
Zero-dynamics design and its application to
the stabilization of implicit systems

Debbie Hernándeza, Fernando Castañosb,∗, Leonid Fridmana
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Abstract

We present a formula that computes the output of an R-controllable, regular, single-input linear time-
invariant implicit system in such a way that it has prescribed relative degree and zeros. The formula is
inspired on different generalizations of Ackermann’s formula.

A possible application is in the context of sliding-mode control of implicit systems where, as the first step,
one can use the proposed formula to design a sliding surface with desired dynamic characteristics and, as
the second step, apply a higher-order sliding-mode controller to enforce a sliding motion along the resulting
sliding surface.

Keywords: Zero placement, Zero dynamics, Implicit systems, Minimum-phase systems.

1. Introduction

In order to derive a mathematical model of a
given dynamical system one chooses first a set
of descriptor variables (position, speed, accelera-
tion, temperature, current, voltage etc) in an at-
tempt to define the state. The relationship among
the chosen variables gives rise to differential or al-
gebraic equations, sometimes resulting in an im-
plicit system. Implicit systems are also referred
to as generalized, descriptor, differential-algebraic
(DAE) or semi-state systems, and are mainly mo-
tivated by applications in electric circuits and elec-
tromechanical or mechanical systems such as con-
strained robots.

It is possible to bring a single-input–single-output
explicit system with strictly positive relative degree
into a normal form that clearly reveals its zero dy-
namics. If the system is minimum phase, that is, if
the zero dynamics are stable, it is then possible to
stabilize the system by means of a simple state feed-
back (it suffices to drive the system output to zero).
The extension of such results to the case of implicit
systems was reported, e.g., in [1, 2, 3], where the
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authors propose a normal form for implicit systems
and analyze the stability of its zero dynamics.

The problem of choosing an output with desired
zeros is referred to as zero placement [4]. Since the
zeros of the transfer function of any linear time-
invariant (LTI) system, explicit or implicit, coin-
cide with the eigenvalues of its zero dynamics, the
problem of zero placement can be assimilated to
the problem of defining the eigenvalues of the zero
dynamics.

There are several circumstances in which one
might be interested in designing an output that in-
duces specific zero dynamics. In sliding-mode con-
trol (SMC), for example, the strategy consists in
two steps: the design of a so-called sliding surface
and the design of the actual control law, whose goal
is to bring the system state onto the sliding sur-
face and constrain the state to slide along it there-
after [5]. In the SMC literature, the system behav-
ior when sliding along the sliding surface is called
the sliding dynamics. A closer look at the method-
ology reveals that the sliding dynamics are noth-
ing else than the zero dynamics of a virtual out-
put, called the sliding variable. A usual recipe to
the design of the sliding surface is the application
of a formula by Ackermann and Utkin [6]. The
two-step approach results in a controlled system
which is completely insensitive to a large class of
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external disturbances. From an application point
of view, this robustness presents an advantage over
the simpler strategy consisting on the application
of Ackermann’s formula directly (i.e., as opposed
to Ackermann-Utkin’s formula) in order to specify
the eigenvalues of the dynamics on the entire state-
space (i.e., as opposed to the lower-dimensional slid-
ing surface).

The original formula by Ackermann and Utkin is
restricted to sliding surfaces of co-dimension one,
which implies that the sliding variable has relative
degree one. This is natural in the context of con-
ventional SMC, since step two requires the sliding
variable to have relative degree precisely equal to
one. However, modern (higher-order) SMC removes
the restriction on the relative degree of the sliding
surface in step two. It is then reasonable to ad-
just step one and aim at sliding surfaces with de-
sired sliding dynamics and of co-dimension higher
than one. This motivates the generalization of the
formula by Ackermann and Utkin presented in [7].
The objective of this paper is to further extend the
formula to the case of regular LTI implicit systems.

A formula to design a stabilizing state feedback
for completely controllable (C-controllable) implicit
systems, based on Ackermann’s formula for explicit
systems, can be found in [8]. Such formula does
not require the implicit system to be in the so-
called Weierstrass or quasi-Weierstrass form. Ob-
viating the need to use Weierstrass’ form, which
can be thought of as a generalization of Jordan’s
form, represents an advantage in practical terms,
since similarity transformations can sometimes in-
duce large errors in the presence of parameter un-
certainties [9]. The formula proposed here is more
general, as it works for R-controllable systems (R-
controllability is weaker than C-controllability) and
serves to specify the zero dynamics instead of the
system dynamics in the complete state space.

Other than the higher-order SMC application
mentioned above, the main result can also be used
to design an output such that the system is mini-
mum phase and has relative degree one or zero. The
closed loop is thus feedback equivalent to a passive
system and any passivity-based techniques can be
used to control it.

The paper structure is as follows: In Section 2
we introduce the basic theory for singular systems
and state the problem formally. The main result
is presented in Section 3. In Section 4 we analyze
the implications of our main result in the stabi-
lization problem of implicit systems and present a

concrete example. Conclusions and future work are
presented in Section 5.

2. Preliminaries

Consider the single-input LTI implicit system

Eẋ = Ax+Bu (1a)

y = Cx , (1b)

where x ∈ Rn and u, y ∈ R are the state, the con-
trol input and the output at time t, respectively
(we omit the time arguments to ease the notation).
The matrices E,A ∈ Rn×n and B ∈ Rn×1 are con-
stant and given. We have rankE = n0 < n. The
output matrix C ∈ R1×n, not given a priori, will
be specified later.

Definition 1. [10] For any two matrices E, A ∈
Rn×n, the pencil λE−A is called regular if the de-
terminant det (λE −A) does not vanish identically.

If det (λE −A) ≡ 0 or if the matrices are non
square, then the pencil is called singular [10]. Sys-
tem (1a) is called solvable if, for any admissible
input and any given admissible initial condition,
equation (1a) has a unique solution [11]. This hap-
pens when the pencil λE−A is regular [10]. In such
a case, the implicit system (1a) is called a regular
implicit system.

An implicit system is regular if, and only if, there
exist nonsingular matrices L and R such that, by
applying the coordinate transformation[

xs
xf

]
= R−1x , xs ∈ Rn1 , xf ∈ Rn2 ,

and multiplying (1a) on the left by L we obtain

ẋs = Asxs +Bsu (2a)

Nẋf = xf +Bfu , (2b)

where N is nilpotent with index of nilpotence q
(see [12] for details). System (1a) is called an im-
plicit system with index q, for short. If the ma-
trices As and N are in Jordan form, then sys-
tem (2) is said to be in Weierstrass form [10], oth-
erwise, system (2) is said to be in quasi-Weierstrass
form [13]. Recall that deg det (λE −A) = n1 < n,
where the function deg represents the degree of
a polynomial [12]. The set of finite eigenvalues
of a matrix pair (E,A) is denoted as Λ(E,A) =
{λ1, λ2, . . . , λn1}.
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The solution of subsystem (2a) can be easily de-
termined from well-known results on explicit sys-
tems [14]. The solution of Subsystem (2b) de-
pends affinely on u and its first q − 1 time deriva-
tives [12, 15, 11]. Let U be the set of admissible
input functions. In order to assure the continuity
of xf we require j = max

{
i ∈ N : ImBf * kerN i

}
and U = Cj , where kerN i is the null space of the
matrix N i and ImBf is the image of Bf . Notice
that j ≤ q − 1.

Definition 2. [16] A regular pencil λĒ − Ā is in
standard form if there exist scalars α and β such
that αĒ + βĀ = I, where I is the identity matrix.

By definition, for any regular pencil λE−A there
always exists a scalar µ such that det (µE −A) 6= 0.
Taking any such µ and multiplying (1a) on the left
by L = (µE −A)−1 gives

Ēẋ = Āx+ B̄u . (3)

It is not difficult to verify that the pencil λĒ − Ā
is in standard form for α = µ and β = −1. The
representation (3) is called a standard form of the
regular implicit system (1a) [16]. Thus, for regular
systems the assumption of a standard form is al-
ways without loss of generality. Also, since (1), (2)
and (3) are restricted equivalent systems [12], we
have Λ(E,A) = Λ(I,As) = Λ(Ē, Ā).

Recall that a single-input–single-output LTI reg-
ular implicit system of the form (1) has the transfer
function [12]

g(s) = C(sE −A)−1B =
η(s)

δ(s)
, (4)

where the polynomials δ(s) = det (sE −A) and
η(s) and are the denominator and the numerator
after zero–pole cancellation. We define the relative
degree of (1) as r = deg δ(s)− deg η(s).

Now, consider the rational function π ∈ C(s)
given by [17, 12]

π (s) =
1

µ− s
. (5)

Strictly speaking, since π is not bijective, its inverse
does not exist. However, we define π−1 ∈ C(s) as
π−1(s) = µ− 1/s. Also, we agree that π(∞) = 0.

Theorem 1. [12] Consider a regular system (1)
written in standard form. Let g(s) be its transfer
function. For τ = π(s) we have

g(π−1(τ)) = C(π−1(τ)Ē − Ā)−1B̄ = τ ḡ(τ)

with ḡ(τ) = C(τI − Ē)−1B̄.

Let us now turn to the questions of stability and
controllability.

Theorem 2. [12, 18] The regular implicit sys-
tem (1a) is stable if and only if Λ(E,A) ⊂ C−,
where C− represents the open left-half complex
plane.

We shall now introduce the concept of reachable
state and characterize the set of all possible states
reachable from a zero initial condition. This turns
out to be important when distinguishing the dif-
ferent notions of controllability in regular implicit
systems.

Definition 3. For a regular implicit system of the
form (2), a vector xr ∈ Rn is said to be reach-
able if there exists an initial condition xs(0), an
input u(·) ∈ Cj , and some t1 > 0 such that[
x>s (t1) x>f (t1)

]
= x>r .

Let Xt(xs0) be the set of reachable states at time
t from the initial condition xs(0) = xs0. Denote by
Xt =

⋃
xs0∈Rn1 Xt(xs0) the set of reachable states

at time t from all admissible initial conditions.

Definition 4. [12, 18] The regular system (2) is
called R-controllable if, for any prescribed t1 > 0,
xs0 ∈ Rn1 and xr ∈ Xt1 , there exists an input
u(t) ∈ Cj such that the state response of sys-
tem (2) starting from the initial value xs0 satisfies
x(t1) = xr.

The main results on controllability of regular
systems using time-domain analysis are developed
in [19, 11, 20, 21]. Let C̄+ represent the closed right-
half complex plane. We summarize some results on
R-controllability in the following proposition.

Proposition 1. The implicit system (1a) is

1) R-controllable if, and only if,

rank
[
sE −A B

]
= n for all s ∈ C .

If the implicit system (1a) is in standard form, then
it is

2) R-controllable if, and only if,

rank
[
τI − Ē B̄

]
= n for all τ 6= 0 .

Problem. Consider a regular R-controllable sys-
tem (1a). Let l be the rank of the controllability
matrix of the pair (E,B). For a set of m prescribed
zeros, 0 ≤ m ≤ l − 1, choose C such that the zeros
of the transfer function g(s) = C(sE − A)−1B are
the prescribed ones.
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As in the case of explicit systems, the stability of
the zero dynamics of implicit systems is determined
by the location of the zeros of g(s). A stability
criterion for the zero dynamics of implicit systems
is established in [1, Thm. 7.12], from which the
following corollary is derived.

Corollary 1. Consider an implicit system of the
form (1). The following statements are equivalent:

(i) The zero dynamics of system (1) are asymp-
totically stable.

(ii) System (1) is minimum phase, i.e., the trans-
fer function (4) has no zeros in C̄+.

Thus, for stabilization purposes, it is reasonable
to place the zeros of g(s) in C−. The stability of
the system can then be assured simply by steering
the output to zero.

Let us close this section with the notion of exter-
nal equivalence.

Definition 5. Two single-input–single-output sys-
tems are called externally equivalent if their trans-
fer functions are equal.

3. Assignment of the zero-dynamics

In this section we propose a formula to solve the
problem stated in the previous section. According
to Proposition 1, item 2), its controllability is di-
rectly related to the controllability of an explicit
representation with system and input matrices Ē
and B̄. The main idea is to work with such ficti-
tious system on which well-known results can be ap-
plied. The desired properties are then recovered for
the original implicit system by means of an inverse
transformation. To this end, consider the system

ξ̇ = Ēξ + B̄u . (6)

Let P be the controllability matrix of the pair
(Ē, B̄), P =

[
B̄ ĒB̄ · · · Ēn−1B̄

]
, and let l be

its rank. Let m be any integer satisfying 0 ≤ m ≤
l − 1. We will show that it is possible to assign m
finite zeros to the transfer function. More precisely,
let Γ = Γf ∪ Γi, where

Γf = {s1, . . . , sm} and Γi = {∞, . . . ,∞}︸ ︷︷ ︸
l−1−m

are, respectively, the set of finite and infinite de-
sired zeros of the transfer function, where the mem-
bers are counted with multiplicity. We assume that

µ /∈ Γf , which is not restrictive since the set of
admissible µ’s is dense. Define the polynomial

ηf (s) =

m∏
i=1

(s− si)

and note that its set of roots is Γf . Also, define the
polynomials γf (τ) = τm ·

(
ηf ◦ π−1(τ)

)
(the symbol

‘◦’ denotes composition) and

γ(τ) = τ (l−1)−mγf (τ) . (7)

Note that γf (τ) has degree m and that its set of
roots is π(Γf ), with π defined in (5). The polyno-
mial γ(τ) has degree l − 1, and its set of roots is
π(Γ).

According to Kalman’s decomposition theo-
rem [14, 17], there exists a coordinate transforma-

tion ξ̂ = Q−1ξ such that system (6) is brought to
the form

˙̂
ξ = Êξ̂ + B̂u (8)

with

ξ̂ =

[
ξC
ξĈ

]
, Ê =

[
EC E12

0 EC̄

]
and B̂ =

[
BC
0

]
,

where the pair (EC , BC) defines an l-dimensional
controllable subsystem with state ξC and controlla-
bility matrix PC (that is, rankP = rankPC = l ≤
n). The pair (EC̄ , 0) is of course uncontrollable.
The matrix Q is chosen as

Q =
[
q1 · · · ql ql+1 · · · qn

]
, (9)

where the vectors {q1, . . . , ql} correspond to the
first l linearly independent columns of P , that is,

qi = Ēi−1B̄ for i = 1, . . . , l , (10)

and the remaining columns are chosen so that Q is
nonsingular.

Lemma 3. Consider a system of the form (6) and

suppose that the transformation ξ̂ = Q−1ξ with (10)
is used to bring it to the form (8). Then, the con-
trollability matrix of the pair (EC , BC) is equal to
the identity.

Lemma 4. Consider a system of the form (6) with
controllability matrix of rank l and suppose that the
transformation ξ̂ = Q−1ξ with (10) is used to bring
it to the form (8). Let d̄i be the l-dimensional row
vector with the ith component equal to one and the
rest of the components equal to zero. If

Ĉ =
[
d̄l 0n−l

]
γ(Ê) , (11)
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then the zeros of the transfer function

ĝ(τ) = Ĉ(τI − Ê)−1B̂

are the roots of the polynomial γ(τ).

Proof. From the block triangular structure of Ê
and the block form of B̂ we have

Ĉ =
[
d̄l 0n−l

]
γ

([
EC E12

0 EC̄

])
=
[
CC ∗

]
and ĝ(τ) = CC(τI−EC)−1BC with CC = d̄lγ(EC).
By the main result of [7] and the fact that PC = I,
we have

ĝ(τ) =
γ(τ)

det(τI − EC)
.

Theorem 5 (Main result). Consider a regular R-
controllable system (1a) and suppose, without loss
of generality, that it is written in standard form.
Let l be the rank of the controllability matrix of the
pair (Ē, B̄) and let

C =
[
d̄l 0n−l

]
Q−1γ(Ē) , (12)

with Q as in (9), (10), γ as in (7) and d̄l as in
Lemma 4. Then, the transfer function of (1) takes
the form

g(s) =
ηf (s)

det(sĒ − Ā)
. (13)

Proof. Consider the fictitious system (6). The

transformation ξ̂ = Q−1ξ induces the controllable–
uncontrollable decomposition (8). We know from
Lemma 4 that the output matrix (11) places the ze-
ros of the transfer function ĝ(τ) at Γ. To recover the
system representation in the original coordinates ξ,
we use C = ĈQ−1 and γ(Ê) = Q−1γ(Ē)Q to ob-
tain (12). In other words, the numerator of ḡ(τ) is
γ(τ).

Since the system is R-controllable, the uncontrol-
lable poles can only be the ones at infinity, and such
poles are mapped to zero by π. That is,

det(τI − Ē) = τn−l det(τI − EC)

(see Proposition 1, point 2)). Thus, the transfer
function of

ξ̇ = Ēξ + B̄u

υ = Cξ

can be written as

ḡ(τ) =
γ(τ)

det(τI − EC)
=

τn−lγ(τ)

det(τI − Ē)
.

It follows from Theorem 1 that the transfer func-
tion of the regular implicit system (1) is

g(π−1(τ)) = τ
τn−l

(
τ l−m−1γf (τ)

)
det(τI − Ē)

=
τn−mγf (τ)

det(τI − Ē)
.

By using the definition of γf we obtain

g(π−1(τ)) =
τn
(
ηf ◦ π−1(τ)

)
det(τI − Ē)

=
τn
(
ηf ◦ π−1(τ)

)
τn det ((µ− 1

τ )Ē − Ā)
,

where the last equality follows from the fact that
I = µĒ − Ā. Since s = π−1(τ) = µ − 1/τ , we
have (13).

By using (12) it is possible to choose the output of
a single-input implicit system such that its transfer
function, g(s), is improper (if l − 1 ≥ m > n1) or
proper (if n − 1 ≥ m). Furthermore, if n1 > m,
then g(s) is strictly proper with relative degree r =
n1 −m > 0.

4. Stabilization of minimum-phase implicit
systems

In this section we discuss the implications of The-
orem (12) in the context of stabilization of implicit
systems.

According to the following corollary, a regular im-
plicit system with strictly positive relative degree
can be expressed in a block triangular form in which
one of the subsystems is completely accountable for
the transfer function.

Corollary 2. [22, Lem. 2, Thm. 1] Consider a
regular system (1) with strictly positive relative de-
gree. There exist two unitary matrices R and L
such that the transformation[

x1

x2

]
= R−1x ,

together with premultiplication of (1) by L, gives
the externally equivalent system

E11ẋ1 = A11x1 +B1u (14a)

E21ẋ1 + E22ẋ2 = A21x1 +A22x2 +B2u (14b)

y = C1x1 , (14c)

where x1 ∈ Rn1 , x2 ∈ Rn2 with n1+n2 = n and E11

nonsingular. Furthermore, the transfer function is

g(s) = C(sE −A)−1B = C1(sE11 −A11)−1B1 .
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Note that the invertibility of E11 enables the pos-
sibility to realize the transfer function using an ex-
plicit system. See [3] for related results in a behav-
ioral context.

Recall that, if an explicit LTI system is minimum
phase, then it can be easily stabilized by designing a
state feedback that steers the output to zero [23, pp.
263]. The state of the closed-loop system, together
with the input, then go asymptotically to zero.

It is thus clear from Corollary 2 that, if the out-
put of (1) is chosen such that the system has a
strictly positive relative degree and that, if the ze-
ros of the transfer function (4) are contained in C−,
then the zero dynamics of system (1) are asymp-
totically stable and the output and its derivatives
ẏ, ÿ, . . . , y(r−1) can be expressed as functions of the
substate x1. The latter is useful for constructing
an admissible input u capable of steering the out-
put (1b) to zero.

Example: higher-order sliding-mode control

Consider the implicit system0 1 0
0 0 1
0 − 1

2
3
2

 ẋ = −

1 0 0
0 1 0
0 0 1

x+

0
0
1
2

 (u+ w) ,

where w ∈ R is the external perturbation at time
t. We have det (sE −A)) = s2 + 3s + 2. Thus,
the system is regular, n1 = 2, n2 = 1 and q = 1.
Actually, this system is in standard form for µ = 0.
Clearly, rankP = rank

[
B EB E2B

]
= 3. Since

q = 1, we have j = 0, so the system has well-defined
solutions for u ∈ C0. Suppose we want to design an
output of relative degree one. Let s1 = −1.5 be
the desired eigenvalue for the zero dynamics, we
then have ηf (s) = s + 1.5. Application of (12)
with the polynomial γ(τ) = τ(1.5τ − 1) gives C =[
0 −2 3

]
. Thus, the system has relative degree

r = 1 with respect to the output y = Cx, which
can be verified with the transfer function

g(s) = C(sE −A)−1B =
2(s+ 1.5)

(s2 + 3s+ 2)
.

If we set

L =

 0 1 0
0 0 1
−1 0 0

 , R =

 0 0 1
−0.52 0.85 0
0.85 0.52 0



in Corollary 2, we then obtain an implicit represen-
tation of the form (14) with

LER =

0.85 0.52 0
1.54 0.35 0
0.52 −0.85 0

 ,

CR =
[
3.6 −0.15 0

]
and

LAR =

 0.52 −0.85 0
−0.85 −0.52 0

0 0 1

 , LB =

 0
0.5
0

 .

It is easy to see that

g(s) = C1(sE11 −A11)−1B1 =
2s+ 3

s2 + 3s+ 2
.

Note also that LL> = RR> = I, which confirms
that it is possible to obtain block triangular forms
by means of a unitary equivalent transformation
(this represents an advantage in terms of structural
robustness).

To robustly steer x to the origin (i.e., irrespec-
tive of the perturbation w), we propose a control
strategy based on higher-order sliding-mode con-
trol — specifically, on the super twisting algorithm
(STA) [24]. The STA provides and absolutely con-
tinuous control signal and exactly compensates per-
turbations which are Lipschitz in time, at least the-
oretically. The STA takes the form

u(t) = −k1 |y(t)|
1
2 sign (y(t))−

t∫
0

k2 sign(y(τ))dτ .

Fig. 1 shows the system’s response for the initial
conditions

[
x2(0) x3(0)

]
=
[
−1 1

]
and a pertur-

bation w(t) = sin(t), which satisfies the Lipschitz
condition in time. The gains were set as k1 = 7,
k2 = 2. One can see that all state variables go to
zero and the virtual output does it in finite time, in
spite of the perturbations.

5. Conclusions and future work

The main result of this paper is a formula for de-
signing a system output such that the system has
the prescribed relative degree and zero dynamics
with prescribed eigenvalues. The system is not re-
quired to be in Weierstrass form, which would re-
quire the use of Jordan forms that can only be ob-
tained using numerically unstable algorithms [9]. A
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Figure 1: State, virtual output, control action and pertur-
bations for the system described in the example.

transformation is proposed for computing the out-
put derivatives. The transformation is numerically
stable, as it is given by unitary matrices. The out-
put derivatives can then be used to construct a con-
trol law that steers the output to zero, together
with the state if the system is designed as minimum
phase.

As a specific application, Theorem 5 can be used
to design a sliding variable of arbitrary relative de-
gree. On a second step, HOSM control techniques
can then be used to construct the actual control
law. It is worth noting that other techniques, such
as passivity-based control, can also be used.

As future work we consider the use of other
HOSM techniques, including continuous twisting
and terminal algorithms.

Acknowledgments

This work has been supported by PAPIIT-
UNAM grant 113216 and Programa de Estancias
Posdoctorales de la Direccion General de Apoyo del
Personal Academico de la UNAM, 2016.

References

[1] T. Berger, A. Ilchmann, T. Reis, Normal forms,
high-gain, and funnel control for linear differential-
algebraic systems, in: L. T. Biegler, S. L. Camp-
bell, V. Mehrmann (Eds.), Control and Optimization
with Differential-Algebraic Constraints, Vol. 23, SIAM,
Philadelphia, 2012, Ch. 7, pp. 127 – 164.

[2] T. Berger, A. Ilchmann, T. Reis, Zero dynamics and
funnel control of linear differential-algebraic systems,
Mathematics of Control, Signals & Systems 24 (3)
(2012) 219–263.

[3] T. Berger, Zero dynamics and funnel control of gen-
eral linear differential-algebraic systems, ESAIM Con-
trol Optim. Calc. Var. 22 (2) (2016) 371 – 403.

[4] H. H. Rosenbrock, State-space and multivariable the-
ory, Nelson, 1970.

[5] Y. Shtessel, C. Edwards, L. Fridman, A. Levant, Sliding
Mode Control and Observation, Birkhäuser, 2013.
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