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Abstract: This work describes the parameter identification of servo systems using the least squares
of orthogonal distances method. The parameter identification problem was reconsidered as data
fitting to a plane, which in turn corresponds to a nonlinear minimization problem. Three models of
a servo system, having one, two, and three parameters, were experimentally identified using both
the classic least squares and the least squares of orthogonal distances. The models with two and
three parameters were identified through numerical routines. The servo system model with a single
parameter only considered the input gain. In this particular case, the analytical conditions for finding
the critical points and for determining the existence of a minimum were presented, and the estimate
of the input gain was obtained by solving a simple quadratic equation whose coefficients depended
on measured data. The results showed that as opposed to the least squares method, the least squares
of orthogonal distances method experimentally produced consistent estimates without regard for the
classic persistency-of-excitation condition. Moreover, the parameter estimates of the least squares
of orthogonal distances method produced the best tracking performance when they were used to
compute a trajectory-tracking controller.

Keywords: servo system; parameter identification; least squares method; least squares of orthogonal
distances method; motion control
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1. Introduction

The aims of a mathematical model are to make forecasts and deductions about the
behavior of the system that it is attempting to describe, and then, it must accurately
reproduce its measured variables. However, since the mathematical model is developed
based on empirical knowledge and physical laws, most of the parameters used to build
the model may be unknown. Consequently, it is necessary to determine the values of the
parameters to produce the best fit between the signals produced by the model and the
measured data. This procedure is called parameter identification or parameter estimation,
and it corresponds to a linear estimation if a model is a linear combination of linearly
independent functions; otherwise, the estimation is nonlinear in nature [1–6].

A widely used approach to solve parameter identification problems and curve fitting
is the least squares (LS) method. It was attributed to Gauss, but the first published work on
this subject was by Legendre at the beginning of the 19th century [7]. The seminal papers
of R. J. Adcock in 1877 [8] and 1878 [9] proposed a variant of the LS method, namely the
least squares of the orthogonal distances (LSOD).
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In order to appreciate the differences between the LS and the LSOD algorithms,
consider Figure 1, where it is desired to fit a set of experimental data to a straight line. The
standard LS algorithm minimized the sum of the squares of the vertical distances between
the experimental data and the straight line, and consequently, it only considered errors
in the y variable. In contrast, the LSOD algorithm minimizes the sum of the squares of
the orthogonal distances between the experimental data and the straight line; hence, it
accounted for errors in both the x and y variables.

(a) (b)

Figure 1. Straight line fitting problem. (a) Classic least squares algorithm.; (b) Least squares of
orthogonal distances algorithm.

The LSOD method has been mainly used for fitting data to geometric objects, including
lines, planes, spheres, ellipses, and hyperbolas [7,10–12]. It has also been applied in several
problems, including parameter identification of tire models [13] and the modeling of
sorption data [14]. It has been reported that LSOD method outperformed the classic
LS method when they were used for model-fitting of experimental data [15]. However,
parameter identification of dynamical systems is a classic subject, as it has been covered in
many references and textbooks, and the LS algorithm has probably been the most widely
used method to this end [2–6,16–19].

A practical case of interest has been the parameter identification in servo systems,
which are used in many applications, including motion control, robotics, solar-tracking
systems, and prosthetics. However, advanced control algorithms for servo systems require
previous knowledge of their parameters. This makes it necessary to use the most suitable
method for parameter identification. The parameter identification of servo systems may be
solved through different techniques, for example, employing the classical least squares (LS)
method [16,20–23]. Other techniques include Kalman filtering [24], gradient algorithms
[25], particle swarm optimization (PSO) [26], total least squares (TLS), and the LSOD
method [27].

This work proposes a parameter identification procedure for servo systems using
the LSOD method, which recasts the parameter identification problem as data fitting to a
plane. Then, the parameter identification could be accomplished by solving a nonlinear
minimization problem for which the cost function and the conditions for finding a crit-
ical point were described. Then, finding the critical points was equivalent to obtaining
the parameter estimates. Three models of the servo systems, having one, two, and three
parameters, were considered for parameter identification. The two and three parameter
models were solved using numerical routines, whereas for the model with one parameter,
which corresponded to the input gain, the parameter identification problem was equivalent
to the data fitting to a line, and analytical conditions for obtaining a critical point and
to determine if it corresponded to a minimum were derived. Moreover, the estimate of
the input gain was obtained by solving a simple quadratic equation whose coefficients
depended on measured data. To the best of the authors’ knowledge, this last result had no
equivalent when using the LS algorithm.

The key points of this work were the following:
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• We presented a parameter identification scheme using the LSOD method for servo
systems.

• It was easily extended for the parameter identification of n-order LTI systems subjected
to constant disturbances, assuming that only input and output data were available
from measurements.

• A cost function depending on the orthogonal distances between the data and a plane
was derived, where the latter was built from a linear parametrization.

• Conditions for obtaining a critical point, i.e., the parameter estimates, as well as the
numerical routine to solve the nonlinear minimization problem were described.

• For the model of a servo system containing only an unknown parameter, the input
gain, the simple analytical conditions for computing the critical point and to establish
if the point produced a minimum of the cost function were derived. The LSOD method
provides the possibility of using smooth excitation signals with low harmonic content,
which are more suitable for applications where aggressive excitation signals cannot be
used.

• The proposed parameter identification methodology was experimentally compared
with the LS method. Three servo system models were estimated using excitation
signals with different frequency spectra, and the parameter estimates obtained with
both methods were used to design a trajectory-tracking controller.

The work is structured as follows: Section 2 describes the linear regression for per-
turbed LTI systems, assuming that only input and output data are available. The LS method
is briefly described in Section 3. Section 4 is devoted to the LSOD method. The three models
of a servo system are presented in Section 5. The parameter estimates obtained through
the LS and LSOD methods using experimental data and the design and testing of three
trajectory-tracking controllers are presented, respectively, in Sections 6 and 7. The main
conclusions of this work are described in Section 8.

2. Linear Regression for Perturbed LTI Systems

The general problem of parameter identification was defined as follows. Given the
structure of a model and a set of measured data points, the problem consisted of estimating
the unknown model parameters, so the output of the model computed using the estimates
would match the data in an optimal manner [2].

Let the mathematical model of a linear-time invariant (LTI) system be as follows:

A(D)y = B(D)u + d; Di =
di

dti (1)

A(D) = Dn + α1Dn−1 + · · ·+ αn; n ≥ 1

B(D) = β0Dm + β1Dm−1 + · · ·+ βm n ≥ m ≥ 0

where it is subjected to a constant disturbance d, with input u, and output y. The aim was
to estimate the constant unknown parameters α1, . . . , αn, β0, β1, . . . , βm and the disturbance
d. A linear regression for parameter identification purposes was obtained by rewriting (1)
as follows:

y(n) = −α1y(n−1) − · · · − αny + β0u(m) + β1u(m−1) + . . . + βmu + d, (2)

= θ>Φ, (3)

where

θ = [α1, . . . , αn, β0, β1, . . . , βm, d]>,

Φ =
[
−y(n−1), . . . ,−y, u(m), u(m−1), . . . , u, 1

]>
.
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Note that the regression vector Φ depends on the system input and output and their
time derivatives. In practice, these derivatives are seldom available, thus precluding the
use of (2).

If only the input u and the output y are available from measurements, it is current
practice to use linear filters to obtain a linear regression for the unknown parameters but
with a regression vector, depending only on input–output measurements [17,18]. To this
end, we defined the transfer function of the following asymptotically stable filter:

F(s) =
fn

sn + f1sn−1 + . . . + fn
, (4)

and the filtered variables u f and y f ,

L{u f } = F(s)L{u}, (5)

L{y f } = F(s)L{y}, (6)

where L{·} stands for the Laplace transform and s is a complex variable.
The expressions (5) and (6) found the next state space representations:

ż1 = A f z1 + b f u, (7)

u f = c>f z1,

ż2 = A f z2 + b f y, (8)

y f = c>f z2,

where

A f =


− f1 1 0 · · · 0

...
. . .

− fn−1 0 0 · · · 1
− fn 0 0 · · · 0

; b f =


0
...
0
fn

; c f =


1
...
0
0

,

F(s) = c>f (sI − A f )
−1b f , (9)

with fi > 0, i = 1, . . . , n and det(A f ) = (−1)n+2 fn. Hence, A f is invertible and Hurwitz-
stable.

However, define
z3 = A(D)z2 − B(D)z1, (10)

taking the time-derivative of (10) and substituting (7) and (8) produce

ż3 = A(D)ż2 − B(D)ż1,

= A(D)(A f z2 + b f y)− B(D)(A f z1 + b f u),

= A f [A(D)z2 − B(D)z1] + b f [A(D)y− B(D)u], (11)

which results in
ż3 = A f z3 + b f d, (12)

by substituting Equations (1) and (10). The solution of Equation (12) for a constant distur-
bance d was shown in [28].

z3 = eA f tz3(0) + A−1
f (eA f t − I)b f d. (13)
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Substituting Equation (10), multiplying both sides of Equation (13) by c>f , substitut-
ing u f and y f in Equation (7) and Equation (8), respectively, and, assuming zero initial
conditions, finally yielded

A(D)y f = B(D)u f + d f , (14)

with d f = c>f A−1
f (eA f t − I)b f d.

The term d f was decomposed as d f = d f t + d f s with d f t = c>f A−1
f eA f tb f d and d f s =

−c>f A−1
f b f d. The term d f t exponentially converged to zero because A f was Hurwitz-stable.

However, d f s corresponded to the steady-state value of d f , which was computed using
Equations (4) and (9), and the final value theorem in [28], i.e.,

d f s = lim
s→0

sF(s)
(

d
s

)
= d,

= lim
s→0

sc>f (sI − A f )
−1b f

(
d
s

)
= −c>f A−1

f b f d.

The results above showed that −c>f A−1
f b f = 1 and d f s = d, which allowed us to

express Equation (14) as follows:

A(D)y f = B(D)u f + d + d f t. (15)

A linear regression followed from Equation (15)

y(n)f = −α1y(n−1)
f − · · · − αny f + β0u(m)

f + β1u(m−1)
f + · · ·+ βmu f + d + d f t, (16)

= θ>Φ f + d f t, (17)

where

θ = [α1, . . . , αn, β0, β1, . . . , βm, d]>,

Φ f =
[
−y(n−1)

f , . . . ,−y f , u(m)
f , u(m−1)

f , . . . , u f , 1
]>

.

Since the term d f t decayed exponentially to zero, it was not considered in subsequent
developments. Equations (3) and (17) have similar structures, since vector Φ f only depends

on u f and y f , all entries as well as y(n)f are obtained through the next filters due to having
the same characteristic polynomial as Equation (4).

L{u(i)
f }

L{u} =
fnsi

sn + f1sn−1 + . . . + fn
; i = 0, . . . , m, (18)

L{y(i)f }
L{y} =

fnsi

sn + f1sn−1 + . . . + fn
; i = 0, . . . , n. (19)

3. Parameter Identification Using the LS Method

Consider the model (16) with the following unknown parameters: α1, . . . , αn,
β0, β1, . . . , βm, d. If the ρ measurements of the variables y(n)f j

, y(n−1)
f j

, . . . , ẏ f j
, y f j

, u(m)
f j

, u(m−1)
f j

,
. . . , u̇ f j

, u f j
with j = 1, . . . , ρ, are available, then, the equation to estimate the unknown

parameters is the follows:
r̄ = y−Ap, (20)
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where

r̄ =


r̄1
r̄2
...

r̄ρ

, y =


y(n)f1

y(n)f2
...

y(n)fρ

, A =


−y(n−1)

f1
· · · −y f1 u(m)

f1
· · · u f1 1

−y(n−1)
f2

· · · −y f2 u(m)
f2

· · · u f2 1
...

...
...

...
...

−y(n−1)
fρ

· · · −y fρ
u(m)

fρ
· · · u fρ

1

,

and

p =
[
α1 · · · αn β0 · · · βm d

]>.

In the standard LS method, the goal is to compute p ∈ Rκ , κ = n + m + 2, such that

JLS = min
p∈Rκ

‖y−Ap‖2. (21)

where the operator ‖·‖ stands for the Euclidean norm. The value p minimizing JLS was
provided by [19].

p = A†y (22)

A† = (A>A)−1A> = V
[

Σ−1
q 0
0 0

]
U> (23)

The term A† stood for the Moore–Penrose pseudo-inverse of A, which was defined
by the Singular value decomposition (SVD), whose properties are described in the next
theorem.

Theorem 1 ([29]). Let any matrix A ∈ Rm×n. The SVD of A is denoted by the following:

A = U
[

Σq 0
0 0

]
V>,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σq = diag(σ1, σ2, . . . , σq). The
numbers σ1 ≥ σ2 ≥ . . . ≥ σq > 0 are called the singular values of A.

4. Parameter Identification Using the LSOD Method

In order to apply the LSOD method, the model (16) has been rewritten, as follows:

x1 + α1x2 + · · ·+ αnxk + β0xk+1 + β1xk+2 + · · ·+ βmxη − d = 0, (24)

with x1 = y(n)f , x2 = y(n−1)
f , . . . , xk = y f , xk+1 = −u(m)

f , xk+2 = −u(m−1)
f , . . . , xη = −u f

and unknown parameters α1, . . . , αn, β0, β1, . . . , βm, d, which corresponds to the equation
describing a hyperplane.

Note that the LSOD method minimizes the sum of the squares of the orthogonal
distances from the experimental data points to an approximation function. Then, the
parameter identification of an LTI system, parameterized according to Equation (24), and
the application of the LSOD method is equivalent to solve a hyperplane-fitting problem.
To illustrate this point, Figure 2 shows the orthogonal and vertical distances used by the
LSOD and LS methods, respectively, corresponding to the plane fitting in R3.
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Figure 2. Approximation plane.

4.1. The LSOD Method for Plane Fitting

Let the plane πη ∈ Rη be defined as follows:

πη : a1x1 + a2x2 + a3x3 + · · ·+ aη xη + a0 = 0, (25)

with the normal vector N =
[
a1 a2 a3 · · · aη

]>, and let the experimental data vector

Qi =
(
x1i, x2i, . . . , xηi

)> with i = 1, 2, . . . , ρ. Then, the orthogonal distance ‖di‖ between
Qi and a point on the plane πη could be defined as follows:

Definition 1. The orthogonal distance ‖di‖ from the point Qi to the plane πη is the distance from
Qi to the intersection point Pi between the plane πη and the straight line Li, which is defined along
N and passes through Qi.

In the above definition, Pi is a vector on the plane πη . Therefore, the square of the
orthogonal distance between Qi and Pi was the following:

‖di‖2 = ‖Qi − Pi‖2 (26)

and the straight line Li was defined as the following:

Li =
{

Qi + ζN : ζ ∈ R
}

. (27)

The intersection between πη and Li was expressed as follows:

πη ∩Li =
{
(x1i + a1ζ, . . . , xηi + aηζ) | a1(x1i + a1ζ) + · · ·+ aη(xηi + aηζ) + a0 = 0

}
,

and the intersection point was defined by Pi = (x1i + a1ζ, x2i + a2ζ, . . . , xηi + aηζ)> with

ζ = −
a1x1i + a2x2i + · · ·+ aη xηi + a0

a2
1 + a2

2 + a2
3 + · · ·+ a2

η

.

Therefore, substituting Qi and Pi into Equation (26) yielded the following:

‖di‖2 =
(a1x1i + a2x2i + · · ·+ aη xηi + a0)

2

a2
1 + a2

2 + a2
3 + · · ·+ a2

η

=
r2

i
a2

1 + a2
2 + a2

3 + · · ·+ a2
η

,

where ri = a1x1i + a2x2i + · · ·+ aη xηi + a0.

y X 

• Experimental data 
- - Vertical distance 
...... , Orthogonal distance 
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Now, consider the vector of orthogonal distances d =
[
‖d1‖ ‖d2‖ . . . ‖dρ‖

]>.
Then, the cost function to be minimized using the LSOD method would be the following:

JLSOD = ‖d‖2 =
1

a2
1 + a2

2 + a2
3 + · · ·+ a2

η

ρ

∑
i=1

r2
i . (28)

Therefore, to estimate the parameters a0, a1, . . . , aη of the plane (25) πη ∈ Rη using the
LSOD method, the function (28) must be minimized. Hence, setting the first derivatives of
(28) to zero, with respect to a0, a1, . . . , aη , yielded:

∂JLSOD
∂a1

=
2

a2
1 + a2

2 + a2
3 + · · ·+ a2

η

[ ρ

∑
i=1

rix1i −
a1

a2
1 + a2

2 + a2
3 + · · ·+ a2

η

ρ

∑
i=1

r2
i

]
= 0

...
∂JLSOD

∂aη
=

2
a2

1 + a2
2 + a2

3 + · · ·+ a2
η

[ ρ

∑
i=1

rixηi −
aη

a2
1 + a2

2 + a2
3 + · · ·+ a2

η

ρ

∑
i=1

r2
i

]
= 0 (29)

∂JLSOD
∂a0

=
2

a2
1 + a2

2 + a2
3 + · · ·+ a2

η

ρ

∑
i=1

ri = 0.

Since the expressions (29) become to a set of nonlinear algebraic equations, they must
be solved for a0, a1, . . . , aη in order to find a critical point and, then, to obtain a minimum for
the cost function (28). From the above, it was clear that the parameter identification problem
solved through the LSOD method turns to a nonlinear minimization problem. Regarding
this issue, there are several methods to solve this problem, including the Newton method
[2,29,30]. The MATLAB routine fminunc is based on the Newton method [31], which was
used in this work to solve the set (29).

Finally, the cost function to be minimized in order to estimate the unknown parameters
of an LTI system, parameterized according to (24) by the LSOD method, was provided by
the following:

JLSOD = ‖d‖2 =
1

1 + α2
1 + · · ·+ α2

n + β2
0 + β2

1 + · · ·+ β2
m

ρ

∑
i=1

r2
i , (30)

with ri = x1i + α1x2i + · · ·+ αnxki + β0xk+1,i + β1xk+2,i + · · ·+ βmxηi − d.

4.2. The LSOD Method for a Straight Line

A particular case of the LTI system model (1) was the following:

ÿ = β0u + d. (31)

Its corresponding filtered version was the following:

ÿ f = β0u f + d. (32)

The goal was to estimate β0 using the LSOD method according to ÿ f and u f measure-
ments. To obtain a suitable analytical solution, instead of resorting to numerical methods,
the parameter estimation developed in the next paragraphs only considered the estimation
of β0 and did not consider the disturbance d. Therefore, the problem was reduced to the
data fitting to a straight line, passing through the origin, as defined by the following:

` =
{
(x1, x2) ∈ R2 | x1 + β0x2 = 0

}
, (33)
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with x1 = ÿ f and x2 = −u f . Hence, applying the LSOD method to estimate the unknown
parameters of system (31) yielded the cost function:

JLSOD = ‖d‖2 =
1

1 + β2
0

ρ

∑
i=1

r2
i , (34)

ri = x1i + β0x2i, (35)

which was a special case of (30), and the estimation of the input gain β0 was also a nonlinear
problem. Nevertheless, its simplicity allowed the first and second derivatives of (34) to be
explicitly found, with respect to β0.

The first derivative of Equation (34), with respect to β0, was given by the following:

J
′
LSOD(β0) :=

∂JLSOD
∂β0

= − 2
1 + β2

0

[
−

ρ

∑
i=1

rix2i +
β0

1 + β2
0

ρ

∑
i=1

r2
i

]
. (36)

Equating (36) to zero and solving for β0 led to a second-degree equation:

µ1β2
0 + µ2β0 + µ3 = 0, (37)

with

µ1 =
ρ

∑
i=1

x1ix2i

= x>1 x2,

µ2 =
ρ

∑
i=1

x2
1i −

ρ

∑
i=1

x2
2i

= ‖x1‖2 − ‖x2‖2,

µ3 = −
ρ

∑
i=1

x1ix2i = −µ1,

where x1 = [x11, . . . , x1ρ]
> and x2 = [x21, . . . , x2ρ]

> are the measurement vectors.
The solutions of Equation (37), which corresponds to the critical points, were provided

by the following:

β∗01,2
=
−µ2 ±

√
µ2

2 − 4µ1µ3

2µ1
, (38)

= − µ2

2µ1
±

√
µ2

2
4µ2

1
+ 1,

= −‖x1‖2 − ‖x2‖2

2(x>1 x2)
±
√

(‖x1‖2 − ‖x2‖2)2

4(x>1 x2)2
+ 1,

with the condition
x>1 x2 6= 0. (39)

Then, the solutions β∗01,2
are always real, and they exist as long as the measurement

vectors x1 and x2 are not orthogonal. To verify that one of these solutions corresponds to a
minimum in (34), the second derivative test was employed.

Definition 2. Suppose J
′′
LSOD is continuous near the critical point β∗0
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• If J
′
LSOD(β∗0) = 0 and J

′′
LSOD(β∗0) > 0, then JLSOD has a local minimum at β∗0.

• If J
′
LSOD(β∗0) = 0 and J

′′
LSOD(β∗0) < 0, then JLSOD has a local maximum at β∗0.

The second derivative of (34), with respect to β0, was expressed, as follows:

J
′′
LSOD(β∗0) :=

∂2 JLSOD

∂β2
0

=
2

1 + β2
0

[ ρ

∑
i=1

x2
2i −

4β0

1 + β2
0

ρ

∑
i=1

rix2i −
1− 3β2

0
(1 + β2

0)
2

ρ

∑
i=1

r2
i

]
. (40)

Equating the right-hand side of (36) to zero produced the following:

ρ

∑
i=1

rix2i =
β0

1 + β2
0

ρ

∑
i=1

r2
i . (41)

Substituting (41) into (40) and using (34) produced:

J
′′
LSOD =

2
1 + β2

0

[ ρ

∑
i=1

x2
2i −

1
1 + β2

0

ρ

∑
i=1

r2
i

]
(42)

=
2

1 + β2
0

[
‖x2

2‖ − JLSOD
]
.

Therefore, a critical point β∗0 of (34) corresponds to a minimum if

‖x2
2‖ − JLSOD(β∗0) > 0 (43)

where JLSOD(β∗0) denotes the cost function evaluated at β∗0.

5. Servo System Mathematical Models and Parameter Identification Procedure

Servo systems are widely used in CNC machines, industrial processes, assembly robots,
electric elevators, electric and hybrid vehicles, trains, and many other areas. Although there
has not been a general mathematical model for servo systems, most share similar structures,
and certain parameters, such as the input gain due to the power amplifier driving the
motor, have more influence in the servo system performance. Moreover, if the requirements
of its performance increase, so does the complexity of the mathematical model, which then
requires more elaborate control algorithms.

Several key parameters had to be considered when designing servo control systems, in-
cluding friction phenomena, internal and external disturbances, load changes, un-modeled
dynamics, and measurement noise [32,33]. In this work, three servo system models were
presented for parameter identification purposes. The first model considered the servo
system input gain, a friction term, and a constant disturbance, as the parameters to be
estimated. The second model was built by ignoring the disturbance in the first model, and
the third model only considered the estimation of the input gain. Moreover, the relevance of
the parameter estimates was also assessed by designing feedback control laws for trajectory
tracking.

Thus, having several models allows a practitioner to choose one of them for a specific
task. For example, some control algorithms, including active disturbance rejection control
(ADRC) [34,35], only need the input gain for their implementation, and then, it is only
necessary to identify this term, and the model considering only the input gain would be
more than adequate for this task.

5.1. First Mathematical Model

Figure 3 depicts a block diagram of a servo system model, which consists of a direct
current (DC) motor driven by a power amplifier, which works in current mode though a
proportional current controller. The variable y corresponds to the servo angular position.
Signal u is the input control signal, KA is the power amplifier gain, Kp is the proportional
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gain of the current controller, the constant Kcl is the current loop feedback gain, and the
constant KH−B is the gain of the H-Bridge in the power amplifier. The variable ν is the
motor input voltage, the constants RA, LA, Kτ , and KEMF are respectively, the armature
resistance, the armature inductance, the torque constant, and the back electromotive force
constant. The parameters J and B are the lumped DC motor and load inertia and viscous
friction coefficient respectively. The term τd corresponds to constant disturbances that
include parasitic constant voltages produced inside the power amplifier. The task of the
current loop is to keep the armature current ia proportional to the control signal u, and
to speed up the electrical dynamics of the servo system. Due to this feature, the electrical
dynamics could have been overlooked at low frequencies.

u

pK
1

Js B+

y

dt

K
t

ai1

a aL s R+
AK H BK

-
+
-

+
-

clK

EMFK

1

s
+
+

n

Power amplifier

DC motor

Figure 3. Block diagram of a servo system model.

Thus, by ignoring the electrical dynamics of the servo system and assuming that the
external disturbances were constant, we obtained the following model:

ÿ + α1ẏ = β0u + d (44)

where

α1 =
B
J
+

KτKEMF
J(Ra + KpKH−BKcl)

, β0 =
KAKpKH−BKτ

J(Ra + KpKH−BKcl)
, d =

Raτd
J(Ra + KpKH−BKcl)

.

Then, α1 is related to the damping due to the mechanical friction and the back electro-
motive force, β0 is the input gain, and d is a function of the constant disturbance.

According to (17), the corresponding filtered version of (44) was the following:

ÿ f + α1ẏ f = β0u f + d (45)

and the exponential decaying term d f t, due to the filtering, was neglected.
The approximation plane for (45) was obtained by defining the change of variables:

(x1, x2, x3) = (ÿ f ,−u f , ẏ f )

π3 =
{
(x1, x2, x3) ∈ R3 | x1 + β0x2 + α1x3 − d = 0

}
, (46)

with normal vector N =
[
1 β0 α1

]>. Applying the LSOD method to the plane (46), the
cost function to be minimized to estimate β0, α1 and d was determined by the following:

JLSOD = ‖d‖2 =
1

1 + β2
0 + α2

1

ρ

∑
i=1

r2
i , (47)

The residuals corresponded to ri = x1i + β0x2i + α1x3i − d.

The LS method, as described in Section 3, was applied to fit the plane (46), considering
ρ measurements, which resulted in the following:

- - - - - - - - - - - - - - - -.... ,\ 

' 

' ...... - -------------------------- ~ 
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r̄ =

r̄1
...

r̄ρ

 ∈ Rρ×1, y =

x11
...

x1ρ

 ∈ Rρ×1, A3 =

−x31 −x21 1
...

...
...

−x3ρ −x2ρ 1

 ∈ Rρ×3, p3 =

α1
β0
d

 ∈ R3×1. (48)

5.2. Second Mathematical Model

The second mathematical model to be identified was obtained by neglecting the
disturbance term d in (44), i.e.,

ÿ + α1ẏ = β0u, (49)

and the corresponding filtered version was provided by

ÿ f + α1ẏ f = β0u f . (50)

The approximation plane with the change of variable (x1, x2, x3) = (ÿ f ,−u f , ẏ f ) to be
identified was the following:

π2 =
{
(x1, x2, x3) ∈ R3 | x1 + β0x2 + α1x3 = 0

}
, (51)

with the normal vector N =
[
1 β0 α1

]>.
The LSOD method applied to the plane (51) to estimate β0 and α1 resulted in the

cost function:

JLSOD = ‖d‖2 =
1

1 + β2
0 + α2

1

ρ

∑
i=1

r2
i , (52)

and the residuals were ri = x1i + β0x2i + α1x3i.
Now, considering ρ measurements, we applied the LS method to (51) yielded the

following:

r̄ =

r̄1
...

r̄ρ

 ∈ Rρ×1, y =

x11
...

x1ρ

 ∈ Rρ×1, A2 =

−x31 −x21
...

...
−x3ρ −x2ρ

 ∈ Rρ×2, p2 =

[
α1
β0

]
∈ R2×1. (53)

5.3. Third Mathematical Model

Finally, if only the input gain of the servo system needs to be estimated, the α1ẏ and d
terms are neglected in (44), thus yielding:

ÿ = β0u, (54)

The filtered version of the above model is:

ÿ f = β0u f . (55)

Since the mathematical model (55) was a double-integrator system and considering the
change of variable (x1, x2) = (ÿ f ,−u f ), the straight line to be identified was the following:

` =
{
(x1, x2) ∈ R2 | x1 + β0x2 = 0

}
(56)

and the function to be minimized to estimate β0 of the model (56) by the LSOD method
was (34).
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The LS method applied to fit the line (56) resulted in the following terms, considering
ρ measurements:

r̄ =

r̄1
...

r̄ρ

 ∈ Rρ×1, y =

x11
...

x1ρ

 ∈ Rρ×1, A1 =

−x21
...
−x2ρ

 ∈ Rρ×1, p1 = β0 ∈ R. (57)

As was previously mentioned, parameter identification using the LSOD method
corresponds to a nonlinear minimization problem. Then, the minimization of the cost
functions (47) and (52) was carried out by the fminunc MATLAB routine, whereas the cost
function (34) was minimized using the LSOD analytical method, as described in Section 4.2.
However, the parameter identification of the planes (46) and (51), and the line (56), was
also carried out by the LS method through (22), together with (48), (53), and (57).

6. Servo System Parameter Identification Using Experimental Measurements

The experimental environment used for data acquisition and real-time experiments
can be see in Appendix A. Since the models (44), (49), and (54) had similar information
about the behavior of the servo system, the aim of the experiments was twofold: first, to
estimate the parameters of these models, and second, to evaluate the identified models by
designing and evaluating a trajectory-tracking controller.

However, it is well known that for parameter identification using the LS algorithm, a
persistency-of-excitation (PE) condition has to be met in order to ensure the invertibility of
A>A in (23) [4–6]. To fulfill this condition, a test signal with a wide frequency spectrum is
typically used. Examples of these signals include filtered white noise and pseudo-random
binary signals. For the LSOD algorithm, and to the best of the authors’ knowledge, there is
no previous work on how to choose an excitation test signal.

This work considered two test signals, namely filtered white noise and a sine wave.
This choice allowed us to study the behavior of the LS and LSOD algorithms on signals
with radically different spectra.

In order to perform parameter identification, a proportional derivative (PD) feedback
control law was proposed to stabilize the servo system:

u = Kpe− Kdẏe (58)

where e denotes the position error defined as e = yr − y, yr is the reference, the position y
is obtained by an optical encoder, and ẏe is an estimate obtained from the motor position
measurements through the next filter

L{ẏe}
L{y} =

[
300s

s + 300

][
300

s + 300

]
, (59)

where L {·} corresponds to the Laplace operator. The PD controller gains were adjusted
empirically until obtaining an acceptable response from position, and then the proportional
and derivative gains were set to Kp = 2 and Kd = 0.09, respectively.

The measurements of the servo system were processed using the filters (18) and (19)
to obtain estimates of the angular velocity and acceleration, respectively, which were not
available from measurements (see Figure 4). The poles of the filters must be real repeated
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value to avoid overshoots and they must have fast dynamics. For this study, the filters were
defined as follows:

yj ⇒
400s

s2 + 40s + 400
⇒ ẏj f

yj ⇒
400s2

s2 + 40s + 400
⇒ ÿj f

uj ⇒
400

s2 + 40s + 400
⇒ uj f

In order to apply the LS and the LSOD methods, the values of uj f , ẏj f , ÿj f , j = 1, . . . , ρ
were acquired at the time instants t1, . . . , tm (see Figure 4). For the LS method, this allowed
us to build A1, A2, A3 and y in (48), (53), and (57).

Figure 4. Servo system signal filtering block diagram.

Experimental Identification Results

Tables 1–3 show the results of the parameter identification of the models (45), (50)
and (55), where β∗0, α∗1 , and d∗ are the estimates of β0, α1 and d, respectively. The white
noise power and the sample time in the Simulink band-limited white noise block were 0.01
and 0.01, respectively. The signal generator block producing a sine-wave signal was used
with an amplitude of 0.5 s and a frequency of 0.25 Hertz. A zero-order hold (ZOH), with a
sample time of 0.05, was employed to obtain the samples and the experiments in each case
were 10 s in duration, which provided ρ = 200 samples.

Table 1. Parameter identification of the servo system model (44).

Model Parameter White-Noise Signal Sine-Wave Signal
LS LSOD LS LSOD

β∗0 40.809663 41.402230 15.300981 38.682501
α∗1 2.142594 2.174090 2.269066 5.868168
d∗ −1.653451 −1.678005 −0.841450 −2.008895

Table 2. Parameter identification of the servo system model (49).

Model Parameter White-Noise Signal Sine-Wave Signal
LS LSOD LS LSOD

β∗0 39.924891 41.380829 7.520022 42.460353
α∗1 2.111703 2.189721 1.123041 6.704563
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Table 3. Parameter identification of the servo system model (54).

Model Parameter White-Noise Signal Sine Wave Signal
LS LSOD LS LSOD

β∗0 37.679891 41.461638 3.484775 39.823089

The parameter estimates produced by the LS and LSOD methods using the filtered
white-noise signal were quite similar for the thee models. A well-known aspect of the PE
condition in gradient and LS algorithms for adaptive control and parameter identification
was that it guaranteed estimates that were close to those obtained in the absence of distur-
bances [17,18]. Therefore, the results obtained by the LS method for the three models were
not surprising.

However, in the case of the sine-wave signal, the results varied. It is worth noting that
the estimate β∗0 produced by the LSOD algorithm remained close to a value of 40, regardless
of the excitation signal and the identified model, which contrasted with the results obtained
using the LS method. In addition, as shown in Tables 1 and 2, there was also an increase in
the estimation of parameter α∗1 when the sine wave and the LSOD method were used in
comparison with the white-noise results.

However, the LS method produced very poor estimates of β∗0 for the three models
when the sine-wave signal was employed as excitation. A possible explanation of these
outcomes was that a sine wave has two spectral lines, which is theoretically enough to
fulfill the persistent excitation (PE) condition in order to identify a single parameter [17].
However, the presence of disturbances and un-modeled terms introduced a significant
bias in the estimate. However, the LS algorithm also produced poor estimates for the
models with two and three parameters. In this regard, the LS method is an ill-conditioned
problem [29], and it requires an input signal that satisfies the PE condition in order to obtain
consistent estimates [4].

In addition, for the estimation of β∗0 in model (54) using the LSOD method, the solution
was the result of the quadratic Equation (37), and only the orthogonality condition (39) had
to be met to obtain an estimate, see Table 4. This condition did not appear to be related to
the frequency content of the excitation signal, thus indicating the possibility of using the
LSOD method with smooth excitation signals in applications where more aggressive signals
with high-frequency content cannot be employed for parameter identification purposes.

Table 4. Orthogonality condition x>1 x2 (39) and the value of Minimum condition J
′′

LSOD(β∗0) (42) for
the parameter identification of the servo system model (54) using the LSOD method.

Condition White-Noise Signal Sine-Wave Signal

x>1 x2 617.349730 8.607933
J
′′

LSOD(β∗0) 0.017312 0.000272

7. Real-Time Position Control and Servo System Model Validation

The estimated models (46), (51), and (56) were evaluated by using their parameter
estimates for designing trajectory tracking feedback control laws. To evaluate the closed-
loop performance of the integral of the squared errors (ISE), the integral of the absolute
value of the error (IAE), the integral of the absolute value of the control (IAC), and the
integral of the absolute value of the control variation (IACV) indexes were employed. The
IACV evaluates the chattering level and high-frequency content of the control signal. These
performance indexes [36] are defined as follows:

ISE =
∫ τ2

τ1

e2(t)dt, IAE =
∫ τ2

τ1

|e(t)|dt,

IACV =
∫ τ2

τ1

∣∣∣∣du(t)
dt

∣∣∣∣dt, IAC =
∫ τ2

τ1

|u(t)|dt.
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The time window for evaluating the above indexes was defined by τ1 = 0 s and τ2 = 20 s.
The time-varying reference yr and its time derivatives used in all the experiments

were the following:

yr = y1

ẏr = ẏ1

ÿr = aωπẏ2

which corresponds to the solution of the Duffing oscillator equation

ẏ1 = aωπy2,

ẏ2 = aωπ
[
−0.25y2 + y1 − 1.05y3

1 + 0.3 sin(ωπt)
]
,

with a = 0.5, ω = 0.55. The gains in all the cases described in the next subsections were
tuned as Kp = 225 and Kd = 21.

7.1. Servo System Model with Three Parameter Estimates

Consider the servo system model (44), ÿ = −α1ẏ + β0u3 + d, and its parameter
estimates depicted in Table 1. The control law used for the trajectory-tracking task was the
following:

u3 =
1
β∗0

[
ÿr + Kp(yr − y) + Kd(ẏr − ẏe) + α∗1 ẏe − d∗

]
, (60)

Table 5 continues the performance indexes of the experiments using the control law
(60). The closed-loop responses, the position errors, and the control signals are depicted in
Figures 5–7, respectively. The experimental results in Table 5 showed that the smallest val-
ues of the ISE and IAE performance indexes were obtained with the parameters produced
by the LSOD method.

Table 5. Performance indexes produced by control law (60) with parameter estimates β∗0, α∗1 and d∗.

Index White-Noise Signal Sine-Wave Signal
LS LSOD LS LSOD

ISE 18.6215 16.4898 13.8181 11.9049
IAE 16.0305 15.1407 13.6463 12.4864

IACV 9.7414 9.9285 23.1436 10.0730
IAC 1.7290 1.6977 1.7812 1.7345

Figure 5. Reference and servo system angular positions produced by control law (60) with parameter
estimates β∗0, α∗1 and d∗.
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Figure 6. Position errors produced by control law (60) with parameter estimates β∗0, α∗1 and d∗.
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Figure 7. Control signals produced by control law (60) with parameter estimates β∗0, α∗1 and d∗.

We noted that the control law (60), computed with the parameter estimates from the
LS method under sine-wave excitation, produced the highest value of the IACV index.
This was due to the poor estimate of the input gain β0, which was the lowest in Table 1.
Moreover, the values of the IAC index were similar for the two identification methods.

7.2. Servo System Model with Two Parameter Estimates

The servo system model (49), ÿ = −α1ẏ + β0u2 and the parameters in Table 2 were
considered in this study. The control law used for the trajectory-tracking task was provided
by the following:

u2 =
1
β∗0

[
ÿr + Kp(yr − y) + Kd(ẏr − ẏe) + α∗1 ẏe

]
(61)

The closed-loop responses, the position errors, and the control signals are shown in
Figures 8–10, respectively. The experimental results from Table 6 indicated that the control
law, computed using the parameter estimates, generated by the filtered white-noise signal
and provided by the LSOD method produced the lowest values of the ISE and IAE indexes.
However, when the parameters obtained with the sine-wave signal were employed in the
control law, the ISE index, related to the LS algorithm, was the lowest but at the expense
of an increased value of the IACV index, i.e., with a control signal having significant
high-frequency components. Table 2 shows that the value β∗0 was too small, and then
its inverse was large, thus producing a larger control signal. Further, the LSOD method
produced acceptable performance with lower values of control signal activity, according to
the IACV index. Finally, we noted that all the index values related to the LSOD method
did not exhibit significant differences for the two excitation signals.
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Table 6. Performance indexes produced by control law (61) with parameter estimates β∗0 and α∗1 .

Index White-Noise Signal Sine-Wave Signal
LS LSOD LS LSOD

ISE 34.7949 29.2900 16.0997 24.0802
IAE 21.8799 20.0538 14.34865 18.57136

IACV 9.94869 9.8466 45.6438 9.1073
IAC 1.7231 1.6963 1.8044 1.6745

Figure 8. Reference and servo system angular positions produced by control law (61) with parameter
estimates β∗0 and α∗1 .
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Figure 9. Position errors produced by control law (61) with parameter estimates β∗0 and α∗1 .
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Figure 10. Control signals produced by control law (61) with parameter estimates β∗0 and α∗1 .

7.3. Servo System Model with One Estimated Parameter

The next control law is designed for the servo system model (54), ÿ = β0u1, with the
parameter values displayed in Table 3

u1 =
1
β∗0

[
ÿr + Kp(yr − y) + Kd(ẏr − ẏe)

]
(62)
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Figures 11–13 depict the closed-loop responses, the position errors, and control signals,
respectively.

According to Table 7, the performance indexes corresponding to the white-noise signal
were similar for both the LS and LSOD methods. We noted that the ISE and IAE indexes,
obtained with parameter estimates using the LS method with a sine-wave signal, were the
smallest, but the values of the IACV and IAC indexes were the highest. For model (49),
a very low value of the estimate β∗0 had a larger inverse, thus producing a large control
activity. As a consequence, the control displayed large oscillations, as it could be verified
in Figure 13. These signals could damage the servo system and/or the load it drives. We
noted the LSOD method produced essentially the same performance, regardless of the
excitation signal used for obtaining the parameter estimates.

Table 7. Performance indexes produced by control law (62) with the parameter estimates β∗0.

Index White-Noise Signal Sine-Wave Signal
LS LSOD LS LSOD

ISE 45.1281 45.3952 16.4636 47.1772
IAE 25.1922 25.5792 13.9755 25.8390

IACV 10.6522 10.3371 200.3603 10.2424
IAC 1.7399 1.7053 2.6660 1.7106

Figure 11. Reference and servo system angular positions produced by control law (62) with the
parameter estimate β∗0.
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Figure 12. Position errors produced by control law (62) with the parameter estimate β∗0.
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Figure 13. Control signals produced by control law (62) with the parameter estimate β∗0.

7.4. Analysis of the Results Produced by the LSOD Method

Here, we analyzed the parameter estimates and the closed-loop performance obtained
with the LSOD method, regarding the servo system models and the excitation signal.

Table 8 continues all the parameter estimates produced by the LSOD method. One
interesting outcome was that the value of the input gain estimate β∗0 remained in the range
38–43 for all the models and excitation signals. Furthermore, a consequence of the low
variability of this estimate was that the closed-loop performance was similar for the same
control law regardless of the excitation signal, as it could be verified in Tables 9 and 10.
These tables also showed that designing a control law using a model with more parameters
improved performance. For example, the values of the ISE and IAE indexes considerably
decreased using control law u3 with three parameters, as compared to the control law u1,
which only considered the input gain. These results were not surprising because more
information was used for designing control laws u2 and u3. However, the IACV and IAC
indexes had similar values in all the cases.

We should also emphasize that for the same control law, the choice of the excitation
signal for parameter estimation appeared to have no influence on the closed-loop perfor-
mance. A practical consequence of this was that the LSOD method could be used in systems
where applying excitation signals with high-frequency content could be impractical or
dangerous. Examples include quad-rotors, mobile robots, and servo systems driving robot
manipulators, where the robot joints are driven though gearboxes.

Table 8. Parameter estimates obtained by the LSOD method.

Parameter
Estimates

White-Noise Signal Sine-Wave Signal
Model 3 Model 2 Model 1 Model 3 Model 2 Model 1

β∗0 41.461638 41.380829 41.402230 39.823089 42.460353 38.682501
α∗1 – 2.189721 2.174090 – 6.704563 5.868168
d∗ – – −1.678005 – – −2.008895

Table 9. Performance indexes using the LSOD method and white noise as an excitation signal using
the control laws (60)–(62).

Control Law Parameter
Estimates ISE IAE IACV IAC

u1 β∗0 45.3952 25.5792 10.3371 1.7053
u2 β∗0, α∗1 29.29 20.0538 9.8466 1.6963
u3 β∗0, α∗1 , d∗ 16.4898 15.1407 9.9285 1.6977

- LS ==> Sine wave signal 
- LSOD ==> Sine wave signa} 
- LS ==> White noise signa! 

LSOD ==> White noise signal 

Time (s) 



Mathematics 2023, 11, 1238 21 of 23

Table 10. Performance indexes using the LSOD method and a sine wave as excitation signal using
the control laws (60)–(62).

Control Law Parameter
Estimates ISE IAE IACV IAC

u1 β∗0 47.1772 25.8390 10.2424 1.7106
u2 β∗0, α∗1 24.0802 18.57136 9.1073 1.6745
u3 β∗0, α∗1 , d∗ 11.9049 12.4864 10.0730 1.7345

8. Conclusions

In the previous sections, the least squares of orthogonal distances (LSOD) method was
evaluated for the parameter identification of servo systems. The main conclusions of this
study included the following:

• The LSOD method could be a practical alternative to the classic least squares for
parameter identification of linear time-invariant systems. The parameter identification
problem was transformed into data fitting to a hyperplane, which was subsequently
solved as a nonlinear minimization problem.

• The LSOD method required well-established numerical routines based on the Newton
method.

• For the parameter identification of the servo model having only one parameter to
identify, i.e., the input gain, the parameter estimate was computed analytically by
solving a simple quadratic equation.

• Three models of a servo system with one, two and three parameters were estimated
using a sine wave and a filtered white noise signals. Tracking control laws were
designed and experimentally tested for the three identified models. The overall best
tracking performance was obtained when the tracking control laws were computed
using the parameter estimates produced by the LSOD method irrespective of the
signal used for exciting the servo system and the number of identified parameters.

The LSOD estimates showed consistency, regardless of the excitation signal spec-
tra, which suggested the possibility of estimating the input gain in second-order electro-
mechanical systems using this method, especially when it might be impractical or even
dangerous to use aggressive test signals for parameter identification purposes. Future
research could include applying the LSOD method for parameter identification in nonlinear
systems and determining the fewest terms required in the mathematical models, using the
methodology of Burton et. al. [37] and the LSOD method.
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Appendix A. Servo System Experimental Setup

The servo system setup used in the experiments is shown in Figure A1. It consisted of
the following components:

• A Quanser QPID data acquisition card.
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• A DC tachogenerator plus an optical encoder from Servotek model 1024PTSA-7388F-1,
which provided velocity and position measurements.

• Two mechanically coupled brushed DC motors from Clifton Precision model JDTH-
2250-BQ-IC. One was used for parameter identification, while the other was used as a
load.

• A pair of amplifiers, model 30A20AC PWM, from Advanced Motion Controls.
• The control algorithms were implemented using the MATLAB/Simulink program-

ming platform under the Quanser QUARC real-time control environment and using a
sampling period of 1 ms and the Euler-ode1 integration method.

Control computer

MATLAB/SIMULINK

Velocity

measurements

Data 

acquisition 

card

Velocity

sensor

Isolation

box

Power 

amplifiers

Control

signal

± 10 V

DC Motor 1DC Motor 2

Figure A1. Experimental Setup.
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