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Abstract— In this paper we address the problem of
establishing conditions for global asymptotic stability in output
feedback sliding-mode control. The proposed methodology
introduces a linear term in a first-order sliding-mode controller.
This allows to characterize the closed loop with the input-to-
state stability property. Also, a Lyapunov-based methodology
to find the correct gains for this controller is presented.

I. INTRODUCTION
Sliding modes (SM) have proven to be one of the most

effective control methods to deal with systems that present
unknown inputs and disturbances, since they are capable of
theoretically rejecting them exactly when they are matched
to the control input. Another important feature of the
SM controllers is that they provide finite-time and exact
convergence of the states to a sliding surface that can be
designed in any convenient way for the system [17].

Most of the times, in order to implement a control law,
a complete measure of the states of a system is needed.
Unfortunately, in real life systems it is not always the
case that a measure of the complete state is available, due
sometimes to the high cost of some sensors or to the fact
that in some systems it is simply impossible to measure a
state, no matter how accurate a sensor can be. This is the
reason why many efforts have been dedicated to study the
problem of control with only output information, which
has derived in two main branches: the design of state
observers and output feedback (OF) control strategies. One
advantage of the latter approach is that in most cases the
separation principle does not hold and it is not possible to
design separately a controller and an observer that feeds it.
Also, the robustness of a controller against perturbations is
usually lost when it is connected directly to an observer.
The problem of Output Feedback Sliding Modes has
been addressed in a number of works, for example [3],
[4], [5], [7], with different approaches in terms of the
(un)matchedness of the perturbations, the relative degree of
the output and the strong or weak observability they require.

Another approach to study systems under disturbances
or noise is through the use of the input-to-state stability
(ISS) property, which can provide conditions to assure
that a system’s state remains bounded when its inputs are
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bounded, and tends to equilibrium when the inputs tend
to zero [16]. The input-to-state stability property has been
studied since the eighties and many applications have been
found. This technique has also proven to be very helpful
when studying the stability of interconnected systems, and
many efforts have been dedicated to that matter [9], [11].
Another advantage of the ISS literature is that there exists
many works dedicated to the relation of the ISS property
and the existence of ISS-Lyapunov functions [12], which
can be guessed from a Lyapunov function for the unforced
system.

Recently, the ISS theory has been extended to a new
concept, the integral-input-to-state stability (iISS) property,
which can characterize a wider class of systems than the
ISS one. The reason for this is that, while the ISS concept
requires that the state of a system and its input are bounded
by the same norm, the iISS allows for inputs bounded by an
integral norm and states bounded by a supremum one [2].
This is the case of sliding-mode controllers with constant
gains, for example. Along with the iISS theory, some
tools have been developed for the study of the stability of
interconnected systems [8], [10]. A useful resource to study
the iISS and ISS properties of nonlinear systems through the
use of weighted homogeneity is [6], which can be applied
to the sliding-mode controllers due to their homogeneous
nature. While the iISS concept is an important advance
in the control theory, its applications are still not as well
explored as the ISS ones.

Regular forms were introduced to the control literature
since the early eighties [1], [17] and have been widely used
ever since, mainly because of to the simple visualization of
a system’s characteristics that they offer, which facilitates
greatly the control design. A similar technique arose ten
years later, with the development of the backstepping theory
[13]. One of the main contributions of [4] and [7] is the
introduction of an output-based regular form for relative
degree one for the first work, and a generalization for
arbitrary relative degree for the latter. This form is used
to design a virtual control that leads to a dynamic sliding
surface to which the states of the system converge in finite
time with the aid of a sliding-mode controller of order one
and two, respectively.

While all the works on output feedback sliding-mode
control that we have mentioned offer good solutions
and methodologies for systems with different kinds of
perturbations and different relative degrees, the common



denominator is that the stability that is ensured is only
semi global and depends on the characteristics of the zero
dynamics and the initial conditions of the complete system.
In particular, in [7] and [4], the way of choosing adequate
gains for the controller, in order to ensure global stability
of the solution, remained open.

The main contribution of this paper is to propose a
sliding-mode controller with an added linear term, in such
a way that it can be characterized as ISS i.e. not only iISS.
Also, and a methodology to find the correct gains for this
controller when applied to the solution described in [7].
Using the methodology proposed in this paper, global and
asymptotic stability can be achieved.

II. PRELIMINARIES

A. Notation

In this paper we use the following notation: ‖ · ‖ denotes
the euclidean norm of a signal while | · | denotes the absolute
value of a scalar, λmax(A) denotes the maximal eigenvalue
of a matrix A and λmin(A) denotes its minimal eigenvalue.
An identity matrix of dimension m is represented by Im.

B. ISS

Definition 1: [14] A continuous function α : [0,a) →
[0,∞) belongs to class K if it is strictly increasing and
α(0) = 0. It belongs to class K∞ if a = ∞ and α(r)→ ∞ as
r→ ∞.

Definition 2: [14] A continuous function β :
[0,a) × [0,∞) → [0,∞) belongs to class K L if, for
each fixed s, the mapping β (r,s) belongs to class K with
respect to r and, for each fixed r, β (r,s) is decreasing with
respect to s, and β (r,s)→ 0 as s→ ∞.

Definition 3: [14] A system ẋ = f (t,x,u) is said to be
input-to-state stable if there exists a function β ∈K L and
a function γ ∈K such that for any initial state x(t0), and
any bounded input u(t), the solution x(t) satisfies

‖x(t)‖ ≤ β (‖x(t0)‖, t− t0)+ γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
. (1)

Definition 4: [12] A smooth function V is said to be an
ISS-Lyapunov function for a system ẋ = f (t,x,u) if V is
proper, positive definite, i.e., there exists functions ψ1, ψ2 ∈
K∞ such that

ψ1(‖x‖)≤V (x)≤ ψ2(‖x‖),

and there exist functions a ∈K∞ and θ ∈K such that

∇V (x) f (x,u)≤−a(V (x))+θ(‖u‖).

Lemma 1: From Young’s inequality it can be proved that
if a and b are nonnegative real numbers, then

ab≤ a2

2
γ

2 +
b2

2
γ
−2

for any γ > 0.

Theorem 1: [16] The following properties are equivalent
for any system

a) It is ISS
b) It admits an ISS-Lyapunov function
c) There exist a K L function β , and a K function γ

such that (1) holds

Theorem 2: [12] If, for interconnected systems

ẋ1 = f1(x1,x2,u1) (2)
ẋ2 = f2(x1,x2,u2), (3)

there exist an ISS-Lyapunov function Vi, for the xi subsystem,
i = {1,2}, such that with functions αi ∈K∞, χi, γi ∈K the
following holds:

Vi(xi)≥max{χi(Vj(x j)), γi(‖ui‖)}⇒

∇Vi(xi) fi(xi,x j,ui)≤−αi(Vi),

with j = {2,1}, and

χ1 ◦χ2 < r ∀ r > 0, (4)

then the interconnected system (2), (3) is ISS and the zero
solution of (2), (3), with u = 0, is globally asymptotically
stable.

Corollary 1: If Vi are ISS-Lyapunov functions for (2), (3),
and

∇Vi(xi) fi(xi,x j,ui)≤−ai(Vi(xi))+θ
x
i (Vj(x j))+θ

u
i (‖ui‖)

with
θ

x
i (s) = κia j(s),

for some κi > 0, then the condition (4) is satisfied if κ1κ2 < 1.

C. Output Feedback Sliding-Modes

As mentioned in Section I, in [7] a solution for the
output feedback problem with unmatched disturbances was
presented, which considers an uncertain system of the form

ż = Az+Dw+Bu
y = Cz (5)

where z ∈ Rn is the state variable, w ∈ Rm is an unknown
matched input and it is assumed that |w| ≤ w̄ for a known
w̄, y∈Rm is the measured output of relative degree one, and
u ∈Rm is the control input. The pair (A,B) is assumed to be
controllable and the pair (A,C) is assumed to be observable.



Any linear system with the characteristics of (5) can be taken
to an output regular form

ż1 = A11z1 +A12z2
ż2 = A21z1 +A22z2 +D2w+u
y = z2,

(6)

where z1 ∈ Rp and z2 ∈ Rm, with p + m = n, via a state
transformation introduced in the above cited work.

The steps involved in the procedure described in [7] are,
briefly, (for details consult the cited work):

a) Transform an uncertain linear system (5) to its output
regular form (6)

b) It can be shown that the reduced-order system

ż1 = A11z1 +A12uv
yv = A21z1 +D2w, (7)

maintains the controllability and observability of (5),
where uv = z2 is the virtual control and yv represents
a virtual output.

c) Design a dynamic virtual control for (7) of the form
uv = Fη , where the dynamics of η is given by

η̇ = Âη +Lyv. (8)

This virtual control should be able to deal with the
noise present in the virtual output i.e. D2w. In [7] this
control law is an H∞ controller.

d) Design a dynamic sliding variable s = z2−Fη such
that, when the trajectories of the system are in sliding
mode, it is satisfied that z2 =−Fη .

e) Design a discontinuous control law that enforces the
sliding modes, allowing to make the sliding variable
converge to zero in finite time. The resulting dynamics
is given by

ṡ = D2w+B2z1− k sign(s). (9)

f) Choose the discontinuous controller constant gain as

k > |D2w̄|. (10)

This choice of gain would provide stability for (5) only
on a locality where the unmeasured state z1, that affects the
dynamics of the sliding variable, is sufficiently small and
converges to a neighborhood of the origin fast enough. With
a choice of a controller as in (9), if the initial conditions
are unknown and the convergence of the state z1 cannot be
assured, there is no way of proving stability of the overall
system (11) below. Even more, when the conditions are
satisfied, only a local stability proof can be obtained. A
similar case is found in [3] and [5], where only semi-global
asymptotic stabilization is achieved with their respective
methodologies. Even more, none of this works provide for
an explicit way of choosing gains for the designed controller.

III. PROBLEM STATEMENT

Once that the procedure of the previous section is carried
out up to step d), for a system like (5), and defining a control
signal u =−ueq + v, where ueq is the equivalent control and
v is a new control law, the closed-loop of system (6) with the
virtual control defined in c), and the dynamics of the sliding
variable (9), with xT = [zT ηT ], can be represented by

ẋ = f (x,s)
ṡ = g(x1,v,w)

(11)

where f (x,s) = Axx+Bxs and g(x1,v,w) = Dw+Bsx1 + v.

The closed-loop (11) can be viewed as a feedback inter-
connection of two systems, as shown in Figure 1. Under
controllability and observability of (A,B) and (A,C), matrix
Ax can always be chosen Hurwitz [7]. Then, there exists a
Lyapunov function for the unforced system ẋ = f (x,0)

V1(x) = xT Px, (12)

where P > 0 satisfies the Lyapunov equation PA+AP =−In.
It then holds that

λmin(P)‖x‖2 ≤V1(x)≤ λmax(P)‖x‖2

V̇1(x) f (x,0)≤−‖x‖2.

For subsystem ṡ = g(0,v,0), a Lyapunov function candi-
date is defined as

V2(s) =
1
2

s2. (13)

It is easy to check that for g(0,v,w), a choice of the
controller v = −k sign(s), as in (9), with the choice of gain
(10) is enough for achieving global asymptotical stability
but, being this subsystem fed by an unknown, although
stable linear system, this choice of controller only achieves
local stability.

The problem of (11), also represented by Figure 1, can
be summarized as one of choosing a suitable control law
for a sliding-mode subsystem connected in feedback to a
stable, yet unknown linear subsystem.

Fig. 1. System (11) in feedback form

The main contributions of this paper are:



• The introduction of a modified first-order sliding-mode
controller that includes a linear gain, and that can be
characterized as ISS.

• An ISS-Lyapunov-based method of choosing the gains
of the controller described above, which assures global
stability of the closed-loop (11).

IV. MAIN RESULT

The following theorem summarizes the main result of
this paper.

Theorem 3: The feedback interconnection (11), is glob-
ally and asymptotically stable with a control law

v =−k1 sign(s)− k2s,

and a choice of gains

k1 > 2‖PBx‖‖Bs‖

√
λmax(P)
λmin(P)

(14)

k2 > |Dw̄|.

Proof: The derivative of the Lyapunov function (12)
over the trajectories of f (x,s) is

V̇1(x) = ∇V1 f (x,s) =−‖x‖2 +2PBT
x xs (15)

Using the inequality of Lemma 1, with a = 2‖BT
x P‖‖x‖

and b = s, (15) can always be bounded by

V̇1(x)≤−
(
1−2‖BT

x P‖2
γ

2
1
)
‖x‖2 +

1
2γ2

1
s2.

Choosing γ2
1 =

1
4‖BT

x P‖2 , the derivative (15) can be ex-

pressed as

V̇1(x) ≤ −1
2
‖x‖2 +2‖BT

x P‖2 s2

≤ − 1
2λmax(P)

xT Px+2‖BT
x P‖2 s2.

(16)

The derivative of (13) over the trajectories of g(x,s,w) is

V̇2(s) = ∇V2(s)g(x,s,w) = Bs xs+Dws− k1s2− k2|s|
≤ Bs xs− k1s2 +(Dw̄− k2)|s|

(17)
The last term of the second line of (17) can easily be made

negative by choosing the gain k2 as

k2 > |Dw̄|,

yielding

V̇2(s)≤ Bs xs− k1s2.

Again, using the inequality on Lemma 1, with a= ‖Bs‖‖x‖
and b = s, one can further bound (17) as

V̇2(s)≤−
(

k1−
1

2γ2
2

)
s2 +
‖Bs‖2

2
γ

2
2‖x‖2.

Choosing γ2
2 =

2 l2 λmin(P)
‖Bs‖2 , where l2 > 0, one gets

V̇2(s) ≤ −
(

k1−
1

4 l2 λmin(P)
‖Bs‖2

)
s2 + l2 λmin(P)‖x‖2

≤ −
(

k1−
1

4 l2 λmin(P)
‖Bs‖2

)
s2 + l2 xT Px

(18)
Defining functions a1,a2,θ1,θ2 of class K∞,

a1(r) :=
(

1
2λmax(P)

)
r

θ1(r) :=
(
2‖BT

x P‖2)r

a2(r) :=
(

k1−
1

4 l2 λmin(P)
‖Bs‖2

)
r

θ2(r) := l2r,

one can express the derivatives (16) and (18) as

V̇1(x)≤−a1(V1)+θ1(V2)

V̇2(s)≤−a2(V2)+θ2(V1),

which are, according to Definition 1, ISS-Lyapunov
functions for each one of the subsystems of (11).

Making κi = a−1
j ◦θi(r), constants κi > 0 of Theorem 2,

for (11), are

κ1 =
2‖BT

x P‖2(
k1−

1
4 l2 λmin(P)

‖Bs‖2

) ,

κ2 = 2 l2 λmax(P).

From Corollary 1, to achieve stability of (11), it must hold

k1 > 4 l2 ‖BT
x P‖2

λmax(P)+
‖Bs‖2

4 l2 λmin(P)
. (19)

Choosing an optimal l2 that minimizes the right-hand side
of (19) as

l2 =
‖Bs‖

4‖BT
x P‖λmin(P)λmax(P)

,

one obtains condition (14).



V. EXAMPLES
A.

First we will verify the trivial case of a second-order
system

ẋ = −ax+bs
ṡ = cx+dw− k1s− k2 sign(s) (20)

where a > 0, b > 0, c > 0 and d > 0 are known, x ∈ R,
s ∈ R, and |w| ≤ w̄ ∈ R for a known w̄.

The Lyapunov equation for the upper part of system (20)
is

p(−a)+(−a)p =−1

and the constant p > 0 that satisfies it is p =
1

2a
. Condition

(14), with Bx = b and Bs = c determines that, to achieve
global stability of (20), the gains k1, k2 must satisfy

k1 >
bc
a

and k2 > dw̄. (21)

For a low-order system such as (20), the necessary and
sufficient conditions for its stability can also be obtained by
the characteristic polynomial of the nominal state matrix,
P(λ ) = det(λ I2)−A = λ 2 +(a+ k1)λ + ak1− cb. All the
coefficients of this polynomial must be positive, in other
words, the linear gain must satisfy

k1 >
bc
a

(22)

When (22) is satisfied, it is easy to check that the first
time-derivative of the Lyapunov function V1 = px2 can be
made negative definite by choosing the discontinuous gain
as

k2 > dw̄. (23)

We have shown that, with the method described in this
paper, the necessary and sufficient conditions for the global
asymptotic stability of (20) are recovered. The characteristic
polynomial could be found for a system of any order, but
the conditions for the positive definiteness of its coefficients
grow in complexity and number as the order grows, whereas
condition (14) offers always a simple way of choosing gains
that achieve global asymptotical stability, regardless of the
order of the system.

B.

Now we will analyze a case of an unstable second-order
system, and show how our choice of gains are able to
stabilize it.

Consider the following unstable second-order system,
which is already in the form (6):

ẋ1 = −3x1 +8x2
ẋ2 = 2x1−6x2 +w+u
y = x2

(24)

The closed-loop of the system when an H∞ criterion is
used to design the dynamic sliding surface is

ẋ1 = −3x1−36.0344η +8s
η̇ = −x1−23.0172η

ṡ = −k1s− k2 sign(s)−1.2521w+2.4043x1

(25)

The matrix P > 0 ∈ R2×2 that satisfies the Lyapunov
equation PAT +AP =−I2 is

P =

[
0.1834 −0.0014
−0.0014 0.0026

]
From condition (14), the gains of (25) must satisfy

k1 > 59.72 and k2 > 1.2521w̄. (26)

With a disturbance w = 1+ .4sin(2t) and initial conditions
x1(0) = 30 and x2(0) = 10, choosing gains as k1 = 60 and
k2 = 1.5 we get the simulation results of Figure 2.

Fig. 2. Simulation results with k1 = 60 and k2 = 1.5

Choosing a gain k1 that does not satisfy condition (26),
we can verify that the trajectories of the system tend to
infinity. For example, with k1 = 10 and k2 = 1.5, and the
same initial conditions, we get the simulation results of
Figure 3.

Of course, with small enough initial conditions,
x1(0) = 0.5 and x2(0) = 0.5, with the small linear
gain k1 = 10, convergence of the states to the origin can
still be achieved as shown in Figure 4.



Fig. 3. Simulation results with k1 = 10 and k2 = 1.5

Fig. 4. Simulation results with k1 = 10, k2 = 1.5 and small initial conditions

VI. CONCLUSIONS

We have introduced linear terms to a first-order sliding-
mode controller which allows it to be characterized as ISS,
instead of only iISS. Also, we have provided a methodology
to choose the gains of such controller in a way that, when
applied to an output feedback sliding-mode control solution
as the one presented in [7], global and asymptotic stability

is achieved.

The simulation results presented in this paper show
clearly how, when the initial conditions of the system
cannot be known, the linear gain is necessary to assure
the convergence of the states to the origin. Moreover, the
condition for choosing the linear and discontinuous gains
established in the main theorem is sufficient to achieve global
asymptotic stability. When this conditions are not met, for
unknown initial conditions, not only global stability is not
assured, but the trajectories of the system can tend to infinity.
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