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Abstract. Homogeneous systems are an interesting generalisation of the class of linear systems.
On the one hand, many of the properties for which linear systems are useful in the analysis
of more complex systems are shared by their homogeneous counterparts. On the other hand,
they exhibit a considerably larger set of behaviours. In this article a generalisation of the Lur’e
problem of absolute stability is presented as a result of an analysis on homogeneous systems.
Moreover, a solution to this problem is introduced as the homogeneous extension of the circle
criterion.
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1. INTRODUCTION

To this day, the impossibility of constructing a general
theory of non linear systems is clear, which compels us
to focus our attention on certain classes of systems and
to develop models and control algorithms adapted to each
class.

The focus of this article is on the class of homogeneous
systems, though the final objective is to model and control
systems that need not necessarily be homogeneous. In a
sense, we strive to extend some of the accomplishments of
the linear control theory with regard to the modelling and
control of complex physical systems that might eventually
be non linear.

The family of homogeneous systems appears to be an
interesting alternative because, on the one hand, it strictly
contains the class of linear systems and, on the other hand,
it makes possible to analyse behaviours that are truly non
linear by using a set of analytic tools that have been under
development over the years, see a recent survey by Kawski
(2015), and the references therein.

In general, a homogeneous model can approximate a given
system with better precision than a linear model (Hermes,
1991). It is convenient to use homogeneous models when,
for instance, the linear approximation of the system under
analysis does not preserve fundamental properties such
as controllability or stabilisability, but they are instead
preserved in homogeneous approximations of higher order.

Furthermore, homogeneous systems give rise to more am-
bitious objectives of control, such as finite-time stabilisa-
tion, see Bhat and Bernstein (1997), which is not possible
in a purely linear context. Homogeneous controllers, which
are developed within the framework of sliding mode con-
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trol (Levant, 2005), also have robustness properties that
make them particularly attractive.

An important result in the theory of linear systems has
its roots in the study of the stability of a feedback loop
consisting of a nominal linear system in the forward path
and a non linear memoryless function in the feedback
path, in other words, the analysis of the stability of Lur’e
systems (Lur’e, 1944).

When such a system is stable for a whole class of non linear
functions, we speak of absolute stability. From the day of its
statement, the Lur’e problem has been widely studied by
the control community because it relates to the analysis
of the stability of systems with uncertainties. Moreover,
it has a strong connection to the passivity theory and
its role in the design of non linear observers, (see, for
instance, Brogliato and Heemels (2009)). A solution to the
absolute stability problem is given by the circle criterion
which, from the state-space representation perspective, is
a consequence of the Kalman-Yakubovich-Popov (KYP)
lemma, hence its connection to the passivity property of
systems.

Absolute stability is, without a doubt, a paramount prop-
erty that has permeated the control theory literature and
whose extension to more general systems is an attractive
possibility. For Lur’e-like systems in which the nominal
part is nonlinear, the theorem by Hill and Moylan (1976)
provides a set of sufficient conditions for absolute stability.
However, this result is not a constructive one in the sense
that the storage function must be specified a priori. Fur-
thermore, it strongly restricts the class of possible storage
functions. For example, in the linear case, only quadratic
storage functions can be considered.

In this article, we propose a generalisation of the circle
criterion different from the one given by the Hill-Moylan
theorem. This criterion allows for a larger class of feasible
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storage functions, making it possible to consider non-
quadratic ones in the analysis of Lur’e systems.

On the other hand, we focus on nominal systems and
storage functions which are homogeneous, allowing a more
constructive approach to the problem of finding the appro-
priate storage functions. It is possible, in principle, to use
tools such as sum of squares (SOS) and Pólya’s Theorem,
to name a few.

The present article is organized as follows: Section 2 pro-
vides the necessary concepts for the rest of the document.
Section 3 presents the problem of absolute stability in its
classic form, as a reminder, and its generalisation to a
class of homogeneous systems. Section 4 contains the main
result of the article, which is the solution to the absolute
stability problem by using a generalisation of the circle
criterion. An example of an application of this result is
presented in Section 5 and it is subject to discussion in
Section 6. Finally, the conclusions of this work are given
in Section 7.

2. PRELIMINARIES

In this section, the concepts of homogeneous function, ho-
mogeneous vector field, and homogeneous Lyapunov func-
tion are presented. The term “homogeneity” throughout
this work refers to the concept of weighted homogeneity
(Sepulchre and Aeyels, 1996; Bacciotti and Rosier, 2006;
Grüne, 2000). Let us start with some basic definitions:

Definition 1. A mapping

δrεx = (εr1x1, . . . , ε
rnxn)T , ∀ε > 0, ∀x ∈ Rn \{0}

is said to be a dilation on Rn, where r = (r1, r2, . . . , rn)T

and 0 < ri <∞, i = 1, 2, . . . , n.

Definition 2. A function h : Rn → R is said to be a
homogeneous function of degree σ ∈ R with respect to
δrεx, this is denoted as h ∈ Hσ, if h(δrεx) = εσh(x).

Definition 3. A system

ẋ = f(x, u) (1)

where u ∈ R is the input and x ∈ Rn is the state vector, is
said to be a homogeneous system of degree τ with respect
to δrεx and εsu or, equivalently, f ∈ nτ if

f(δrεx, ε
su) = ετδrεf(x, u). (2)

Notice that a vector field f(x, u(x)) =
∑n
j=1 fj

∂
∂xj

is

homogeneous of degree τ if and only if each component
fj is a homogeneous function of degree τ + rj with respect
to the dilation δrεx. Therefore, in particular, a linear vector
field (as in the linear system ẋ = Ax+Bu) is homogeneous
of zero degree with respect to the standard dilation (this
is r = (1, 1, . . . , 1)T ).

Definition 4. A class C1 proper positive-definite homo-
geneous function V : Rn → R+ is said to be a strict
homogeneous Lyapunov function for the system ẋ = f(x)
if

∇V (x)f(x) < 0, x 6= 0, where ∇V (x) =
∂

∂x
V (x).

Apart from the previous definitions, let us introduce the
following stability theorem to which we will refer in a

forthcoming section.

Theorem 1. [Rosier (1992)] Let f be a vector field on Rn
such that the origin is a locally asymptotically stable
(AS) equilibrium point. Assume that f ∈ nτ for some
r ∈ (0,∞)n. Then, for any positive integer p and any
m > p·maxi{ri}, there exists a strict Lyapunov function V
for system ẋ = f(x), which is δrε−homogeneous of degree
m and of class Cp. As a direct consequence, the time-
derivative V̇ = ∇V f ∈ Hm+τ .

3. PROBLEM STATEMENT

The solution to the Lur’e problem of absolute stability
has a close relationship with a number of conjectures that
either have been refuted by counterexamples or have not
yet been confirmed. Nonetheless, these conjectures were
the starting point from which the solution was reached.
Let us, as a reminder, write Aizerman’s and Kalman’s,
two of the most representative and well-known of these
conjectures.

Consider the following feedback loop (Lur’e system).

ẋ = Ax+Bu, (3)

y = Cx (4)

u = −ψ(t, y) (5)

where x ∈ Rn, u ∈ R and y ∈ R are, respectively, the
state vector, the input and the output of the nominal
system. Matrices A, B, and C are constant. The feedback
interconnection (5) is given by a non-linear memoryless
function which satisfies a sector condition, this is ψ ∈
[k1, k2], and it is said that ψ belongs to the sector [k1, k2],
if it satisfies

(ψ(t, y)− k1y) (ψ(t, y)− k2y) ≤ 0

∀ t ∈ R+, ∀ y ∈ R, (6)

where k1, k2 are such that k2 > k1. The sector can also be
defined by [k1,∞] if

y (ψ(t, y)− k1y) ≥ 0 ∀ t ∈ R+, ∀ y ∈ R. (7)

Consider now the case ψ(t, y) = ky, k ∈ [k1, k2] in system
(3)-(5). That is, ψ is a linear function in the sector [k1, k2].
Suppose that the resulting system is AS for all k ∈ [k2, k2].
Aizerman’s conjecture (Aizerman, 1949) states that the
feedback loop is absolutely stable, this is, the origin is
globally AS (GAS) for any non linearity ψ ∈ [k1, k2].

Furthermore, Kalman’s conjecture (Kalman, 1957) states,
broadly speaking, that the system (3)-(5) is absolutely
stable if the following conditions are fulfilled:

K.I. The function ψ(y) is differentiable and such that

k1 < ψ′(y) < k2.

K.II. All linear feedback loops with ψ(y) = ky,
k ∈ [k1, k2] are AS.

As it is well-known, both conjectures are false. However,
their importance lies in the theoretical point of view, since
they lead to the question ‘What additional properties does
the linear system have to satisfy in order for the conjec-
tures to be true?’ An answer to this question is provided by
the circle criterion in the frequency domain, which relates
to the KYP lemma in the state-space formulation.
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3.1 Homogeneous extension of Lur’e problem

Homogeneous 
system-

ψ(t, . )

u y

Figure 1. Lur’e-like system with a homogeneous block in
the forward path.

Consider a generalisation of the Lur’e system (3)-(5):

ẋ = f(x) + g(x)u, (8)

y = h(x) (9)

u = −ψ(t, y) (10)

as it is shown in Fig. 1, where x = (x1, . . . , xn) ∈ Rn
represents the states of the block in the forward path,
whereas u and y, the input and output of the block,
respectively, are scalar quantities.

The vector field on the right hand side of (8) is considered
to be continuous in x and homogeneous of degree τ ∈ R
with respect to the dilations δrεx and εsu.

Notice that, since the homogeneous feedforward block is
affine in the input, it is required that f(x) ∈ nτ and
g(x) ∈ nτ−s. Furthermore, h(x) in (9) is a continuous
homogeneous function of degree σ > 0 with respect to
δrεx (i.e. h ∈ Hσ).

Finally, the feedback interconnection (10) is given by
a memoryless function satisfying a homogeneous sector
condition.

This new sector condition is proposed by following the
logic of Aizerman’s conjecture, in such a way that the
feedback function ψ is chosen in order for the closed loop
to preserve the homogeneity of degree τ of the block in the
forward path. This is achieved by making ψ(t, y) = γφ(y),
γ ∈ R, with φ(y) a homogeneous function of degree s/σ
with respect to the dilation εy, which implies u(δrεx) =
εsu(x). Therefore, from (2), the δrε−homogeneity of degree
τ is preserved.

Definition 5. Let ψ : R+×R→ R. It is said that ψ belongs
to the homogeneous sector

• [k1, k2]φ, if ψ(t, y) satisfies

(ψ(t, y)− k1φ(y)) (ψ(t, y)− k2φ(y)) ≤ 0

∀ t ∈ R+, ∀ y ∈ R, (11)

where k1, k2 are constants satisfying k1 < k2, and φ
is a homogeneous function of degree s/σ, σ > 0, with
respect to ε > 0.

• [k1,∞]φ, if ψ(t, y) satisfies

φ(y) (ψ(t, y)− k1φ(y)) ≥ 0

∀ t ∈ R+, ∀ y ∈ R. (12)

where k1 ∈ R and φ is a homogeneous function of
degree s/σ, σ > 0, with respect to ε > 0.

The background presented thus far makes it possible to
state the absolute stability problem for system (8)-(10) as
follows:

Definition 6. Suppose that ψ in (10) satisfies a homoge-
neous sector condition. The closed loop system (8)-(10)
is said to be absolutely stable if the origin is a GAS
equilibrium.

Sufficient conditions for absolute stability of system (8)-
(10) are presented in the following section.

4. HOMOGENEOUS CIRCLE CRITERION

Proposition 7. The closed-loop system (8)-(10) is abso-
lutely stable if

(i) ψ ∈ [k1,∞]φ and there exist a homogeneous Lya-
punov function V (x) ∈ Hm, m > max1≤i≤n ri, real
functions M(x), and L(x) such that L2(x) is positive
definite, satisfying the following equations

∇V (x) (f(x)− k1g(x)φ(h(x)) = −L2(x) (13)

∇V (x)g(x) = M2(x)φ(h(x))
(14)

(ii) ψ ∈ [k1, k2]φ, with k = k2 − k1, and there exist a
homogeneous Lyapunov function V (x) ∈ Hm, m >
max1≤i≤n ri, L : Rn → Rη, such that LT (x)L(x) is a
positive definite function, and M : Rn → Rη for some
value of η, which satisfy

∇V (x) (f(x)− k1g(x)φ(h(x)) = −LT (x)L(x) (15)

∇V (x)g(x) = kφ(h(x))MT (x)M(x)− 2LT (x)M(x)
(16)

Notice that the difference between this Proposition and
the conditions for absolute stability derived from the
dissipativity result by Hill and Moylan is the introduction
of the homogeneous function or array of functions M(x).
In Section 6 this difference is further developed.

Proof.

(i) The derivative of V along the trajectories of system
(8)-(10) is given by

V̇ = ∇V (f − gψ(t, h))

= ∇V (f − k1gφ(h))−∇V g (ψ(t, h)− k1φ(h))

= −L2 −M2φ(h) (ψ(t, h)− k1φ(h))

The fact that ψ ∈ [k1,∞]φ, i.e. φ(h) (ψ(t, h)− k1φ(h)) ≥
0, implies V̇ ≤ −L2(x) < 0. This allows us to conclude
that the origin is a GAS equilibrium of the closed-loop
system.

(ii) The derivative of V along the trajectories of system
(8)-(10) is given by

V̇ = ∇V (f − gψ(t, h))

= ∇V (f − k1gφ(h))−∇V g (ψ(t, h)− k1φ(h))

= −LTL−
(
kφ(h)MTM − 2LTM

)
(ψ(t, h)− k1φ(h))

= −‖L−M(ψ(t, h)− k1φ(h))‖2

−MTM (k2φ(h)− ψ(t, h)) (ψ(t, h)− k1φ(h))

where ‖·‖ is the Euclidean norm. Given that ψ ∈ [k1, k2]φ,

V̇ ≤ −‖L − M(ψ(t, h) − k1φ(h))‖2 < 0. This allows us
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to conclude that the origin is a GAS equilibrium of the
closed-loop system.

5. EXAMPLES

Example 1. Consider the feedback loop

Σ :


ẋ1 = −abx1eρ + x2,

ẋ2 = −bbx1e2ρ−1 + u

y = h(x) = x2

(17)

u = −ψ(t, y), ψ ∈ [k1,∞]φ (18)

φ(y) = bye
2ρ−1
ρ (19)

where b·eq = | · |qsign(·), q ≥ R. The vector field ẋ =

(ẋ1, ẋ2)
T

= f(x)+g(x)u is homogeneous of degree τ = (ρ−
1)/ρ with respect to the homogeneity weights (r1, r2) =
(1/ρ, 1) and s = (2ρ−1)/ρ. Moreover, the output y = h(x)
is a homogeneous function of degree σ = 1.

The case ρ = 1/2 corresponds to the Super Twisting
algorithm (STA) (Levant, 1993), which has properties of
robustness, precision and convergence to the origin in finite
time. This algorithm is the basis for the construction of
controllers, observers (Davila et al., 2005), and differentia-
tors (Levant, 1998), in the frame of higher order sliding-
mode control.

The sufficient conditions for stability introduced in the
previous section can be used in order to find a region in
the space of parameters a, b for which there exists k1 such
that the closed-loop system (17)-(19) is absolutely stable.
Moreover, the values of k1 can also be found following this
strategy.

Theorem 1 suggests a homogeneous Lyapunov candidate
function. In order for the function to be of class C1, we
make m equal to 2. Given the homogeneity weights, the
following function appears as a natural candidate:

V =
b

2ρ
|x1|2ρ +

1

2
|x2|2 (20)

This function is positive definite if the constant b is
positive.

Let us find a system of inequalities that guarantees the
conditions in (13) and (14) are met. On the one hand,
condition (16) is satisfied if

∇V (x)g(x) = x2 = bx2e
2ρ−1
ρ M2(x).

This is achieved by making M2(x) = |x2|
1−ρ
ρ . On the other

hand, we find that condition (13) is fulfilled if −∇V (f −
k1gφ(h)) = L2 is a positive definite function, this is

L2 = (abx1eρ − x2) bbx1e2ρ−1

+
(
bbx1e2ρ−1 + k1bx2e

2ρ−1
ρ

)
x2

= ab|x1|3ρ−1 + k1|x2|
3ρ−1
ρ ,

(21)

which is, clearly, positive definite if a > 0 and k1 > 0.
Therefore, it is possible to assert the absolute stability of
system (17)-(19) for such values of a, b, and k1.

It should be noted that the Lyapunov function (20) is of
class C1 if ρ > 1/2. In order to conclude on the absolute

stability of the STA (ρ = 1/2), tools of nonsmooth analysis
can be used as those in Shevitz and Paden (1994), Clarke
(1990), and Bacciotti and Ceragioli (1999).

Example 2. Let us consider now the same system with a
different output, as follows

Σ :


ẋ1 = −abx1eρ + x2,

ẋ2 = −bbx1e2ρ−1 + u

y = h(x) = x1

(22)

u = −ψ(t, y), ψ ∈ [k1, k2]φ (23)

φ(y) = bye2ρ−1 (24)

The vector field is again homogeneous of degree τ = (ρ−
1)/ρ with respect to the homogeneity weights (r1, r2) =
(1/ρ, 1) and s = (2ρ − 1)/ρ. However, the output y =
h(x) = x1 is a homogeneous function of degree σ = 1/ρ.

Conditions (15) and (16) can be used in order to find a
region in the space of parameters a, b for which there exist
k1 and k2 such that the feedback loop (22)-(24) is abso-
lutely stable. Following a similar approach to that of the
previous example, the following homogeneous Lyapunov
candidate function (Moreno et al., 2014) is proposed:

V =
γ1
3ρ
|x1|3ρ − bx1e2ρx2 +

γ2
3
|x2|3.

In order for this function to be positive definite, the
inequalities

γ1 − 2ρc3/2 > 0 and γ2 − c−3 > 0 (25)

have to be satisfied, for some c > 0. This is due to the fact
that for any real numbers α > 0, β > 0, c > 0, p > 1,
and q > 1 with p−1 + q−1 = 1, the following inequality
(Young’s inequality) holds

αβ <
cp

p
αp +

c−q

q
βq.

Therefore,

V ≥ 1

3ρ

(
γ1 − 2ρc3/2

)
|x1|3ρ +

1

3

(
γ2 − c−3

)
|x2|3.

The inequalities in (25) are equivalent to γ1 > 2ρc3/2 and
c3 > 1

γ2
. Thus, a necessary and sufficient condition for the

positivity of V is that γ2γ
2
1 > 4ρ2.

Let us find a system of inequalities that guarantees the
conditions in (15) and (16) are met. On the one hand,
condition (16) is satisfied if

∇V (x)g(x) = −bx1e2ρ + γ2bx2e2

=
(
kbx1e2ρ−1M(x)− 2L(x)

)T
M(x).

This can be achieved by making

M(x) = k−1/2

 |x1|1/2

γ
1/2
2 |x1|

1−2ρ
2 |x2|

0

 , and

L(x) =


k1/2bx1e

4ρ−1
2

γ
1/2
2 k1/2

2

(
bx1e

2ρ−1
2 |x2|+ |x1|

2ρ−1
2 x2

)
L3(x)

 .
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On the other hand, we find that condition (15) is fulfilled
if L2

3 = −∇V (f − k1gφ(h))−L2
1−L2

2 is a positive definite
function, this is

L2
3 = (abx1eρ − x2)

(
γ1bx1e3ρ−1 − 2ρ|x1|2ρ−1x2

)
+ (b+ k1) bx1e2ρ−1

(
γ2bx2e2 − bx1e2ρ

)
− γ12k|x1|4ρ−1 −

kγ2
2
|x1|2ρ−1|x2|2

+
kγ2
2
bx1e2ρ−1bx2e2

= |x1|2ρ−1
(
bx1eρ
x2

)T
Q(x)

(
bx1eρ
x2

)
,

where

Q(x) =

(
Q11 Q12

Q12 Q22(x)

)

=

aγ1 − (b+ k1 + k) −γ1 + 2ρa

2

−γ1 + 2ρa

2
Q22(x)

 ,

with

Q22(x) = 2ρ− γ2
(
k

2
−
(
b+ k1 +

k

2

)
bx1x2e0

)
.

Observe that for x1x2 < 0, L2
3(x) is positive if and only if

Q11 > 0 and 2ρ− γ2 (b+ k1 + k) > 0.

Notice also that L2
3(x) is positive if and only if Q(x) is

a positive definite matrix for x1x2 > 0 or, equivalently,
Q11 > 0 and

Q11 (2ρ+ γ2 (b+ k1)) >

(
γ1 + 2ρa

2

)2

.

In summary, system (17)-(19) is absolutely stable if there
exist k1 ∈ R, k ≥ 0, γ1, and γ2 such that following
inequalities are satisfied:

γ2γ
2
1 > 4ρ2

Q11 = aγ1 − (b+ k1 + k) > 0

Q11 (2ρ+ γ2 (b+ k1)) >
1

4
(γ1 + 2ρa)

2

2ρ− γ2 (b+ k1 + k) > 0

(26)

Notice that when the inequalities in (26) are true, L2(x)
is positive definite only if ρ = 1/2. For other values of ρ,
it is positive semidefinite. However, for the case in which
ψ does not depend directly on t, asymptotic stability still
holds due to the invariance principle.

A plot of the region of parameters that renders system
(17)-(19) absolutely stable can be found using inequalities
(26), as shown in Fig. 2.

6. DISCUSSION

As it was stated in Section 3, the circle criterion that
provides a solution to the Lur’e problem has a close
relationship with the prominent KYP lemma. This lemma,
in turn, offers a tool in the state-space to find out whether
or not a system is (strictly) positive real, a property
intimately related to the concept of passivity.

(a) Case ρ = 1 (b) Case ρ = 1/2

Figure 2. Regions of absolute stability in the space of
parameters for different values of ρ and k = 2.

Therefore, the circle criterion brings a two-way connection
between the solution to the Lur’e problem and the concept
of passivity, which is a recurring theme in the literature
of non linear systems theory. However, the generalisation
that we propose does not have such an immediate connec-
tion to conditions for passivity as those of Hill-Moylan; the
difference comes from the introduction of the term M(x).

Making M(x) = 1, that is if conditions (15), (16) were
instead

∇V (x) (f(x)− k1g(x)φ(h(x))) = −L2(x) (27)

∇V (x)g(x) = kφ(h(x))− 2L(x),
(28)

then, the conditions are equivalent to the cited Hill-Moylan
conditions of passivity for the system

ẋ = f(x) + g(x)(ū− k1φ(h(x)))

ȳ = kφ(h(x)) + ū,

which is a loop transformation as those found in the liter-
ature of nonlinear systems regarding the absolute stability
problem (Vidyasagar, 2002) (Khalil, 1996). However, if
these conditions were satisfied there would be an unde-
sirable restriction on the degree of homogeneity of V (x).

To illustrate this, let us take the case of Example 2. The
conditions in (27) would force the homogeneity degree
of V (x) (which we denote as m) to be equal to 2s − τ .
This is because equation (28) and the fact that V , g,
φ(h), and L are δrε homogeneous of degrees m, τ − s, s,
and s, respectively, imply that the homogeneity degree of
∇V (x)g(x) is equal to that of φ(h(x)). This ism+τ−s = s.
In this case s = (2ρ− 1)/ρ, and τ = (ρ− 1)/ρ. Therefore,
the degree of homogeneity of V would necessarily be equal
to 2s− τ = (3ρ− 1)/ρ.

As the interest of this article is to work with functions as
those described by Theorem 1, the recently found value of
m allows to propose functions of class C1 only if ρ > 2/3
(because this requires m to be greater than max{1/ρ, 1},
therefore (3ρ− 1)/ρ > 1/ρ which implies ρ > 2/3). Intro-
ducing M(x) allows to choose an arbitrary homogeneity
degree for the function V (x), which translates to V being
differentiable an arbitrary number of times.

Equally remarkable is the fact that the homogeneous sec-
tor condition introduced in Section 3 enables the analysis
of closed-loop systems with feedback functions having dif-
ferent properties, for instance, non-Lipschitz functions at
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Figure 3. Feedback functions ψ in different sectors.

zero or functions that do not cross the origin, as shown in
Fig. 3.

It is also important to emphasise the relevance of this
result concerning the analysis of complex non-linear and
non-homogeneous systems exhibiting properties such as
finite-time stabilisation, as long as they can be represented
by the generalised Lur’e system that is proposed. More-
over, this is also a tool for the study of the stability of
time-varying homogeneous systems, see, for instance, Jerbi
et al. (2013) and Peuteman and Aeyels (1999).

7. CONCLUSIONS

The aim of this paper is to develop a set of tools in order
to analyse the stability of a class of systems that can be
modelled by the feedback loop (8)-(10), in similar terms
as those that offer solutions to the Lur’e problem.

The main contributions presented are the statement of
homogeneous generalisations of the Lur’e problem and the
circle criterion.

Contrary to the original circle criterion, the conditions
presented in this article do not have an immediate con-
nection to the results of passivity and dissipativity, which
motivates further research.
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