from (22) it follows that there exists ζ ∈ M(σ)358

such that −usv = Kσ+ γ(z)ζ. Hence, the evolution of the sliding variable is dictated359

by the differential inclusion360

(23)

{

σ̇(t) = −Kσ(t)− γ(z(t))ζ(t) + ŵ(t, z) + φ̂m(t, z), σ(0) = σ0

ζ(t) ∈ M(σ(t)).
361

In the case when the function γ is constant, the differential inclusion (23) belongs to362

the class of differential inclusions with maximal monotone right-hand side for which363

numerous results have been proposed, see e.g., [4, 6, 9, 11, 12, 36, 38] and it embraces364

several mathematical formulations [10]. The existence and uniqueness of solutions365

of (23) for the case where γ is constant has been studied assuming the Lipschitz (local)366

continuity of ŵ(t, ·) and φ̂(t, ·), see e.g., [9, 12, 15]. For a solution of (23) we mean367
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10 F. A. MIRANDA-VILLATORO, B. BROGLIATO AND F. CASTAÑOS

an absolutely continuous function σ : R+ → R
m that satisfies σ(0) = σ0 ∈ DomM368

together with (23) almost everywhere on [0,+∞), that is, we consider solutions of369

differential inclusion (23) in the sense of Caratheodory [19]. It is worth to mention370

that in the case where γ is a function of the state, the uniqueness of solutions of (23)371

is not guaranteed, this comes from the fact that, in general, the map γ(z)M(σ) is not372

maximal monotone. Here, we present some examples about the different choices of373

the set-valued map M.374

Example 16. Let M be the subdifferential of f(σ) := ‖σ‖1 =
∑n

i=1 |σi|. Then,375

M(σ), is the vector set-valued signum function,376

[M(σ)]i =











1, if σi > 0,

[−1, 1], if σi = 0,

−1 if σi < 0.

377

In this case the control scheme agrees with the so-called componentwise sliding mode378

design, see e.g., [45].379

Example 17. Let M be the subdifferential of f(σ) := ‖σ‖2. Then M(σ) is the380

set-valued vector function,381

M(σ) =

{

Bn, if ‖σ‖ = 0,
σ

‖σ‖ , otherwise.
382

In this case the control scheme coincides with the so-called unit vector approach383

[37, 42].384

Example 18. Let ΨS be the indicator function of the closed convex set S, i.e.,385

ΨS(σ) = 0, if σ ∈ S and ΨS(σ) = +∞ otherwise. Let σ(0) be inside the set S and386

let M be the subdifferential of the indicator function, that is,387

M(σ) = {ζ ∈ R
m | 〈ζ, η − σ〉 ≤ 0, for all η ∈ S} = NS(σ).388

Here NS(σ) denotes the normal cone to the set S at the point σ. Then the closed-389

loop system (13b), (22) is well-posed and by Theorem 24 below the sliding mode is390

reached in finite time. The study of this kind of controllers has been reported in391

[34, 35]. Moreover, if S = S(t) is a Lipschitz continuous set-valued mapping, then392

the closed-loop system (13b), (22) represents a perturbed Moreau’s sweeping process393

[13, 20].394

In what follows we consider the next condition on the set-valued operator M.395

Assumption 19. The set-valued maximal monotone mapM satisfies 0 ∈ intM(0).396

Remark 20. Assumption 19 is known as a condition for dry friction in the me-397

chanics literature. It is strongly linked to the finite-time convergence property, see398

Theorem 24 and Corollary 40 below. In [3, 5] the same condition was used for proving399

the finite-time stability of nonlinear oscillators in both, continuous and discrete-time400

settings.401

It is worth to mention that Assumption 19 rules out linear controllers, since we ask402

for maps M that must be set-valued at the origin. For example, in the case when M =403

∂Φ where the function Φ is proper, convex and lower semicontinuous, Assumption 19404

asks for functions Φ which are nonsmooth at the origin, so that intM(0) 6= ∅, as405

for example, the norm function ‖ · ‖p, 1 ≤ p ≤ ∞. This last comment reveals that406
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the maximal monotone operators suit perfectly as a tool that unifies the different407

generalizations of the signum multifunction in the design of sliding mode controllers408

in the multivariable case.409

Proposition 21. Let Assumption 19 hold. Then for any (x, y) ∈ GraphM there410

exists an ε > 0 such that,411

(24) 〈x, y〉 ≥ ε‖x‖.412

Proof. From Assumption 19, it follows that there exists ε > 0 such that for all413

ρ ∈ εBm, (0, ρ) ∈ GraphM. Then, from the definition of a maximal monotone map it414

follows that for any (x, y) ∈ GraphM and any ρ ∈ εBm, 0 ≤ 〈y−ρ, x〉. Consequently,415

supρ∈εBm
〈ρ, x〉 ≤ 〈y, x〉. The conclusion follows.416

3.4. Well-posedness and stability of the closed-loop system. In this sub-417

section we show the well-posedness of the closed-loop system (13), (22) in the case418

when γ is a state-dependent gain by imposing some conditions on P , in the form419

of LMI’s, such that the unmatched part of the disturbance is dominated, and hence420

assuring the asymptotic stability of the fixed-point z∗1 = 0. After that, we show how421

the sliding phase is reached in finite time with an appropriate selection of the gain γ.422

Finally some results about stability and uniqueness of solutions in the case where γ423

is constant are established.424

Theorem 22. Let Assumptions 7-10 and 19 hold. Then the closed-loop sys-425

tem (13), (22), where M : DomM ⇒ R
m is a set-valued maximal monotone map426

that satisfies DomM = R
m, has at least one solution (in Caratheodory’s sense [19]),427

whenever P = P⊤ > 0 satisfies the LMI’s (5), (20) and, in addition, for some ρ > 0428

we have429

(25) εγ(z) = ρ+W +
√
κ‖z(t)‖,430

where κ is as in (21), W is the upper bound given in Assumption 10, and ε > 0 is as431

in Proposition 21.432

Proof. See the Appendix.433

Remark 23. Notice that the assumption DomM = R
m rules out multivalued434

controllers with compact domain as those introduced in Example 18. However, the435

use of set-valued maps whose domain is not all Rm is possible using γ > 0 constant,436

since we fall in the case of differential inclusion with maximal monotone right-hand437

side, see e.g., [9, 15].438

Theorem 24. Let the assumptions of Theorem 22 hold. Then, the origin of the439

subsystem (13b) with the set-valued controller (22) is globally finite-time Lyapunov440

stable whenever441

(26) εγ(z) = ρ+W +
√
κ‖z‖,442

where ε is given in (24) and ρ > 0 is an arbitrary constant.443

Proof. We consider the positive definite function of σ, V (σ) = 1
2σ

⊤σ. From the444

proof of Theorem 22 we have that z1 is bounded. So, differentiating V along the445

trajectories of (13b) results in V̇ = σ⊤σ̇ = σ⊤ (usv + w + φm). From (22) there exists446

a ζ ∈ M(σ) such that usv = −Kσ − γ(x)ζ and then,447

V̇ ≤ −σ⊤Kσ − γ(z)σ⊤ζ + ‖w + φm‖‖σ‖448

≤ −
(

εγ(z)−W −√
κ‖z‖

)

‖σ‖,449450
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12 F. A. MIRANDA-VILLATORO, B. BROGLIATO AND F. CASTAÑOS

where we have used (24) and the fact that K > 0. Hence, if (26) holds, then V̇ <451

−ρ‖σ‖. Finally, after integration of both sides of the last inequality an upper-bound452

for the time t∗ such that σ(t) = 0 for all t ≥ t∗ is obtained as t∗ ≤
√

2V (0)/ρ.453

It is worth to mention that Theorem 24 does not make mention of the uniqueness of454

solutions, but we have proved instead that all the solutions converge to the sliding455

surface. The next step consists in showing the asymptotic stability of the whole456

system (13), (22).457

Theorem 25. Let the assumptions of Theorem 22 hold. Then, the origin of the458

closed-loop system (13), (22) is globally asymptotically stable.459

Proof. Consider the Lyapunov-function candidate460

(27) V (z1, σ) :=
1

2
z⊤1 (B

⊤
⊥PB⊥)

−1z1 +
1

2
σ⊤σ.461

Let ζ be an element in M(σ), differentiating (27) along the system trajectories yields462

V̇ ≤ −λmin(Q̃)‖z‖2 + σ⊤
(

−γ(z)ζ + ŵ(t, z) + φ̂m(t, z)
)

463

≤ −λmin(Q̃)‖z‖2 −
(

εγ(z)− (W +
√
κ‖z‖)

)

‖σ‖(28)464

< −α‖z‖2,465466

where α = λmin(Q̃) > 0, the matrix Q̃ = Q̃⊤ > 0 is defined in (79) and we made use467

of (24). This concludes the proof.468

According to Theorem 25 the stability of the origin is in fact exponential. How-469

ever, notice that at the light of Theorem 24 the sliding variable σ converges to the470

origin of Rm in finite time, whereas z1 decays exponentially to zero.471

An important case arises when we ask for a constant gain γ > 0. In this case the472

existence of solutions has been deeply studied (see, e.g., [9], [15], [20]) and from the473

practical point of view, we sacrifice the global stability for semi-global stability and474

the uniqueness of solutions is retrieved.475

Corollary 26. Let the Assumptions 7-19 hold, let α > 0, δ > 0 and P = P⊤ be476

such that (5), (20) hold, and let Lc ⊂ R
n be a compact set specified below in the proof.477

Then, for each initial condition that satisfies (z1(0), σ(0)) ∈ Lc, for some c > 0, the478

origin of the closed-loop system (13) with set-valued controller479

(29) − usv ∈ Kσ + γM(σ),480

where K = K⊤ > 0 satisfies (19), is semi-globally asymptotically stable whenever481

(30) εγ = ρ+W +
√
κmax

z∈Lc

{‖z‖} ,482

where z = [z⊤1 , σ⊤]⊤, κ is given in (21), and ρ > 0 is an arbitrary constant.483

Proof. Consider the positive definite function V (z1, σ) as in (27) and let484

Lc := {(z1, σ) ∈ R
n | V (z1, σ) ≤ c}485

be the level sets of V . As first step we prove the positive invariance of the set Lc.486

To this end we take the time derivative of V along the system trajectories, yielding487

again (28) with γ(z) replaced by γ. In the light of (30), we can conclude that V̇ < 0488
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for all σ ∈ bd(Lc) and the positive invariance follows. Now, let (z1(0), σ(0)) ∈ Lc489

for some c > 0, then from (28) and the fact that the maximum in (30) is attained490

in the boundary of Lc it follows that V̇ < −α‖z‖2 for all t ≥ 0 and we arrive at the491

conclusion.492

From Corollary 26 it follows that the multivalued controller (29) drives the sys-493

tem (13) into the sliding surface {x ∈ R
n | σ(x) = 0} in finite time. Moreover, as494

a consequence of the maximal monotonicity of the set-valued map γM(·) we have495

uniqueness of solutions of the closed-loop system (13), (29). Indeed, consider the496

following differential inclusion497

(31) ż ∈ f(t, z)− γN(z),498

where499
500

f(t, z) =

[

B⊤
⊥

(

A+ ∆̂A(t, z)
)

PB⊥

(

B⊤
⊥PB⊥

)−1
B⊤

⊥

(

A+ ∆̂A(t, z)
)

B

0 −K

]

[

z1
σ

]

501

+

[

0

ŵ(t, z) + φ̂m(t, z)

]

502

503

is a locally Lipschitz function in its second argument and N : Rn
⇒ R

n is a maximal504

monotone set-valued map described by z 7→ [0, ζ⊤]⊤ and ζ ∈ M(σ). Thus, a direct505

application of Proposition 3.13 in [9] leads us to the uniqueness of solutions.506

It is a well known fact that in the continuous-time setting the selection of the507

values that maintain the sliding regime depends explicitly on the values of the dis-508

turbances ŵ and φ̂m, which are by definition unknown. For that reason, in practical509

applications it is common to use a regularized version of the controller (22), which510

leads to the concept of boundary layer control [46]. In general, the regularization511

is made in an arbitrary way. In our context the regularization is well defined by512

means of the Yosida regularization and, as was shown in the proof of Theorem 22,513

this approach leads to trajectories that are in a neighbourhood of one solution of the514

differential inclusion (13). In the sequel we present an example for the case of the515

unit vector approach.516

Consider the set-valued map M as in Example 17 and a constant gain γ > 0.517

From the proof of Theorem 22, it follows that our regularized control is given by the518

maximal monotone single-valued map Mµ, which in this case is given by519

(32) Mµ(σ) = ∇fµ(σ) =
1

µ
(σ − Proxµf (σ)) =

{

σ
‖σ‖ , if ‖σ‖ > µ,
1
µσ, otherwise.

520

It is worth to mention that (32) differs from the commonly used regularization σ
‖σ‖+ρ521

with ρ > 0 sufficiently small. Therefore, in the maximal monotone approach we522

have a unique way of computing the regularized controller coming from a set-valued523

maximal monotone map leading to a closed-loop system whose trajectories converge524

into a neighborhood of the origin. In the next section we shall study the design of525

this kind of maximal monotone controllers in the discrete-time setting.526

4. Design of discrete-time sliding-mode controllers by using maximal527

monotone maps. In this section we present a methodology for the digital imple-528

mentation of discrete-time sliding-mode controllers using maximal monotone maps.529

The design process is revisited step-by-step in order to show how the implicit discrete-530

time scheme proposed in [1, 2] allows us to make a proper selection of the values of531
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the control input at each sampling instant, and consequently reduces drastically the532

chattering effect at high sampling rates.533

4.1. The plant representation. We start considering the discrete-time model534

of (4) through the use of the Euler’s method, i.e., we take a constant sampling time535

tk+1 − tk = h > 0 for all k ≥ 0 and obtain536

(33) xk+1 = (In + hA)xk + hB(uk + w(k, xk)) + h∆A(k, xk)xk.537

It is worth to mention that in the absence of the parametric disturbances, ∆A(k, xk) ≡538

0, the system (33) becomes linear and the ZOH (Zero-Order Hold) method can be539

applied in order to obtain the equations of the dynamics in discrete time. Neverthe-540

less, that is not the general case analyzed in this paper. Note that, because of the541

presence of the nonlinear term ∆A(k, xk), it is not possible to compute, in general, the542

equations of the ZOH discretization in a closed-form, which requires the knowledge of543

the solution of the nonlinear system, as well as the exact value of the parameters. In-544

stead, the first order approximation described by the explicit Euler algorithm is used545

in this work for the discretization of the plant dynamics. In addition, just as stated546

in [28, Theorem 2], under the assumption that the sampling time is small enough, the547

property of stability is independent of the number of terms considered in the exact548

ZOH of the nonlinear system. That is, the property of stability for the discrete-time549

closed-loop system (47) is the same as the stability of an exact ZOH method whenever550

the sampling time h > 0 is sufficiently small.551

Along all this section we also consider that Assumptions 7 through 19 hold. In552

the discrete-time context the counterpart of Proposition 11 is given as:553

Proposition 27. Assumption 7 implies that for some a > 0 such that 0 < 2ha <554

1, there exists a symmetric positive definite matrix X ∈ R
n×n satisfying the matrix555

inequality:556

(34) B⊤
⊥

(

AX +XA⊤ + 2aX
)

B⊥ + hB⊤
⊥

(

XA⊤B⊥

(

B⊤
⊥XB⊥

)−1
B⊤

⊥AX
)

B⊥ < 0.557

Proof. Stabilizability of the system (33) is equivalent to the existence of a matrix558

K ∈ R
m×n such that for any 2ha ∈ (0, 1), there exists a matrix, D1 ∈ R

n×n, D1 =559

D⊤
1 > 0 satisfying the discrete-time Lyapunov equation560

(1− 2ha)D1 − (I + hA− hBK)
⊤
D1 (I + hA− hBK) > 0.561

Pre and post multiplying by D−1
1 and setting D2 = KD−1

1 yields,562

563

− h(2aD−1
1 +AD−1

1 +D−1
1 A⊤ − BD2 −D⊤

2 B
⊤)564

− h2
(

AD−1
1 −BD2

)⊤
D1

(

AD−1
1 −BD2

)

> 0.565566

Hence, applying Schur’s complement formula we obtain the LMI567

[

−h(2aD−1
1 +AD−1

1 +D−1
1 A⊤ −BD2 −D⊤

2 B
⊤) h(D−1

1 A⊤ −D⊤
2 B)

h(AD−1
1 −BD2) D−1

1

]

> 0.568

Recalling that B⊥ ∈ R
n×(n−m) has full column rank, it follows that the previous569

inequality implies570

(35)

[

−hB⊤
⊥(2aD

−1
1 +AD−1

1 +D−1
1 A⊤)B⊥ hB⊤

⊥D−1
1 A⊤B⊥

hB⊤
⊥AD−1

1 B⊥ B⊤
⊥D−1

1 B⊥

]

> 0,571
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where we have applied the full row rank congruence transformation572

[

B⊤
⊥ 0n−m×n

0n×n−m B⊤
⊥

]

∈ R
2(n−m)×2n.573

Finally, applying once again the Schur’s complement formula to (35) and setting574

X = D−1
1 we obtain the desired result.575

Notice that any solution of (34) is also a solution of (5) for any h > 0, and when576

h = 0 the left-hand sides of (34) and (5) coincide.577

To finish this subsection we compute a bound for ∆A(k, xk) that will be useful in578

the forthcoming sections.579

Proposition 28. Let X = X⊤ > 0 be such that580

(36) X − In > 0,581

then,582

(37) Λ−1 −∆A(k, xk)
⊤B⊥(B

⊤
⊥XB⊥)

−1B⊤
⊥∆A(k, xk) > 0.583

Proof. From Assumption 9 together with the bound on X imposed by (36) it584

follows that585

∆A(k, xk)Λ∆A(k, xk)
⊤ < X.586

Since B⊥ has full column rank, it follows that587

B⊤
⊥XB⊥ −B⊤

⊥∆A(k, xk)Λ∆A(k, xk)
⊤B⊥ > 0.588

Using the Schur’s complement formula we obtain,589

[

B⊤
⊥XB⊥ B⊤

⊥∆A(k, xk)
∆A(k, xk)

⊤B⊥ Λ−1

]

> 0,590

and applying once again the Schur’s complement formula we obtain the desired result.591

In the sequel we will assume that X satisfies (34) together with (36) and conse-592

quently (37) also holds.593

4.2. Design of the sliding surface. In this subsection the methodology for594

the design of the sliding surface mimics its continuous counterpart. First, we start595

with a sliding manifold of the form H̃ := {x ∈ R
n | Sx = 0} and conditions on the596

matrix S are derived. In fact, it is shown that the resulting hyperplane has the same597

structure as its continuous-time analog H . We make the following assumption,598

Assumption 29. The product SB is nonsingular.599

Analogous to the continuous-time context, we start computing the equivalent600

control in order to see how the disturbance affects the sliding regime. In the discrete-601

time case, the sliding variable is given as σk := Sxk and the necessary sliding condition602

σ̇ = 0 is transformed into the fixed-point condition σk+1 = σk, from which we obtain603

the equivalent control as1604

(38) ueq
k =

1

h
(SB)−1 (σk − S(In + hA)xk − hS∆A(k, xk)xk)− w(k, xk)605

1As alluded above, what we call the equivalent control here is not the same as what is called the
equivalent control in [25].
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Notice that the fixed-point condition σk+1 = σk is usually neglected and changed for606

the condition σk+1 = 0. We will see that the fixed-point condition is well fitted for607

the estimation of the control law that will achieve the sliding motion. The equivalent608

closed-loop dynamics in sliding mode results in609

610

(39) xeq
k+1 =

(

In −B(SB)−1S
)

(In + hA)xeq
k +B(SB)−1σk611

+ h
(

In −B(SB)−1S
)

∆A(k, xk)xk.612613

From (39) it becomes clear that the structure of the sliding surface will be the614

same as in the continuous-time framework, i.e., throughout this section we set S =615

(B⊤X−1B)−1B⊤X−1 . Notice that both surfaces (C and S) are not exactly the same616

since P satisfies (5) and X satisfies (34) instead, but S tends to C as h decreases to617

zero.618

4.3. Controller design. In this subsection we follow the discrete version of the619

two-steps design methodology used in the previous section. The main difference with620

the continuous part relies on the discretization scheme used for the control usv. It621

is shown that the implicit discretization approach inherits the robustness provided622

by the maximal monotone operators presented in Section 3. The first step consists623

in computing the nominal control using the fixed-point condition σk+1 = σk, which624

leads to625

(40) unom
k =

1

h
(SB)−1 (σk − S(In + hA)xk) .626

Substitution of (40) into the discrete-time dynamics (33) yields627

xk+1 =
(

In −B(SB)−1S
)

(In + hA)xk+B(SB)−1σk+hB (usv
k + wk)+h∆A(k, xk)xk.628

Consider the coordinates transformation zk = Txk with T given in (11) but changing629

the matrix P by its discrete-time counterpart X . Hence, after simple computations630

we get the closed-loop system in regular form,631

z1k+1 = B⊤
⊥(In + hA+ h∆̂A(k, zk))XB⊥

(

B⊤
⊥XB⊥

)−1
z1k(41a)632

+B⊤
⊥(In + hA+ h∆̂A(k, zk))Bσk633

σk+1 = σk + h(usv
k + ŵ(k, zk) + ηmk ),(41b)634635

where ∆̂A(k, zk) := ∆A(k, T
−1zk), ŵ(k, zk) := w(k, T−1zk), and the term ηmk refers to636

the matched part of the disturbance ∆̂A(k, zk)T
−1zk, that is, η

m
k = S∆̂A(k, zk)T

−1zk637

with S = (B⊤X−1B)−1B⊤X−1, see Remark 14. It is noteworthy that system (41) is638

the discrete-time counterpart of (13). It is clear that the disturbance term ηmk satisfies639

a linear growth condition similar to that associated with the term φm, as stated in640

following.641

Proposition 30. The disturbance term ηmk satisfies the linear growth condition642

‖ηmk ‖ ≤
√
κ̄‖zk‖, where643

(42) κ̄ :=
λmax(X)λmax(Λ

−1)

λmin(B⊤X−1B)λmin(X)
max

{

1

λmin(B⊤
⊥XB⊥)

, λmax(B
⊤X−1B)

}

.644
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4.3.1. The set-valued controller. We continue with the design of the multi-645

valued part of the controller. The main difference with the continuous-time part is646

contained here where, because of the discretization method employed, it is possible to647

make a selection for the values of the controller that will compensate for the distur-648

bances that affect the resulting closed-loop system. Specifically, we use the implicit649

Euler’s method and we show how the system automatically makes the selection of650

the values that will compensate for the disturbance. As a motivation of the implicit651

scheme used, we study first the following equivalent controller,652

(43) − usv
k ∈ γM(σk+1),653

where γ > 0 is considered constant.654

Remark 31. Note that unlike the continuous-time case, the operator γM is max-655

imal monotone. The main reason why we are considering a constant gain γ > 0656

is that, whereas the lack of the maximal monotonicity was not a problem in the657

continuous-time setting, it becomes a critical issue in the discrete-time case since it658

implies the well-posedness of the resolvent and Yosida approximations, both of which,659

as is revealed below, are used for the computation of the explicit values of the feedback660

control.661

At this point two important questions arise: is the proposed set-valued con-662

troller (43) non-anticipative? and why is it called ‘equivalent’? The label ‘equivalent’663

corresponds to the fact that, during the sliding phase, usv
k is equal to ueq

k − unom
k . In664

other words, the control action uk = unom
k + usv

k , with usv
k satisfying (43), coincides665

with the equivalent control (38). Indeed, consider the closed-loop system (41b), (43).666

It follows that,667

668

(44) σk − σk+1 + h(ŵ(k, zk) + ηk) ∈ hγM(σk+1) ⇐⇒669

σk+1 = Jh
γM(σk + h(ŵ(k, zk) + ηk)),670671

where Jh
γM refers to the resolvent of the maximal monotone map γM of index h.672

Hence, the discrete-time closed-loop dynamics of the sliding variable results in the673

difference equation (44). An explicit expression for the controller is obtained after674

substitution of (44) into (41b) as675

(45) usv
k = − 1

h
(I − Jh

γM)(σk + h(ŵ(k, zk) + ηmk )) = −Mh
γ (σk + h(ŵ(k, zk) + ηmk )) .676

where the map Mh
γ refers to the Yosida approximation of the set-valued map γM677

of index h. At this point it is worth to mention that the selection process was done678

automatically by the system, i.e., the closed-loop system selects one and only one679

input from the maximal monotone map M in order to compensate for the disturbance680

term ŵ(k, zk) + ηmk . Thus, in ideal sliding mode σk+1 = σk = 0 implies usv
k =681

− 1
h(I−Jh

γM)(h(ŵ(k, zk)+ηmk )). Now, assuming that ŵ(k, zk)+ηmk ∈ γM(0) it follows682

that usv
k = −ŵ(k, zk) − ηmk (since Jh

γM(w) = 0 for all w ∈ γM(0)). Therefore, uk =683

unom
k + usv

k = ueq
k . The previous development reveals that the implicit controller (43)684

makes sense.685

Now we introduce the missing term usv
k using an implicit approach, which has been686

studied theoretically in [1, 2, 25] and tested experimentally in [26, 27, 48], showing to687

be a very efficient way to deal with the chattering effect on both the input and the688

output signals. It is clear that in a real implementation setting the selection procedure689
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18 F. A. MIRANDA-VILLATORO, B. BROGLIATO AND F. CASTAÑOS

cannot be achieved directly, because if we try to mimic the same steps presented in690

the previous situation, we will have to impose the unreal assumption that we know691

perfectly the disturbance term ŵk + ηmk , see (45). Therefore, some modification to692

the discrete-time controller (43) must be done. Roughly speaking, we consider the693

discrete-time scheme proposed in [1, 2, 25] in which a virtual nominal system is created694

and from which the selection process is achieved. Next, the controller computed from695

the virtual nominal system is applied to the original discrete-time plant. Formally,696

instead of (41), (43), we consider the extended system,697

z1k+1 = B⊤
⊥(In + hA+ h∆̂A(k, zk))XB⊥

(

B⊤
⊥XB⊥

)−1
z1k(46a)698

+B⊤
⊥(In + hA+ h∆̂A(k, zk))Bσk699

σk+1 = σ̃k+1 + h(ŵ(k, zk) + ηmk )(46b)700

σ̃k+1 = σk + husv
k(46c)701

−usv
k ∈ Kσ̃k+1 + γM(σ̃k+1),(46d)702703

where K ∈ R
m×m is a symmetric positive definite matrix specified below. Sys-704

tem (46) represents the implementable discrete-time dynamics associated with the705

real continuous-time system (13). The variable σ̃k+1 may be seen as the state of a706

nominal, undisturbed system, or as a dumb variable allowing to calculate the controller707

usv
k . In this approach, the control selection is made using the virtual undisturbed sys-708

tem (46c)-(46d), and the perturbation term is implicitly taken into account through709

the use of the real state σk in (46c). Following the same steps as in (44), we have710

σk − σ̃k+1 ∈ hKσ̃k+1 + hγM(σ̃k+1) ⇐⇒ σk ∈ (I + h(K + γM)) (σ̃k+1)711

⇐⇒ σ̃k+1 = (I + h(K + γM))−1 (σk)712

⇐⇒ σ̃k+1 = Jh
N
(σk),(47)713714

where K = K⊤ > 0 is an m×m matrix and the set-valued map N := K + γM that715

maps p 7→ {q ∈ R
m | q = Kp+ γζ, ζ ∈ M(p)} is also maximal monotone [41, Exercise716

12.4]. It follows from (46c) that the input selection applied to the system is explicitly717

given by718

(48) usv
k = − 1

h

(

I − Jh
N

)

(σk) =: −N h(σk),719

whereN h refers to the Yosida approximation ofN of index h. Equation (48) shows the720

non-anticipation and the uniqueness of the control (46d) (since N h is single valued).721

Hence, the discrete-time closed-loop subsystem (46b)-(46d) is equivalent to722

(49)

{

σk+1 = σ̃k+1 + h(ŵ(k, zk) + ηmk ),

σ̃k+1 = Jh
N
(σk).

723

In this context the variable σ̃k is called the discrete sliding variable and, when σ̃k+n =724

0 for all n ≥ 1 and some k < +∞, we say that the system is in the discrete-time sliding725

phase [25].726

Remark 32. Note that we have shown that the implicit discretization scheme (46)727

is well-posed and implementable. Indeed, the values of the controller were obtained728

explicitly from the unique solution of (46c)-(46d), that is, (48). It is also worth to729

mention that, under the proposed scheme, usv
k is a function of the current state σk730
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and design parameters, i.e., K, γ and M. Hence, the controller is implementable and731

the closed-loop system reduces to,732

z1k+1 = B⊤
⊥(In + hA+ h∆̂A(k, zk))XB⊥

(

B⊤
⊥XB⊥

)−1
z1k(50a)733

+B⊤
⊥(In + hA+ h∆̂A(k, zk))Bσk734

σk+1 = σk −N h(σk) + h(ŵ(k, zk) + ηmk ).(50b)735736

In the next section the stability properties of the closed-loop (50), equivalently (46),737

are studied in detail.738

4.4. Stability of the closed-loop. In this section the stability of system (46)739

is proved. We start by computing the necessary conditions that the matrices X and740

K must satisfy under the assumption of ideal sliding phase, that is, σk = 0. This step741

allows us to compare the discrete-time and the continuous-time approaches showing742

their similarities, and also providing some convergence results. To this end, we start743

considering the following discrete-time reduced order system744

(51) z1k+1 = B⊤
⊥(In + hA+ h∆̂A(k, zk))XB⊥

(

B⊤
⊥XB⊥

)−1
z1k745

together with the Lyapunov-function candidate V (z1k) =
1
2z

1⊤
k

(

B⊤
⊥XB⊥

)−1
z1k. Com-746

puting the difference ∆V := V (z1k+1)−V (z1k) along the trajectories of (51) and setting747

G := B⊤
⊥XB⊥ and sk := G−1z1k yields748

∆V =
1

2
z1⊤k+1

(

B⊤
⊥XB⊥

)−1
z1k+1 −

1

2
z1⊤k

(

B⊤
⊥XB⊥

)−1
z1k749

=
h

2
s⊤k B

⊤
⊥

(

AX +XA⊤ + hXA⊤B⊥G
−1B⊤

⊥AX
)

B⊥sk750

+ hs⊤k B
⊤
⊥∆̂A(k, zk)XB⊥sk + h2s⊤k B

⊤
⊥XA⊤B⊥G

−1B⊤
⊥∆̂A(k, zk)XB⊥sk751

+
h2

2
s⊤k B

⊤
⊥X∆̂A(k, zk)

⊤B⊥G
−1B⊤

⊥∆̂A(k, zk)XB⊥sk.(52)752
753

Making use of the inequality 2p⊤Z⊤Y q ≤ p⊤Z⊤ΨZp + q⊤Y ⊤Ψ−1Y q, where Ψ =754

Ψ⊤ > 0, gives the bounds755
756

(53) s⊤k B
⊤
⊥∆̂A(k, zk)XB⊥sk ≤ 1

2
s⊤k B

⊤
⊥∆̂A(k, zk)Ψ1∆̂A(k, zk)

⊤B⊥sk757

+
1

2
s⊤k B

⊤
⊥XΨ−1

1 XB⊥sk,758
759
760
761

(54) s⊤k E
⊤G−1B⊤

⊥∆̂A(k, zk)XB⊥sk ≤ 1

2
s⊤k E

⊤G−1Ψ2G
−1Esk762

+
1

2
s⊤k B

⊤
⊥X∆̂A(k, zk)

⊤B⊥Ψ
−1
2 B⊤

⊥∆̂A(k, zk)XB⊥sk,763
764

where E = B⊤
⊥XA⊤B⊥. Setting Ψ1 = Λ and Ψ2 = G, where Λ is any positive definite765

matrix that satisfies Assumption 9, and then applying the results from Propositions 27766

and 28 transforms (52) into767
768

(55) ∆V ≤ −hs⊤k B
⊤
⊥

(

aX − 1

2
In − 1

2
XΛ−1X − hXΛ−1X769

−h

2
XA⊤B⊥

(

B⊤
⊥XB⊥

)−1
B⊤

⊥AX

)

B⊥sk.770
771
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Therefore, ∆V < 0 if772

773

(56) B⊤
⊥

(

aX − 1

2
In − 1

2
XΛ−1X − hXΛ−1X774

−h

2
XA⊤B⊥

(

B⊤
⊥XB⊥

)−1
B⊤

⊥AX

)

B⊥ > 0.775
776

Notice the resemblance of (56) with (18). In fact, once again we have that any solution777

of (56) is a solution of (18) and in the special case when h = 0 the right-hand sides of778

both matrix inequalities coincide. Similarly to the continuous-time case, we will ask779

for a stronger version of (56). Namely,780

(57) Q̄ :=

[

Q̄11 Q̄12

Q̄⊤
12 Q̄22

]

> 0,781

where782

Q̄11 := B⊤
⊥

(

aX − In − 1

2
XΛ−1X − h

(

2XΛ−1X +XA⊤B⊥G
−1B⊤

⊥AX
)

)

B⊥,783

Q̄12 := −1

2
B⊤

⊥AB − h

2
B⊤

⊥XA⊤B⊥G
−1B⊤

⊥AB,784

Q̄22 := K − 1

2
B⊤Λ−1B − hB⊤

(

2Λ−1 +
3

2
A⊤B⊥G

−1B⊤
⊥A

)

B.785
786

It is also worth to notice that for any h > 0, a solution (X,K) of the matrix in-787

equality (57) is also a solution of the matrix inequality (19). Additionally, in analogy788

with the continuous-time context, repeated application of Schur’s complement formula789

gives us the equivalence between the matrix inequality (57) and the LMI790

(58)

[

R11 R12

R⊤
12 R22

]

> 0,791

where,792

R11 :=





B⊤
⊥ (aX − In)B⊥ − 1

2B
⊤
⊥AB −hB⊤

⊥XA⊤B⊥

− 1
2B

⊤A⊤B⊥ K −hB⊤A⊤B⊥

−hB⊤
⊥AXB⊥ −hB⊤

⊥AB 2hB⊤
⊥XB⊥



793

R12 :=





−hB⊤
⊥XA⊤B⊥ 0 B⊤

⊥X 0
0 −hB⊤A⊤B⊥ 0 B⊤

0 0 0 0



794

R22 :=









2hB⊤
⊥XB⊥ 0 0 0
0 hB⊤

⊥XB⊥ 0 0
0 0 2

1+2hΛ 0

0 0 0 2
1+2hΛ









.795

796

797

Assumption 33. Along all this section we will assume that X and K are such798

that (34), (36) and (58) hold.799

The following result gives conditions for achieving the discrete-time sliding phase800

(σ̃k+1 = σ̃k = 0 for all k ≥ k∗ for some 0 < k∗ < +∞).801
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Lemma 34. Let Assumption 19 hold. The following two statements are equiva-802

lent:803

1) σk ∈ hγM(0) for some k ∈ N.804

2) σ̃k+1 = 0.805

In addition, if for some k0 ∈ N, σ̃k0+1 = 0, then σ̃k0+n = 0 for all n ≥ 1, whenever806

ŵ(k, zk) + ηmk ∈ γM(0) for all k ≥ k0.807

Proof. The equivalence between 1) and 2) is clear from (49). Namely, σ̃k+1 = 0808

is equivalent to Jh
N
(σk) = 0, which in fact is the same as σk ∈ (I + h(K + γM))(0).809

For the second part of the proof we start from the assumption that, for some k0 ∈ N,810

σ̃k0+1 = 0. Hence, again from (49) it follows that811

(59) σk0+1 = σ̃k0+1 + h(wk0 + ηmk0
) = h(wk0 + ηmk0

) ∈ hγM(0).812

Therefore, applying the first part of the lemma we obtain σ̃k0+2 = 0. The results813

follows by induction.814

The following result supports the use of the scheme proposed in [1, 2].815

Corollary 35. Let the matched disturbance ŵ(k, zk) + ηmk ∈ γM(0) for all k ≥816

k∗ for some 0 < k∗ < +∞. Then, in the discrete-time sliding phase the control input817

usv
k satisfies818

usv
k = ŵk−1 + ηmk−1.819

Proof. Since in sliding phase σ̃k+1 = σ̃k = 0 it follows from (48) that usv
k = −σk

h820

and from (49) we have that σk = h(ŵk−1 + ηmk−1) and the result follows.821

In words, the input obtained from the implicit scheme (46) compensates for the822

disturbance with a delay of one step once the discrete-time sliding phase has been823

reached. Moreover, it is worth to notice that in the discrete-time sliding phase the824

input usv
k is independent of the gain γ, a crucial fact that is experimentally verified825

in [26, 27]. This last property becomes fundamental in the application of the control826

scheme (46) since it helps to drastically reduce the chattering effect of the closed-loop827

system.828

Remark 36. It is worth to mention that the scheme proposed in [1], [2] and stated829

in (46) for the computation of the control input seems to be connected to the approach830

of integral sliding modes for the estimation of the disturbance [47]. Indeed, we can see831

that equation (46c) represents some sort of nominal system from which the control832

input is obtained instead of using the perturbed system (46b). Moreover, Corollary833

35 confirms that, as a consequence of taking the implicit discretization, the obtained834

controller is automatically compensating the matched disturbance terms with a one-835

step delay.836

Practical stability of the difference equation (46) is proved by the following the-837

orem.838

Theorem 37. Let Assumptions 7-29 hold. Consider the closed-loop system (46)839

where X = X⊤ > 0 and K = K⊤ > 0 are such that Assumption 33 holds. In addition,840

let Lc ⊂ R
n be the compact set841

(60) Lc :=

{[

z1

σ

]

∈ R
n

∣

∣

∣

∣

1

2
z1⊤

(

B⊤
⊥XB⊥

)−1
z1 +

1

2
σ⊤σ ≤ c2

}

.842

Then, for any initial condition z0 =
[

z1⊤0 σ⊤
0

]⊤
which lies in Lc for some c > 0,843

there exists h > 0 small enough and fixed such that for γ > 0 satisfying844

(61) γε = ρ+W + (
√
κ̄+ 2h‖K‖2)z̄,845
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where z̄ := max{‖z‖, z ∈ Lc} and ρ > 0 is an arbitrary constant, the origin of the846

discrete-time closed-loop system (46a)-(46d) is semi-globally practically stable. In fact,847

for any initial condition z0 ∈ Lc the trajectories converge to a ball c∗hBn where c∗h < c848

is specified below in the proof and limh→0 c
∗
h = 0.849

Proof. See the Appendix.850

Remark 38. Roughly speaking, semiglobal practical stability of the origin refers851

to the stability of a set (containing the origin) in which, the size of the set can be852

made arbitrary small and the region of attraction can be made arbitrary large by853

suitably adjusting a set of parameters (in our case the parameters are the sampling854

time h > 0 and the controller gain γ > 0). The reader is addressed to [16] for a855

detailed exposition of the concept and related results.856

Remark 39. Practical stability fits within the boundary layer approach [45]. In857

our case we add the prefix semi-global because the disturbance is not uniformly858

bounded, so the gain γ would have to depend on the state for global stability.859

Corollary 40. Let all conditions and assumptions of Theorem 37 hold. Also,860

let the gain γ > 0 satisfy861

(62) γε = ρ+ (1 + α)(r +W +
√
κ̄z̄) + max

{

2h‖K‖2z̄, (W +
√
κ̄z̄)2

r

}

862

for some constants ρ, r > 0 and ε > 0 such that εBm ⊂ M(0). Then, there exists863

k0 > 0, k0 = k0(α, r), which is finite and such that the variable σ̃k0 = 0. Moreover,864

σ̃k = 0 for all k ≥ k0, that is, the discrete-time sliding phase is reached in a finite865

number of steps.866

Proof. From Theorem 37 it follows that for all k > 0 the state zk is uniformly867

bounded (since zk ∈ Lc for all k ≥ 0). This boundedness property allows us to analyze868

the subsystem (49) and to take the disturbance term ŵ(k, zk) + ηmk as uniformly869

bounded. Let us consider first the case where ‖σk+1‖ > h
(

r +W +
√
κ̄z̄
)

for some870

k ∈ N and some r > 0 as in (62). Notice that this implies ‖σ̃k+1‖ ≥ hr. Consider the871

Lyapunov-function candidate Vσ = 1
2σ

⊤
k σk. From (87) we have that872

∆Vσ ≤ −h (γε− ‖ŵ(k, zk) + ηmk ‖) ‖σ̃k+1‖+ h2‖ŵ(k, zk) + ηmk ‖2873

≤ −h

(

γε−
(

W +
√
κ̄z̄
)

−
(

W +
√
κ̄z̄
)2

r

)

‖σ̃k+1‖(63)874

875

Thus, ∆Vσ < 0 whenever ‖σk+1‖ > h
(

r +W +
√
κ̄z̄
)

. It follows that dist(σk, h(r +876

W +
√
κ̄z̄)Bm) → 0 as k → ∞. Hence, there exists a finite k0(α, r) > 0 such that877

‖σk‖ ≤ (1 + α)h(r +W +
√
κ̄z̄) for all k ≥ k0, and878

(64)
‖σk‖
h

≤ (1 + α)(r +W +
√
κ̄z̄) ≤ γε.879

Since by assumption εBm ⊂ M(0) a direct application of Lemma 34 gives us the880

desired result. On the other hand, if ‖σk+1‖ < h(r +W +
√
κ̄z̄) we have that881

‖σk+1‖
h

≤ r +W +
√
κ̄z̄ ≤ γε,882

and the proof is complete.883
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4.5. Convergence of the discrete-time solutions. Here we prove that the884

trajectories of the closed-loop discrete-time system (46) converge to trajectories of the885

closed-loop continuous-time system (13) as the sampling rate h > 0 decreases to zero.886

To this end consider the following piecewise continuous functions:887

z1h(t) := z1k +
t− tk
h

(

z1k+1 − z1k
)

for all t ∈ [tk, tk+1](65a)888

σh(t) := σk +
t− tk
h

(σk+1 − σk) for all t ∈ [tk, tk+1],(65b)889
890

together with the step functions891

σ̃∗
h(t) := σ̃k+1 for all t ∈ (tk, tk+1](66a)892

σ∗
h(t) := σk for all t ∈ (tk, tk+1](66b)893

z1∗h (t) := zk for all t ∈ (tk, tk+1].(66c)894895

From Theorem 37 it follows that for a given initial condition [z1h(0)
⊤, σh(0)

⊤]⊤ ∈ R
n896

the trajectories z1h and σh are maintained for all times t > 0 inside a compact set897

Lc for some c > 0. Hence, they are uniformly bounded. Moreover, we have that the898

derivatives of z1h and σh exist for almost all t > 0, and satisfy899

ż1h(t) =
z1k+1 − z1k

h
, for all t ∈ (tk, tk+1)(67a)900

σ̇h(t) =
σk+1 − σk

h
, for all t ∈ (tk, tk+1).(67b)901

902

It follows from (46a) and the continuity of ∆̂A(k, zk) that ż1h is uniformly bounded.903

On the other hand, by (49) we have that904

σ̇h =
σ̃k+1 + h(ŵ(k, zk) + ηmk )− σk

h
=

Jh
N
(σk)− σk

h
+ ŵ(k, zk) + ηmk905

= −N h(σk) + ŵ(k, zk) + ηmk ,(68)906907

where N h is defined in (48). Thus, from the fact that ‖N h(σk)‖ ≤ ‖Proj
N(σk)(0)‖ [4,908

Theorem 2 p. 144] and recalling that ηmk = S∆̂A(k, zk)T
−1zk together with the909

uniform boundedness of ∆̂A(k, zk) and ŵ(k, zk) (Assumptions 9 and 10 respectively),910

it follows that σ̇h is uniformly bounded too. Hence, we have a pair of equicontinuous911

sequences of functions {zh}h>0 and {σh}h>0 and using a similar argument as the one912

used in the proof of Theorem 22, we get the existence of continuous functions z1 and913

σ such that [zh, σh] → [z, σ], strongly in L2([0, T ];R
n) and [żh, σ̇h] → [ż, σ̇] weakly in914

L2([0, T ];R
n) for any T > 0. Additionally, we have915

‖σh − σ∗
h‖2L2([0,T ];Rm) =

N−1
∑

k=0

∫ tk+1

tk

(t− tk)
2‖σ̇h(t)‖2dt916

≤ C2
1

N−1
∑

k=0

(t− tk)
3

3

∣

∣

∣

∣

tk+1

tk

917

≤ C2
1Th

2

3
,918

919
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where C1 > 0 is an upperbound of ‖σ̇h‖. Hence σ∗
h → σ as h ↓ 0. In a similar fashion,920

we also have z∗h → z as h ↓ 0. Moreover, as was pointed out above, any solution X of921

the matrix inequalities (34), (57) converges to a matrix P , solution of (5) and (19),922

as h decreases to zero. Therefore, from (67) and (46) we get923

924

ż1h = B⊤
⊥

(

A+ ∆̂A(k, zk)
)

XB⊥

(

B⊤
⊥XB⊥

)−1
z1∗h +B⊤

⊥

(

A+ ∆̂A(k, zk)
)

Bσ∗
h,925

→ B⊤
⊥

(

A+ ∆̂A(k, zk)
)

PB⊥

(

B⊤
⊥PB⊥

)−1
z1 +B⊤

⊥

(

A+ ∆̂A(k, zk)
)

Bσ = ż1926
927

and928

σ̇h − w∗
h − ηm∗

h → σ̇ − w − φm as h ↓ 0,929

both weakly in L2([0, T ];R
n−m) and L2([0, T ];R

m), respectively. Finally, from (68)930

we have that −σ̇h +w∗
h + ηm∗

h = N h(σ∗
h) and Jh

N
(σ∗

h) → σ strongly in L2([0, T ];R
m).931

Indeed,932

‖σ − Jh
N
(σ∗

h)‖ ≤ ‖σ − Jh
N
(σ)‖ + ‖Jh

N
(σ) − Jh

N
(σ∗

h)‖933

≤ h‖N h(σ)‖ + ‖σ − σ∗
h‖934

≤ h‖Proj
N(σ)(0)‖+ ‖σ − σ∗

h‖,935
936

where we used the non-expansivity of the resolvent. It follows that Jh
N
(σ∗

h) → σ937

uniformly in C([0, T ];Rm) as h ↓ 0 (and consequently, strongly in L2([0, T ];R
m)).938

Consequently, using the fact that N (σ∗
h) ∈ N(Jh

N
(σ∗

h)), where N = K + γM [4,939

Theorem 2 p.144], after the application of Proposition 2 in Section 2 we conclude that940

the pair (z1, σ) is a solution of the differential inclusion (13).941

Remark 41. Previous developments reveal that the implicit discretization scheme942

for the set-valued part of the controller usv
k makes sense and at the same time allows943

us to inherit the robustness of the continuous-time closed-loop system.944

In the next section we present some numerical examples, showing the robustness945

of the implemented discrete-time controller as well as the suppression of the chattering946

effect.947

5. Numerical example. Consider the following benchmark dynamical system948

(69) ẋ =













0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 −2 3 1 2













x+













0 0
1 0
0 0
0 1
1 1













u,949

x ∈ R
5, u ∈ R

2, with the parametric uncertainty950

(70) ∆A(t, x) =













0.1 cosx1 0.1 −0.1 −0.1 0
0 0.1 sinx2 0.2 0.3 −0.4

0.33 0.1 0 0 −0.1 sinx3

0 0 0.14 cos t 0.2 0
1 0.4 0.1 sinx4 0 0.1













.951

In addition, we take into account the effects of a matched and bounded external952

disturbance w(t) =
[

2 sin(t) 5 sin(0.63t)
]⊤

. First, we show the continuous-time case953
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with the regularized control law provided by the Yosida approximation of the set-954

valued map M and, after that, the discrete-time case is exposed. In this example955

we consider the set-valued map M as the subdifferential of the infinity norm, i.e., let956

f(σ) = ‖σ‖∞ = maxi |σi|. Hence,957

M(σ) = ∂f(σ) := {ζ ∈ R
m | f(η)− f(σ) ≥ 〈ζ, η − σ〉, for all η ∈ R

m}958

= conv{∂f i(σ)|i ∈ I(σ)},(71)959960

where f i(σ) := |σi| and I(σ) := {i ∈ {1, . . . , n}|f i(σ) = f(σ)} is the set of indices961

where the maximum is achieved [41, Exercise 8.31]. For the continuous-time case962

we use the regularized controller given by the Yosida approximation to the maximal963

monotone operator M. Notice that, in the continuous-time case, the selection of964

the values for reaching the sliding phase will depend of the disturbance terms and965

therefore there is no suitable selection process. Invoking [7, Example 23.3] we have966

that Jµ
∂f = Proxµf , where Proxµf refers to the proximal map of the function µf967

defined in Section 2. In order to compute the Yosida approximation first notice that968

the Moreau’s decomposition Theorem [7, Theorem 14.3] gives969

Mµ(σ) =
1

µ
(I − Jµ

M
) (σ) = Proxf⋆/µ

(

σ

µ

)

.970

So we proceed to compute the conjugate function f⋆(σ) := supx∈Rm{〈x, σ〉 − f(x)}.971

Let us first consider the case when σ is such that
∑

i |σi| ≤ 1. Then we have972

0 = 〈0, σ〉 − f(0) ≤ f⋆(σ) = sup
x∈Rm

{〈x, σ〉 − ‖x‖∞}973

≤ sup
x∈Rm

{

m
∑

i=1

|σi||xi| − ‖x‖∞
}

974

≤ sup
x∈Rm

{

‖x‖∞
(

m
∑

i=1

|σi| − 1

)}

= 0.975

976

Hence, f⋆(σ) = 0 whenever ‖σ‖1 ≤ 1. On the other hand, consider the case where977
∑

i |σi| > 1. In this case we have978

f⋆(σ) = sup
x∈Rm

{〈x, σ〉 − ‖x‖∞}979

≥ sup
b∈R+











m
∑

i=1

σib sign(σi)‖σ‖∞ − b

∥

∥

∥

∥

∥

∥

∥







sign(σ1)‖σ‖∞
...

sign(σm)‖σ‖∞







∥

∥

∥

∥

∥

∥

∥

∞











980

= sup
b∈R+

{

b‖σ‖∞
(

m
∑

i=1

|σi| − 1

)}

= +∞.981

982

It follows that f⋆(σ) = ΨB1
m
(σ), where B

1
m := {x ∈ R

m|‖x‖1 ≤ 1} and the function983

ΨC denotes the indicator function of the set C. Therefore,984

Mµ(σ) = ProxΨ
B1m

(

σ

µ

)

= Proj
B1
m

(

σ

µ

)

.985

The next step consists in the computation of C. Following the steps described in986

Section 3 we have that C = (B⊤P−1B)B⊤P−1 where P = P⊤ > 0 is a solution987
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of (5), (20). Using the software package CVX [24] together with the solver SeDuMi988

[43] to solve the LMIs (5) and (20) we obtain989

P =













2.3075 −3.3999 −1.4020 2.5063 −2.0431
−3.3999 18.3866 1.4443 −9.7181 9.8744
−1.4020 1.4443 13.8392 −19.8470 −9.7614
2.5063 −9.7181 −19.8470 70.0849 38.7141
−2.0431 9.8744 −9.7614 38.7141 38.7003













,990

together with991

K =

[

14.6386 −2.411
−2.4111 14.2337

]

.992

It follows that993

C =

[

1.5052 0.9790 0.0350 −0.0210 0.0210
−0.0019 −1.7935 0.3140 −0.7935 1.7935

]

.994

Figure 1 shows the trajectories, the sliding variable and the control input of the995

closed-loop system (69) with regularized control input u = unom −Kσ− γ(z)Mµ(σ),996

taking µ = 0.001, a = 1.4, whereas the gain γ(z) is as given in (25), with values997

γ(z) = 7 + 29.28‖z‖ and the initial condition x(0) =
[

1 −1 1 0 −1
]⊤

. The998

simulations were carried up in Matlab using a Dormand-Prince solver (ode45) with999

variable time-step and relative tolerance of 10−6. Also it is worth to mention that1000

there is no chattering present neither in the input nor in the output σ, since the1001

control input is Lipschitz continuous, see (48), and well-posed over all Rm, see Figure1002

1.
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Fig. 1: Time evolution of the control input u = unom − Kσ − γ(z)Mµ(σ) and the
corresponding system trajectories and sliding variable with µ = 0.001.

1003

For the discrete-time setting, we simulate the continuous-time plant with a ZOH1004

sampling mechanism and we implement the discrete-time controller described in Sec-1005

tion 4.3. We use the set-valued maximal monotone mapM defined in (71). In this con-1006

text, instead of computing the Yosida approximation ofN = K+γM, we introduce an-1007

other way of computing the control input usv from the Yosida approximation of the set-1008

valued map M. From (46c)-(46d) it follows that (In + hK)σ̃k+1 − σk ∈ −hγM(σ̃k+1)1009
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or, equivalently,1010

θσk − θ(In + hK)σ̃k+1 ∈ θhγM(σ̃k+1)1011

m1012

θσk + (In − θIn − θhK) σ̃k+1 ∈ (I + θhγM) (σ̃k+1)1013

m1014

σ̃k+1 = Jθhγ
M

(θσk + (In − θ(In + hK))σ̃k+1) .(72)10151016

We claim that the right-hand side of (72) is a contraction for θ > 0 sufficiently small.1017

Indeed, recalling that the resolvent Jµ
M

is non-expansive for any µ > 0 it follows that1018
1019

∥

∥

∥
Jθhγ
M

(

θσk + (In − θ(In + hK))σ̃1
k+1

)

− Jθhγ
M

(

θσk + (In − θ(In + hK))σ̃2
k+1

)

∥

∥

∥
1020

≤ ‖In − θ(In + hK)‖‖σ̃1
k+1 − σ̃2

k+1‖.10211022

Hence, taking θ > 0 small enough we have that ‖In − θ(In + hK)‖ < 1 and then1023

Jθhγ
M

is a contraction. Consequently, the method of successive approximations can be1024

applied in order to find the fixed point σ̃k+1 of (72) and the control input usv
k at each1025

sampling instant. We set three different sampling periods, h ∈ {50ms, 5ms, 0.5ms},1026

a = 1.4, whereas γ was computed from (61) as γ = 237.77 for h = 50 ms, γ = 51.171027

for h = 5 ms and γ = 49.63 for h = 0.5 ms, and x0 =
[

1 −1 1 0 −1
]⊤

as before.1028

In the three cases we solve (34), (36) and (58) and we obtain the following sliding1029

surfaces Hh := {x ∈ R
n | Shx = 0}:1030

Sh1 =

[

1.4759 0.9867 0.0042 −0.0133 0.0133
0.1065 −1.6527 0.6364 −0.6527 1.6527

]

1031

Sh2 =

[

1.4733 0.9912 0.0266 −0.0088 0.0088
0.0317 −1.7821 0.3248 −0.7821 1.7821

]

1032

Sh3 =

[

1.4701 0.9977 0.0332 −0.0023 0.0023
0.0280 −1.7837 0.3083 −0.7837 1.7837

]

.1033
1034

For the simulation of the system, we use the same Matlab configuration setting as in1035

the previous case. Figures 2-3 show the evolution of the trajectories of the closed-loop1036

system (69) with a control scheme dictated by (46), as well as the evolution in time1037

of the sliding variable and the control input. The subindices in the labels of the plots1038

indicate the sampling time h for the current variable. Notice that in all the three cases1039

there is no chattering at all, neither in the input nor in the output, c.f. Figure 4. It1040

is noteworthy that the control compensates for the disturbance as stated in Corollary1041

35.1042

Finally, Figure 4 shows the plots of the control input, sliding variable and system1043

trajectories of the closed-loop system (69) when the conventional unit vector control1044

is applied using an explicit discretization for the set-valued part of the controller, that1045

is, u(tk) = unom(tk)−Kσ(tk)− γ σ(tk)
‖σ(tk)‖+0.001 on [tk, tk+1) with sampling time h = 51046

ms. Notice that, when we regularize the control input in the conventional way there1047

is no selection procedure, which in the end results in the appearance of chattering in1048

the system. Numerical chattering (i.e., the chattering due to the time-discretization)1049

is known to be intrinsic to explicit discretizations [22, 23, 27].1050

6. Concluding remarks. In this work we present a family of set-valued sliding-1051

mode controllers making use of the so-called maximal monotone operators. The pro-1052

posed methodology has the advantage of embracing the two main approaches which1053
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Fig. 2: Time evolution of the control input uk = unom
k + usv

k (left) and the associated
sliding variable (right), for the sampling times h ∈ {50ms, 5ms, 0.5ms}.
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Fig. 3: Time evolution of the piecewise linear trajectories x(t) of the discrete-time
system (46) for the sampling times h ∈ {50ms, 5ms, 0.5ms}.

exist in the literature of sliding-mode control, namely, the unit vector control and the1054

componentwise control, among others. Additionally, the proposed scheme allows us1055

to deal with the multivariable case without any modification and provides a unique1056

and well-posed way of regularization of the set-valued controller through the use of1057

the Yosida approximation.1058

All along the article we deal with parametric and matched external disturbances.1059

A study for both the continuous and discrete-time cases was presented. In the1060

continuous-time case it was shown that the proposed set-valued controller is well-1061

posed even in the case when the right-hand side is not maximal monotone. Moreover,1062

the convergence of the trajectories as the Yosida approximation converges to the1063

set-valued control was established. On the other hand, the implementation of the1064

controllers obtained from the continuous-time setting was analyzed. It was shown1065

that the use of the implicit discretization for the set-valued part of the controller is1066

well-posed, and allows us to make a selection for the values of the controller that1067

will compensate for the disturbances in a unique fashion. The advantage of making1068

a selection rather than switching is translated into the suppression of the chatter-1069

ing effect, confirming previous analytical and experimental results obtained in a less1070
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Fig. 4: Time evolution of the control input u = unom −Kσ − γσ/(‖σ‖ + 0.001) and
the corresponding system trajectories and sliding variable with a sampling step h = 5
ms.

general framework not encompassing parametric uncertainties.1071

Appendix A. Appendix.1072

A.1. Proof of Theorem 22.1073

Proof. The proof follows a classical approach. Namely, first we approximate the
solutions of the differential inclusion (13),(22) by using differential equations. After
that, the boundedness of the solutions of the differential equation for all times t ∈
[0,+∞) is proved. Finally, the application of the Arzelà-Ascoli [31, Theorem 1.3.8]
and the Banach-Alaoglu [31, Theorem 2.4.3] theorems gives us the convergence of
the sequence formed from the solutions of the differential equation to one solution of
the differential inclusion (13),(22), see e.g., [3]. We start with the proof as follows.
Consider first the differential equation







żµ1 = B⊤
⊥

(

A+ ∆̂A(t, z
µ)
)

PB⊥

(

B⊤
⊥PB⊥

)−1
zµ1 +B⊤

⊥

(

A+ ∆̂A(t, z
µ)
)

Bσµ(73a)

σ̇µ = −Kσµ + ŵ(t, zµ) + φ̂m(t, zµ)− γ(zµ)Mµ(σµ),(73b)

where zµ = [zµ⊤1 σµ⊤]⊤ and the map Mµ : Rm → R
m refers to the Yosida approxima-1074

tion of index µ > 0 of the map M (see Definition 1). It is a well known fact that the1075

Yosida approximation is a Lipschitz continuous function with constant 1/µ. Hence,1076

it follows that there exists one solution to (73) in [0, T ) for some T > 0. Next, using1077

a Lyapunov analysis we show that the solution of (73) exists for all times t > 0. To1078

this end, consider the positive definite function1079

(74) V (zµ1 , σ
µ) :=

1

2
zµ⊤1 (B⊤

⊥PB⊥)
−1zµ1 +

1

2
σµ⊤σµ,1080

where we recall that B⊥ is full column rank and hence B⊤
⊥PB⊥ > 0. Deriving V1081
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along the trajectories of (73) leads to1082

V̇ = zµ⊤1 (B⊤
⊥PB⊥)

−1żµ1 + σµ⊤σ̇µ
1083

= zµ⊤1 (B⊤
⊥PB⊥)

−1B⊤
⊥

(

A+ ∆̂A(t, z
µ)
)

PB⊥(B
⊤
⊥PB⊥)

−1zµ11084

+ zµ⊤1 (B⊤
⊥PB⊥)

−1B⊤
⊥

(

A+ ∆̂A(t, z
µ)
)

Bσµ − σµ⊤Kσµ
1085

+ σµ⊤
(

−γ(zµ)Mµ(σµ) + ŵ(t, zµ) + φ̂m(t, zµ)
)

1086

≤ 1

2
z̄µ⊤1 B⊤

⊥(AP + PA⊤)B⊥z̄
µ
1 + z̄µ⊤1 B⊤

⊥ABσµ + z̄µ⊤1 B⊤
⊥∆̂A(t, z

µ)PB⊥z̄
µ
11087

+ z̄µ⊤1 B⊤
⊥∆̂A(t, z

µ)Bσµ − σµ⊤Kσµ
1088

+ σµ⊤
(

−γ(zµ)Mµ(σµ) + ŵ(t, zµ) + φ̂m(t, zµ)
)

,(75)1089
1090

where, z̄µ1 = (B⊤
⊥PB⊥)

−1zµ1 . The next step consists in finding bounds for the terms1091

that involve the unknown matrix ∆̂A. Using the inequality 2p⊤X⊤Y q ≤ p⊤X⊤ΨXp+1092

q⊤Y ⊤Ψ−1Y q, where Ψ = Ψ⊤ > 0, gives us the bounds1093

z̄µ⊤1 B⊤
⊥∆̂APB⊥z̄

µ
1 ≤ 1

2
z̄µ⊤1 B⊤

⊥∆̂AΨ∆̂⊤
AB⊥z̄

µ
1 +

1

2
z̄µ⊤1 B⊤

⊥PΨ−1PB⊥z̄
µ
1(76)1094

z̄µ⊤1 B⊤
⊥∆̂ABσµ ≤ 1

2
z̄µ⊤1 B⊤

⊥∆̂AΨ∆̂⊤
AB⊥z̄

µ
1 +

1

2
σµ⊤B⊤Ψ−1Bσµ.(77)1095

1096

Taking Ψ = Λ where Λ = Λ⊤ > 0 satisfies Assumption 9, the substitution of (76)-(77)1097

into (75) yields1098

V̇ ≤ −z̄µ⊤1 B⊤
⊥

(

aP − In − 1

2
PΛ−1P

)

B⊥z̄
µ
1 + z̄⊤1 B

⊤
⊥ABσµ

1099

− σµ⊤

(

K − 1

2
B⊤Λ−1B

)

σµ + σµ⊤
(

−γ(zµ)Mµ(σµ) + ŵ(t, zµ) + φ̂m(t, zµ)
)

1100

≤ −λmin(Q̃)‖zµ‖2 − γ(zµ)σµ⊤Mµ(σµ) +
(

W +
√
κ‖zµ‖

)

‖σµ‖,
(78)

11011102

where Q̃ ∈ R
n×n is given as1103

(79) Q̃ :=

[
(

B⊤
⊥PB⊥

)−1
0

0 Im

]

Q

[
(

B⊤
⊥PB⊥

)−1
0

0 Im

]

> 01104

and Q is defined in (19). We proceed to analyze the term 〈σµ,Mµ(σµ)〉 as follows.1105

From the definition of the Yosida approximation (Definition 1 in Section 2) we have1106

that σµ = µMµ(σµ) + Jµ
M
(σµ), and (Jµ

M
(σµ),Mµ(σµ)) ∈ GraphM. Hence, making1107

use of both previous facts together with (24) in Proposition 21 gives1108

〈σµ,Mµ(σµ)〉 = µ‖M(σµ)‖2 + 〈Jµ
M
(σµ),Mµ(σµ)〉1109

≥ µ‖M(σµ)‖2 + ε‖Jµ
M
(σµ)‖1110

= µ‖M(σµ)‖2 + ε‖σµ − µMµ(σµ)‖.11111112

Now, recalling that ‖σµ − µMµ(σµ)‖ ≥ ‖σµ‖ − µ‖Mµ(σµ)‖, we have1113

(80) 〈σµ,Mµ(σµ)〉 ≥ ε‖σµ‖+ µ‖Mµ(σµ)‖ (‖Mµ(σµ)‖ − ε) .1114
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Substitution of (80) into (78) results in1115

V̇ ≤ −λmin(Q̃)‖zµ‖2 + ‖σµ‖(W +
√
κ‖zµ‖)− γ(zµ)

(

ε‖σµ‖1116

+ µ‖Mµ(σµ)‖ (‖Mµ(σµ)‖ − ε)
)

1117

≤ −λmin(Q̃)‖zµ‖2 −
(

εγ(zµ)−W −√
κ‖zµ‖

)

‖σµ‖1118

− γ(zµ)µ‖Mµ(σµ)‖ (‖Mµ(σµ)‖ − ε)
)

.(81)11191120

Now we continue with the proof showing that for all σµ /∈ µεBm the term ‖Mµ(σµ)‖−ε1121

is nonnegative. To this end, first notice that for any v ∈ µεBm ⊂ µM(0), the resolvent1122

Jµ
M

at the point v is zero. Indeed, let ε > 0 be such that εBm ⊂ M(0). Then, it follows1123

that for any v ∈ µεBm, v ∈ µM(0) = (I + µM)(0). Therefore, Jµ
M
(v) = 0. From the1124

non-expansiveness property of the resolvent it follows that ‖Jµ
M
(σµ)‖ ≤ ‖σµ − v‖, for1125

all v ∈ µεBm. So, from the definition of the Yosida approximation, taking v = µε σµ

‖σµ‖ ,1126

and recalling that we are analyzing the case where ‖σµ‖ ≥ µε, we have1127

‖Mµ(σµ)‖ =
1

µ
‖σµ − Jµ

M
(σµ)‖ ≥ 1

µ
(‖σµ‖ − ‖Jµ

M
(σµ)‖)1128

≥ 1

µ

(

‖σµ‖ −
∥

∥

∥

∥

σµ − µε
σµ

‖σµ‖

∥

∥

∥

∥

)

1129

=
1

µ

(

‖σµ‖ −
(

1− µε

‖σµ‖

)

‖σµ‖
)

= ε.1130
1131

Previous developments show that it is sufficient to consider only the case when the1132

sliding variable σµ ∈ εµBm (since for the case σµ /∈ εµBm we have already shown1133

that (81) is strictly negative). Hence, letting ‖σµ‖ ≤ µε and recalling that in this1134

case Jµ
M
(σµ) = 0, it follows that Mµ(σµ) = 1

µσ
µ and (81) transforms into1135

V̇ ≤ −λmin(Q̃)‖zµ‖2 −
(

εγ(zµ)−W −√
κ‖zµ‖

)

‖σµ‖ − γ(zµ)‖σµ‖
(‖σµ‖

µ
− ε

)

1136

≤ −λmin(Q̃)‖zµ‖2 −
(

εγ(zµ)−W −√
κ‖zµ‖

)

‖σµ‖ − γ(zµ)
‖σµ‖2
µ

+ γ(zµ)ε2µ.1137
1138

Let Lc = {zµ ∈ R
n | V (zµ) ≤ c, } be the level sets of the function V and let c > 0 be1139

such that the initial condition z0 ∈ Lc and rBn ⊂ Lc for some r > 0. Then γ(·) is1140

uniformly bounded in Lc by some γ̄ > 0, and for any z ∈ Lc \ rBn we have that1141

(82)

V̇ ≤ −
(

λmin(Q̃)− γ̄ε2µ

r2

)

‖zµ‖2 −
(

εγ(zµ)−W −√
κ‖zµ‖

)

‖σµ‖ − γ(zµ)
‖σµ‖2
µ

.1142

From (82) we conclude that, for all µ > 0 small enough such that1143

(83) µ <
r2λmin(Q̃)

ε2γ̄
=: µ∗,1144

the set Lc is positively invariant (since V̇ < 0 in bdLc) and boundedness of the1145

trajectories on the time interval [0, T ] follows. A classical argument by contradiction1146

proves the existence of solutions of (73) for all T > 0. It remains to show that1147

for any zµ(0) = z(0) = z0 ∈ R
n the sequences {zµ}µ>0 formed by the solutions1148

of (73) converge to a solution of (13),(22) as µ ↓ 0. Continuing with the proof,1149
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let zµ0 ∈ R
n be fixed, then there exists a c > 0 such that zµ(0) ∈ Lc, and we1150

have that any solution of (73) satisfies zµ ∈ C([0, T ];Rn) for any T > 0, where1151

C([0, T ];Rn) refers to the Banach space of continuous functions from [0, T ] to R
n1152

with norm ‖y‖ = supt∈[0,T ] ‖y(t)‖. Further, the sequence of trajectories {zµ}µ>0 is1153

uniformly bounded for all 0 < µ < µ∗, where µ∗ satisfies (83) (recall that the set Lc1154

is positively invariant). On the other hand, from the assumption that the domain of1155

M is all Rm it follows that Mµ(σµ(t)) is uniformly bounded. Actually, from the fact1156

that the set Lc is a compact subset of Rn, it follows that there exist a compact subset1157

L̃c ⊂ R
m such that σµ(t) ∈ L̃c for all t ≥ 0 and all 0 < µ < µ∗, and a finite collection1158

of open sets {Oi} ⊂ R
m such that:1159

1. L̃c ⊂ ∪r
i=1Oi,1160

2. For each i ∈ {1, . . . , r}, M(Oi) ⊂ biBm for some 0 < bi < +∞.1161

Consequently, M(σµ(t)) ⊂ ∪r
i=1M(Oi) ⊂ maxi∈{1,...,r} biBm. Hence, invoking (2) it1162

follows that ‖Mµ(σµ(t))‖ ≤ ‖Proj
M(σµ(t))(0)‖ ≤ maxi∈{1,...,r} bi. Therefore, from1163

Assumption 9, together with (73) and the conclusion about the boundedness of its1164

solutions it follows that, for any 0 < µ < µ∗, żµ ∈ L∞([0, T ];Rn) is uniformly1165

bounded. Hence, we have that the sequence {zµ}µ>0 is equicontinuous. By a direct1166

application of the Arzelà-Ascoli Theorem [31, Theorem 1.3.8] we get that there exists a1167

subsequence {zµ}µ>0 such that zµ → z for some z ∈ C([0, T ];Rn) uniformly in [0, T ].1168

On the other hand, because żµ ∈ L∞([0, T ];Rn), an application of the Banach-Alaoglu1169

Theorem [31, Theorem 2.4.3] shows that there exists a function q ∈ L∞([0, T ];Rn)1170

such that żµ → q in the weak* topology, i.e.,1171

lim
µ↓0

∫ T

0

〈żµ(t)− q(t), s(t)〉dt = 0 for all s ∈ L1([0, T ];R
n).1172

Moreover, from the fact that z(t) = z(0) +
∫ T

0 q(t)dt we infer that q = ż almost1173

everywhere. Notice that, since the considered time domain is bounded, we have that1174

L2([0, T ];R
n) ⊂ L1([0, T ];R

n) [30, Corollary 1, Chapter VIII]. Hence, żµ converges1175

weakly in L2([0, T ];R
n). From the continuity assumption of ∆̂A and the convergence1176

of zµ and żµ to z and ż respectively, it becomes clear that z satisfies (13a). In fact,1177

1178

żµ1 = B⊤
⊥(A+ ∆̂A(t, z

µ))PB⊥

(

B⊤
⊥PB⊥

)−1
zµ1 + B⊤

⊥ (A+∆A(t, z
µ))Bσµ →1179

B⊤
⊥(A+ ∆̂A(t, z))PB⊥

(

B⊤
⊥PB⊥

)−1
z +B⊤

⊥ (A+∆A(t, z))Bσ = ż1.11801181

Additionally, setting θµ := σ̇µ+Kσµ−ŵ−φ̂m we have that, for any ϕ ∈ L2([0, T ];R
m),1182

1183
∫ T

0

〈

θµ(t)

γ(zµ(t))
− θ(t)

γ(z(t))
, ϕ(t)

〉

dt1184

=

∫ T

0

(

1

γ(zµ(t))
− 1

γ(z(t))

)

〈θµ(t), ϕ(t)〉 dt+
∫ T

0

〈

θµ(t)− θ(t)

γ(z(t))
, ϕ(t)

〉

dt1185
1186

From (25) if follows that γ(z) > ρ
ε for any z ∈ R

n. Thus, there exists a µ̄ > 0 such1187

that, for all µ̄ ≤ µ∗ we have1188
1189

(84)

∫ T

0

〈

θµ̄(t)

γ(zµ̄(t))
− θ(t)

γ(z(t))
, ϕ(t)

〉

dt1190

≤
∫ T

0

ε2

ρ2
Lγ‖zµ̄(t)− z(t)‖‖θµ̄(t)‖‖ϕ(t)‖dt+

∫ T

0

ε

ρ

〈

θµ̄(t)− θ(t), ϕ(t)
〉

dt,1191
1192
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where Lγ > 0 refers to the Lipschitz constant of the function γ. Hence,1193

1194

(85) ζµ̄ :=
σ̇µ̄ +Kσµ̄ − ŵ(t, zµ̄)− φ̂m(t, zµ̄)

γ(zµ̄)
→1195

σ̇ +Kσ − ŵ(t, z)− φ̂m(t, z)

γ(z)
=: ζ as µ̄ ↓ 01196

1197

weakly in L2([0, T ];R
m) for any T > 0. Finally, from [4, p. 146] it follows that1198

the set-valued map M seen as a set-valued map from L2([0, T ],R
m) to the sub-1199

sets of L2([0, T ],R
m) is also maximal monotone. Since J µ̄

M
(σµ̄) → σ uniformly in1200

C([0, T ],Rm) [4, p.144], and consequently strongly in L2([0, T ];R
m), the left-hand1201

side of (85) is equal to ζµ̄ = Mµ̄(σµ̄) and Mµ̄(σµ̄) ∈ M(J µ̄
M
(σµ̄)) [4, p. 144]. In-1202

voking Proposition 2 in Section 2 allows us to conclude that ζ ∈ M(σ), that is, the1203

differential inclusion (13),(22) is satisfied. This finishes the proof.1204

A.2. Proof of Theorem 37.1205

Proof. Mimicking (27), let us consider the Lyapunov function candidate V k(z) =1206

V k
z1+V k

σ , where V
k
z1 := 1

2z
1⊤
k (B⊤

⊥XB⊥)
−1z1k and V k

σ := 1
2σ

⊤
k σk. Let ∆V = ∆Vz1+∆Vσ1207

where ∆Vσ := V k+1
σ −V k

σ and ∆Vz1 := V k+1
z1 −V k

z1 . We split the proof into two parts.1208

The first part consists in finding a proper upper-bound for the difference ∆Vσ. After1209

this, we continue analyzing the term ∆Vz1 . Finally we put all terms together and the1210

practical stability follows. Consider the positive definite function V k
σ̃ = 1

2 σ̃
⊤
k σ̃k and1211

its respective difference ∆Vσ̃ = V k+1
σ̃ − V k

σ̃ . Then, making use of (46c) and (46d) it1212

follows that1213

∆Vσ̃ =
1

2
σ̃⊤
k+1σ̃k+1 −

1

2
σ̃⊤
k σ̃k1214

=
1

2
σ̃⊤
k+1 (σ̃k+1 − σk)−

1

2
σ̃⊤
k σ̃k +

1

2
σ̃⊤
k+1σk1215

= σ̃⊤
k+1 (σ̃k+1 − σk)−

1

2
σ̃⊤
k σ̃k + σ̃⊤

k+1σk − 1

2
σ̃⊤
k+1σ̃k+11216

≤ −hσ̃⊤
k+1(Kσ̃k+1 + γζk+1) + V k

σ − V k
σ̃ ,(86)12171218

where ζk+1 ∈ M(σ̃k+1) and we have used the inequality 2σ̃⊤
k+1σk ≤ σ̃⊤

k+1σ̃k+1 + σ⊤
k σk1219

in the last step. Adding and subtracting the term V k+1
σ + V k+1

σ̃ in (86) yields1220

∆Vσ̃ ≤ −hσ̃⊤
k+1Kσ̃k+1 − hγσ̃⊤

k+1ζk+1 +
1

2
σ⊤
k+1σk+1 −

1

2
σ̃⊤
k+1σ̃k+1 +∆Vσ̃ −∆Vσ1221

which, after substitution of (46c) into (46b), leads to1222

∆Vσ ≤ −hσ̃⊤
k+1Kσ̃k+1 − hγσ̃⊤

k+1ζk+1 −
1

2
σ̃⊤
k+1σ̃k+11223

+
1

2
(σ̃k+1 + h (ŵ(k, zk) + ηmk ))

⊤
(σ̃k+1 + h (ŵ(k, zk) + ηmk ))1224

= −hσ̃⊤
k+1Kσ̃k+1 − hγσ̃⊤

k+1ζk+1 + hσ̃⊤
k+1 (ŵ(k, zk) + ηmk ) + h2‖ŵ(k, zk) + ηmk ‖2.

(87)

12251226

From (46c) and (46d) it follows that σ̃k+1 = σk − hKσ̃k+1 − hγζk+1 with ζk+1 ∈1227
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M(σ̃k+1). Then (87) transforms into1228

∆Vσ ≤ −h (σk − hKσ̃k+1 − hγζk+1)
⊤
K (σk − hKσ̃k+1 − hγζk+1)− hγσ̃⊤

k+1ζk+11229

+ hσ̃⊤
k+1 (ŵ(k, zk) + ηmk ) + h2‖ŵ(k, zk) + ηmk ‖21230

≤ −hσ⊤
k Kσk + 2h2σ⊤

k K (Kσ̃k+1 + γζk+1)1231

− hγσ̃⊤
k+1ζk+1 + hσ̃⊤

k+1 (ŵ(k, zk) + ηmk ) + h2‖ŵ(k, zk) + ηmk ‖21232

≤ −hσ⊤
k Kσk − h

(

γε− ‖ŵ(k, zk) + ηmk ‖ − 2h‖K‖2‖σk‖
)

‖σ̃k+1‖(88)1233

+ 2h2γ‖K‖‖ζk+1‖‖σk‖+
h2

2
‖ŵ(k, zk) + ηmk ‖2,1234

1235

where we made use of Proposition 21 in the last step. On the other hand, let us recall1236

that G = (B⊤
⊥XB⊥) and let us set sk := G−1z1k. Substitution of (46a) into ∆Vz1 ,1237

after some simple algebra, leads to1238

∆Vz1 =
1

2
z1⊤k+1G

−1z1k+1 −
1

2
z1⊤k G−1z1k1239

=
1

2

(

B⊤
⊥(In + hA+ h∆̂A(k, zk))XB⊥sk1240

+B⊤
⊥(In + hA+ h∆̂A(k, zk))Bσk

)⊤

G−1

(

B⊤
⊥(In + hA1241

+ h∆̂A(k, zk))XB⊥sk +B⊤
⊥(In + hA+ h∆̂A(k, zk))Bσk

)

− 1

2
s⊤k Gsk1242

=
1

2
s⊤k B

⊤
⊥X

(

In + hA+ h∆̂A(k, zk)
)⊤

B⊥G
−1B⊤

⊥(In + hA1243

+ h∆̂A(k, zk))XB⊥sk −
1

2
s⊤k Gsk1244

+ s⊤k B
⊤
⊥X

(

In + hA+ h∆̂A(k, zk)
)⊤

B⊥G
−1B⊤

⊥(hA+ h∆̂A(k, zk))Bσk1245

+
h2

2
σ⊤
k B⊤

(

A+ ∆̂A(k, zk)
)⊤

B⊥G
−1B⊤

⊥(A+ ∆̂A(k, zk))Bσk.(89)1246
1247

Notice that the first two terms in (89) are equal to (52). Then, from (55) it follows1248

that1249

∆Vz1 ≤ −hs⊤k B
⊤
⊥

(

aX − 1

2
In −

(

1

2
+ h

)

XΛ−1X − h

2
XA⊤B⊥G

−1B⊤
⊥AX

)

B⊥sk

(90)

1250

+ hs⊤k B
⊤
⊥ABσk + hs⊤k B

⊤
⊥∆̂A(k, zk)Bσk + h2s⊤k B

⊤
⊥XA⊤B⊥G

−1B⊤
⊥ABσk1251

+ h2s⊤k B
⊤
⊥X∆̂A(k, zk)

⊤B⊥G
−1B⊤

⊥∆̂A(k, zk)Bσk1252

+ h2s⊤k B
⊤
⊥XA⊤B⊥G

−1B⊤
⊥∆̂A(k, zk)Bσk1253

+ h2s⊤k B
⊤
⊥X∆̂A(k, zk)

⊤B⊥G
−1B⊤

⊥ABσk +
h2

2
σ⊤
k B⊤A⊤B⊥G

−1B⊤
⊥ABσk1254

+
h2

2
σ⊤
k B

⊤∆̂A(k, zk)
⊤B⊥G

−1B⊤
⊥∆̂A(k, zk)Bσk1255

+ h2σ⊤
k B

⊤A⊤B⊥G
−1B⊤

⊥∆̂A(k, zk)Bσk.12561257
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Applying the inequality 2p⊤U⊤ΨV q ≤ p⊤U⊤ΨUp+ q⊤V ⊤Ψ−1V q, where Ψ = Ψ⊤ >1258

0, to every cross term in which ∆̂A(k, zk) appears in (89), yields the following bounds1259

1260

s⊤k B
⊤
⊥∆̂A(k, zk)Bσk ≤1261

1

2
s⊤k B

⊤
⊥∆̂A(k, zk)Ψ1∆̂A(k, zk)

⊤B⊥sk +
1

2
σ⊤
k B⊤Ψ−1

1 Bσk,1262
1263
1264
1265

s⊤k B
⊤
⊥XΠ⊤

1 B⊥G
−1B⊤

⊥Π2Bσk ≤1266

1

2
s⊤k B

⊤
⊥XΠ⊤

1 B⊥G
−1Ψ2G

−1B⊤
⊥Π1XB⊥sk1267

+
1

2
σ⊤
k B⊤Π⊤

2 B⊥Ψ
−1
2 B⊤

⊥Π2Bσk,1268
1269
1270
1271

σ⊤
k B

⊤A⊤B⊥G
−1B⊤

⊥∆̂A(k, zk)Bσk ≤1272

1

2
σ⊤
k B

⊤A⊤B⊥G
−1Ψ2G

−1B⊤
⊥ABσk1273

+
1

2
σ⊤
k B

⊤∆̂A(k, zk)
⊤B⊥Ψ

−1
2 B⊤

⊥∆̂A(k, zk)Bσk,1274
1275

where we set Π1 = A or Π1 = ∆̂A(k, zk) according to the term in question and1276

similarly for Π2. Setting Ψ1 = Λ and Ψ2 = G, the substitution of previous bounds1277

into (90) gives1278

∆Vz1 ≤ −hs⊤k B
⊤
⊥

(

aX − 1

2
In −

(

1

2
+ h

)

XΛ−1X − h

2
XA⊤B⊥G

−1B⊤
⊥AX

)

B⊥sk

(91)

1279

+ hs⊤k B
⊤
⊥ABσk +

h

2
s⊤k B

⊤
⊥∆̂A(k, zk)Λ∆̂A(k, zk)

⊤B⊥sk +
h

2
σkB

⊤Λ−1Bσk1280

+ h2s⊤k B
⊤
⊥XA⊤B⊥G

−1B⊤
⊥ABσk1281

+ h2s⊤k B
⊤
⊥X∆̂A(k, zk)

⊤B⊥G
−1B⊤

⊥∆̂A(k, zk)XB⊥sk1282

+
h2

2
s⊤k B

⊤
⊥XA⊤B⊥G

−1B⊤
⊥AXB⊥sk +

3h2

2
σ⊤
k B

⊤A⊤B⊥G
−1B⊤

⊥ABσk1283

+ 2h2σ⊤
k B

⊤∆̂A(k, zk)
⊤B⊥G

−1B⊤
⊥∆̂A(k, zk)Bσk.12841285

Taking into account (37) together with Assumption 9 reduces (91) into1286

∆Vz1 ≤ −hs⊤k B
⊤
⊥

(

aX − In −
(

1

2
+ 2h

)

XΛ−1X − hXA⊤B⊥G
−1B⊤

⊥AX

)

B⊥sk1287

+ hs⊤k B
⊤
⊥ABσk + h2s⊤k B

⊤
⊥XA⊤B⊥G

−1B⊤
⊥ABσk1288

+ hσkB
⊤

((

1

2
+ 2h

)

Λ−1 +
3

2
hA⊤B⊥

(

B⊤
⊥XB⊥

)−1
B⊤

⊥A

)

Bσk(92)1289
1290

Addition of (87) and (92) leads to1291

1292

(93) ∆V ≤ −hz⊤k Q̂zk − h
(

γε− ‖ŵ(k, zk) + ηmk ‖ − 2h‖K‖2‖σk‖
)

‖σ̃k+1‖1293

+ 2h2γ‖K‖‖ζk+1‖‖σk‖+
h2

2
‖ŵ(k, zk) + ηmk ‖2,1294

1295
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where Q̂ = Q̂⊤ ∈ R
n×n is given as1296

(94) Q̂ :=

[
(

B⊤
⊥XB⊥

)−1
0

0 Im

]

Q̄

[
(

B⊤
⊥XB⊥

)−1
0

0 Im

]

> 0,1297

and Q̄ is defined in (57). Now, let Lc := {(z1k, σk) ∈ R
n |V (z1k, σk) ≤ c2} be such that1298

(z10 , σ0) ∈ Lc and ‖zk‖ > r in the boundary of Lc for some fixed r > 0. We proceed to1299

show that Lc is invariant. To this end, first notice that ζk+1 ∈ M(σ̃k+1) is bounded1300

in Lc. Indeed, from (49) and the non-expansiveness property of the resolvent, it1301

follows that σ̃k+1 is bounded in Lc. Additionally, recalling that M is defined over1302

all R
m, it follows that M is bounded on bounded sets [41, Corollary 12.38] and1303

consequently ζk+1 ∈ M(σ̃k+1) is bounded in Lc by some ζ̄ > 0. Moreover, it follows1304

from Proposition 30 that, in Lc, ‖ŵ(k, zk)+ηmk ‖ ≤ W+
√
κ̄z̄, where z̄ := max{‖z‖, z ∈1305

Lc}. Consequently, for any (z1k, σk) ∈ bd(Lc) we have that1306

∆V ≤ −hλmin(Q̂)‖zk‖2 − h
(

γε−W −
√
κ̄z̄ − 2h‖K‖2z̄

)

‖σ̃k+1‖1307

+ 2h2γ‖K‖‖ζ̄‖‖zk‖+
h2

2

(

W +
√
κ̄‖zk‖

)2

1308

≤ −hλmin(Q̂)‖zk‖2 − h
(

γε−W −
√
κ̄z̄ − 2h‖K‖2z̄

)

‖σ̃k+1‖+ h2lc,(95)1309
1310

where lc := 2γ‖K‖‖ζ̄‖z̄ + 1
2

(

W +
√
κ̄z̄
)2
. Two cases arise:1311

Case 1,
(

‖zk‖2 > h
λmin(Q̂)

lc

)

.. From (61) and (95) it follows that the difference1312

∆V k is strictly negative. Hence, if zk ∈ Lc it follows that zk+1 ∈ Lc.1313

Case 2,
(

‖zk‖2 ≤ h
λmin(Q̂)

lc

)

.. In this case (95) lead us to,1314

(96) V k+1 ≤ V k + h2lc.1315

Roughly speaking, in this case the Lyapunov function may fail to be decreasing.1316

However, if it increases, it will be in small quantities in such a way that the system’s1317

state stays inside Lc. Formally, letting h > 0 be such that1318

(97) c2 > max
‖z‖2≤ h

λmin(Q̂)
lc

V (z) + h2lc1319

will imply V k+1 ≤ c2, that is, zk+1 ∈ Lc. Hence, selecting c > 0 big enough and1320

h > 0 small enough, it follows that z0 ∈ Lc \
√

h
λmin(Q̂)

lcBn. Thus, we fall in Case 11321

and z1 ∈ Lc. Let k
∗ ∈ N be such that zk∗ ∈

√

h
λmin(Q̂)

lcBn (if that k∗ does not exists,1322

then we are always in Case 1 and the state will converge asymptotically to the ball1323
√

h
λmin(Q̂)

lcBn and we are done). So, we fall in Case 2 and condition (97) will assure1324

zk∗+1 ∈ Lc. Indeed, from (96) it follows that the state zk∗+1 remains inside the ball1325

c∗hBn with c∗h given as1326

(98) c∗2h =

(

max

(

1

λmin(B⊤
⊥XB⊥)

, 1

)

1

λmin(Q̂)
+ h

)

hlc,1327

from where practical stability follows. This concludes the proof.1328
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(2016), pp. 3016–3030.1390
[26] O. Huber, V. Acary, B. Brogliato, and F. Plestan, Discrete–time twisting controller1391

without numerical chattering: analysis and experimental results with an implicit method,1392
Control Engineering Practice, 46 (2016), pp. 129–141.1393

[27] O. Huber, B. Brogliato, V. Acary, A. Boubakir, F. Plestan, and B. Wang, Experimen-1394
tal results on implicit and explicit time–discretization of equivalent–control–based sliding1395
mode control, in Recent Trends in Sliding Mode Control, L. Fridman, J.-P. Barbot, and1396
F. Plestan, eds., IET, 2016, pp. 207–236.1397

[28] N. Kazantzis and C. Kravaris, Time-discretization of nonlinear control systems via Taylor1398
methods, Computers and Chemical Engineering, 23 (1999), pp. 763–784.1399

[29] R. Kikuuwe, S. Yasukouchi, H. Fujimoto, and M. Yamamoto, Proxy-based sliding mode1400
control: A safer extension of PID position control, Robotics, IEEE Transactions on, 261401
(2010), pp. 670–683.1402

[30] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Funtions and Functional1403
Analysis, vol. 1 and 2, Graylock Press, New York, 1957.1404

[31] A. J. Kurdila and M. Zabarankin, Convex Functional Analysis, Systems & Control: Foun-1405
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