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• In the 3-rd part of this course, which includes the lectures 9-15, the
methodology, providing a successful designing of feedbacks for track-
ing or stabilization of nonlinear systems in presence of a su�ciently
general type of uncertainties or disturbances, is presented. Nonlinear
uncertain systems, considered here, are governed by a vector Ordin-
ary Di�erential Equation (ODE) with the, so-called, quasi-Lipschitz
right-hand sides admitting a wide class of external and internal un-
certainties (including discontinuous nonlinearities such as relay and
hysteresis elements, time-delay blocks and so on).

• The class of stabilizing feedbacks are assumed to be of a linear format
with gain parameters given by the corresponding BMI’s (Bilinear Mat-
rix Inequalities) or LMI’s (Linear matrix Inequalities). The su�cient
conditions guarantying the boundedness of all possible trajectories of
controlled systems are presented.

• If the corresponding matrix inequilities are ful�lled, then one may
guarantee that all possible trajectories of the considered class of con-
trollable systems are bounded.

• Since any bounded dynamics may be imposed inside of some ellipsoid,
then the "best parameters" of the used feedback are suggested to be
associated with the minimal size of this ellipsoid.

• Unfortunately, this �nite-dimensional optimization problem with mat-
rix constrains can not be resolve analytically. Therefore, the associated
numerical procedure is suggested for designing robust and adaptive-
robust feedbacks for a wide class (quasi-Lipshitz) nonlinear uncertain
systems.

• The considered control design includes

- state and output feedbacks,
- the full-order dynamic feedback,
- sample-data and quantized output feedbacks.
All these subclasses of possible feedback controllers are treated by the

unuique methodology based on Attractive Ellipsoid Method (AEM). Several
numerical and experimental illustrative examples are considered.
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Lecture 9

Control Under Complete and
Incomplete information

Sections below discuss the "attractive ellipsoid approach," a recently discovered
robust-control design methodology for a broad class of continuous-time dynamic
systems. Here we examine nonlinear a�ne control systems in the presence of un-
certainty and o�er a constructive and easily implementable control strategy that
ensures certain stability features, as well as a coherent introduction to the sugges-
ted control design and associated issues. In the framework of the above-mentioned
systems, linear-style feedback control synthesis is explored. It is addressed the cre-
ation of high-performance robust-feedback controllers that function in the lack of
complete knowledge. The focus is on understanding and applying the theory to
real-world problems, and on proving theorems in a methodical manner.

In this part we follow [1].

9.1 Complete Information Case: Classical Optimal
Control

Optimal control is the rapidly expanding �eld developed during last half-
century to analyze optimal behavior of a constrained process that evolves
in time according to prescribed laws. Its applications now embrace a vari-
ety of new disciplines such as economics, production planning and etc. The
main supposition of the Classical Optimal Control Theory (OCT) is that
the mathematical technique, especially designed for analysis and synthesis
of an optimal control of dynamic models, is based on the assumption that
a designer (or an analyst) possesses the complete information on the con-
sidered model as well on an environment where this controlled model has to

133



134 Lecture 9. Control Under Complete and Incomplete information

evolve.
There exist two principal approaches in solving optimal control problems

in the presence of complete information on considered dynamic models:
- the �rst one is Maximum Principle (MP) of L.Pontryagin [2],
- and the second one is Dynamic Programming Method (DPM) of R.

Bellman [3].

9.1.1 System description

Formally, the description of the optimal control problem in its classical form
is as follows.

• the controlled plant dynamics is given by the system of Ordinary Dif-
ferential Equations (ODE)

·
� (�) = � (� (�) � � (�) � �) � a.e. � � [0� � ] � � (0) = �0

o
� (9.1)

where � =
¡
�1� ���� ��

¢� � R� is its state vector, � =
¡
�1� ���� ��

¢� � R�
is the control that may run over a given control region 	 � R�;

• the cost functional is de�ned as


 (� (·)) := �0(� (� )) +

�Z
�=0

�1 (� (�) � � (�) � �) ��� (9.2)

containing the integral term as well as terminal one, and the time
process or horizon � is supposed to be �xed or non �xed and may be
�nite or in�nite;

• the terminal set M� R� given by the inequalities

M = {� � R� : �(�) � 0 (� = 1� ���� �)} ; (9.3)

• the function (9.2) is said to be given in Bolza form. If in (9.2)

�0(�) = 0

we obtain the cost functional in the Lagrange form, that is,


 (� (·)) =
�Z

�=0

�1 (� (�) � � (�) � �) ��� (9.4)
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If in (9.2)
�1(�� �� �) = 0�

we obtain the cost functional in the Mayer form, that is,


 (� (·)) = �0(� (� ))� (9.5)

9.1.2 Feasible and admissible control

A function �(�)� �0 � � � �� is said to be an feasible control if it is measurable
and �(�) � 	 for all � � [0� � ]. Denote the set of all feasible controls by

U [0� � ] := {� (·) : [0� � ]� 	 | � (�) is measurable} � (9.6)

The control �(�)� �0 � � � � is also said to be admissible or, realizing
the terminal condition (9.3), if the corresponding trajectory �(�) satis�es
the terminal condition, that is, satis�es the inclusion �(� ) � M. Denote
the set of all admissible controls by

U��	
� [0� � ] := {� (·) : � (·) � U [0� � ] � �(� ) �M} � (9.7)

In view of the theorem on the existence of the solutions to ODE (see [4]
or [5]), it follows that under the assumptions (A1)-(A2) for any � (�) �
U [0� � ] the equation (9.1) admits a unique solution � (·) := � (·� � (·)) and
the functional (9.2) is well de�ned.

9.1.3 Problem setting in the general Bolza form

Based on the de�nitions given above, the classical optimal control problem
(OCP) can be formulated as follows.

Problem 9.1 ( OCP in Bolza form)

Minimize (9.2) over U��	
� [0� � ] � (9.8)

Problem 9.2 (OCP with a �xed terminal term) If in the problem
(9.8)

M = {�� � R�} =
{� �R� : 1(�) = � ��� � 0� 2(�) = � (� ��� ) � 0}

or, equivalently, � =�� �

��
� (9.9)

then it is called the optimal control problem with a �xed terminal term
�� .
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Any control �� (·) � U��	
� [0� � ] � satisfying


 (�� (·)) = min
(·)�U�����[0�� ]


 (� (·)) � (9.10)

is called an optimal control , the corresponding state trajectory �� (·) :=
�� (·� �� (·)) and (�� (·) � �� (·)) are called an optimal state trajectory and an
optimal pair .

9.1.4 Speci�c features of the classical optimal control

The main speci�c features of both (MP and DPM) approaches are

1) the cost functional, de�ning the quality of the applied control, is given
in the Bolza form (9.2) containing terminal term as well as the integral
term, characterizing the losses of a designer during all time of the
control process;

2) the function � in (9.1) is a priory known an may be used in the
control designing process, in other words, the right-hand side of the
dynamic equation (9.1) does not contain any uncertainty or dis-
turbances which are unavailable during the control process;

3) the state vector � (�) is assumed to be available for control design-
ing on all time interval [0� � ].

The solution of the classical control problem can be found, for example,
in [6]. If one of this three features does not hold, then the classical
Optimal Control approach is not applicable.

9.2 Incomplete Information Case

When we don’t have all of the information we need to manage a dynamic
model, the key challenge is to build an acceptable control that is "near to
optimal or desirable" (having a modest sensitivity to any unknown (unpre-
dictable) component from a given range of options).To put it another way,
the intended control should be robust (resilient) in the face of unknown
factors. In the presence of any type of uncertainty (parametric, unmodeled
dynamics, external perturbations, and so on), the main methodology for
obtaining a solution suitable for a class of given models is to formulate a
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corresponding tracking control problem, where we are interested in the "best
approaching" (a zone stabilization) or in the practical stability of a desired
trajectory. For the past two decades, the robust stabilization problem has
been a hot area of research for many types of nonlinear systems (see for
example [7], [8], [9] and[10]).

9.3 Robust tracking problem formulation

Formally, the robust tracking problem can be described as follows.

• The controlled plant dynamics, which is a�ne (linear) in control , is
given by

·
�̄ (�) = �̄ (�̄ (�)) +��̄ (�) + �̄� (�) � a.e. � � [0� � ] �

�̄ (0) = �̄0�
�(�) = �̄ (�̄ (�)) + �� (�) �

���
�� (9.11)

where

�̄ =
¡
�̄1� ���� �̄�

¢� � R� is its state vector which may be unavailable
during the plant dynamics,

�̄ =
¡
�̄1� ���� �̄�

¢� � R� is the control to be designed,

� =
¡
�1� ���� �	

¢� � R	 is the measurable output of the system avail-
able for a designer at any time � � 0,
the functions �̄� (�) and �� (�) represent external perturbations which
are not measurable (unavailable) for a designer.

• The desired dynamics �� (�) is governed by the following reference
model

��� (�) = � (�� (�) � �) � (9.12)

where �� =
¡
��1� ���� ���

¢� � R�, and �� (�) is supposed to be measur-
able (available) at any time � � 0. The matrix � � R�×� characterizing
the actuator properties is also assumed to be known.

• The tracking error � (�) is de�ned as

� (�) = �̄ (�)� �� (�) � (9.13)
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So, the ODE (Ordinary Di�erential Equation), describing the dynam-
ics of the tracking error, is

·
� (�) = � (� (�) � �) +��̄ (�)� � (�� (�) � �) + �̄� (�)

a.e. � � [0� � ] �
�(�) = � (� (�) � �) + �� (�) �

��
� (9.14)

where

� (� (�) � �) := � (� (�) + �� (�)) � � (0) = �̄0 + �� (0) �

� (� (�) � �) := �̄ (� (�) + �� (�)) �

��
� (9.15)

• The control action �̄ usually constitutes of two terms:

�̄ (�) := � (�) + ���	� (�) � (9.16)

where the compensating control ���	� (�) is selected in such a way that
the e�ect of the dynamics � (�� (�) � �) of the desired trajectory would
be compensated or minimized, namely,

���	� (�) = argmin
���	

k����	� � � (�� (�) � �)k2

= �+� (�� (�) � �) �
(9.17)

where
�+ := (�|�)�1�|�

if we assume that
�|� � 0�

If so, the model (9.14) may be represented as

·
� (�) = � (� (�) � �) +�� (�) + �� (�) � a.e. � � [0� � ] �

�(�) = � (� (�) � �) + �� (�) �

)
(9.18)

where
�� (�) := �̄� (�) +

¡
��+ � �

¢
� (�� (�) � �) � (9.19)

For the tracking error dynamics (9.18) the following assumptions usually
are supposed:
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(B1) The dynamic plant (9.18) is controllable and observable (see, for ex-
ample, [11]).

(B2) The functions � and � may be unknown but belong to the given classes
C� and C� of nonlinear functions, respectively. In this lecture both
classes consist of the quasi-Lipschitz functions whose exact de�nition
is given below.

(B3) The unmeasured functions �� (�) and �� (�) are bounded, but admitting
the existence of the solution to the ODE (9.18).

(B4) The control � (�) is designed as a feedback (static or dynamic) in a
given structure containing the set of parameters P, that is,

� (�) = � (� (�) |0����� ��P) � (9.20)

so that � (�) depends on all measurable data � (�) |��[0��] on the time
interval [0� �].

9.4 What is e�ectiveness of a designed control in
incomplete information case?

If we have the non-zero terms �� (�) (9.19) and �� (�) (9.18), which are un-
measurable during the control process, obviously, the application of the clas-
sical Optimal Control Approach (as it is describe above) is impossible. The
situations looks much more di�cult if the functions � � C� and � � C�,
describing the dynamic process, are unknown a priory. In this case the
following questions seems to be important:

"How can one describe the control issue in the unknown model situation,
and how can we assess the e�cacy of a given control strategy based on par-
ticular performances?"

Several approaches may be considered in this situation:

- One of them suggests to formulate the corresponding control problem
as the, so-called, Min-Max Optimal Control, where the maximum is
taken over all existing uncertainties and minimum is realized within
an admissible control set (see, for example, �� approach [12] and
Robust Maximum Principle [6]). Such Min-Max consideration works
successfully if the set of uncertain terms has a su�ciently simple struc-
ture (external perturbations are quadratically integrable, parametric
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uncertainties are from �nite sets or belong to a measurable compact
of a simple nature).

- Here we will discuss another approach referred below to as the Attract-
ive Ellipsoid Method (AEM) [1] which turns out to be workable for
signi�cantly wide spectrum of uncertainties participating in a model
description.

9.5 Ellipsoid Based Feedback Control Design

The main features of AEM are as follows:

• Since in the uncertain case the optimization of the cost functional
(such as (9.2)) can not be realized exactly because of uncertain factor
participation, the control problem is formulated as a tracking prob-
lem, which equivalently is reduced to the minimization of the vector-
trajectory � (�) (9.18) by an adequate selection of control strategies
� (�).

• The set of considered control strategies is suggested to belong to a para-
metrized class of nonlinear (may be, nonstationary) feedbacks (9.20)

� (�) = � (� (�) |0����� ��P) �

whose parameters P selected in such a way that all possible trajectories
� (�) of the closed controlled systems remain bounded around the origin
(which approach is our "ideal aim").

• Taking into account that any set of bounded trajectories may be im-
posed within a convex bounded set and, particularly, within an el-
lipsoid, the AEM suggests to select the feed-back parameters P = P�
providing a minimal "size" of the ellipsoid, which contains all possible
bound trajectories of any dynamic system from the considered class
of dynamics containing uncertain elements. In this case we talk about
the, so-called, zone-convergence or on the "practical stability" (with a
prescribed convex convergence zone) if the size of the convergence sone
is of a predetermined value. That’s why the e�ectiveness of such ro-
bust control strategies is associated with the "size" of the corresponding
attractive ellipsoid set.
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• During the control process these "optimal" parameters may be adjus-
ted on-line (learning or adaptive version of AEM) making the attract-
ive ellipsoid of a smaller size.

9.6 Example and Exercise

Example 9.1 For the dynamic controlled system

�

��

μ
�̄1
�̄2

¶
=

μ
�̄1 + arctg (�̄2)
��̄1 � sin �̄2

¶
+

μ
1
0

¶
�̄ (�) + �̄� (�) (9.21)

design the compensating control

���	� (�) = ��min
���	

k����	� � � (�� (�) � �)k2 = �+� (�� (�) � �) �

��� (�) = � (�� (�) � �)

in the tracking problem for the desired trajectory �� (�) � R2 satisfying
�̈� (�) + �2�� (�) = 0� � = 2�

�� (0) =
μ
1
1

¶
� ��� (0) =

μ
0
1

¶
.

(9.22)

Solution 9.1 Let us represent (9.22) in the component-wise ordinari dif-
ferential equations (ODE’s):

�̈�
 (�) + �2��
 (�) = 0� � = 1� 2

which have the solution

��
 (�) = �
 sin��+�
 cos���
���
 (�) = �
� cos����
� sin���

�̈�
 (�) = ��
�
2 sin����
�

2 cos���

Using the intial conditions in (9.22) we get

��1 (0) = �1 sin�0 +�1 cos�0 = �1 = 1�
���1 (0) = �1� cos�0��1� sin�0 = �0� = 0

�1 = 0� �1 = 1

��2 (0) = �2 sin�0 +�2 cos�0 = �2 = 1�
���2 (0) = �2� cos�0��2� sin�0 = �2� = 1

�2 = ��1 = 0�5� �2 = 1
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and

�

��

μ
��1 (�)
��2 (�)

¶
=

μ
0
0�5

¶
� cos���

μ
1
1

¶
� sin�� = � (�� (�) � �)

We also have

� =

μ
1
0

¶
� �|� =

¡
1 0

¢μ 1
0

¶
= 1 � 0�

�+ := (�|�)�1�| =
¡
1 0

¢
�

Hence, by the formula (9.17) it follows

���	� (�) = �+� (�� (�) � �) =
¡
1 0

¢μ �1 (�
� (�) � �)

�2 (�
� (�) � �)

¶
= �1 (�

� (�) � �) = �� sin�� = �2 sin 2��

Exercise 9.1 For the same plant (9.21) design the compensating control
���	� (�) in the tracking problem for the desired trajectory �� (�) � R2 satis-
fying

�̈� (�) +
μ

2 1
�1 0

¶
�� (�) = 0

�� (0) =
μ
1
0

¶
� ��� (0) =

μ
0
1

¶
.


