
Integral Sliding Mode Control for
Linear Time-Invariant Implicit Descriptions

Fernando Castaños, Debbie Herńandez and Leonid Fridman

Abstract— We propose an integral sliding surface for linear
time-invariant implicit descriptions (descriptor systems). We
show that, under reasonable assumptions (regularity, stabiliz-
ability and a corresponding matching condition), it is possible
to design a controller that drives the descriptor variables to
zero, even in the presence of disturbances. Higher-order sliding
motions are required since, for the solutions of the implicit
description to be well defined, special care must be taken on the
degree of smoothness of the controller and the perturbations.

I. INTRODUCTION

Implicit systems are ubiquitous in nature. They appear
naturally in the context of mechanics and circuit theory [1].
When dealing with complex dynamic systems, it is common
in scientific and engineering practice to decompose a model
into several, simpler submodels. These submodels, which
typically consist of ordinary differential equations, arethen
interconnected to construct a model for the original aggregate
system. Interconnecting the submodels amounts to imposing
a set of algebraic constraints, so the overall resulting model
is typically an implicit description. Implicit descriptions also
reveal themselves as time-domain realizations of improper
transfer functions.

In many cases, it is possible to convert an implicit descrip-
tion into an explicit state-space equation. Anyhow, being able
to do analysis and engineering design directly on the original
implicit equations would lead to faster design and allow for
more complex models [2].

Implicit systems even originate by designer’s choice.
Consider in particular the case of sliding-mode control [3].
In sliding mode control the design cycle consists of two
stages. First, a sliding surface is designed such that, when
the system trajectories are restricted to the sliding surface,
the system meets the control objectives (e.g., stability).
During the second stage, a (possibly discontinuous) control is
designed to drive and constrain the system trajectories to the
sliding surface, irrespectively of the disturbances acting on
the system. The robustness property against disturbances and
the ease of implementation are probably the most attractive
features of sliding mode control.
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The sliding surface is typically given in the form of an
algebraic equation on the system states. Thus, while the
system is in the sliding motion, it behaves as a dynamical
system subject to an algebraic constraint, a phenomenon that
is most naturally modelled by an implicit description.

A. Motivation

While the literature of both, implicit descriptions and
sliding-mode control is vast (see e.g., [4], [5] for linear
descriptions, [6], [7], [8], [9] for nonlinear descriptions
and [3] for sliding mode control), there is surprisingly little
research connecting these two subjects.

We believe that both subjects can benefit from each other:
sliding-mode control applied to implicit descriptions can
bring in robustness and ease of implementation, and implicit
description theory can bring insight into the design and
analysis of sliding-mode controllers.

B. Contributions

In this paper we address the basic issues of sliding-mode
control of implicit descriptions:

• We study the minimal required sliding-order for the
solutions of the implicit description to be well defined.

• We derive conditions under which the disturbances
can be compensated exactly (matching conditions for
implicit descriptions).

• We propose a higher-order integral sliding-mode con-
troller (HOISMC) that compensates perturbations under
relaxed matching assumptions1

II. PROBLEM STATEMENT

We consider perturbed implicit descriptions of the form

Eẋ(t) = Ax(t) +Bv(t) , v(t) = u(t) + w(t) , (1)

where x(t) ∈ R
n, u(t) ∈ R

m and w(t) ∈ R
m are the

descriptor variable, control input and unknown perturbation
at timet, respectively. The constant matricesE, A andB are
of appropriate dimensions withB of full rank (rankB = m).
We restrict our attention to the case whereE is singular
(otherwise, equation (1) could be easily changed into an
equation describing an explicit system in state-space form).

Whenw(t) andu(t) enter the implicit description through
the same channel (as in (1)) we say that the perturbations
satisfy thematching condition. For state-space systems, this

1In the context of this paper, a HOISMC is obtained by first defining
the sliding surface as a function of the integral of the trajectories of the
unperturbed system (as in [10]), and then enforcing a higher-order sliding
motion on that surface. For other notions of HOISM see [11], [12].



condition is equivalent to the existence of a control law
such that the closed-loop system is completely insensitive
to w(t) [13].

Our control objective is the following:

To design a stabilizing control law that drives the
descriptor variablex(t) to zero irrespectively of
the perturbationw(t).

This problem will be stated more precisely as we go along
the following section and introduce the appropriate assump-
tions (cf. Assumptions 1, 2 and 3).

III. BACKGROUND

A. Implicit descriptions

In this section we recall some basic facts about stability
and stabilizability of implicit descriptions. We refer the
reader, e.g., to [5], [14] for more details.

The qualitative behavior of (1) strongly depends on the
structure of the matrix pencilλE − A, λ ∈ C. For ease of
notation, let us write(E,A) := λE −A.

Definition 1: An implicit description (1) is called aregu-
lar systemif the pencil (E,A) is regular, i.e., if

|λE −A| 6≡ 0 . (2)
In other words, a pencil(E,A) is regular if there exists

a λ such that|λE − A| 6= 0. The regularity of(E,A) is
important since it ensures that, for any admissible input, the
solutions of (1) exist and are unique.

Assumption 1:The pencil(E,A) is regular.
The determinant in (2) can be written as

|λE −A| = kΠn1

i=1(λ− λi) ,

wheren1 ≤ n (n1 = n if and only if E is nonsingular) andk
is a real constant. We refer toΛ(E,A) = {λ1, λ2, . . . , λn1

}
as thefinite eigenvaluesof the pencil(E,A)2.

By an appropriate change of basis, a regular system can
always be decomposed into the so-called Weierstrass form

ẋ1(t) = Jx1(t) +B1v(t) (3a)

Nẋ2(t) = x2(t) +B2v(t) , (3b)

where x1(t) ∈ R
n1 is the state variable of thedynamic

subsystemandx2(t) ∈ R
n2 , n2 = n − n1, is the descriptor

variable of thedifferential subsystem. The matrix J is in
Jordan’s form and represents the finite structure of(E,A).
More precisely,

Λ(In1
, J) = Λ(E,A) .

The matrixN is also in Jordan’s form, it is nilpotent with
index of nilpotenceq and it represents the infinite structure
of (E,A).

The solution of (3a) can be written explicitly as

x1(t) = eJtx1(0) +

∫ t

0

eJ(t−τ)B1u(τ)dτ ,

2The finite eigenvalues of the pencil(In, A) coincide with the usual
eigenvalues ofA.

while the solution of (3b) can be found by successively
differentiating (3b) with respect to time and pre-multiplying
by N :

Nẋ2(t) = x2(t) +B2v(t)

N2ẍ2(t) = Nẋ2(t) +NB2v̇(t)

...

Nqxq
2(t) = Nq−1xq−1

2 (t) +Nq−1B2v
(q−1)(t) .

Adding all this equations and noting thatNq = 0 gives

x2(t) = −

q−1
∑

i=0

N iB2v
(i)(t) . (4)

In other words, the descriptor variablex2 can be written
explicitly as a linear combination of the input and its first
q − 1 derivatives. Clearly, the set of admissible inputs
must be contained in the set of(q − 1)-times continuously
differentiable functions.

Definition 2: The implicit description (1) is calledstable
if there exist scalarsα, β > 0 such that, whenv(t) ≡ 0 for
t > 0, its descriptor variablex(t) satisfies

‖x(t)‖2 ≤ αe−βt‖x(0)‖2 , t > 0 .
Sincev(t) ≡ 0 ⇒ v̇(t) ≡ 0 ⇒ . . . , it is clear from (4)

that x2(t) ≡ 0 for t > 0. Thus, the stability of (1) depends
on the dynamics ofx1 only, i.e., on the finite structure of
(E,A).

Theorem 1 ([5]): The regular system (1) is stable if and
only if

Λ(E,A) ∈ C
− ,

whereC− is the open left-half complex plane.
Definition 3: The regular system (1) isstabilizableif there

exists a state feedbacku(t) = −Kx(t) such that the closed-
loop system

Eẋ = (A−BK)x(t) +Bw(t)

with input w(t) is stable.
There exists an algebraic characterization of stabilizable

systems which is reminiscent of Popov-Belevitch-Hautus
criterion for stabilizability of state-space systems.

Theorem 2 ([5]): The following statements are equiva-
lent:

(i) The regular system (1) is stabilizable.
(ii) rank

[

λE −A B
]

= n for all finite λ ∈ C̄
+, where

C̄
+ is the closed right-half complex plane.

(iii) The state-space system (3a) is stabilizable.
(iv) rank

[

λIn1
− J B1

]

= n1 for all λ ∈ C̄
+.

Assumption 2:The regular system (1) is stabilizable

B. Higher-Order Sliding-Mode Control

In this section we recall that, with a higher-order sliding-
mode controller, it is possible to achieve robustness against
perturbations with any desired degree of smoothness for the
controller.

Consider first a simple controlled and perturbed system

σ̇(t) = u(t) + w(t) , (5)



whereu(t), w(t) ∈ R are, again, the control and the unknown
perturbation, andσ(t) is an output of relative degree one that
we wish to drive to zero. Suppose that the perturbation is
bounded by a known constant̄w0, i.e., |w(t)| ≤ w̄0 for all
t ≥ 0. A discontinuous control law

u(t) = −L sign(σ(t)) , L ≥ w̄0 + δ0 , δ0 > 0 (6)

ensures that the constraintσ(t) = 0 is attained in finite time
and maintained thereafter (the solutions of discontinuous
differential equations are taken in Filippov’s sense [15]).
This can be verified by means of the Lyapunov function
V (σ) = σ2/2, which has the following time derivative along
the solutions of (5):

V̇ (σ(t)) = σ(t) (−L sign(σ(t))− w(t))

≤ −|σ(t)|(L− w̄0) ≤ −δ0
√

V (σ(t)) .

It can be readily shown that the solution of

Ẇ (t) = −δ0
√

W (t)

satisfiesW (T ) = 0 for some finiteT dependent onW (0).
According to the standard theory of differential equations, if
W (0) = V (σ(0)), thenW (t) ≥ V (σ(t)) for all t ≥ 0 [16].
SinceV is non negative,W (T ) = 0 implies V (σ(T )) = 0
andσ(T ) = 0. BecauseV̇ is non positive,V (σ(t)) = 0 and
σ(t) = 0 for all t ≥ T . We say that (6) enforces afirst order
sliding mode(1-sliding mode for short) in finite time.

Consider now a system of relative degree two:
[

ξ̇1(t)

ξ̇2(t)

]

=

[

ξ2(t)
0

]

+

[

0
1

]

(u(t) + w(t)) ,

σ(t) = ξ1(t) ,

i.e.,
σ̈(t) = u(t) + w(t) . (7)

We say that the system exhibits a finite-time 2-sliding mode
if the constraintsσ(t) = σ̇(t) = 0 are satisfied for allt
greater than some finite and positiveT . Many finite-time 2-
sliding mode controllers can be found in the literature [17],
[18]. An example is the so-calledtwisting algorithm, a
discontinuous control of the form

u(t) = −L1 sign(ξ1(t))− L2 sign(ξ2(t))

= −L1 sign(σ(t))− L2 sign(σ̇(t)) ,

with L2 > w̄0 andL1 > L2 + w̄0 (see [17] for details).
More generally, consider a system of relative degreer:
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(u(t) + w(t)) ,

σ(t) = ξ1(t) ,

i.e.,
σ(r) = u(t) + w(t) , (8)

We say that the system exhibits anr-sliding modeif the
constraintsσ(t) = σ̇(t) = · · · = σ(r−1)(t) = 0 are satisfied
identically after a finite period of time. For an arbitraryr, it
is always possible to construct a discontinuous control that
enforces anr-sliding motion on (8) [17], [19].

By cascading a chain ofk integrators with the control, the
relative degree of the system is artificially increased while,
at the same time, ak − 1 degree of smoothness is achieved
for u(t) (i.e., u(t) is made (k − 1)-times continuously
differentiable). Let us introduce a new set of state variables
ξr+1, . . . , ξr+k+1 and define its dynamics by
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γ(t) ,

u(t) = ξr+1(t)

with γ(t) a new virtual control, i.e.,

u(k)(t) = γ(t) . (9)

It follows from (8) and (9) that

σ(r+k) = γ(t) + w(k)(t) . (10)

Thus, if there exists a bound̄wk such that|w(k)(t)| ≤ w̄k for
all t ≥ 0, then it possible to construct a discontinuous virtual
control γ(t) enforcing an(r + k)-sliding motion in finite
time. Since the actual inputu(t) is obtained byk successive
integrations ofγ(t), u(t) will be (k− 1)-times continuously
differentiable.

Remark 1:All the terms in equation (10) are real valued.
The vector caseσ(t), γ(t), w(t) ∈ R

m can be dealt with
simply by consideringm copies of (10).

In order to construct an admissible (sufficiently smooth)
controller for (1), we will need the following assumption.

Assumption 3:Let q be the index of nilpotency ofN
in (3b). The unknown perturbationw(t) satisfies the bound

‖w(q)(t)‖ ≤ w̄q , t ≥ 0

for some known constant̄wq.

IV. COMPENSATING THE PERTURBATIONS
EXACTLY

Let us divide the control effort in two parts:

u(t) = u0(t) + u1(t) , (11)

whereu0(t) is a linear feedback responsible of stabilizing
the unperturbed description

Eẋ(t) = Ax(t) +Bu0(t)

andu1(t) is a highly nonlinear control responsible of com-
pensatingw(t).

Notice that the control and the perturbation enter si-
multaneously in both, the dynamic subsystem (3a) and the
differential one (3b). Suppose, only for the sake of argument,



that rankB1 = m (this implies n1 ≥ m). In this case,
we can forget about the differential subsystem and apply
standard techniques to stabilize the dynamic subsystem. A
fairly obvious procedure to robustly stabilize (1) would be:

1) Choose a matrixC ∈ R
m×n1 such thatCB1 is non sin-

gular and such that the motion ofx1 along the constraint
σ(t) = (CB1)

−1Cx1(t) = 0 is stable (i.e., such thatσ(t)
is an minimum-phase output). A matrixC can always be
found when (3a) is stabilizable and whenrankB1 = m 3.

2) Setu0(t) = −(CB1)
−1CJx1(t). The dynamics of the

sliding variable becomes

σ̇(t) = (CB1)
−1C

(

Jx1(t)−B1(CB1)
−1CJx1(t)+

+ CB1

(

u1(t) + w(t)
)

)

,

which simplifies to

σ̇(t) = u1(t) + w(t) , (12)

i.e., the sliding variable has relative degree equal to one.
3) Setu(q)

1 (t) = γ(t) and designγ(t) as a(1 + q)-sliding
mode controller forσ(1+q) = γ(t) + wq(t).

For q ≥ 1, equation (12) implies that, when the(1 + q)-
sliding motion occurs, we haveu1(t) ≡ −w(t) 4. Hence,

v(t) = u0(t) + u1(t) + w(t) = −(CB1)
−1Cx1(t) .

By construction,x1(t) and its firstq − 1 derivatives will go
to zero. This implies thatx2(t) goes to zero too (cf. (4)).

Example 1:Consider the implicit description

ẋ1(t) = x1(t) + u(t) + w(t) (13a)

0 = x2(t) + u(t) + w(t) , (13b)

which can be written as in (1) with

E =

[

1 0
0 0

]

, A =

[

1 0
0 1

]

and B =

[

1
1

]

.

We have

|λE −A| =

∣

∣

∣

∣

[

λ− 1 0
0 −1

]
∣

∣

∣

∣

= −(λ− 1) ,

from which we conclude that the system is regular, thatn1 =
n2 = 1 and that the system is unstable, since it has the finite
eigenvalueλ = 1 6∈ C

−. Clearly,

rank
[

λE −A B
]

= rank

[

λ− 1 0 1
0 −1 1

]

= 2 = n

for all λ, which confirms that the obvious fact that system
is stabilizable. The system is already in Weierstrass form
with N = 0, J = 1, B1 = 1 andB2 = 1. Also, we have
rankB1 = 1 = m, so steps 1) to 3) can be applied.

The scalarC = 1 trivially satisfies the conditions of step
1), so we setσ(t) = x1(t) andu0(t) = −x1(t).

3SuchC can be easily computed if (3a) is first put into the so-called
regular form [3].

4By definition, we setq = 0 whenE is nonsingular (n2 = 0). When
q = 0, u1(t) is discontinuous and has to be replaced by the so-called
equivalent control[3].
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Fig. 1. Response of (13),x1–solid,x2–dashed.
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Fig. 2. Response of (13), control action.

The index of nilpotency ofN = 0 is one (q = 1), so
the system will be robust against continuously differentiable
perturbations that satisfy the bound|ẇ(t)| ≤ w̄1. For the
sake of concreteness, let us assume thatw̄1 = 1. To achieve
a 2-sliding motion we propose to use the twisting controller

γ(t) = −8 sign(x1(t))− 6 sign(ẋ1(t)) , (14)

so the actual control is given by the continuous function

u(t) = −x1(t)−

∫ t

0

(8 sign(x1(τ)) + 6 sign(ẋ1(τ))) dτ .

Figures 1 and 2 show the system’s response to an initial
conditionx1(0) = 0.5 and a perturbationw(t) = sin(t). It
can be verified thatx1 andx2 reach the origin in finite time.

A. Main result, higher-order integral sliding-mode control

The previous procedure requires to put (1) in Weierstrass
form (this is not overly complicated if the appropriate
software is available) and more importantly, it requires
rankB1 = m, which can be seen as an additional require-
ment (a stringent one) to the usual matching condition. This
drawback can be circumvented by defining anintegralsliding
variable. Roughly speaking, the idea is to split the control
action as in (11) and to define the sliding variable as a linear
function of the difference between the actual value of the
descriptor variables and the ‘value that this variables would
have in the absence of disturbances’ (see [10], [20]).



Theorem 3:Consider an implicit description of the
form (1) satisfying Assumptions 1 and 2. Split the control
as in (11), choose a nominal controlu0(t) = −Kx(t) such
that

Λ(E,A−BK) ⊂ C
−

and define the integral sliding variable

σ(t) = B+

[

Ex(t)−

∫ t

0

((A−BK)x(τ)) dτ

]

, (15)

whereB+ =
(

B⊤B
)−1

B⊤ is B’s Moore-Penrose pseudo-
inverse. Then, the sliding variable:

1) Satisfies the differential equation (12).
2) Is a minimum-phase output (the solutions of (1) converge

to zero when the constraintσ(t) ≡ 0 is enforced).
Remark 2:Once a minimum-phase output with relative

degree one is obtained, it is possible to increase the relative
degree byq. Then, Assumption 3 ensures the possibility of
rejecting the perturbations by enforcing a(q + 1)-sliding
motion with a(q − 1)-times differentiable feedbacku1(t).

Proof: Statement 1) follows from direct differentiation
of (15):

σ̇(t) = B+ (Eẋ(t)− (A−BK)x(t)) . (16)

Substitution of (1) in (16) gives

σ̇(t) = B+(Bu1(t) + w(t)) = u1(t) + w(t) .

The constraintσ(t) ≡ 0 implies σ̇ = u1(t) + w(t) ≡ 0,
that is, u1(t) = −w(t). This control results in the closed
loop system

Eẋ = Ax(t) +B (−Kx(t) + w(t)− w(t))

= (A−BK)x(t) ,

which is stable since the finite eigenvalues of(E,A−BK)
have negative real part.

Example 2:Consider the implicit description

ẋ2(t) = x1(t) (17a)

0 = x2(t) + u(t) + w(t) . (17b)

This description has the form (1) with

E =

[

0 1
0 0

]

, A =

[

1 0
0 1

]

and B =

[

0
1

]

.

(Notice thatu(t) and w(t) act on the algebraic constraint
only, so steps 1) to 3) in p. 4 cannot be applied.) We have

|λE −A| =

∣

∣

∣

∣

[

−1 λ
0 −1

]∣

∣

∣

∣

≡ 1 .

Thus, the system is regular,n1 = 0 andn2 = 2 (there is no
dynamical part). The system is in the form (3b) withN = E
andq = 2 (E2 = 0). The system is stabilizable since

rank
[

λE −A B
]

= rank

[

−1 λ 0
0 −1 1

]

= 2 = n .
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Fig. 3. Response of (17),x1–solid,x2–dashed.

Indeed, the system is already stable since there is no dynam-
ical subsystem. However, we can use, e.g.,

u0(t) = −
[

−1 0
]

[

x1

x2

]

= x1(t)

to reduceq while maintaining the stability of the system.
The new characteristic polynomial is

|λE − (A−BK)| =

∣

∣

∣

∣

[

−1 λ
−1 −1

]
∣

∣

∣

∣

= 1 + λ .

which has the stable rootλ1 = −1 and for whichn1 = n2 =
1.

We haveB+ =
[

0 1
]

and B+E = 0, so the sliding
variable is

σ(t) = −

∫ t

0

B+(A−BK)x(τ)dτ

= −

∫ t

0

(x1(τ) + x2(τ))dτ

or, equivalently,

σ̇(t) = −x1(t)− x2(t) = u1(t) + w(t) .

Suppose, for simplicity, that̄w1 = 1. To enforce a 2-
sliding mode we can use the twisting controller (14) from
the previous example. The resulting controller is

u(t) = u0(t) + u1(t) = x1(t) +

∫ t

0

γ(τ)dτ

which, upon substitution gives

u(t) = x1(t) +

∫ t

0

(

8 sign
(

∫ τ2

0

(x1(τ1) + x2(τ1))dτ1

)

+ 6 sign(x1(τ2) + x2(τ2))
)

dτ2 .

Figures 3 and 4 show the system’s response to an initial
conditionx2(0) = 0.5 and a perturbationw(t) = sin(t). It
can be verified thatx1 and x2 asymptotically converge to
the origin.
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VI. CONCLUSIONS AND FUTURE WORKS

We have proposed two higher-order sliding-mode con-
trollers for linear implicit descriptions. The controllers drive
the descriptor variables to the origin, irrespectively of suffi-
ciently smooth perturbations satisfying a matching condition.
In one of the schemes, the sliding variable is a simple linear
combination of the descriptor variables, but an additional
matching condition is required (rankB1 = m). The second
scheme requires the integration of the descriptor variables
to generate the sliding surface, but no additional matching
condition is necessary.

Further investigation is required to determine if it is
possible to define a non integral sliding surface with out
the extra rank condition. Higher-order sliding-mode control
of nonlinear implicit descriptions is another line for future
work.
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