
Lecture 8

H� Control

8.1 The problem of perturbations attenuation in
linear continuos-time systems

Consider the following linear plant

�� = ��+���+ �̄����
� (0) = �0�

	 = 
��+���+ �̄����

� = 
��+���+ �̄����

��������
�������

(8.1)

where
- � � R� is the state vector,
- 	 � R� is measurable output,
- � � R� is the controllable output,
- � � R� is the control action,
- �� � R	� � �� � R	� � �� � R	� are unmeasurable perturbations with

bounded energy, that is,

��� ��� �� � �2 [0��) :=
��
�
 (�) � � � 0 :

�Z

=0

k
 (�)k2 �� ��
��
� � (8.2)

Remark 8.1 The property (8.2) means that all these perturbations are de-
creasing in time, but may have some bounded spikes on integrable intervals.
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Introduce the extended vector of perturbations

� :=

	

 ��

��
��

�
� � R	� � = �� + �� + ���

In view of this de�nition it is easy to check that the following relations take
place:

�̄��� = �̄���� = ���� �� :=
¡
�	�×	� 0 0

¢
� �� = �̄����

�̄��� = �̄���� = ���� �� :=
¡
0 �	�×	� 0

¢
� �� = �̄���

�̄��� = �̄���� = ���� �� :=
¡
0 0 �	�×	�

¢
� �� = �̄����

and therefore the linear plant (8.1) can be rewritten as

�� = ��+���+����

	 = 
��+���+����

� = 
��+���+����

������
�����

(8.3)

where the perturbation � has a bounded energy, i.e.,

� � �2 [0��) �

Consider the following control problem.

Problem 8.1 (Attenuation of unmeasurable perturbations)
Design a dynamic feedback control �(�) in the form

�(�) = 
���(�) +��	(�)�

���(�) = ����(�) +��	(�)�

��(0) = ��0�

������
�����

(8.4)

which guarantees the given � - attenuation level, namely, providing the
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ful�lling of the inequality

sup
��
2[0��)

k�k
2
k�k
2

� �

k
k
2 :=

vuuut
�Z


=0

k
 (�)k2 ��

���������
��������

(8.5)

ensuring that the worst "output - noise" ratio does not exceed the prespeci�ed
attenuation level �.

8.2 H� interpretation

8.2.1 Transfer functions

Let us apply the Laplace transformation to the plant and control equations
(8.3) and (8.4). We get

�� = �� +��� +����

� = 
�� +��� +����

� = 
�� +��� +����

������
�����

(8.6)

and for the control � , linearly depending on the output � and and some
auxilary dynamic signal ��,

� = 
��� +����

��� = ���� +����

��
� (8.7)

it follows
� =

h

� (�� ���)

�1�� +��

i
��

and

� = (�� ��)�1��� + (�� ��)�1��� =

(�� ��)�1��

h

� (�� ���)

�1�� +��

i
� + (�� ��)�1����

���
�� (8.8)
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� =
h

� (�� ��)�1�� +��

i
� +

h

� (�� ��)�1��+��

i
�

=
h

� (�� ��)�1�� +��

i h

� (�� ���)

�1�� +��

i
�

+
h

� (�� ��)�1�� +��

i
�

���������
��������

(8.9)

and

� =
h

� (�� ��)�1�� +��

i
� +

h

� (�� ��)�1�� +��

i
�� (8.10)

From these representations we obtain

� = �����

��� :=
³
� �
h

� (�� ��)�1�� +��

i h

� (�� ���)

�1�� +��

i´�1×
h

� (�� ��)�1�� +��

i
�

��������
�������

� = �����

��� :=
h

� (�� ���)

�1�� +��

i
��� =

μh

� (�� ���)

�1�� +��

i�1 � h
� (�� ��)�1�� +��

i¶�1
×

h

� (�� ��)�1�� +��

i

��������������
�������������

and
� = ����

��� :=
h

� (�� ��)�1�� +��

i
���+

h

� (�� ��)�1�� +��

i
�

��������
�������

(8.11)

8.2.2 Laplace transformation and H� norm

Recall now one of the most important results of the Laplace transformation
theory.
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Theorem 8.1 (Plancherel, around 1800.) If � (�) � �2 [0��) and its
Laplace transformation is � (�) � H2, where H2 is the Hardy space
de�ned by

H2 :=

��
�� (�) = L{�} :=

�Z

=0

� (�) ���
�� |
�Z

�=��
� (�� )� (� ) � ��

��
� �

then the following identity (known as the Parseval’s identity ) holds:

k�k
2 :=
μ �R

=0

|� (�)|2 ��
¶1�2

= k�k
H2

!"�#�

k�k
H2
:=

Ã
1

2$

�R
�=��

� (�� )� (� ) � 
!1�2

�

��������
�������

(8.12)

Corollary 8.1 In the vector case when � (�) � R� the Parseval’s identity
looks as follows:

k�k
2 :=
μ �R

=0

k� (�)k2 ��
¶1�2

=

k�k
H2
:=

Ã
1

2$

�R
�=��

� | (�� )� (� ) � 
!1�2

��������
�������

(8.13)

By the Parseval’s identity (8.13) and in view of (8.11) the inequality
(8.5) can be represented as

sup
��
2[0��)

k�k
2
k�k
2

= sup
��H2

k�k
H2

k�k
H2

= sup
��H2

k����kH2
k�k

H2

� �� (8.14)

De�nition 8.1 The norm k���kH� of transfer matrix function ��� in the
Hardy space H� is de�ned as

k���kH� := sup
��H2

k����kH2
k�k

H2

�
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That’s why, the inequality (8.14) is equivalent to the following one:

k���kH� � �� (8.15)

The H� norm of complex-valued matrix may be calculated based on the
following lemma.

Lemma 8.1

k���kH� = sup
��(����)

k��� (� )k = sup
��(����)

max
�
%� (��� (� ))

where
k��� (� )k = max

�
%� (��� (� ))

and
%� (�) := &

1�2
�

³
����

�
��

´
= &

1�2
�

³
��� (� )�

|
�� (�� )

´
�

���� := �|
�� (�� )

(%� (�) is the singular value of the matrix ��� (� )).

Since

�|
�� (�� )��� (� ) � max

�
%2� (��� (� )) = k��� (� )k2 �

� sup
��(����)

k��� (� )k2 � = k���k2H� ��

the properties (8.14)-(8.15) are equivalent to the following matrix inequality
in the frequence domain:

�|
�� (�� )��� (� ) � �2� (8.16)

valid for all  � (����).

8.2.3 Problem formulation in the Hardy space H�
Now the original control problem (8.5) can be formulated in the frequency
space H� .

Problem 8.2 Design a feedback control in the form (8.4) which guarantees
the given � - attenuation level providing the ful�lling of the frequency
matrix inequality (8.16) for all  � (����) �
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8.3 The Kalman-Yakubovich-Popov lemma

8.3.1 KYP - lemma

Consider the Linear Time - Invariant (LTI) system

�� = ��+���

	 = 
��

� � '�×�� � � '�×�� 
 � '�×��

������
�����

(8.17)

where for any �xed � � 0 and some �xed initial value � (0) = �0 the vectors
� = �(�)� � = �(�) and 	 = 	(�) are referred to as the state, control (external
input) and output respectively. Applying the Fourier transformation to
(8.17) we obtain the model of the system in the frequency domain:

( � = �� +��� (2 = �1�

� = 
��

��
� (8.18)

The transfer function ��� (( ) from the input � to the output 	 is

��� (( ) = 
 (( ��×� ��)�1�� (8.19)

The following assumptions will be in force hereafter:

A1) Here we suppose that the matrix � has no eigenvalues at the imaginary
axis.

A2) The pair (���) is stabilizable, i.e. there exists a matrix ) � '�×�

such that the matrix (�+�)) is Hurwitz (stable).

Lemma 8.2 (The KYP frequency lemma, 1973) Let the assumptions
A1 and A2 are met. To guarantee the existance of a real symmetric matrix
* = * | satisfying the the inequality

2Re��* (�� +��)�L(���) � 0 (8.20)
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for all k�k+ k�k + 0 and for a given hermitian quadratic form

L(���) :=
μ
�
�

¶� 
 L11 L12
L21 L22

¸μ
�
�

¶
=

��L11� + 2Re��L12� + ��L11��

L11 = L|11� L22 = L|22� L21 = L|12 - real matrices

��������
�������

(8.21)

it is neccessary and su�cient the ful�lling of the following frequency con-
dition

L([� � ��]�1����) + 0 (8.22)

for all � 6= 0 and all  � (����).
Proof.

a) Necessity. Suppose that (8.20) holds. Then

2Re��* (�� +��) � L(���)
for all k�k + k�k + 0. Then for � = (( ��×� ��)�1� in view of the
relation (8.18) we have

2Re ( ��*� = 0 � L((( ��×� ��)�1���)
and the necessity trivially follows. Notice also that from the last inequality
it follows that

L22 = L|22 + 0�
b) Su�ciency. First, let us show that the Hermitian form L(���) can

be represented as

L(���) = 2Re��* (�� +��) + (� ��|�)�L22 (� ��|�) (8.23)

with real matrix �� To do that it su�cient to open both quadratic form in
the left and right hand sides and to equal the corresponding parameters:

��L11� + 2Re��L12� + ��L11� =

2Re��*�� + 2Re��*�� + ��L22��

���L22� � ��L22�|� +���L22�|� =

�� (*�+�|* +�L22�|)� +�� (*� ��L22)�+

�� (�|* �L22�|)� + ��L22�
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and
*�+�|* +�L22�| = L11�

*� ��L22 = L12�

L11 = L22�

������
�����

(8.24)

The algebraic relations (8.24) is referred to as the Lurie’s equations. Since
L22 + 0, from the second equation in (8.24) we get

� = (*� �L12)L�122 � (8.25)

Substitution this representation of matrix � in the �rst equation in (8.24)
we �nally get

*�0 +�|0* + *'* +, = 0 (8.26)

where
�0 := ���L�122 L|12�

' := �L�122 �|�

, := L12L�122 L|12 �L11�
But, according to Theorem 10.4 in [14] the symmetric solution * of the
algebraic Riccati matrix equation (8.26) exists in view of the assumptions
A1 and A2. Indeed, the assumptions there require the stabilizability of
the pare (�0� �) � and our assumption A2 deals with the stabilizability of
the pare (���). But this is su�cient, since the matrix )0 = ) � L�122 L|12
provides the stability (the Hurwitz property) of the matrix

�0 ��)0 = ���L�122 L|12 ��
¡
) �L�122 L|12

¢
= ���)

if (���)) is Hurwitz one. Hence, by (8.25) there exists the matrix �
satisfying (8.23). So, if (8.22) holds, then from (8.23) (since L22 = L|22 + 0)
we have

L(���)� 2Re��* (�� +��) = (� ��|�)�L22 (� ��|�) + 0�

Su�iency is proven.

Corollary 8.2 By the Schur’s complement lemma the inequality (8.20) is
equivalent to the following LMI


*�+�|* �L11 *� �L12
�|* �L21 �L22

¸
� 0� (8.27)
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and the inequality (8.22) looks as



[�� � ��]�1�

�

¸| 
 L11 L12
L21 L22

¸ 

[� � ��]�1�

�

¸
+ 0� (8.28)

8.4 LMI representation of the perturbations at-
tenuation problem

Consider the simpli�ed version of the system (8.3) with �� = 0� �� = 0 and
�� = 0:

�� = ��+���+����

	 = 
���

� = 
��+����

������
�����

(8.29)

Together with the dynamic controller (8.4) for the extended vector �̃ =μ
�
��

¶
we have

�

��
�̃ = ����̃+�����

� = 
���̃+����

���
�� (8.30)

where
��� = �0 +�0�
0�

�0 =



� 0
0 0

¸
� �0 =



� 0
0 ��×�

¸
�


0 =




 0
0 ��×�

¸
� ��� =



��

0

¸
�


�� = 
�

£
��×� 0�×�

¤
and

� =



�� 
�

�� ��

¸
�
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The Laplace transformation of (8.30) is

��̃ = ����̃ +�����

� = 
���̃ +����

which leads to the following expression of the transfer matrix ���:

���̃ (( ) = 
�� [��2�×2� ����]
�1��� +��� (8.31)

Let us select the hermitian form L(���) as

L(���) := �2���� ��� = �2����
³

���̃ +���

´� ³

���̃ +���

´

=

μ
�̃
�

¶� 
 �
|��
�� �
|����

��|
�
�� �2� ��|

���

¸μ
�̃
�

¶

=

μ
�̃
�

¶� 
 L11 L12
L21 L22

¸μ
�̃
�

¶
(8.32)

with

L11 = �
|��
��� L12 = �
|�����

L21 = ��|
�
��� L22 = �2� ��|

����

��
� (8.33)

Show now that the inequality (8.28) coincides with (8.16) where hermitian
form L(���) as in (8.32).

Theorem 8.2 If
1) the matrix [( �2�×2� ����] is non-singular,
2) the pare (�������) is stabilizable,
then for all  � (����)

L([( �2�×2� ����]
�1���� �) = �2� ��|

��̃ (�( )���̃ (( ) + 0� (8.34)

Proof. De�ning

- := [( �2�×2� ����]
�1����
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we get
0 � L([( �2�×2� ����]

�1���� �) =



-
�

¸� 
 L11 L12
L21 L22

¸ 

-
�

¸
=



-
�

¸� 
 �
|��
�� �
|����

��|
�
�� �2� ��|

���

¸ 

-
�

¸�
=



-
�

¸� 
 �
|��
�� [( �2�×2� ����]
�1����
|����

��|
�
�� [( �2�×2� ����]

�1���+�
2� ��|

���

¸

=



-
�

¸� 
 �
|�����̃ (( )
��|

����̃ (( )+�
2�

¸

= �
h
[�( �2�×2�����]

�1���

i|

|�����̃ (( )��|

����̃ (( )+�
2�

= ��|
��̃ (�( )���̃ (( ) + �2��

Theorem is proven.
By the Corrolary 8.2, the condition (8.34)

L([� � ����]
�1������) + 0

guarantees the desired tolerance level � (8.16)

�|
�� (�� )��� (� ) � �2��

and is equivalent to the following LMI

�
� *��� (�) +�|�� (�)* + 
|��
�� *��� +
|����

�|
��* +�|

�
�� �|
��� � �2�

�
� � 0� (8.35)

This means that any parameter �, participating in

��� (�) = �0 +�0�
0

and satisfying LMI (8.35) for some symmetric matrix * and a scalar �,
solves the perturbations attenuation problem (8.16) with the tolerance level
�.
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Remark 8.2 The explicit relationship between sum of squares (SOS) de-
compositions of univariate polynomial matrices and the Kalman-Yakubovich-
Popov (KYP) lemma can be found in [17]. There an e�cient algorithm for
explicitly �nding an SOS decomposition of such matrices, inspired by the
Hamiltonian-type methods for the solution of Riccati equations, is presen-
ted.

8.5 Exercise

Exercise 8.1 Design the dynamic feedback controller

� =



�� 
�

�� ��

¸
�

providing the attenuation tolerance level � = 0�5, ful�lling the estimate

�|
��̃ (�( )���̃ (( ) � �2��

for the system

�� =



1 �0�1
0 �1

¸
�+



1
0�1

¸
�+



1 0
0 1

¸
��

	 =
£
1 1

¤
�� � = �+



0�1 0
0 0�1

¸
��

� � R2� � � R1� 	 � R1� � =


0�1��0�01
 sin(10�)
�0�1��0�01
 cos(2�)

¸
�

������������
�����������

Hint. To �nd * + 0 and � for which the LMI (8.35)



*��� (�) +�|�� (�)* + 
|��
�� *��� + 
|����

�|
��* +�|

�
�� �|
��� � �2�

¸
� 0

with � = 0�5 is fuldilled.
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