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Abstract: This contribution reports on an ongoing research project aimed in developing a
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1. INTRODUCTION

During the last decades there have been a growing interest
in geometrical description and interpretation of thermody-
namic systems. We refer the interested reader to the works
Mruga la et al. (1991); Eberard et al. (2007); Merker and
Krüger (2013); Delvenne and Sandberg (2014); Gromov
and Caines (2015) and references therein for an overview
of different directions of research within this broad field.

One particularly important application of thermodynam-
ics is the design and optimisation of thermodynamic (heat)
engines, that is systems that transform heat energy into
the mechanic energy. By now, dozens of heat engines have
been developed working according to different schemes
(i.e., implementing different thermodynamic cycles). How-
ever, there is one aspect common for any heat engine: the
interaction between the thermodynamic subsystem and
the mechanical one. We believe that the geometrical anal-
ysis of the interconnection structure of these two systems
may allow us to better understand and optimise the overall
system in order to achieve maximal possible efficiency.

The main obstacle in developing this programme is that
thermodynamic and mechanical systems “live in differ-
ent worlds”: a mechanical system evolves on an even-
dimensional symplectic manifold while a thermodynamic
system evolves on an odd-dimensional submanifold of a
contact manifold (often referred to as the thermodynamic
phase space). Recently, there have been several attempts
to reconcile these representations. In particular, it was
shown that contact vector fields can be used to describe the
evolution of dissipative Hamiltonian systems (see Bravetti
et al. (2016) and references therein). On the other hand,
there are a number of results that attempt to describe ther-
modynamic systems using the Hamiltonian (symplectic)

? The first author acknowledges the research grant 17-11-01093 from
the Russian Science Foundation.

framework (see, e.g., Morrison (1998); Öttinger (2005)).
However, despite many theoretical advances there have not
been substantial progress in the geometrical description of
interconnected thermo-mechanical systems so far.

In this contribution we use the approach based upon
the symplectification of the thermodynamic evolution. It
is shown formally that the thermodynamic evolutionary
equations can be obtained in the same way as the ones
generated by a mechanical Hamiltonian.This approach
leads to certain loss of information. However, we argue
that this does not restrict the applicability of the approach
as we retain most important information. The developed
approach is illustrated by a simple, but physically relevant
example.

The paper is organized as follows. Section 2 gives a
brief overview of modelling Hamiltonian systems with
constraints. Section 3 presents necessary facts about the
description of thermodynamic evolution and discusses in
detail the bundle isomorphism induced by the thermo-
dynamic contact 1-form. In Sec. 4 we discuss different
approaches to the description of interconnected systems
while Sec. 5 presents an example.

2. HAMILTONIAN SYSTEMS WITH CONSTRAINTS

Consider a controlled mechanical system with the Hamil-
tonian H(q, p) : T ∗Q → R, where Q is the configuration
space which we assume to be equal to Rn. Let there be a
number of, generally, non-holonomic constraints expressed
as a distribution C(q) ∈ TqQ restricting the evolution of
the system. We assume that the distribution C is gener-
ated by a set of linearly independent 1-forms φi(q) ∈ T ∗Q,
i = 1, . . . , k. This implies that the admissible velocity vec-
tors q̇ belong to the kernel of a smooth k-dimensional co-
distribution C∗ ⊂ T ∗Q, i.e. q̇ ∈ kerC∗, which is expressed
as 〈q̇, σ〉 = 0 with σ ∈ C∗ and 〈·, ·〉 : TQ × T ∗Q → R
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the standard pairing operation or, in algebraic notation,
as CT (q)q̇ = 0, where C(q) is an [n × k] matrix whose
columns are the components of the 1-forms spanning C∗

written in local coordinates.

The distribution C is said to be involutive if X,Y ∈ C ⇒
[X,Y ] ∈ C, where the square brackets denote the Lie
commutator of two vector fields. By Frobenius theorem an
involutive distribution can be integrated to yield k smooth
functions c(q) such that X(c) = 0. These functions are
referred to as the first integrals. In this case we say that
the respective constraints (2b) are holonomic. Otherwise,
the constraints are said to be non-holonomic. In practice,
the set of constraints include both holonomic and non-
holonomic constraints.

An unconstrained Hamiltonian system evolves on the state
space manifold T ∗Q which is endowed with the canonical
symplectic form ω = dqi ∧ dpi (here and henceforth the
Einstein summation convention is implied). This sym-
plectic form defines a canonical isomorphism between the
tangent and cotangent bundles: Ω : T (T ∗Q) → T ∗(T ∗Q)
defined by Ω(X)(·) = ω(X, ·). The vector field, correspond-
ing to the Hamiltonian H, is defined as XH = Ω−1(dH),
i.e. ω(XH , ·) = dH.

When dealing with the constrained system, the Hamilto-
nian function has to be augmented to take into account the
constraints. Thus, we define the constrained vector field as
follows:

XH,φ = Ω−1(dH + λiπ
∗
Qφ

i), (1)

where πQ : T ∗Q → Q is the projection of the cotangent
bundle on its base and π∗Q is the pull-back of πQ which

lifts φi to T ∗(T ∗Q).

In local coordinates, the dynamics of a port-Hamiltonian
system with constraints is described by a set of differential-
algebraic equations of the form (Neimark and Fufaev,
1972; Arnold et al., 2006; Castaños et al., 2013):

ẋ = J∇H(x) + Ĉ(x)λ+ ĝ(x)u (2a)

0 = CT (q)∇pH(x) (2b)

y = ∇TH(x)ĝ(x) , (2c)

where H is the Hamiltonian (energy) function of the
unconstrained system, the state is given by xT =

(
qT pT

)
with r ∈ Q and p ∈ T ∗rQ the positions and momenta,

respectively; Ĉ(x) =
(
0[k×n] C

T (x)
)T

, λ ∈ Rk is the
vector of implicit variables that enforce the constraints;
(u, y) ∈ R∗m × Rm are the conjugated external port

variables, and ĝ(x) =
(
0[m×n] g

T (x)
)T

is a (2n × m)-
matrix such that rank ĝ(x) = m for all x ∈ Rn×R∗n. The
[2n×2n]-matrix J is the one associated with the canonical
symplectic form,

J =

(
0n In
−In 0n

)
.

Here and forth all functions are assumed to be smooth
enough and the gradient is assumed to be a column vector.

The vector field X ∈ T (T ∗Rn) is written as

X = DH +Dcλ+Xgu (3)

where

DH = Ω−1(dH) =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
(4)

is the Hamiltonian vector field,

DCλ = Cji (q)λj
∂

∂pi
(5)

is the vector field of the internal (constraint) forces, and

Xgu = gji uj
∂

∂pi
is the control vector field.

Equation (2b) constrains the configuration space of (2)
and can be written as DC(H) = 0. This is equivalent to
saying that the internal forces do not produce work as
there is no displacement in the direction of the constraint
forces and hence they do not alter the total energy of the
system. However, this may not be true in general, when
non-holonomic constraints of general form are considered
(see, e.g., (Bloch, 2003; Baruh, 1999)).

3. THERMODYNAMIC CONTACT VECTOR FIELDS

In this section, we present a brief overview of the geometric
approach to the description of thermodynamic systems’
evolution. For a more detailed treatment see Callen (1985);
Kondepudi and Prigogine (1998) for thermodynamics,
Geiges (2008); Arnold (1989) for contact geometry, and
Mruga la et al. (1991); Gromov and Caines (2015) for the
contact description of thermodynamics.

3.1 Contact geometry basics

In the following, we will consider single phase, single
component homogeneous thermodynamic systems that do
not undergo any chemical transformations. The state space
of such a system can be represented as an embedded
manifold in the thermodynamic phase space M. This
manifold is shown to be an integral (Legendre) manifold
corresponding to a specific contact 1-form.

Definition 1. Let (x0, x1, . . . , xn, y1, . . . , yn) be the local
coordinates on M. The canonical thermodynamic contact
1-form is defined as

α = dx0 − yidxi, 1 ≤ i ≤ n. (6)

Each Legendre manifold on (M, α) is uniquely determined
by a particular function.

Lemma 2. (Arnold (1989)). Let N = {1, . . . , n} be the
set of indices. Given the contact form (6), a disjoint
partitioning I, J ⊂ N , I ∩ J = ∅, I ∪ J = N with nI
and nJ components, nI + nJ = n, and a smooth function
ζ(xi, yj), i ∈ I, j ∈ J , the following equations define the
Legendre manifold Lζ on (M, α):

λ0(x, y) = x0 − ζ + yj
∂ζ

∂yj
= 0, (7a)

λj(x, y) = xj +
∂ζ

∂yj
= 0, (7b)

λi(x, y) = yi −
∂ζ

∂xi
= 0. (7c)

The variables (xi, yj), i ∈ I, j ∈ J can be chosen as local
coordinates in some open neighbourhood of a ∈ Lζ . The
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function ζ is called the generating function of the Legendre
manifold Lζ .
In Gromov and Caines (2011) it was shown that the choice
of U(S, V,N) as a generating function naturally leads to
the identification of x and y with the extensive and the
intensive thermodynamic variables. It can be shown either,
see Gromov and Caines (2011), that any state function
obtained as the Legendre transformation of U(S, V,N)
generates the same Legendre manifold up to a choice of
coordinate basis.

In the following, we will focus on the energy based rep-
resentation and thus will consider only the Legendre
manifolds generated by functions of n arguments x, i.e.,
ζ(x1, . . . , xn). While not restricting the generality of the
approach this will allow us to simplify notation at some
points.

Below, we formulate a number of results on the properties
of contact forms that will be used later on.

Proposition 3. (Libermann and Marle (1987)). Given a con-
tact manifold (M, α), the tangent bundle TM can be
decomposed into

TM = V(α)⊕H(α),

where H(α) = kerα, called the horizontal bundle, is of
dimension 2n, and V(α) = ker dα = TM\H(α), called
the vertical bundle, is of dimension 1.

The following result shows that a contact 1-form can be
used to define a bundle isomorphism similar to that defined
by a symplectic form.

Proposition 4. (Libermann and Marle (1987)). The map-
ping Ω : TM→ T ∗M, defined by

Ω : X 7→ ıXdα,

maps any vector field to a semi-basic 1-form β ∈ B, where
B = {φ ∈ T ∗M|ıEφ = 0} and E is the Reeb vector field
defined by ıEα = 1, ıEdα = 0. Furthermore, the restriction
of Ω to the vector space of horizontal vector fields defines
an isomorphism between this vector space and the vector
space B. We denote this by Ω̃ = Ω

∣∣
H(α)

: H(α)→ B.

Henceforth, for any X ∈ H(α) and β ∈ B we will
employ the “musical” notation and will write [X ∈ B to
denote Ω̃(X) and ]β to denote the inverse operation, i.e.,
]β = Ω̃−1(β) ∈ H(α).

3.2 Contact vector fields

On particular approach to the description of the evolution
of a thermodynamic system consists in considering the
respective vector field as a contact vector field as discussed
below.

Definition 5. Let X be a vector field on the contact
manifold (M, α). We denote the local flow of X by ψt. The
vector field X is called a contact vector field if (ψt)∗H(α) =
H(α), where H(α) is the horizontal bundle. The vector
field X is called a strict contact vector field if ψ∗t α = α.

In other words, the flow of a contact vector field preserves
the contact structure, i.e., [X,H(α)] ⊆ H(α), whereas the
flow of a strict contact vector field preserves the contact
form.

There is a unique correspondence between a contact vector
field and a real-valued function onM, which is sometimes
called the contact Hamiltonian (see, e.g., Arnold (1989))
as stated in the following theorem.

Theorem 6. (Geiges (2008)). Given a contact 1-form α
(6), let X be a contact vector field. Its contact Hamiltonian
F : M → R is defined as F = α(X). Conversely, given a
contact Hamiltonian F , the corresponding contact vector
field is

X=

(
F−yi

∂F

∂yi

)
∂

∂x0
− ∂F

∂yj

∂

∂xj
+

(
yi
∂F

∂x0
+
∂F

∂xi

)
∂

∂yi
(8)

Contact Hamiltonians differ in some respects from their
symplectic counterparts. In particular, contact vector
fields are, in general, transverse to the Legendre manifolds
as follows from the definition of the contact Hamiltonian.
To overcome this, it was proposed in (Mruga la et al., 1991)
to consider contact vector fields satisfying an additional
property:

Theorem 7. Let L ⊂M be a Legendre manifold. Then X
(8) is tangent to L, i.e. X|L ∈ TL, if and only if F vanishes
on L, i.e., L ⊂ ker(F ).

Thus one defines the class of thermodynamic contact
vector fields.

Definition 8. A contact vector field Xc is said to be
a thermodynamic contact vector field on the Legendre
manifold L if the corresponding contact Hamiltonian Fc
satisfies the invariance condition L ⊂ ker(Fc).

Corollary 9. For the restriction of a thermodynamic con-
tact vector field Xc to the corresponding Legendre mani-
fold L holds

Xc|L = yi
∂F

∂yi

∂

∂x0
+
∂F

∂yj

∂

∂xj
−
(
yi
∂F

∂x0
+
∂F

∂xi

)
∂

∂yi
. (9)

Let, furthermore, the contact Hamiltonian be independent
of x0, then (9) turns into

Xc|L = yi
∂F

∂yi

∂

∂x0
+
∂F

∂yj

∂

∂xj
− ∂F

∂xi
∂

∂yi
. (10)

Following Favache et al. (2009), we consider the following
contact Hamiltonian:

F (x0, xi, yi) =

(
∂ζ

∂xi
− yi

)
Φi, (11)

where Φi are the flow rates (fluxes) of the respective
extensive variables xi.

3.3 Bundle isomorphism on the thermodynamic phase
space

Consider the thermodynamic phase space M and the
Legendre manifold L. We define the projection πL :M→
Lζ . The following result follows immediately:

Lemma 10. Let α be the thermodynamic contact 1-form
and Xc be the contact vector field on the Legendre
manifold L. Then the following holds:

(πL)∗Xc ∈ H(α).

Proof.

α ((πL)∗Xc) = α (Xc)|L = Fc|L = 0⇒ Xc ∈ H(α).

2
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Also, let πo : M → Mo be a canonical projection of a
point z ∈M onto its last 2n coordinates. This can be seen
as a mapping from M to the equivalence class M/x0.

Denote by Fo the set of all contact Hamiltonians that
do not depend on x0 and denote the contact vector field
generated by F o ∈ Fo by Xo

c . It can be easily shown that
this vector field has the structure (10). Denote the set of
all vector fields Xo

c by X o. We have the following result:

Lemma 11. Let α be the thermodynamic 1-form, M the
thermodynamic phase space and π0 the canonical pro-
jection as defined above. The following inclusion holds:
πo∗ X o ⊂ πo∗ TM∩H(α).

Furthermore, we have the following characterization for
the set of semi-basic 1-forms B:

Lemma 12. The set of semi-basic 1-forms B is identified
with the cotangent bundle to πoM:

B = T ∗(πoM).

Let ζ(x) : M → R be a generating function and Lζ be
the equilibrium manifold generated by ζ(x) as defined in
Lemma 2. The tangent bundle to Lζ is a span of n linearly
independent sections of TM:

Xi = yi
∂

∂x0
+

∂

∂xi
+

∂2ζ

∂xi∂xi
∂

∂yi
, i = 1, . . . , n. (12)

The generic thermodynamic vector field can therefore be
written as

X = yiΦ
[i] ∂

∂x0
+ Φ[i] ∂

∂xi
+ Φ[i] ∂2ζ

∂xi∂xi
∂

∂yi
, (13)

where Φ[i] are the thermodynamic controls which can be
associated with the fluxes of the respective variables xi.

Theorem 13. For control contact Hamiltonians (11) the
following holds:

• The differential of any control contact Hamiltonian
(11) is a semi-basic 1-form;
• The map Ω sends vector field (13) to the differential

of the respective control contact Hamiltonian (11):
[X = dF .
• Conversely, the inverse transformation maps differen-

tials of the control contact Hamiltonians to the subset
of TM as follows:

]dF = πo∗X ∈ π0
∗ TM∩H(α)

The above result states that the differential of the thermo-
dynamic 1-form α can play a role similar to that played
by the symplectic 2-form. Namely, when restricted to the
2n coordinates (x1, . . . , xn, y1, . . . , yn) it defines an isomor-
phism between the differential of the contact Hamiltonian
and a section in the subspace π0

∗ TM ∩ H(α). This sub-
space consists of vector fields defining the evolution of the
respective 2n state variables while neglecting x0.

Therefore, this approach allows to describe the evolution of
a thermodynamic system in the same way as the evolution
of a mechanical system is described while sacrificing a part
of information related to the dynamics of x0.

In the subsequent sections we will use this result to
develop a unified framework for the description of thermo-
mechanical systems.

4. INTERCONNECTION STRUCTURE

4.1 Mechanical systems

When considering interconnection of mechanical systems
one may stay with the standard input/output interconnec-
tion framework where input of one system is attached to
the output of another system and vice versa. However, in
many cases this may lead to unnecessary complications.
One particular reason for this is that the output of one
system can not always serve as an input for another system
because the outputs are typically positions and velocities
and the inputs are forces. In general, this approach works
well when one considers the interconnection between a
mechanical system and a controller which transforms the
signals in the opposite direction: from positions and veloc-
ities to forces.

An alternative approach was developed by Willems in a
series of works on behavioural systems (Willems, 1991,
2007). The behavioural approach identifies the dynamics of
a system with a family of trajectories, called the behaviour.
Within this approach, one does not distinguish between
inputs and outputs. The interconnection structure is thus
a set of constraints imposed on the system. This approach
is similar to that adopted in this paper. Namely, we do
not consider the signals as inputs or outputs, but rather
as variables which stay in certain functional relations
determined by the physical laws.

4.2 Thermo-mechanic systems

When dealing with thermo-mechanical systems, the re-
strictions associated with the input/output approach be-
comes more evident. Consider, for instance, the system
consisting of two chambers with gas separated by a mov-
able wall. This system was studied in detail in (Gromov
and Caines, 2015). Here we consider it from the I/O
viewpoint. The system consists of two thermodynamic sys-
tems and a mechanical one. The inputs of thermodynamic
systems are the flows of extensive variables Φ(·) while the
outputs are the intensive variables. For the mechanical
system (the movable wall), the input is the force applied to
the wall and the output is the velocity (conjugated variable
w.r.t. the system’s energy). As was shown in (Gromov
and Caines, 2015), the input of the mechanical system
depends on the difference of the inputs of the respective
thermodynamic systems.

An even more complex interconnection structure occurs
when we consider a thermodynamic engine (see, e.g.,
Mueller-Roemer and Caines (2015)). Such systems exhibit
a complex interaction between thermodynamic and me-
chanical components accompanied by continuous transfor-
mation between kinetic and potential energy on the one
side and the internal energy of the working body on the
other side. This interconnection is particularly difficult to
capture within the I/O interconnection framework.

4.3 Interconnection structure

Let qi, pi, i = 1, . . . , n be the coordinates and momenta
describing the mechanical subsystem. We extend the set of
variables (qi, pi), by new variables qn+j = xj and pn+j =
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yj , j = 1, . . . , k, describing the thermodynamic subsystem.
Let ω and α be the symplectic and contact differential
forms corresponding to the respective subsystems. We
define the extended symplectic form to be ω̃ = ω + dα.
Finally, the extended Hamiltonian function is defined as
H̃ = H(q, p) + F (x, y), where H(q, p) and F (x, y) are the
(mechanical) Hamiltonian and the contact Hamiltonian.
Note that F (x, y) is assumed to be independent of x0.
This is a standard assumption which is – to the best of
authors’ knowledge – not justified formally. An analysis of
this issue is a subject of future investigation.

The vector field describing the dynamics of the composite
system is given by

ω̃(X̃, ·) = dH̃. (14)

Note that X̃ evolves on a 2(n + k)-dimensional manifold
and does not reflect the change in the coordinate x0.
However, since x0 does not enter F (x, y), this does not
influence the result.

Next, we assume that there is a number of (non-)holonomic
constraints imposed on the system. In Gromov and Caines
(2015), an attempt to classify possible constraints was
undertaken. However, we believe that the particular form
of the constraints depends on the specific interconnection
structure and should be studied on the case by case basis.
This is the subject of an ongoing research that will be
reported elsewhere. Below we present a couple of general
remarks.

The set of constraints is described as a kernel of a co-
distribution formed by 1-forms describing individual con-
straints. Any holonomic constraint can be transformed
into a 1-form by taking a differential. Since the internal
energy (x0) does not enter the model, any constraints in-
volving the internal energy can be alternatively expressed
using dx0 = yidx

i. This follows from the fact that the
vector field Xo

c generated by F o belongs to H(α) as stated
in Theorem 13.

For a given set of 1-forms φ̃ the resulting constrained
vector field is defined as

X̃H̃,φ = Ω̃−1(dH̃ + λiφ̃
i), (15)

where we assume that the respective 1-forms are defined
on the cotangent bundle to the extended thermo-mechanic
phase space.

5. EXAMPLE

Consider a simple system that can be considered as a pre-
cursor of the Stirling engine. Its schematic representation
is shown in Fig. 1. This system consists of two subsystems:
a mechanical and a thermodynamic one.

First consider the thermodynamic subsystem (cylinder
with gas) which interacts with its environment through the
work exchange (piston) and heat exchange (heater/cooler).
The contact Hamiltonian has the form (11) . Written using
thermodynamic notation it takes the following form:

F (S, V, T, p) =

(
∂U

∂S
− T

)
ΦS +

(
∂U

∂V
+ p

)
ΦV .

Here we chose the generating function ζ to be equal to the
internal energy U(S, V ).

Fig. 1. Thermo-mechanical system consisting of a cylinder
with pressurised gas, a heater/cooler and a piston
connected to a spring

One can also describe the dynamics of the mechanical part
by using the (mechanical) Hamiltonian

H =
r2

2m
+
ksx

2

2
,

where the first term is the kinetic energy and the second
one is the potential energy. Here, x is the displacement of
the piston, r is the linear momentum, m is the mass of the
piston, and ks is the spring constant.

Consider an extended symplectic form defined as ω̃ = ω+
dα, where ω is the symplectic 2-form and α is the ther-
modynamic contact 1-form. The extended Hamiltonian
function is H̃ = H + F . As described in Subsection 4.3,
the vector field of the composite system X̃ is defined as in
(14). The corresponding set of ODEs is

ẋ =
r

m
ṙ = −ksx+ F

Ṡ = ΦS

V̇ = ΦV

Ṫ =
∂2U

∂S∂S
ΦS +

∂2U

∂V ∂S
ΦV

−ṗ =
∂2U

∂S∂V
ΦS +

∂2U

∂V ∂V
ΦV ,

(16)

where F is the force applied to the piston.

The thermodynamic and the mechanical subsystems in-
teract through the piston which is affected both by the
pressure within the cylinder and by the force with which
the spring pushes the piston. This gives two constraints:

(1) The change of the mechanical energy is equal to the
work done by the thermodynamic system:

φ1 = pdV − r

m
dr − ksxdx.

(2) The change of the volume of the gas is related to the
velocity of the piston:

φ2 = dV −Adx.
The dynamics of the constraint system is thus
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ẋ =
r

m
− λ1ksx− λ2A

ṙ = −ksx+ F − λ1
r

m
Ṡ = ΦS

V̇ = ΦV + λ1p+ λ2

Ṫ =
∂2U

∂S∂S
ΦS +

∂2U

∂V ∂S
ΦV

−ṗ =
∂2U

∂S∂V
ΦS +

∂2U

∂V ∂V
ΦV .

(17)

The system (17) can be approached from different di-
rections. The most obvious way is to use the constraint
to restrict the set of admissible fields. In this particular
case this would imply that we “fix” ΦV and F using the

relations pΦV =
r

m
F and ΦV =

Ar

m
.

Should there be holonomic constraints imposed on the
system, it may prove useful to use the approach based
on implicit description of constrained Hamiltonian systems
developed in (Castaños et al., 2013; Castaños and Gromov,
2016).

6. CONCLUSIONS

This contribution presents initial results on the unified
description of interconnected thermo-mechanical systems.
It is shown that such systems can be described within the
framework of constrained Hamiltonian systems. The next
step is to extend the obtained results to a thermodynamic
engine (the Stirling engine being the first candidate) and
apply to the obtained model standard control methods
developed for constrained Hamiltonian systems.
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