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Abstract

Passivity-based controllers (PBCs) achieve stabilization of nonlinear systems, rendering the closed-loop passive with
a desired energy (storage) function. A natural question is,under which conditions is it possible to make this function
equal to the difference between the plant and controller energies—when the controller is said to beenergy-balancing.
In this paper we prove that a necessary and sufficient condition for energy-balancing is that the open and the closed-
loop systems have the same dissipation functions and passive outputs. A second contribution of our work is the
identification of a new passive output for port-Hamiltoniansystems, which is invariant to the action of PBCs that
modify only the energy function—so-called basic interconnection and damping assignment PBCs—proving that they
are energy-balancing. To establish these results a newalgebraicframework for analysis and design of PBCs, centered
around the principles of output and dissipation invariance, is developed. Using this framework several PBC schemes
reported in the literature are compared. Also, we present a systematic procedure to generate new passive outputs, this
result is of interest on its own, since it allows to extend theapplicability of PBC to systems that are non-minimum
phase and/or have relative degree larger than one.

Key words: Passivity-based control, port-Hamiltonian systems, Energy-balance, Interconnection and Damping
Assignment

1. Introduction

In standard passivity-based control (PBC), the funda-
mental problem of feedback stabilization of nonlinear
systems is reformulated in terms of feedbackpassiva-
tion. The objective is to find a state-feedback control
law that renders the closed-loop system strictly output
passive with a storage function having an isolated mini-
mum at the given equilibrium and, to ensure asymptotic
stabilization, a detectable passive output. Interested
readers are referred to [1] for a tutorial account on this
state-feedback approach to PBC, that is called “standard
PBC”, and to [2] for a historical review of PBC. A par-
ticular case of standard PBC is the so-called energy-
shaping plus damping-injection technique, where the
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system is first rendered passive and then extra damping
is introduced feeding back the passive output to ensure
asymptotic stability.1 An alternative, and far reaching,
viewpoint of PBC as interconnection of dynamical sys-
tems, instead of a state-feedback action, may be found
in [4, 5, 1]—see also [6], where standard PBCs are ob-
tained as restrictions of these dynamic controllers.

The selection of the desired energy function in stan-
dard2 PBC is, similarly to the selection of a Lyapunov
function, a non-trivial task. In this paper it is assumed
that the original system is cyclo-passive, see Assump-
tion 1. This condition is a restatement of energy con-
servation, where the energy function is not required to
be bounded from below. Hence, it is a rather weak as-
sumption, verified by most physical systems, that does

1As shown in [3], the separation of the PBC design in two steps
induces a loss of generality.

2For brevity, in the sequel the “standard” qualifier is omitted, in
the understanding that we are dealing all the time with state-feedback
PBC.
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not imply any stability property whatsoever. Under the
aforementioned assumption, the most natural desired
storage function candidate is the difference between the
energy of the plant and the energy of the controller.
PBCs that verify this property are said to beenergy-
balancing(EB) [5]. A fundamental question that arises
is then: Under which conditions a PBC is EB?

In [5] it is shown that, if the PBC ensures stability, a
necessary condition for EB is that the dissipation func-
tion is equal to zero at the desired equilibrium, which
consequently means that the system can be stabilized
extracting a finite amount of energy from the controller.
In this paper we prove that, even without the stability re-
quirement, anecessary and sufficient condition for EB
is that the open and the closed-loop systems have the
same dissipation and output functions—hence provid-
ing a complete characterization of EB PBC.

Dissipation assignment has traditionally been re-
garded as an auxiliary, or even secondary, step to
energy-shaping. The fundamental result mentioned
above underscores the central role it plays in the un-
derstanding of PBC that motivates the development of
a newalgebraic framework for analysis and design of
PBCs, centered around the principles of output and dis-
sipation invariance. Using this framework several PBC
schemes reported in the literature are compared in this
paper, including the well-known Interconnection and
Damping Assignment (IDA) PBC, in its basic and gen-
eral formulations [7, 6, 8]. In Basic IDA (BIDA) it is as-
sumed that the plant is described by a port-Hamiltonian
model and the objective is to shapeonly the energy
function—without modifying the interconnection and
damping matrices. A second contribution of our work
is the identification of a new passive output for port-
Hamiltonian systems, which isinvariant to the action of
BIDA. Combining this result with the characterization
of EB mentioned above shows that BIDA is EB. To es-
tablish these results a systematic procedure to generate
new passive outputs is presented. The procedure is of
interest on its own, since it allows to extend the appli-
cability of PBC to systems that are non-minimum phase
and/or have relative degree larger than one.

In the following section the PBC problem is formu-
lated and an algebraic characterization, in terms of the
added energy function and added dissipation, is given.
In Section 3 the equivalence between dissipation and
output invariance and the property of EB of PBC is es-
tablished. In Section 4 it is shown that, by suitably as-
signing the dissipation of the closed-loop system, it is
possible to recover several existing PBCs—providing a
framework to classify and compare them. In Section 5, a
procedure to generate zero-relative-degree passive out-

puts is proposed and the EB property of BIDA is estab-
lished. Finally, we present the conclusions in Section 6.

Notation. The arguments of the functions are omitted
once they are defined and there is no possibility of con-
fusion. For a distinguished elementx⋆ ∈ R

n and a given
function f : R

n → R
m we denote the constant vector

f ⋆ := f (x⋆).

2. Standard Passivity-Based Control

2.1. Definition of Passivity-Based Control
Consider a nonlinear system described by equations

of the form

Σ :

{

ẋ = f (x) + g(x)u
y = h(x)

, (1)

wherex ∈ R
n is the state,u : R → R

m is the input and
y : R → R

m is the output. The remaining functions,
f : R

n → R
n, g : R

n → R
n×n andh : R

n → R
m, are

assumed to be smooth and of appropriate dimensions.
The matrixg is assumed to be full rank—uniformly in
x. We also impose the following.

Assumption 1. Σ is cyclo-passive. That is, there exists
a C1 function H : R

n → R, called thestoragefunc-
tion, such that, for all x0 ∈ R

n, all t ≥ 0 and all input
functions u(t)

H(x(t)) − H(x(0)) ≤
∫ t

0
h⊤(x(s))u(s)ds , (2)

where x(0) = x0 and x(t) is the state ofΣ at time t re-
sulting from initial condition x0 and input function u(t).3

Equivalently, if and only if

Ḣ ≤ y⊤u (3)

along the trajectories of the system.

Recall that a system is passive if it is cyclo-passive
andH has a minimum[1]. Clearly, every passive sys-
tem is cyclo-passive but the converse is not true. In
terms of energy exchange, cyclo-passive systems ex-
hibit a net absorption of energy alongclosed trajec-
tories [9], while passive systems absorb energy along
anytrajectory that starts from a state of minimal energy
x(0) = arg minH(x).

The celebrated Hill-Moylan’s Theorem [9] gives, in
the spirit of Kalman-Yakubovich-Popov’s Lemma, an
algebraiccharacterization of cyclo-passive systems.4

3Of course, we require that the integral in (2) is well defined.
4For ease of presentation a version of the theorem for systems with

relative degree one is given first. In Section 5 the general version is
stated.
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Theorem 2. The systemΣ (1) is cyclo-passive with
storage function H if and only if there exists a function
d : R

n→ R+, called thedissipation function, such that,

∇H⊤(x) f (x) = −d(x) (4a)

h(x) = g⊤(x)∇H(x) . (4b)

Using Hill-Moylan’s Theorem one obtains the power
balance equation forΣ

Ḣ = y⊤u− d(x) . (5)

The objective in PBC is to “shape”, via state-
feedback (5). More precisely:

Definition 3 (The set PBC). The state-feedback uSF :
R

n → R
m is said to be a PBC (shorthand notation:

uSF ∈ PBC) if and only if there exist functions Hd :
R

n→ R and hd : R
n→ R

m such that

u = uSF(x) + v (6)

with v a new, virtual input, renders the closed-loop sys-
tem

Σd :

{

ẋ = fd(x) + g(x)v, fd(x) := f (x) + g(x)uSF(x)
yd = hd(x)

(7)
cyclo-passive with storage function Hd(x). That is, if it
verifies

Ḣd ≤ y⊤d v . (8)

From Hill-Moylan’s Theorem we have that the new
power balance becomes

Ḣd = y⊤d v− dd(x) . (9)

where the new dissipationdd : R
n→ R+ is given by

dd(x) = −∇H⊤d (x)( f (x) + g(x)uSF(x)) (10)

Comparing the open-loop power balance (5) with the
closed-loop power balance (9) we observe that, besides
the energy and the dissipation, the output has also been
modified. Since full-state-feedback is assumed, there
is—a priori—no reason to maintain the original output
y as the cyclo-passive output. We thus take the liberty
to define the new output that, according to Theorem 2,
should be of the form

yd = hd(x) = g⊤(x)∇Hd(x) . (11)

This approach differs from the classic problem formula-
tion of [10], where feedback passivation is defined (and

Σ

Σd
+

+

–

–

vh− hd

y yd

u

uSF

Figure 1: Adding a current source to create a new passive output.

sought) with respect to the original output. Changing
the output is a natural way to satisfy the vector relative
degree requirement and to overcome the minimal phase
restriction on the plant. In terms of the usual analogy be-
tween passive systems and electrical ports, the change
of the output corresponds to the addition of a current
sourceh(x) − hd(x) (see Figure 1).

Remark 4. Definition 3 has been intentionally stated in
a fairly general way. Notice,e.g., that a null control
uSF(x) ≡ 0 satisfies the requirements of the definition
(takeHd(x) = H(x) anddd(x) = d(x)).

Remark 5. As announced above, an algebraic frame-
work to derive particular subsets of the set PBC will be
proposed. To simplify notation we sayuSF ∈ Ω, where
Ω ⊂ PBC is either one of the sets{EB,BIDA , IDA }
consisting of particular classes of PBCs—to be defined
later.

2.2. Characterizing Passivity-Based Controllers

The following proposition, which constitutes the
main thread of the paper, gives an algebraic characteri-
zation of the set PBC.

Proposition 6. uSF ∈ PBC if and only if there exist
functions Ha : R

n→ R and da : R
n→ R, with

da(x) ≥ −d(x),

such that

h⊤(x)uSF(x) = −∇H⊤a (x)( f (x) + g(x)uSF(x)) − da(x) .
(12)
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P. To prove sufficiency, assume that (12) is satis-
fied and define

Ha := Hd − H and da := dd − d ≥ −d . (13)

Eq. (12) can be rewritten as

h⊤uSF = −(∇Hd − ∇H)⊤( f + guSF) + d − dd

or, equivalently, as

(h− g⊤∇H)⊤uSF = (d + ∇H⊤ f ) − ∇Hd fd − dd . (14)

From (4) and Assumption 1 we know thath−g⊤∇H = 0
andd+∇H⊤ f = 0, so (14) becomes∇H⊤d fd = −dd. Take
hd as in (11). According to Hill-Moylan’s Theorem, the
systemΣd is cyclo-passive.

For necessity, assume thatΣd is cyclo-passive with
storage functionHd and outputhd. Again, from Hill-
Moylan’s Theorem, we know that

∇H⊤d fd = −dd . (15)

From (13) andfd = f + guSF, equation (15) becomes

(∇Ha + ∇H)⊤( f + guSF) = −da − d ,

which is equivalent to

∇H⊤guSF = −∇H⊤a ( f + guSF) − da − (∇H⊤ f + d) .

Since∇H⊤g = h and∇H⊤ f + d = 0, one obtains

h⊤uSF = −∇H⊤a ( f + guSF) − da .

This completes the proof. ¤

3. Energy-Balancing PBC

As indicated in the Introduction, the most natural de-
sired storage function candidate is the difference be-
tween the energy of the plant and the energy of the con-
troller, that is

Hd(x(t)) = H(x(t)) −
∫ t

0
h⊤(x(s))uSF(s)ds.

This motivates the definition of the following subset of
PBC.

Definition 7 (Energy-Balancing). A PBC for the
cyclo-passive systemΣ (1) is said to be EB (i.e.,
uSF ∈ PBC ∩ EB) if and only if,for all v,

− y⊤uSF = Ḣa (16)

with Ha is defined in (13).

Proposition 8. uSF ∈ PBC ∩ EB if and only if, the
output and the dissipation remain invariant. That is, if
and only if (9) holds with5

yd = y, dd = d.

P. To prove sufficiency, assumedd = d (i.e., da =

0) andyd = y. Sinceyd = g⊤∇Hd andy = g⊤∇H, yd = y
holds if and only ifg⊤∇Hd = g⊤∇H or, equivalently, if
and only if

g⊤∇Ha = 0 . (17)

Substituting (17) andda = 0 in (12) yields

h⊤uSF = −∇H⊤a f . (18)

On the other hand, equation (17) implies that

Ḣa = ∇H⊤a [ f + g(uSF + v)] = ∇H⊤a f . (19)

Combining (18) and (19) one gets−h⊤uSF = Ḣa (i.e.,
uSF ∈ EB).

For necessity, suppose that (16) holds. Then,

−h⊤uSF = ∇H⊤a [ f + g(uSF + v)]

−∇H⊤guSF = [∇Hd − ∇H]⊤[ f + g(uSF + v)]

−∇H⊤guSF = ∇H⊤d fd + ∇H⊤d gv− ∇H⊤[ f + gv] −

− ∇H⊤guSF

or, equivalently,

∇H⊤d fd − ∇H⊤ f = −∇H⊤d gv+ ∇H⊤gv

∇H⊤d fd − ∇H⊤ f = −∇H⊤a gv . (20)

Equation (20) must hold for allv, in particular, forv = 0.
This implies that∇H⊤d fd = ∇H⊤ f , which is equivalent
to dd = d. Thus, equation (20) becomes

∇H⊤a gv= 0 ∀ v ,

which implies∇H⊤a g = 0. As stated before, this is
equivalent toyd = y. ¤

4. Overcoming the Dissipation Obstacle

4.1. Stabilization and the Dissipation Obstacle

When PBC is used for stabilization of an equilibrium,
x⋆ ∈ R

n, the storage function is typically used as a Lya-
punov function, so it is required that

x⋆ = arg minHd . (21)

5A PBC that satisfies these conditions is said to be output- and
dissipation-preserving, respectively.
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Since∇H⋆d = 0 is a necessary condition for (21) it is
clear from (11), that the outputyd must be zero at the
equilibrium (i.e., y⋆d = 0). Likewise, from equation (10),
we also have that the dissipation at the equilibrium must
be zero (i.e., d⋆d = 0). EB PBCs, that preserve output
and dissipation, impose then to theopen-loopsystem
that

d⋆ = −(∇H⋆)⊤ f ⋆ = 0, y⋆ = 0.

This is the so-calleddissipation obstacle[5].

4.2. IDA PBC

It is clear that dissipation should be modified to sta-
bilize, with PBCs, systems that dissipate energy at the
equilibrium. A candidate dissipation functiondd, which
is compatible with the requirementd⋆d = 0 and over-
comes the dissipation obstacle, is given in the follow-
ing proposition, where the well-known IDA PBC is re-
derived.

Proposition 9. Fix

dd(x) = ∇H⊤d (x)Rd(x)∇Hd(x) (22)

with Rd : R
n→ R

n×n, Rd = R⊤d ≥ 0.

(i) uSF ∈ PBC if and only if

g(x)uSF(x) = − f (x) − Rd(x)∇Hd(x) + α(x) (23)

for some functionα : R
n → R

n such thatα⊤∇Hd

is identically zero. Then:

(ii) If x⋆ is an equilibrium of the closed-loop that sat-
isfies (21) thenα⋆ = 0

(iii) For any Jd : R
n→ R

n×n, Jd = −J⊤d , the function

α(x) = Jd(x)∇Hd(x),

satisfies both restrictions:α⋆ = 0 andα⊤∇Hd = 0.
Furthermore, the closed-loop system,Σd, takes the
port-Hamiltonian (PH) [1] form6

Σd :

{

ẋ = Fd(x)∇Hd(x) + g(x)v
yd = g⊤(x)∇Hd(x)

,

Fd(x) := Jd(x) − Rd(x) . (24)

6In the literature of PH systems,Jd is called the interconnection
and Rd the damping. For obvious reasons, this control strategy is
known as IDA [7].

P. For sufficiency of (i), assume (23) and premulti-
ply by∇H⊤d :

∇H⊤d guSF = −∇H⊤d f − ∇H⊤d Rd∇Hd

(∇H⊤ + ∇H⊤a )guSF = −∇H⊤a f − ∇H⊤ f −

− ∇H⊤d Rd∇Hd .

By reordering terms we get

∇H⊤guSF = −∇H⊤a ( f + guSF) − ∇H⊤ f − ∇H⊤d Rd∇Hd .

(25)
Notice that the aggregated dissipation is

da = ∇H⊤d Rd∇Hd + ∇H f , (26)

So (25) can be expressed as

∇H⊤guSF = −∇H⊤a ( f + guSF) − da

h⊤uSF = −∇H⊤a ( f + guSF) − da .

Hence, according to Proposition 6,uSF ∈ PBC.
For necessity, assume thatuSF ∈ PBC, i.e., that (12)

holds. Then, from (26),

∇H⊤guSF = −∇H⊤a ( f + guSF) − ∇H⊤ f −

− ∇H⊤d Rd∇Hd

0 = ∇H⊤d (guSF + f + Rd∇Hd) .

The latter implies the existence of a vector fieldα, sat-
isfying (23) and

α⊤∇Hd = 0 .

Regarding (ii), notice that for a control that satis-
fies (23), the driftfd = f +guSF of the controlled system
is

fd = f − f − Rd∇Hd + α = −Rd∇Hd + α . (27)

If x⋆ is an equilibrium of the closed-loop, thenf ⋆d =
0 and∇H⋆d = 0. These equations, together with (27)
imply thatα⋆ = 0.

The first assertion of (iii) is proved by noting that
∇H⋆d = 0 implies α⋆ = J⋆d∇H⋆d = 0. Orthogonal-
ity follows from the fact that∇H⊤d Jd∇Hd = 0 for any
skew-symmetric matrixJd.

The second assertion of (iii) can be verified replacing
α in (27) to get:

fd = −Rd∇Hd + Jd∇Hd

= Fd∇Hd .

¤
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4.3. Basic IDA PBC

Although in some cases the choice of the matricesJd

andRd in IDA may be motivated by physical consider-
ations, besides the requirement of the solvability of the
matching equations, there are no general guidelines. If
the original system already has the PH form

Σ :

{

ẋ = F(x)∇H(x) + g(x)u
y = g⊤(x)∇H(x)

, (28)

with F : R
n→ R

n×n F+F⊤ ≤ 0, one natural first choice
of Fd is simply

Fd = F .

In this case the controller is called Basic IDA (BIDA)
and the equation to solve is, according to (23),

guSF = −F∇H − Rd∇Hd + Jd∇Hd

= F∇Ha . (29)

Notice that, in general, in BIDA the dissipation is
modified from

d = −∇H⊤ f = −∇H⊤F∇H = ∇H⊤R∇H

to

dd = −∇H⊤d fd = −∇H⊤d F∇Hd = ∇H⊤d R∇Hd .

We close this section with an interesting property of
BIDA controllers.

Proposition 10. A BIDA controller that is output-
preserving is necessarily dissipation-preserving, conse-
quently, it is EB.

P. Premultiply (29) by∇H⊤a to obtain

∇H⊤a guSF = ∇H⊤a F∇Ha = −∇H⊤a R∇Ha , (30)

whereR(x) := − 1
2(F(x)+F⊤(x)). Under the assumption

of output preservation,i.e., ∇H⊤a g = 0, equation (30)
shows that∇H⊤a R∇Ha = 0. SinceR is symmetric and
positive semidefinite,

R∇Ha = 0 .

This means that dissipation is preserved:

dd = (∇H + ∇Ha)
⊤R(∇H + ∇Ha) = ∇H⊤R∇H = d .

¤

5. Basic IDA-PBC is Energy-Balancing

In the preceding sections we used a relaxed ver-
sion of Hill-Moylan’s Theorem for systems without
feedthrough terms (cf. Theorem 2). In this section, we
show that the incorporation of a feedthrough component
allows to generate new cyclo-passive outputs. In partic-
ular, to identify one which is invariant to the action of
BIDA. It turns out that the dissipation associated to the
new output is also invariant under BIDA. Output and
dissipation invariance then establish that BIDA is EB
(with respect to the definition of the new output).

5.1. Passivity-Based Control for Systems with
Feedthrough

Let us start by recalling the general version of Hill-
Moylan’s Theorem [9].

Theorem 11. Consider a system with feedthrough de-
scribed by

Σ j :

{

ẋ = f (x) + g(x)u
y j = h j(x) + j(x)u

, j ∈ R
m×m

where j : R
n → R

m×m and hj : R
n → R

m. Σ j is cyclo-
passive with storage function H if and only if, for some
q ∈ N, there exist functions l: R

n → R
q and w : R

n →

R
q×m such that

∇H⊤(x) f (x) = −|l(x)|2 (31a)

h j(x) = g⊤(x)∇H(x) + 2w⊤(x)l(x),(31b)

w⊤(x)w(x) =
1
2

( j⊤(x) + j(x)) , (31c)

with | · | the Euclidean norm.

The power balance equation forΣ j is

Ḣ = (y j)⊤u− d j (32)

with the dissipation given by

d j(x) = |l(x) + w(x)u|2 . (33)

Indeed, by considering the equation

Ḣ = ∇H⊤ f + ∇H⊤gu ,

it is easy to verify, from (31a) and (31b), that

Ḣ = −|l|2 + (h j)⊤u− 2w⊤lu

= −|l|2 + (y j − ju)⊤u− 2w⊤lu

= (y j)⊤u− |l|2 −
1
2

u⊤( j + j⊤)u− 2w⊤lu .

6



Invoking (31b) and (33) we recover the power bal-
ance (32).

Theorem 11 can be used toconstruct new cyclo-
passive outputs. Indeed, it provides a means to
parametrize the output functionh j and the dissipation
functiond j in terms of the free square matrixj (hence
the notation). If we setj = 0, thenΣ j = Σ and, ac-
cording to Assumption 1, equation (31a) must hold for
somel—which we fix. Now, for all j, whose symmetric
part is positive semidefinite, there always existw sat-
isfying (31c). w can then be used to define, via (31b)
and (33),h j andd j , respectively.

Considering relative degree zero systems allows for
an extension, provided by the free matrixj, of the set
PBC given in Definition 3.7

Definition 12 (The extended set PBC).The state-
feedback uSF ∈ PBC if and only if there exists functions
Hd : R

n→ R and hj
d : R

n→ R
m such that the system

Σ
j
d :

{

ẋ = fd(x) + g(x)v
y j

d = h j
d(x) + j(x)v

,

fd(x) := f (x) + g(x)uSF(x) (34)

is cyclo-passive with storage function Hd, i.e., it satisfies
the dissipation inequality

Ḣd ≤ (y j
d)⊤v .

Again, from Hill-Moylan’s Theorem we get the
power balance equation forΣ j

Ḣd = (y j
d)⊤v− d j

d , (35)

with dissipation

d j
d(x) = |ld(x) + w(x)v|2

and
h j

d = g⊤∇Hd + 2w⊤ld, (36)

whereld : R
n→ R

q verifies

∇H⊤d (x) fd(x) = −|ld(x)|2 (37)

andw satisfies (31c).

5.2. Generation of Cyclo-Passive Outputs for PH Sys-
tems

Although Proposition 11 is applicable to general
affine systems, our interest in this paper is restricted

7To avoid cluttering the notation this new set is still calledPBC.

to the case whenΣ is a PH system of the form (28).
For this class of systems, a new cyclo-passive output
(which is an extension of the power-shaping output in-
troduced in [11] to the case whenF is not full rank)
is constructed. Interestingly, the set of passive outputs
can also be characterized in terms of matrix inequalities,
which in some cases is more insightful. The interested
reader is referred to [12], where this is shown for the
linear case (the generalization to the nonlinear case is
straightforward).

To present the main result, which is contained in
Proposition 17, the notion ofgeneralized inverseof a
matrix, a technical assumption and two lemmata, are
needed.

Definition 13. [13] Let A be an n× o matrix of arbi-
trary rank. A generalized inverse of A is an o×n matrix
A− such that

AA−A = A .

It should be pointed out that, in general,A− is not
unique; but it always exists [13, Lemma 2.2.3].

Assumption 14. Σ is a PH system described by (28)
and satisfies

F⊤(F−)⊤F = F (38)

and
spang ⊆ spanF . (39)

It is important to underscore that equation (38) does
not depend on the particular choice ofF− (see [13]).
Furthermore, ifF is nonsingular, then (38) and (39) are
immediately satisfied.

Lemma 15. The equation

F⊤(x)Z(x)F(x) = −F(x) , (40)

with unknown Z: R
n→ R

n×n, is consistent (i.e., at least
one such Z exists) if and only if (38) is satisfied.

P. Equation (40) is a special case of the linear ma-
trix equation

AXB= C , (41)

whereX is the unknown. According to [13, Theorem
2.3.2], equation (41) is consistent if and only if

AA−CB−B = C . (42)

By matching the terms in (40) and (41) we get

A = F⊤ , X = Z , B = F and C = −F .
7



By substituting these in (42) we obtain

−F⊤(F⊤)−FF−F = −F

⇔ F⊤(F−)⊤F = F

(recall thatFF−F = F and that a possible generalized
inverse ofF⊤ is (F−)⊤). ¤

Lemma 16. Equations (40) and (39) imply that

F⊤Zg= −g . (43)

P. Equation (39) implies the existence of a map-
pingβ : R

n→ R
n×m such that

g(x) = F(x)β(x) .

On the other hand, equation (40) implies that

F⊤ZFβ = −Fβ

for anyβ. Combining the last two equations yields (43).
¤

Proposition 17. Consider a systemΣ satisfying As-
sumption 14 and define

Z(x) := −(F−)⊤(x)F(x)F−(x) . (44)

The system

Σ j :

{

ẋ = F(x)∇H(x) + g(x)u
y j = g⊤(x)Z(x)F(x)∇H(x) + g⊤(x)Z(x)g(x)u

(45)
is cyclo-passive with storage function H.

P. The proof is established verifying the conditions
of Theorem 11. Notice that for system (45) we have

j = g⊤Zg (46)

and
h j = g⊤ZF∇H . (47)

We will show that there exists functionsl andw such
that (31) is satisfied. Because of (38) and Lemma 15,
equation (40) is consistent. Under Assumption 14, (44)
is a particular positive semidefinite solution. Equa-
tion (40) implies that

∇H⊤F⊤ZF∇H = −∇H⊤F∇H .

GivenZ computeY : R
n→ R

n×n as

Y⊤Y =
Z⊤ + Z

2
, (48)

which can always be obtained since (Z + Z⊤) ≥ 0. It is
then easy to see that

l := YF∇H, (49)

satisfies (31a). Furthermore,

w = Yg . (50)

satisfies

w⊤w = g⊤
Z⊤ + Z

2
g =

1
2

( j⊤ + j) .

Substitutingl andw into (31b) one obtains

h j = g⊤∇H + 2g⊤Y⊤YF∇H

= g⊤∇H + g⊤(Z⊤ + Z)F∇H (51)

= g⊤∇H − g⊤∇H + g⊤ZF∇H (52)

= g⊤ZF∇H ,

where (48) is used to obtain (51), while (40) and
Lemma 16 are invoked in (52). ¤

Remark 18. When F is nonsingular, the new cyclo-
passive outputy j coincides with the power-shaping out-
put of [11]. It is shown in [14] that the generation of the
new output, for a class of electrical and electromechani-
cal systems, is tantamount to the application of the clas-
sical Th́evenin-Norton transformation of electrical cir-
cuits. Additional connections with power-shaping may
be found in these two papers.

5.3. Basic IDA PBC is Energy-Balancing

As one might expect, in the zero-relative-degree case
there is also a connection between energy-balancing and
output and dissipation invariance.

Proposition 19. uSF ∈ PBC ∩ EB if the output and the
dissipation remain invariant. That is, if (35) holds with

y j = y j
d and dj = d j

d . (53)

P. By subtracting (32) from (35) it is readily seen
that

Ḣa = (y j
d)⊤v− (y j)⊤u+ d j

d − d j , (54)

with Ha defined as in (13). Substitution of the hypothe-
sis (53) into (54) yields

Ḣa = (y j)⊤(v− u) .

Sinceu = uSF + v,

Ḣa = −(y j)⊤uSF . (55)

¤
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The next proposition shows thaty j andd j are invari-
ant under BIDA control.8

Proposition 20. Consider the cyclo-passive sys-
tem (44), (45) and suppose that Assumption 14 holds.
The BIDA control given by (29) is a PBC with

h j
d = g⊤ZF∇Hd . (56)

Moreover, the controller is output and dissipation pre-
serving. Therefore, it is EB.

P. We will show first that the closed-loop

Σ
j
d :

{

ẋ = F∇Hd + gv
y j

d = g⊤Z(F∇Hd + gv)
(57)

is cyclo-passive with storage functionHd. To this ef-
fect, we will prove that there exists anld such that (37)
and (36) are valid. Indeed, equation (40) implies that

∇H⊤d F⊤ZF∇Hd = −∇H⊤d F∇Hd ,

so
ld = YF∇Hd ,

with Y defined as in (48), satisfies (37). Selectingw as
(50) and substituting into (36) gives

h j
d = g⊤∇Hd + g⊤(Z⊤ + Z)F∇Hd

= g⊤∇Hd − g⊤∇Hd + g⊤ZF∇Hd

= g⊤ZF∇Hd . (58)

This proves our cyclo-passivity claim.
For output preservation, we will prove that

y j = y j
d

⇔ h j + juSF = h j
d . (59)

Equation (46) and (29) imply that

juSF = g⊤ZguSF = g⊤ZF∇Ha.

Replacing in (58) yields

h j + juSF = g⊤ZF∇H + g⊤ZF∇Ha = g⊤ZF∇Hd . (60)

From (60) and (56) one obtains (59).
Regarding dissipation, we will prove thatd j = d j

d,
that is,

|l + wuSF + wv|2 = |ld + wv|2 . (61)

8A similar result (using different arguments) was obtained in [14]
for the case whenF is nonsingular.

Direct substitution of the expressions ofl andw gives

l + wuSF = YF∇H + YguSF
= YF∇H + YF∇Ha

= YF∇Hd .

Sinceld is equal toYF∇Hd, we conclude (61). ¤

Remark 21. Notice that the property of energy-
balancing for BIDA is established with respect to the
definition of the new passive output (cf. (55)), which is
obviously different from (16).

6. Conclusions

A framework for analysis and design of PBC, based
on the principles of dissipation and output preservation,
has been derived. This framework allows to classify var-
ious PBCs according to Table 1, where the key algebraic
equations9 that define the sets are given in parenthesis.

The equivalence between output and dissipation
preservation and the important property of EB has been
established. In this regard, we identified zero-relative-
degree outputs that are invariant under BIDA control,
rendering it EB.

The properties of output and dissipation preservation
are also important in dynamic PBC, such as Control by
Interconnection (CbI). CbI is output and dissipation pre-
serving by construction (see Fig. 2 and [6] for details).
We hope then that the results presented here will pro-
vide a means to extend the work done in [6], where the
relationships among CbI and different PBCs are studied
(see also [15]).
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Dissipation Output
uSF ∈ EB

(y⊤uSF = −∇H⊤a f ) ⇐⇒ Preserved & Preserved
uSF ∈ BIDA

(guSF = (J − R)∇Ha) =⇒ ∇H⊤d R∇Hd & g⊤∇Hd

if, in addition
g⊤∇Ha = 0

or =⇒ Preserved & Preserved
j = g⊤Zg

uSF ∈ IDA
(guSF = − f + (Jd − Rd)∇Hd) =⇒ ∇H⊤d Rd∇Hd & g⊤∇Hd

Table 1: Classifying different PBCs according to their dissipation and output preservation properties.

Lossless
System

Power−preserving interconnexion
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Σd

+

+ ++

–

– ––

v

y yc

yd

u uSF uc

1:1

Figure 2: The CbI scheme.
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