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Abstract— We present an adaptive sliding-mode extremum
seeker that minimizes an unknown function that is subject
to an unknown static constraint. The same algorithm can be
applied when the static constraint is replaced by a dynamic one,
provided that the dynamics possess strong stability properties.
The application and feasibility study is focused on hydrogen
consumption minimization in PEM fuel cell based systems.

I. INTRODUCTION

Increasing demands on pollution reduction is driving in-

novation on clean energy sources. Among these, fuel cells

(FCs) are regarded as one of the most promising tech-

nologies, due to their potential efficiency, compactness and

reliability [2]. FCs are electrochemical devices that generate

electrical energy from hydrogen and oxygen, with pure

water and heat as by-products. Considering that hydrogen is

widely available and can be obtained from many renewable

sources using solar and wind energy, fuel cells represent

an attractive, feasible alternative to reduce fossil fuel de-

pendence. However, the widespread use of hydrogen as

combustible -and the resulting “hydrogen economy”- despite

its interesting possibilities, has some technological issues

to be resolved. In spite of recent advances, their relatively

high costs, improvable efficiency and reduced lifetime re-

main as major limitations. For this reason, together with

the continuous improvement of materials and components,

the incorporation of advanced control strategies embodies a

major technological issue, in order to achieve cost reduction,

performance improvement and efficiency optimization. In the

light of these considerations, it becomes clear that in order

to optimize efficiency, hydrogen minimization problem arises

as a major challenge. Therefore, the current paper addresses

the analysis and design of optimizing supervisory controllers

for fuel cell systems. In particular, robust extremum seeking

algorithms based on the so called sliding-mode paradigm are

considered for the case of air flow reference management vs.

stack current minimization.

Extremum seeking algorithms deal with the problem

of minimizing or maximizing a plant output with a set

of decision variables. This problem represents a class of
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widespread optimization problems arising in different control

applications.

In the proposed approach, a general extremum seeking

algoritm is first devised for a static plant. This is done by

estimating the gradient of the output and then applying a

standard steepest descent algorithm. The input and output of

the plant are differentiated, and then the gradient of the plant

is extracted with a sliding-mode adaptive estimator. We claim

that the algorithm also works for dynamic plants if the plant

satisfies some stability properties. The claim is supported by

simulating the behavior of the extremum seeker when applied

to an FC.

The system under evaluation is composed of an au-

tonomous PEM fuel cell generation system (FCGS). The

FCGS roughly comprises five main subsystems: the air flow

(breathing), hydrogen flow, gases humidity, stack electro

chemistry and stack temperature subsystems. It is assumed

that the input reactant flows are efficiently humidified and the

stack temperature is well regulated by dedicated controllers.

In addition, it is considered that sufficient compressed hy-

drogen is available, therefore the main attention is focused

on the air management. In Fig. 1 a schematic view of

the FCGS under consideration is represented. The most

relevant components related to the FC flow system are deeply

characterized in [6].
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Fig. 1. Schematic diagram of a typical PEM fuel cell based generation
system (FCGS)
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II. ADAPTIVE EXTREMUM SEEKING

A. Static case

Consider the problem of minimizing a smooth real-valued

objective function

y = h(x,u) , x ∈R
n , u ∈ R , (1)

subject to the constraint 0 = f (x,u) and let us state the

following assumptions.

Assumption 1: There exists a smooth function φ : R→R
n

such that

0 = f (x,u) if and only if x = φ(u) .
Assumption 2: The function H(u) := h(φ(u),u) is twice

continuously differentiable and there is an open interval D

of interest, such that:

1) The inequalities

ρ1 ≤
∂ 2H

∂u2
(u)≤ ρ2

hold for some ρ1,ρ2 > 0 and all u ∈ D . (Hence, H is

strictly convex when restricted to D .)

2) The set

Z :=

(

∂H

∂u

)

(D) =

{

z ∈ R : z =
∂H

∂u
(u) ,u ∈ D

}

contains the origin.

If φ and h were known, then the optimal pair

(x⋆,u⋆) = argmin
0= f (x,u),u∈D

h(x,u) (2)

could be easily found by solving

0 =
∂H

∂u
(u⋆) =

(

∂h

∂x

∂φ

∂u
+

∂h

∂u

)

(u⋆) (3)

(such a solution always exists under condition (2)) and

setting x⋆ = φ(u⋆). On the other hand, the optimization

problem becomes more challenging and of greater practical

interest when y is available (e.g., from measurements) but φ
and h are not known. To solve this problem, we suggest to

estimate ∂H
∂u

and feed it to a continuous-time steepest descent

algorithm

u̇(t) =−1[t1,∞)(t) · kuz(t)+ d(t) , (4)

where z(t) ∈ R is an estimate of ∂H
∂u

at time t, ku ∈ R is

the algorithm gain and 1[t1,∞) : R → {0,1} is the indicator

function of the interval [t1,∞), i.e., we ‘turn’ kuz(t) ‘on’

only when t ≥ t1. The switching time is to be defined later

(see (12)). The term d(t) is a differentiable signal included

to ensure a persistent excitation for the estimator. It is chosen

in such a way that it satisfies the bounds

|d(t)| ≤ d̄0 and |ḋ(t)| ≤ d̄1 ,

where d̄0 and d̄1 are positive constants to be determined later.

We propose an adaptive sliding-mode estimator of the

form

ż(t) = kz sign((ẏ− zu̇)u̇)(t) , z(0) = 0 . (5)

where kz ∈ R is the estimator gain and ẏ is obtained using

the uniform exact differentiator described in Section II-C.

Lemma 1: Suppose that u̇(t) 6= 0 almost everywhere (a.e.)

(this is our persistence of excitation condition), let kz be such

that

kz ≥ ρ2(ku|z|+ d̄)+ δ0 , z ∈ Z (6)

for some δ0 > 0 and suppose that ∂H
∂u

(t)∈Z for t ≥ 0. Then,

the solutions z(t) of the estimator (5) converge to ∂H
∂u

(t) in

finite time.

Proof: Notice that

ẏ(t) =
∂h

∂x
ẋ(t)+

∂h

∂u
u̇(t)

and ẋ(t) = ∂φ
∂u

u̇(t), so we have

ẏ(t) =

(

∂h

∂x

∂φ

∂u
+

∂h

∂u

)

u̇(t) =
∂H

∂u
u̇(t) . (7)

Using (7) we can rewrite (5) as ż(t) =

kz sign
((

∂H
∂u

− z
)

u̇2
)

(t). Since u̇(t) 6= 0 almost everywhere,

we have

ż(t) = kz sign

(

∂H

∂u
− z

)

(t) a.e. (8)

Let s := ∂H
∂u

− z be the sliding variable. Its time derivative

is given by

ṡ(t) =
d

dt

∂H

∂u
(t)− ż(t) =−kz sign(s(t))+

d

dt

∂H

∂u
(t) a.e. (9)

Now we can take the standard approach to prove that s(t)→ 0

in finite time: Define a Lyapunov function Vs(s) = s2/2 and

compute its time derivative along the trajectories of (9), i.e.,

V̇s(t) = s · ṡ(t) ≤ −|s|

(

kz −

∣

∣

∣

∣

d

dt

∂H

∂u

∣

∣

∣

∣

)

(t)≤

≤ −|s|(kz −ρ2|u̇|)(t) a.e. (10)

(with a slight abuse of notation, we have set Vs(t) = Vs(s)◦
s(t)). From |u̇| ≤ ku|z|+ d̄ (cf. (4)), (6) and (10), we have

V̇s(t)≤−δ0|s(t)| a.e. (11)

Thus, the time derivative is negative. This proves that the

point s = 0 is an asymptotically stable equilibrium of (9).

To show convergence in finite time, notice that (10) can be

rewritten as

V̇s(t)≤−δ0

√

Vs(t) a.e.,

which implies that [9]

Vs(t)≤

(

√

Vs(0)−
δ0

2
t

)2

.

It follows that at the time

t1 = 2

√

Vs(s(0))

δ0

(12)

we have Vs(t1) = 0 (hence s(t1) = 0).
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Fig. 2. Proof of Theorem 1

Remark 1: Instead of (12) (which requires knowledge of

s(0)), the switching time t1 can be determined online by

monitoring the error e := ẏ− zu̇ and marking the time where

e = 0 with u̇ 6= 0.

Because of the presence of d(t), z = ∂H
∂u

cannot be made

exactly equal to zero, but it can be driven to a small value

proportional to d̄.

Theorem 1: Let B := [−d̄/ku, d̄/ku] and suppose that:

1) B ⊂ Z .

2) u̇(t) 6= 0 a.e. and kz(z) satisfies (6).

3) z(t1) ∈ Z .

Then, it follows from equations (5) and (4) that B and Z

are positive invariant sets and that z(t)→ B as t → ∞.

Proof: Define a candidate Lyapunov function Vz(z) =
z2/2. From Lemma 1 we know that, during the sliding

motion (i.e., for t ≥ t1), z(t) = ∂H
∂u

(t) so1

ż(t) =
d

dt

∂H

∂u
(t) =

∂ 2H

∂u2
u̇(t) =−

∂ 2H

∂u2
(kuz(t)− d(t)) ,

and

V̇z(t) =−
∂ 2H

∂u2
·
(

kuz2 − z ·d
)

(t)≤−
∂ 2H

∂u2
|z| ·

(

ku|z|− d̄
)

(t) .

The terms ∂ 2H
∂u2 and ku|z|− d̄ are positive whenever z∈Z and

z 6∈B, respectively. Thus, V̇z is negative whenever z∈Z −B

and |z| decreases monotonically whenever z ∈ Z −B. This

implies that B and Z are positive invariant sets and that

z(t)→ B as t → ∞ whenever z(t1) ∈ Z (see Fig. 2).

Theorem 1 suggests the following practical considerations

for designing the extremum seeker (4), (5):

1) Choose a gain ku for the steepest-descent algorithm,

a constant δ0 > 0 and a strict subinterval I of D of

initial conditions for u.

2) For d(t), use a periodic signal with zero average and

amplitude d̄. Choose d̄ small enough so that (a)

a) B ⊂ Z

b) u(0) ∈ I implies u(t) ∈ D for all t ∈ [0, t1] (this

ensures that z(t1) ∈ Z ).

3) Set the estimator gain as kz(z) = ku|z|+ d̄+ δ0.

B. Dynamic case

To alleviate the notation, we will now drop t from the

functions’ arguments whenever the dependence is obvious.

Consider now the problem of minimizing the output (1)

that results from the dynamic relation

ẋ = f (x,u) (13)

1This equation could also be obtained by applying the equivalent control
method [8] to (8).

Suppose we are interested in driving the state x to the optimal

equilibrium pair (2). If ∂H
∂u

was known and the equilibrium

(φ(u⋆),u⋆) is at least asymptotically stable, then the optimal

value could be reached by setting

u̇ = g(u) :=−ku
∂H

∂u
(u) ,

so extremum seeking problem reduces again to the problem

of estimating ∂H
∂u

online.

If the solutions x of (13) converge to φ(u) fast enough and

ẋ quickly comes close to
∂φ
∂u

u̇ as well, then it makes sense

to apply again the algorithm (4), (5), which we now know

works for the case x = φ(u).
To motivate our next assumption, consider a linear system

ẋ = Ax+Bu

with A Hurwitz. For each constant u, the equilibrium is given

by x = φ(u) =−A−1Bu. Let us define the error

e = x−φ(u) (14)

an let us compute its dynamics:

ė = A(e+φ(u))+Bu−
d

dt
φ(u) = Ae+A−1Bu̇ .

We know from linear system theory that the error satisfies

the bound (see, e.g., [10, Sec. 4.9])

‖e(t)‖ ≤ α exp(−λ t)‖e(0)‖+
α

λ
‖B‖ sup

0≤τ≤t

|u̇(τ)|

for some positive constants α and λ . A similar bound can

be found for ė if we compute the second derivative of the

error. We have

ë = Aė−A−1Bü

and

‖ė(t)‖ ≤ α exp(−λ t)‖ė(0)‖+
α

λ
‖B‖ sup

0≤τ≤t

|ü(τ)| .

This estimate shows that the zero-input (taking ü as input)

response decays to zero exponentially fast, while the zero-

state response remains bounded for every bounded input. In

other words, the dynamics for the error is input–state stable.

In the general nonlinear case, the error equation is

ė = f (e+φ(u),u)−
∂φ

∂u
u̇ . (15)

Notice that, for u̇ ≡ 0 the origin e = 0 is an equilibrium

of (15), uniformly in u.

Assumption 3: There are exists positive constants α and

λ and a class K function γ such that

‖ė(t)‖ ≤ α exp(−λ t)‖ė(0)‖+ γ( sup
0≤τ≤t

|ü(τ)|)

for all t ≥ 0, uniformly in u and u̇.

Remark 2: It follows form (4) and (5) that

|ü| ≤ kukz + d̄1 .

so the time derivative of the error will decay, exponentially

fast, to a small neighborhood of zero if ku and d̄1 are small.
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Let us write the output’s time derivative as

ẏ =
∂h

∂x

(

ė+
∂φ

∂u
u̇

)

+
∂h

∂u
u̇ =

∂H

∂u
u̇+

∂h

∂x
ė

(cf. equation (7)). The estimator (5) can thus be written as

ż = kz sign

((

∂H

∂u
− z

)

u̇2 +
∂h

∂x
ėu̇

)

.

Under the persistence of excitation condition we can write

ż = kz sign

(

∂H

∂u
− z+

∂h

∂x

ė

u̇

)

a.e.

or, more compactly,

ż = kz sign(s) , s = f1 −z+ f2 , f1 :=
∂H

∂u
, f2 :=

∂h

∂x

ė

u̇
.

At the sliding surface, z is equal to ∂H
∂u

plus an error

f2, proportional to kukz + d̄1 (cf. Remark 2) and inversely

proportional to u̇. Since f2 can grow without bound as u̇ gets

close to zero, it is clear that it is not possible (nor desirable)

to maintain the sliding motion all times. Thus, we proceed

with a ‘heuristic’ analysis of what happens when the sliding

motion occurs and when the sliding motion is lost.

By repeating the Lyapunov analysis of Section II-A, we

can see that the estimator drives z to the sliding surface

whenever

kz > | ḟ1|+ | ḟ2| . (16)

The time derivative of f1 is not problematic and has been

address in (6). Let us write

f2 =
f3

u̇
, f3 :=

∂h

∂x
ė ,

so that we can write ḟ2 as

ḟ2 =
ḟ3u̇− ü f3

u̇2
.

From the sliding condition (16) and the expressions for f2

and ḟ2 we arrive at the following two possibilities:

1) u̇ is large enough. Then the sliding condition holds and

z tracks ∂H
∂u

+ f2 with f2 small.

2) u̇ is too small. Then the sliding condition does not hold

and z does not track ∂H
∂u

+ f2 with f2 large.

In the numerical experiments performed so far, by setting

kz high enough, the tracking error z − ∂H
∂u

can be made

reasonably small.

C. Uniform Exact Differentiator

The time functions u̇ and ẏ can be computed with a

uniform exact differentiator [1], a differentiator based on the

generalized super twisting algorithm [7].

Let η(t) be a Lebesgue-measurable function defined on

[0,∞) and take it as the input signal. Suppose that η(t) can

e decomposed as

η(t) = η0(t)+ v(t)

where η0(t) is the unknown base signal that we wish to

differentiate and v(t) corresponds to a uniformly bounded

noise signal. We assume that η0(t) is twice continuously

differentiable and that the first derivative is Lipschitz with

known Lipschitz constant L > 0.

Define the error signal σ = z0 − η and construct the

dynamical system

ż0 = −k1φ1(σ)+ z1

ż1 = −k2φ2(σ) ,

where

φ1(σ) = |σ |
1
2 sign(σ)+ |σ |

3
2 sign(σ)

φ2(σ) =
1

2
sign(σ)+ 2σ +

3

2
µ2|σ |2 sign(σ)

and k1 and k2 are constant positive gains dependent on L.

The variable z0 and z1 are the estimations of η0 and η̇0,

respectively. Indeed, z1(t) converges exactly to η̇0 in finite-

time, with the convergence time independent of the initial

differentiation error (see [1] for details).

III. EXTREMUM SEEKING PROBLEM STATEMENT IN

PEM FCGS

A. PEM Fuel Cell Generation System

As stated in the introduction, fuel cells represent a rad-

ically different approach to energy conversion, one that

could replace conventional power generation technologies

in a wide variety of applications, from automotive and

stationary power systems to portable appliances. In par-

ticular, a proton exchange membrane (PEM) fuel cell is

an electrochemical device that converts hydrogen chemical

energy into electric power energy, without the intermediate

production of mechanical work and with water and heat

as only by-products [4], [5]. Nevertheless, improvements in

this field of technology require interdisciplinary research and

the development of new technologies. From the automation

control point of view, the natural step is to face the challenge

of designing and implementing reliable control strategies

in order to improve the efficiency of the actual fuel cell

generation systems, improving its operations ranges and

ensuring optimal performance.

With regard to models for FCGS, there are several dif-

ferent approaches that describe the dynamic behaviour of

autonomous PEM fuel cell generation systems, but only a

few are suitable for control design purposes. Among them,

one of the most complete and accurate models available in

the open literature was developed by J. Pukrushpan et al.

in the Mechanical Department of the Michigan University.

This model provides a detailed description of the dynamics

of a 75-kW-high pressure FC stack fed by a 14-kW air

turbo compressor. The system is sized to represent the high

pressure FC stack used in the Ford P2000 fuel cell electric

vehicle.

B. Nonlinear System Model

Considering that in the model presented in [6] the anode

subsystem is decoupled from the cathode subsystem and

does not enter in the air control loop, its dynamics can be

neglected and the system order is reduced by one [5].
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As a result of the reduction and rebuilding work performed

on Pukrushpan et al. model, the following sixth order control

design model can be proposed [5]:

ẋ = F(x,u, t) = f (t,x)+ g(t,x,u) (17)

x ∈ R
6 ; u ∈ R ; f : R6 →R

6 ; g : R6 → R
6

with f and g piece-wise continuous on t and sufficiently

smooth on x:

x = [ωcp Psm msm mO2,ca mN2,ca Prm]
T (18)

• x1 = ωcp: angular speed of the compressor motor that

feeds the stack cathode through the supply manifold.

• x2 = Psm: total pressure inside the supply manifold,

consisting of the sum of the partial pressures of the

gases that constitute the air (oxygen, nitrogen and water

vapour).

• x3 = msm: total mass of air in the supply manifold,

consisting of the sum of the instantaneous masses of

oxygen, nitrogen and water vapour.

• x4 = mO2,ca: instantaneous oxygen mass in the stack’s

cathode channels. This state is affected by the oxygen

consumed in the reaction, the amount of oxygen coming

from the supply manifold and the oxygen mass outgoing

through the return manifold.

• x5 = mN2,ca: instantaneous mass of nitrogen inside the

stack’s cathode channels. It only relies on the incoming

nitrogen from the supply manifold and the outgoing ni-

trogen that leaves the stack through the return manifold.

• x6 = Prm: total pressure inside the return manifold,

consisting of the sum of the partial pressures of the

gases that constitute the air.

The control input u(t) is the voltage of the compressor

DC motor Vcp.

Suppose now that the control problem of Wcp regulation

is solved, for instance by the stabilizing Super Twisting

controller proposed in [3]. Then, the continuous-time steepest

descent algorithm (4) presented in section II, can be tuned to

determine the flow reference and find the optimum operating

value for each power load Pload .

C. Minimization Problem

The objective of the case study is to optimize the hydrogen

consumption of the FCGS in every operating condition,

minimizing the stack current demand under different load

conditions. Note that the consumed hydrogen in the reaction

(WH2,react ) is directly related to the stack current (Ist)

WH2,react = GH2

nIst

2F
,

where GH2
stands for the molar mass of hydrogen, n is the to-

tal number of cells of the stack and F the Faraday’s constant

[6]. Therefore, the optimization procedure can be stated as a

the problem of minimizing the real-valued objective function

y = h(x,u) = Ist =
Pload

Vst

,

subject to the constraint ẋ = 0, where Pload is the power

required by an external load and Vst is the fuel cell stack

voltage. Further details of the model, assumptions and oper-

ating conditions can be found in [6].

The system efficiency optimization can be achieved by

regulating the air mass flow entering the stack cathode. Sup-

pose that a proper low level controller ensures the reference

comburent flow, then the load demand will be satisfied with

minimum fuel consumption if an efficient flow reference

manager is designed. In addition, oxygen starvation could

be averted in order to extend the stack lifetime. To this end,

the following air flow reference is proposed based on (4):

Ẇcp,re f (t) =−1[t1,∞)(t) · kuz(t)+ d(t) , (19)

where z(t) ∈ R is an estimate of ∂H
∂u

at time t and ku =
4× 10−7 is the algorithm gain for the current system. A

sinusoidal ditter signal d(t) was applied in order to ensure

persistent excitation for the estimator (5).

D. PEM FCGS Operation Ranges and Minimums of Hydro-

gen Consumption

The steady state map of the analysed system (static

relationship between Wcp and Ist at different power loads)

is depicted in the following figure:
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Fig. 3. Steady-state analysis of the system performance in different load
conditions

Notice that low air mass flows implies low stack voltage

and, hence, higher stack current in order to keep Pload

constant. At the same time, a higher air mass flow would

require a higher compressor current, increasing Ist . Thus, if

continuity holds, there must be a minimizing value of air

mass between the two extrema of air mass flow.

IV. SIMULATION RESULTS

A. Algorithm Performance

In this section, the FCGS performance is evaluated under

the action of the extremum seeking supervisor control (19).

Then, the features of the designed algorithm are examined

through simulation tests, which aim to demonstrate its nom-

inal tracking performance. To this end, a series of power

loads (ranging from 15 kW to 40 kW) were chosen in order

to illustrate the air regulation performance in a wide range

of operation (Fig. 4).

Note that abrupt and significant changes in the amplitude

of the load demand (Pnet) were considered to test the profi-

ciency of the algorithm under exacting operating conditions.
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Fig. 4. Extremum seeking algorithm test: system dynamical

In Fig. 4, four different variables can be simultaneously

appreciated, the power load (Pnet), the stack current (Ist),

the compressor air flow (Wcp) and the fuel cell oxygen

stoichiometry (λO2
), defined as:

λO2
=

WO2,ca,in

WO2,react

with WO2,ca,in the oxygen partial flow entering the cathode

and WO2,react the oxygen flow consumed in the reaction.

In Fig. 5 it is shown that the current optimization (and

then the oxygen minimization) is successfully achieved for

all the tested operating conditions, obtaining efficiency im-

provements up to 20 %. Moreover an adequate comburent

flow is always ensured through the stack while the load

demand is satisfied with minimum fuel consumption.
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Fig. 5. Extremum seeking algorithm test: system trajectory on the static
map

V. CONCLUSIONS

A general extremum seeking algorithm was presented. A

feasibility study of its implementation in PEM fuel cells

hydrogen minimization was carried to assess its perfor-

mance. The algorithm evaluation has been conducted using

a benchmark model of a fuel cell system for an electric

vehicle. The analysis has established the viability of the

presented technique in fuel cells, aiming to improve its

energy efficiency.

Taking into account several features, such as the natural

time constants of the controlled system, robustness and

implementation simplicity, the extremum seeking algorithm

is shown to be a highly efficient solution for this challenging

problem, proving to be capable of robustly tracking the

optimal hydrogen consumption.

Now that the suitability of the approach has been con-

firmed, the following stage will be the development and

implementation of these algorithms in actual fuel cell plants.
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