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Abstract

Implicit port-Hamiltonian representations of mechanical systems are considered
from a control perspective. Energy shaping is used for the purpose of stabilizing
a desired equilibrium. When using implicit models, the problem turns out to be
a simple quadratic programming problem (as opposed to the partial differential
equations that need to be solved when using explicit representations). The
described approach is generalized to address the problem of stabilization of
homoclinic orbits thus leading to the formulation of swing-up strategies for
underactuated systems.
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1. Introduction

The Hamiltonian formalism is used to describe the dynamics of a wide class of
systems including mechanical [1, 3], electrical [4, 5, 6, 7], and thermodynamic [8,
9] ones.

In many cases there are constraints imposed on the system coordinates.
These constraints reflect the internal structure of the system, for instance, rigid
connections between the system’s elements. From the geometrical viewpoint,
the action of these constraints results in restricting the system’s evolution to a
submanifold of the state space.

When the system is subject to the action of external forces it is convenient to
consider a pair of (energy-adjoint) port variables (u, y) such that their product
is equal to the power supplied into the system. Such model is referred to as
a port-Hamiltonian system (see [10] for the original definition as stated with
respect to Hamiltonian systems in explicit form).

In general, there are two different approaches to the representation of systems
evolving on manifolds: the explicit representation with the dynamics having the
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form of an ordinary differential equation on the manifold and the implicit repre-
sentation with the dynamics described by a set of differential-algebraic equations
usually evolving in a Euclidean space (see, e.g., [11] for a related discussion on
constrained Hamiltonian systems). There has been a lot of research on the
analysis and control of explicit systems [12, 13]. However, not many results on
the control of Hamiltonian systems in implicit formulation have been presented
so far. Thus, the primary goal of this contribution is to provide an elaborated
approach to the control of Hamiltonian systems in implicit form. The two main
issues addressed in this paper are the potential energy shaping for the stabiliza-
tion of unstable equilibria and the swing-up strategy. The obtained results are
illustrated with two examples.

We remark that there is a series of papers presenting a unified approach
to the description and analysis of implicit Hamiltonian systems on the base
of (generalized) Dirac structures (see, e.g., [14] and references therein). It has
been shown that Dirac structures can be used for the analysis of interconnection
properties [15] of (implicit) Hamiltonian systems (see also the book [16] for more
details). Recently, there has been a paper devoted to the control of (discretized)
infinite-dimensional implicit Hamiltonian systems, [17]. However, the authors
feel that it is sometimes more advantageous to have a closer look at the object
under study. In this sense, the approach presented in this paper allows one to
consider the problem at hand at a practical level.

The paper is organized as follows: in Section 2, an implicit representation of
port-Hamiltonian systems is presented and a couple of simple models are derived
within the described framework. In Section 3, the energy shaping approach is
presented in detail and a number of illustrative examples is given. In particular,
Subsection 3.5 discusses swing-up strategies for underactuated systems. Finally,
Section 4 presents the conclusions and the directions for future research.

2. Implicit port-Hamiltonian systems

2.1. Mechanical systems with holonomic constraints

Consider a controlled mechanical system with the Hamiltonian H : Rn ×
R∗n → R. Let there be a number of holonomic constraints c(r) = 0, c : Rn →
Rk, restricting the configuration space of the system to an (n− k)-dimensional
submanifold Γ of the configuration space Rn. Using the Hamiltonian formal-
ism, the dynamics of this system are described by a set of differential-algebraic
equations of the form [18, 11]:

[
ṙ
ṗ

]
= J

(
∇H(x) +

[
∇c(r)

0

]
λ

)
+

[
0
g(r)

]
u (1a)

0 = c(r) (1b)

y =
[
∇>r H(x) ∇>p H(x)

] [ 0
g(r)

]
, (1c)
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where the state is given by x> =
(
r> p>

)
with r ∈ Rn and p ∈ R∗n the

positions and momenta, respectively,

∇c(r) =
∂c>

∂r
(r)

is the transposed Jacobian of the vector-valued function c(r), λ ∈ R∗k is the
vector of implicit variables that enforce the holonomic constraints, (u, y) ∈
R∗m × Rm are the conjugated external port variables, and g(x) is a (n ×m)-
matrix such that rank ĝ(x) = m for all x ∈ Rn × R∗n. The [2n × 2n]-matrix J
is the structure matrix of the canonical symplectic form.

Here and forth all functions are assumed to be smooth enough and the
gradient is assumed to be a column vector.

Equations (1) correspond to a port-Hamiltonian system, [12, 14], with an
augmented Hamiltonian function H̃(x) = H(x)+c(r)λ (see [1, p. 48] for a more
general treatment).

From the geometrical viewpoint, (1) describe the system evolution on the
cotangent bundle of Rn, denoted T ∗Rn. The state space manifold T ∗Rn is en-
dowed with the canonical symplectic form ω = dri ∧ dpi (where Einstein’s sum-
mation convention is implied). This symplectic form defines a canonical isomor-
phism between the tangent and cotangent spaces: Ω : T (T ∗Rn) → T ∗(T ∗Rn)
defined by Ω(X)(·) = ω(X, ·). The vector field X ∈ T (T ∗Rn) is written as

X = DH +Dcλ+Xgu (2a)

0 = c (2b)

y = Xg(H) , (2c)

where

DH = Ω−1(dH) =
∂H

∂pi

∂

∂ri
− ∂H

∂ri
∂

∂pi
(3)

is the Hamiltonian vector field,

Dcλ = Ω−1(dc) = −∂c
j

∂ri
λj

∂

∂pi
(4)

is the vector field of the internal (constraint) forces, and

Xgu = gji uj
∂

∂pi

is the control vector field. Note that Dc and Xg are the tuples of vector fields:

Dc =
(
Dc

1, . . . , Dc
k
)

, resp. Xg =
(
Xg

1, . . . , Xg
m
)
, which are assumed to be

linearly independent. Thus, for instance, the application of Dc to a smooth

function f(x) yields a vector Dcf(x) =
(
Dc

1f(x), . . . , Dc
kf(x)

)
.

In the following, Dz will denote the vector field generated by the function
z(x), i.e., Dz = Ω−1(dz). This can be alternatively formulated using Poisson
brackets [2]: Dz = {·, z}.
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Equation (1b) constrains the configuration space of (1). We wish to ensure
that these constraints are preserved under the system dynamics. To do so we
require X to be tangential to Γ, i.e., X(ci) = 0 for any i = 1, . . . , k. This yields
the so-called hidden (secondary) constraints,

Gi(x) = X(ci) =
∂H(x)

∂pj

∂ci(x)

∂rj
= 0 . (5)

Now, considering T ∗Rn as a state space manifold, we say that (1) evolves
on a submanifold MΓ ⊂ T ∗Rn,

MΓ = {x = (r, p) ∈ Rn × R∗n|ci(x) = 0, Gi(x) = 0, i = 1, . . . , k} .

All results formulated below will hold for x ∈MΓ.
Before proceeding to the main part we require the following regularity con-

ditions to hold.

Assumption 1. The following holds:

i) The constraints are regular, i.e.,

dim span
{
dci(r)

}
r∈Γ

= k ,

where dci(r) ∈ T ∗r Rn are the differentials of ci(r) interpreted as the elements
of the cotangent vector space T ∗r Rn. Note that the manifold Γ is an integral
manifold of the distribution generated by dci, i.e.,

TΓ = ker
(
span

{
dci
})

, i = 1, . . . , k

ii) The initial conditions belong to MΓ, i.e.,

x(0) = (r(0), p(0)) ∈MΓ .

iii) The energy is separable and positive definite w.r.t. p, i.e.,

H(x) = P (r) +K(p) , K(p) =
1

2
p>M−1p , M > 0 ,

where P and K are the potential and kinetic energy, respectively.

Assumptions i) and iii) guarantee that MΓ is a proper subbundle of T ∗Rn.
Indeed, for any r ∈ Γ, the hidden constraints define a linear subspace of codi-
mension k, which is interpreted as the cotangent subspace to Γ at x.

Item i) and strict convexity in iii) ensure that the λi exist and are uniquely
defined. More precisely, applying the vector field to the hidden constraints yields
the condition

X(G) = D2
H(c) +DcDH(c)λ+XgDH(c)u = 0 , (6)

4



which implicitly defines λ as a function of x and u. Notice that the (k×k)-matrix
defined by

DcDH(c) = Dc(G) = Dc

(
∂H

∂pi

∂c

∂ri

)
= − ∂2H

∂pi∂pj

∂ca

∂ri
∂cb

∂rj
(7)

is negative definite as follows from Assumptions i) and iii) and hence, invertible.
This ensures the well-posedness of the problem.

Assumption ii) guarantees that there are no jumps in the system’s trajecto-
ries.

Finally, separability of the Hamiltonian in item iii) is, from a computational
point of view, one of the main advantages of the implicit modeling framework.
Indeed, if the Hamiltonian function can be represented by a sum of two terms,
where the first one depends only on p and the second only on q, then it is
possible to design symplectic integration schemes by simply composing the ele-
mentary integration steps (see, e.g., [19]). Furthermore, the separbility property
is necessary for formulating the result of Theorem 5.

Note that the fulfillment of the hidden constraints (5) implies that the Hamil-
tonian is invariant under the action of the vector field of constraint forces,
i.e., Dc(H) = 0. This can be easily expressed in terms of Poisson brackets:
DH(ci) = {ci, H} = −Dc

i(H) = 0. Alternatively, one can say that the internal
forces do not produce work as there is no displacement in the direction of the
constraint forces and hence they do not alter the total energy of the system.
Furthermore, the vector field Dc is also tangential to the submanifold Γ, i.e.,

Dc(c) = 0 . (8)

The following proposition states that the passivity property, which is cen-
tral for port-Hamiltonian systems, can be readily extended to the case of the
constrained dynamics (1).

Proposition 2. Consider the restricted state-spaceMΓ. System (1) is passive
whenever H|MΓ

, the restriction of H to MΓ, is bounded from below.

Proof. Taking the derivative of H gives

Ḣ = X(H) = Xg(H)u = gji
∂H

∂pi
uj = yjuj .

This equation, together with the lower bound on H, implies passivity.

Finally, we give a condition for a constrained system to be fully actuated.

Definition 1. We say that (1) is fully actuated whenever

span

{(
0n
In

)}
= span {Dc}

⋃
span {Xg}

for all x ∈MΓ. We say that (1) is underactuated if it is not fully actuated.
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2.2. A simple actuated pendulum

Consider a simple pendulum with mass m1 held by an ideal massless bar of
length l. Let r> =

(
rx ry

)
and p> =

(
px py

)
be the position and momenta,

respectively. The constraint is given by c1(r) = 1
2

(
‖r‖2 − l2

)
= 0, while the

energy takes the form

H(x) =
1

2m1
‖p‖2 +m1ḡ · ry

with ḡ the acceleration due to gravity. Suppose that a torque u1 is applied to
the pendulum axis. The implicit model then takes the form

ṙ =
1

m1
p (9a)

ṗ = −m1ḡ

(
0
1

)
−
(
rx

ry

)
λ1 +

1

l2

(
ry

−rx
)
u1 (9b)

y1 =
rxp

y − rypx
m1l2

(9c)

It is not difficult to verify that Assumption 1 holds, and that the system is
fully actuated.

Boundedness of H can be easily established. Given the positive definite form
of K, it is only necessary to verify the term m1ḡ · ry. The term is continuous
and restricted to the compact set Γ =

{
r ∈ R2 | ‖r‖ = l

}
. By the extreme value

theorem of Weierstrass, we know that the term is bounded from below and the
passivity of the pendulum is confirmed.

2.3. A pendulum on a cart

Consider now an actuated cart with mass m1, position r1 ∈ R2 and momen-
tum p1 ∈ R2. The cart is constrained to move along the x-axis, which can be
expressed as c1(r) = 0 with c1(r) = r1y . Attached to the cart is a pendulum
of length l, mass m2, position r2 ∈ R2 and momentum p2 ∈ R2. The bond
between the cart and the pendulum is expressed as c2(r) = 0 with

c2(r) =
1

2

(
‖r2 − r1‖2 − l2

)
.

The total energy is given by

H(x) =
1

2m1
‖p1‖2 +

1

2m2
‖p2‖2 +m2ḡ · r2y , (10)
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so the pendulum’s equations take the form

ṙ1 =
1

m1
p1

ṙ2 =
1

m2
p2

ṗ = −m2ḡ


0
0
0
1

−


0 r1x − r2x

1 r1y − r2y

0 r2x − r1x

0 r2y − r1y

(λ1

λ2

)
+


1
0
0
0

u

y1 =
p1x

m1
.

(11)

Again, Assumption 1 holds, but the system is underactuated:

k +m = 2 + 1 < 4 = n .

The constraint ‖r2 − r1‖ = l implies that ‖r2y − r1y‖ ≤ l. Since r1y = 0,
we have ‖r2y‖ ≤ l, which defines a compact set on r2y . Weierstrass Theorem
then implies that the restriction of m2ḡ · r2y is bounded from below and the
pendulum on a cart is passive as well.

The acrobot, the pendubot and many more mechanical systems can be mod-
eled in this framework.

3. Implicit energy shaping

3.1. The matching equations

Definition 2. Let Hd be a smooth mapping from Rn×R∗n to R. We say that
Hd is an admissible energy (Hamiltonian) function if for any (r, p) ∈MΓ there
exist µ ∈ R∗k and û ∈ R∗m such that the matching equation

DHd
−DH = Dcµ+Xgû (12)

is satisfied.

Remark 3. Recall that DH(ci) = 0 and Dc(c
i) = 0, and note that Xg(c

i) = 0
(Xg acts on functions of p and the ci depend on r alone). Thus,

DHd
(ci) = DH(ci) +Dc(c

i)µ+Xg(c
i)û = 0 ,

which implies
Dc

i(Hd) = 0 . (13)

By requiring the closed-loop system to be Hamiltonian, we implicitly impose
a constraint akin to the hidden constraints. This simplifies the energy balance
later required for stability analysis, as the rate of change in Hd remains indepen-
dent of µ. On the other hand, this substantially reduces the class of stabilizable
systems.
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Setting u = û+υ and substituting (12) into (1) gives the new port-Hamiltonian
system [

ṙ
ṗ

]
= J

(
∇Hd(x) +

[
∇c(r)

0

]
(λ− µ)

)
+

[
0
g(r)

]
υ (14a)

0 = c(r) (14b)

yd =
[
∇>r Hd(x) ∇>p Hd(x)

] [ 0
g(r)

]
, (14c)

with port variables (υj , y
j
d). The respective vector field is thus

Xd = DHd
+Dc(λ− µ) +Xgυ . (15)

Since λ − µ is an implicit variable, i.e., it is found as the solution to the
auxiliary condition (6), the way it is denoted is immaterial and thus it is possible
to rename (λ − µ) to λ without changing the system dynamics. This leads us
to the following definition.

Definition 4. Given the vector fields of internal forces {Dc
i}, i = 1, . . . , k, two

Hamiltonian functions H1 and H2, Hi : Rn × R∗n → R, i = 1, 2, are said to be
equivalent, H1(x) ∼ H2(x), if

DH1
−DH2

∈ span
{
Dc

i
}

The equivalence class of H, denoted by [H], is defined as

[H] = {Ĥ : Rn × R∗n → R|Ĥ ∼ H}.

We have the following proposition.

Proposition 3. Let Ĥ satisfy (12) and (13). Then, any Hd ∈ [Ĥ] is an
admissible energy function.

Proof. We need to prove that for any Hd ∈ [Ĥ] conditions (12) and (13) hold.
An Hd can be represented as Hd = Ĥ + κic

i, i = 1, . . . , k. If Ĥ satisfies (12),
then Hd satisfies (12) as well with µ̂ = µ− κ. Furthermore, (13) is satisfied as
Dc(c) = 0.

This gives additional freedom for choosing Hd in (12). Roughly speaking,
this additional freedom ‘compensates’ for the need to solve (12) in a high-
dimensional setting (i.e., higher than in the explicit formulation) using the same
number of controls û.

Equation (13) is analogous to the one formulated for the original system.
It ensures that the new Hamiltonian vector field DHd

preserves the holonomic
constraints ci, i.e., DHd

(ci) = 0 and that the constraint forces preserve the new
energy, i.e., Dc

i(Hd) = 0 whenever x ∈MΓ. See Sec. 2.1 for more details.

Proposition 4. If Hd|MΓ
is bounded from below, then the closed-loop (14) is

passive and the storage function is equal to Hd.
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Proof. Direct computation gives

Xd(Hd) = Xg(Hd)v = gji
∂Hd

∂pi
vj = yjdvj .

3.2. Equilibrium stabilization

Let

x∗ =

(
r∗

0

)
∈MΓ (16)

be a desired equilibrium point. It follows from standard Lyapunov theory that
x∗ is stabilizable whenever Hd is admissible and x∗ is a strict minimum of
Hd|MΓ ,

arg min
x∈MΓ

Hd(x) = x∗ . (17)

The problem is easily solvable in the fully actuated case.

Theorem 5. Let (1) be fully actuated. Any x∗ satisfying (16) is an assignable
equilibrium and can be stabilized.

Proof. Set

Hd(x) = a>r +
1

2
(r − r∗)>A(r − r∗) +

1

2
p>M−1p , (18)

where A = A> ∈ Rn×n satisfies the linear matrix inequality (LMI)

A+∇2ci(r∗)ξ∗i +
(
∇c(r∗)∇c>(r∗)

)j
ξ̄∗j > 0 (19)

for some scalars ξ∗i and ξ̄∗j , and with

a = −∇ci(r∗)ξ∗i . (20)

Since the kinetic energy is left unchanged, we have Dc(Hd) = Dc(H), so (13)
is trivially satisfied. Since

DHa = Hd −H ∈ span

{(
0n
In

)}
,

equation (12) is solvable on account of full actuation. Thus, the closed-loop is
passive with storage function (18). To show stability, it suffices to prove (17).

Next, we construct the Lagrange function

L(x, ξ) = Hd(x) + ci(r)ξi

with Lagrange multipliers ξi. The first-order stationarity condition gives

a+A(r − r∗) +∇ci(r)ξi = 0 , M−1p = 0 , ci(r) = 0 ,
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which are solved by (16) and ξi = ξ∗i if we set a as in (20).
The second-order sufficient condition takes the form [20, p. 68]

z>
(
A+∇2ci(r∗)ξ∗i

)
z > 0 (21)

for all z ∈ Tr∗Γ, i.e., for all z ∈ Rn such that ∇(ci)>(r∗)z = 0, i = 1, . . . , k.
It remains to show that the condition (21) is satisfied whenever (19) holds.

LMI (19) can be equivalently written as an inequality involving the quadratic
form

〈y,
(
A+∇2ci(r∗)ξ∗i +

(
∇c(r∗)∇c>(r∗)

)j
ξ̄∗j

)
y〉 > 0

which must hold for all y ∈ Rn \ {0}. Choosing y ∈ Tr∗ we recover (21) while
the converse, i.e., the existence of ξ̄∗ follows from the Finsler theorem [21].

The LMI (19) can always be solved by setting ξi = 0, ξ̄j = 0 and choosing A
to be a positive definite matrix. However, the resulting controller can be greatly
simplified by exploiting the available degrees of freedom when solving the LMI.
In particular, it might be possible to set the matrix A equal to zero (see Sec.
3.3).

Remark 5. The controller obtained from the matching equation (12) with Hd

as in (18) provides Lyapunov stability only. As usual, asymptotic stability can
then be achieved by adding proper damping.

For underactuated systems, the problem can be solved by searching first a
set of si(r), i = 1, . . . ,m+ k, such that

span{Ds} = span {Dc}
⋃

span {Xg} . (22)

By setting the desired Hamiltonian as Hd(x) = H(x) +f(s(r)), it is ensured
that Hd is assignable for any differentiable f : Rm+k → R. Then f is chosen
such that (17) holds.

The described approach has a number of advantages compared to solving the
equilibrium stabilization problem in local coordinates [22, 23, 24]. In particular,
one needs to solve a simple quadratic program instead of a partial differential
equation. Furthermore, the obtained control is expressed in global coordinates,
hence, there are no singularities. Finally, it turns out that an implicit Hamilto-
nian system is easier to discretize as the Hamiltonian function written in global
coordinates is separable. This fact can be used to design an effective integration
scheme [19].

3.3. The simple actuated pendulum

Suppose we want to stabilize the point x∗ =
(
l 0 0 0

)>
(the right hor-

izontal position), which clearly satisfies (16). A solution set for the LMI (19)
is

A = 0 , ξ∗1 =
m1ḡ

l
, ξ̄∗1 = 0 ,

10



Figure 1: Pendulum trajectories corresponding to the control law obtained using global and
local coordinates.

i.e., ∇2c1(r∗) = I2 > 0. This gives

a> = −
(
l 0

)
· m1ḡ

l
= −

(
m1ḡ 0

)
and

Hd(x) = −m1ḡr
x +

1

2m1
‖p‖2 .

m1ḡ

(
1
1

)
= −

(
rx

ry

)
µ+

1

l2

(
ry

−rx
)
û . (23)

The solution is simply

µ = −m1ḡ
ry + rx

l2
and û = m1ḡ(ry − rx) .

A local coordinate chart for Γ is θ 7→
(
l sin θ l cos θ

)>
with θ ∈ (−π, π). In

local coordinates, the control takes the form

û = m1ḡl(cos θ − sin θ) . (24)

Since it was constructed using global coordinates, the controller does not
exhibit undesirable phenomena such as unwinding. To illustrate this we consider
the problem using local coordinates only. The Hamiltonian takes the form

H(θ, pθ) =
1

2m1l2
p2
θ +m1ḡl cos θ ,

with pθ the angular momentum. The system equations are

θ̇ =
1

m1l2
pθ

ṗθ = m1ḡl sin θ + u1 .
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A reasonable target Hamiltonian is

Hd(θ, pθ) =
1

2m1l2
p2
θ +

m1ḡl

2

(
θ − π

2

)2

,

and it is achieved by the control

û = m1ḡl
(π

2
− θ − sin θ

)
(25)

The control laws (24) and (25) were simulated for a pendulum with param-
eters satisfying

m1ḡl = 1 and m1l
2 = 1

and with initial condition θ(0) = 0.1− π, pθ(0) = 0. A damping term v1 = −y1

was included in order to achieve asymptotic stability. The results are shown
in Fig. 1. Both controllers steer the system to the desired angle θ = 1

2π =
− 3

2π, but, with the local controller, the pendulum makes an unnecessarily long
excursion with large overshoots in angular position and momentum.

3.4. The pendulum on a cart

It can be verified that

s1(r) = r1y , s2(r) =
1

2
‖r2 − r1‖2 and s3(r) = r1x

satisfy (22). Given the constraints c1(r) = c2(r) = 0, it is clear that the only
Hamiltonian functions of interest are of the form

Hd(x) = H(x) + f(s3(r))

=
1

2m1
‖p1‖2 +

1

2m2
‖p2‖2 +m2ḡ · r2y + f(r1x) ,

and that the stabilizable equilibria have the structure

x∗ =

(
r∗
0

)
,

where r∗ ∈
{(
r1x
∗ 0 r1x

∗ −l
)> | r1x

∗ ∈ R
}

.

Condition (17) is indeed satisfied with the choice f(r1x) = 1
2 (r1x − r1x

∗ )2. It
can be readily checked that the condition (19) is satisfied as well. The matching
equation is then

r1x
∗ − r1x

0
0
0

 =


0 r1x − r2x

1 r1y − r2y

0 r2x − r1x

0 r2y − r1y

(µ1

µ2

)
+


1
0
0
0

 û . (26)

The solution is simply µ1 = µ2 = 0 and û = r1x
∗ − r1x .
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3.5. Swing-up strategies

In its most general form, a passivity-based controller acts on a port-Hamil-
tonian system with damping and produces another port-Hamiltonian system,
but with different structure and different dynamics. For fully actuated systems,
it is possible to stabilize an unstable equilibrium by shaping the potential energy
alone. However, for the under-actuated case, shaping the potential energy is not
sufficient for stabilizing a desired equilibrium point: the kinetic energy has to
be modified as well, which in turn requires solving a PDE (see, e.g., [24]). This
approach is too complex to be of practical value or to be generalized (also, it
requires a previous partial linearization). Such complexity is the price that has
to be paid if one insists on having a closed-loop Hamiltonian system.

An alternative approach does not require the closed-loop system to have a
Hamiltonian form. It consists in defining a generalized energy function and to
drive an underactuated mechanical system about an open-loop unstable equilib-
rium by forcing its trajectories to converge to an energy level-set that includes
such equilibrium. That is to say, it is proposed to stabilize a homoclinic orbit
that contains the desired equilibrium, but the equilibrium itself is not stabi-
lized. Once the system state is sufficiently close to the unstable equilibrium, the
controller can be switched to a linear law that stabilizes it [26, 27].

The first step consists in defining a more general class of energy functions
as described below.

Definition 6. Let V : Rn × R∗n → R be a smooth function. We say that V is
a (generalized) admissible energy function if there exist a pair (û, µ̂) satisfying
the constraint

D2
H(c) +DcDH(c)µ̂+XgDH(c)û = 0 (27)

and such that V is invariant with respect to the resulting vector field XV :

XV −DH = Dcµ̂+Xgû, (28)

i.e., XV (V ) = 0.

Remark 7. Definition 6 generalizes the notion of an admissible energy function
given in Definition 2, insofar as the closed-loop system XV does not need to have
the Hamiltonian form (14). On the other hand, the conditions Dc

i(V ) might
not hold, so one has to take the specific value of µ into consideration when
establishing an energy balance for V . Such value is computed from (27), which
was obtained by differentiating c(r) twice. Confront Remark 3.

For example, the function V = (H −H0)2/2, with H0 a constant, is always
admissible.

Setting H0 = H(x∗) serves as a starting point for the proposed swing-up
strategy. By adding proper damping, V can be forced to converge to its min-
imum value, i.e., H → H0 . However, this does not necessarily imply that
x will converge to x∗, since there might be orbits contained in the level-set
{x ∈MΓ |H(x) = H0} which do not necessarily include x∗. To remedy this,
the level-set can be further restricted (see Remark 9 below).
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Assumption 6. There exists a function z : r 7→ z(r) ∈ Rm such that

∂

∂ri
zj(r) = gji (r) .

Notice that this assumption is equivalent to DH(z) = y. In other words, we
assume that the time-integral of the passive output is a function of the positions.
This assumption is satisfied by most mechanical systems. Typically, the passive
output y is a function of velocities, so z(r) is a simple function of the positions.
For the pendulum (9), we have

z(r) = arctan

(
ry

rx

)
.

Indeed,

X(z) = DH(z) =
1

1 +
(
ry

rx

)2 (pyrx − pxrym1(rx)2

)
=

1

(rx)2 + (ry)2

(
pyr

x − pxry

m1

)
= y1 .

For the pendulum on a cart we have z = r1x and X(z) =
p1x

m1
= y1.

Theorem 7. Let the system (1) be passive and let the following conditions be
satisfied:

1. m ≤ n− k,

2. The columns of g and ∇c are linearly independent.

Then the following statements hold true.

i) For any f : Rm → R, the function

V (x) =
1

2
kH (H(x)−H0))

2
+ f(z) +

1

2
kv‖y‖2 (29)

is admissible, provided kv is large enough.

ii) Set u = û+ v. The system is passive with storage function V , input v and
output

yd = y ·
[(
kH(H −H0)Im + kvX

2
g (H)

)
−

kvDcXg(H)(DcDH(c))−1XgDH(c)
]

Proof. Direct computations give

XV (V ) = kH(H −H0)Xd(H) +∇>f(z)Xd(z) + kvyXd(y) .

14



Condition (28) implies

XV (H) = yû

XV (z) = DH(z) = y>

XV (y) = DHXg(H) +DcXg(H)µ̂+X2
g (H)û .

Thus, according to Definition 6, we need to show the existence of û and µ̂ such
that

y ·
[(
kH(H −H0)Im + kvX

2
g (H)

)
û+

kvDcXg(H)µ̂+∇f(z) + kvDHXg(H)] = 0

and (27) hold. Written in matrix notation, a sufficient condition is(
kH(H −H0)Im + kvX

2
g (H) kvDcXg(H)

XgDH(c) DcDH(c)

)(
û
µ̂

)
=

−
(
kvDHXg(H) +∇f(z)

D2
H(c)

)
. (30)

Notice that

X2
g (H) = Xg

(
gai
∂H

∂pi

)
=

∂2H

∂pi∂pj
gai g

b
j (31)

defines a positive definite matrix and

DcXg(H) = Dc

(
gai
∂H

∂pi

)
= − ∂2H

∂pi∂pj
gai
∂cb

∂rj
(32)

XgDH(c) = Xg

(
∂H

∂pi

∂ca

∂ri

)
=

∂2H

∂pi∂pj
∂ca

∂ri
gbj . (33)

The matrix DcDH(c) = −D2
λ(H) is negative definite, hence invertible. Now,

by Schur’s argument, the matrix in front of û and µ̂ in (30) is invertible if, and
only if,

kH(H −H0)Im + kvX
2
g (H)− kvDcXg(H)(DcDH(c))−1XgDH(c)

is invertible. We wish to show that the last two summands form a positive
definite matrix, i.e.,

X2
g (H)−DcXg(H)

(
D2
λ(H)

)−1
XgDc(H) > 0. (34)

This would imply that one can choose kv large enough to ensure that the whole
expression is positive definite (note that H is bounded).

Taking into account that DcXg(H) = gT · ∇2
pH · ∇c, (34) can be rewritten

as
gT
[
∇2
pH −∇2

pH·∇c
(
∇cT ·∇2

pH·∇c
)−1∇cT ·∇2

pH
]
g > 0. (35)

15



Let us denote U = (∇2
pH)

1
2 g and V = (∇2

pH)
1
2∇c. Both U and V have full

column rank, rank(U) = m, rank(V ) = k. Now (35) can be rewritten as:

UT
(
I[n×n] − V (V TV )−1V T

)
U > 0 (36)

The term (V TV )−1V T is the left (Moore-Penrose) pseudo-inverse of V , denoted
V +. Furthermore, (I −V V +) is the orthogonal projector onto the kernel of V T

(see [28] for details).
Matrix (36) is non singular if and only if the rank of the projection of U onto

the kernel of V > is equal to m, which, in turn, implies that rank(UTV ⊥) =
m, where V ⊥ is a matrix, whose rows are orthogonal to the columns of V ,
i.e., R(V ⊥) = ker(V ). Returning to the initial notation we write V ⊥ =

(∇2
pH)−

1
2∇c⊥, rank(∇c⊥) = n− k . Now, we have

rank(UTV ⊥) = rank(g∇c⊥) = m ,

which holds by the linear independence of g and ∇c.
To prove passivity, it suffices to compute XV (V ) with u = û+ v. We have

XV (V ) = y
[ (
kH(H −H0) + kvX

2
g (H)

)
(û+ v)

+ kvDcXg(H)(µ̂+ ν) +∇f(z) + kvDHXg(H)
]

or equivalently,

XV (V ) = y
[ (
kH(H −H0) + kvX

2
g (H)

)
v + kvDcXg(H)ν

]
, (37)

where ν is such that

D2
H(c) +DcDH(c)(µ̂+ ν) +XgDH(c)(û+ v) = 0 ,

i.e., such that
DcDH(c)ν +XgDH(c)v = 0 .

Solving explicitly for ν and substituting back in (37) gives

XV (V ) = y
[(
kH(H −H0) + kvX

2
g (H)

)
−

kvDcXg(H)(DcDH(c))−1XgDH(c)
]
v .

This proves item ii).

Remark 8. Theorem 7 does not impose in principle any restriction on the de-
gree of under-actuation, but we note that, for specific problems, the detectability
of the resulting output still needs to be verified on a case-by-case basis. The
test might fail for overly complex systems or for systems with high degrees of
under-actuation.

Remark 9. Note that the function f(z) appearing in (29) serves as an addi-
tional “degree of freedom” which is used to further restrict the level-set as was
mentioned above.
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In the single-input case, the control û can be computed using Cramer’s rule,

û =

∣∣∣∣−kvDHXg(H)−∇f(z) kvDcXg(H)
−D2

H(c)) DcDH(c)

∣∣∣∣∣∣∣∣kH(H −H0)Im + kvX
2
g (H) kvDcXg(H)

XgDH(c) DcDH(c)

∣∣∣∣ (38)

(the extension to the multi-input case is straightforward). Some of the terms
are computed in (31), (32), (33) and (7). For completeness, we compute the
remaining ones:

DHXg(H) =
∂H

∂pj

∂H

∂pi

∂gai
∂rj
− ∂2H

∂pj∂pi
gai
∂H

∂rj

D2
H(c) =

∂2ca

∂rj∂ri
∂H

∂pj

∂H

∂pi
− ∂2H

∂pj∂pi

∂H

∂rj
∂ca

∂ri
.

Also, notice that yd · y ≥ 0, so we can set v = −kyy with ky > 0. The control
is now completely specified and ensures that X(V ) ≤ 0.

3.6. The pendulum on a cart (cont.)

Take f(z) = 1
2 (r1x)2, so that the cart converges to r1x = 0. The desired

energy level is H0 = m2ḡl which, in view of the restriction r1x = 0, corresponds
to the homoclinic orbit that passes through the desired equilibrium

x∗ =
(
0 0 0 l

)>
,

so that almost every trajectory converges to x∗. For completeness, we compute
the terms in (38):

∇f = r1x

DHXg(H) = 0

DcXg(H) =
(

0 r2x−r1x

m1

)
XgDH(c) = −(DcXg(H))>

D2
H(c) =

(
0
∥∥∥ p2

m2
− p1

m1

∥∥∥+ ḡ(r1y − r2y )
)>

D2
g(H) =

1

m1

DcDH(c) =

(
1
m1

r1y−r2y

m1
r1y−r2y

m1
l2m1+m2

m1m2

)
,

so that the controller is completely specified.
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4. Conclusions

In global coordinates, the defining functions (the Hamiltonian and the con-
straints) of many mechanical systems of interest are quadratic and convex. This
representation proves to be useful in an energy shaping scenario, where the con-
trol problem turns out to be a simple quadratic programming problem instead
of the usual problem of finding the solution of a partial differential equation.
Another advantage of computing the closed-loop energy (or Lyapunov) function
is that the resulting controller does not exhibit undesired phenomena such as
winding.

It is worth noting, however, that once the closed-loop Hamiltonian has been
obtained, computing the control is simpler in local coordinates. Thus, the results
of [11] can be used in a mixed approach in which Hd or V are computed in global
coordinates and the actual control is computed using an explicit representation.
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plus integral control for set-point regulation of a class of nonlinear RLC
circuits, Circuits Syst. Signal Process. 28 (2009) 609 – 623.
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