Lecture 7

Analysis of Absolute Global Stability in Frequency-Domain

7.1 On equivalency of Hermitian and quadratic forms

Let $A \in \mathbb{C}^{n \times n}$ be an *Hermitian* matrix so that

$$A = A^* := (\bar{A})^{\mathsf{T}},$$
$$A = U + iV, \ \bar{A} := U + iV$$

and z be a conlex vector:

$$z = u + iv \in \mathbb{C}^n, \ i^2 = -1.$$

Definition 7.1 The function

$$f_A(z) := (z, Az) = z^* A z = (u - iv)^{\mathsf{T}} A (u + iv)$$
(7.1)

with the Hermitian matrix A is called

- the Hermitian form,
- converting to the quadratic form, if $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix $(A = A^{\intercal})$ and $z = u \in \mathbb{R}^{n}$.

102 Lecture 7. Analysis of Absolute Global Stability in Frequency-Domain

If $\mathcal{E} = \{z^{(1)}, ..., z^{(n)}\}$ is a basic in \mathbb{C}^n such that

$$z = \sum_{i=1}^{n} \alpha_i z^{(i)},$$

then $f_A(x)$ may be represented as

$$f_A(z) := (z, Az) = \left(\sum_{j=1}^n \alpha_j z^{(j)}, A \sum_{i=1}^n \alpha_i z^{(i)}\right) = \left\{ \left(\sum_{j=1}^n \alpha_j z^{(j)}, \sum_{i=1}^n \alpha_i A z^{(i)}\right) = \sum_{i=1}^n \sum_{j=1}^n \gamma_{ij} \alpha_i \bar{\alpha}_j, \right\}$$
(7.2)

where

$$\gamma_{ij} = \left(z^{(j)}, A z^{(i)} \right).$$

Proposition 7.1 If $A = A^{\dagger}$ is real and z = u + iv, $(i^2 = -1)$, then

$$f_A(z) := (z, Az) = f_A(u) + f_A(v).$$
(7.3)

Proof. Indeed,

$$f_A(z) := (z, Az) = (u, Au) + (v, Av)$$
$$-i(v, Au) + i(u, Av) = (u, Au) + (v, Av).$$

Corollary 7.1 (on the extension)

- Any real quadratic form $f_A(u)$ can be uniquely extended up to the corresponding Hermitian form $f_A(z)$, using the formula (7.3).
- If $f_A(u)$ has a special form

$$f_A(u) = |a^{\mathsf{T}}u|^2 + (b^{\mathsf{T}}u)(u^{\mathsf{T}}c), \qquad (7.4)$$

with complex vectors a, b and c, then

$$f_A(z) = |a^*z|^2 + \operatorname{Re}(b^*z)(z^*c)$$
(7.5)

Proof. Indeed,

$$f_A(u) = |a^{\mathsf{T}}u|^2 + (b^{\mathsf{T}}u)(u^{\mathsf{T}}c) =$$
$$\left(\sum_{i=1}^n a_i u_i\right) \left(\sum_{j=1}^n a_j u_j\right) + \left(\sum_{i=1}^n b_i u_i\right) \left(\sum_{j=1}^n c_j u_j\right) =$$
$$\sum_{i=1}^n \sum_{j=1}^n (a_i a_j + b_i c_j) u_i u_j.$$

Implying by (7.3) we get

$$f_{A}(z) = f_{A}(u) + f_{A}(v) = \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{i}a_{j} + b_{i}c_{j}) u_{i}u_{j} + \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{i}a_{j} + b_{i}c_{j}) v_{i}v_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{i}a_{j} + b_{i}c_{j}) \underbrace{(u_{i}u_{j} + v_{i}v_{j})}_{\operatorname{Re} z_{i}z_{j}} \\ = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j}\operatorname{Re}(z_{i}z_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i}c_{j}\operatorname{Re}(z_{i}z_{j}).$$

$$(7.6)$$

But

$$|a^{*}z|^{2} = \left(\sum_{i=1}^{n} a_{i} \left(u_{i} + iv_{i}\right)\right) \left(\sum_{j=1}^{n} a_{j} \left(u_{j} - iv_{j}\right)\right) = \left\{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j} \left(u_{i} + iv_{i}\right) \left(u_{j} - iv_{j}\right) = \left\{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j} \left(u_{i}u_{j} + v_{i}v_{j}\right)\right\} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j} \operatorname{Re}\left(z_{i}z_{j}\right),\right\}$$
(7.7)

and

$$\operatorname{Re}\left[\left(b^{*}z\right)\left(z^{*}c\right)\right] = \operatorname{Re}\left[b^{\mathsf{T}}\left(u+iv\right)\left(u-iv\right)^{\mathsf{T}}c\right]$$
$$\operatorname{Re}\left[\left(\sum_{i=1}^{n}b_{i}\left(u_{i}+iv_{i}\right)\right)\left(\sum_{j=1}^{n}c_{j}\left(u_{j}-iv_{j}\right)\right)\right] =$$
$$\operatorname{Re}\left[\sum_{i=1}^{n}\sum_{j=1}^{n}b_{i}c_{j}\left(u_{i}+iv_{i}\right)\left(u_{j}-iv_{j}\right)\right] = \sum_{i=1}^{n}\sum_{j=1}^{n}b_{i}c_{j}\left(u_{i}u_{j}+v_{i}v_{j}\right)$$
$$= \sum_{i=1}^{n}\sum_{j=1}^{n}b_{i}c_{j}\operatorname{Re}\left(z_{i}z_{j}\right).$$
$$(7.8)$$

Substitution (7.7) and (7.8) into (7.6) leads to (7.5). \blacksquare

Corollary 7.2 Evidently that, by (7.3), $f_A(z) > 0$ ($f_A(z) \ge 0$) for any $z \in \mathbb{C}^n$ if and only if $f_A(u) > 0$ ($f_A(u) \ge 0$) for all $u \in \mathbb{R}^n$.

Proposition 7.2 If

$$z = \begin{pmatrix} z^{(1)} \\ z^{(2)} \end{pmatrix}$$
 and $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^* & A_{22} \end{bmatrix}$,

then

$$f_A(z) := (Az, z) =$$

$$(A_{11}z^{(1)}, z^{(1)}) + 2\operatorname{Re}(A_{12}z^{(2)}, z^{(1)}) + (A_{22}z^{(2)}, z^{(2)}).$$
(7.9)

7.2 Representation of the stability conditions in frequency domain

7.2.1 Scalar feedback

So, by (7.5) the condition (6.7), emposed to all x and u such that $||x||^2 + ||u||^2 > 0$,

$$\tilde{Q}_{\tau}(x,u) = \tilde{Q}_{0}(x,u) - \tau \tilde{Q}_{1}(x,u) > 0$$

may be expanded to the following one:

$$\tilde{Q}_{\tau}(X,U) = \operatorname{Re}\left(\tilde{Q}_{0}(X,U) - \tau\tilde{Q}_{1}(X,U)\right) > 0$$

for all complex $X \in \mathbb{C}^{n}$ and all complex $U \in \mathbb{C}$,
$$\left.\right\}$$

$$(7.10)$$

where X and U are the Furier transformations of x and u processes.

Theorem 7.1 ([16]) Suppose that

- the matrix A in (5.1) has no pure imaginary eigenvalues;
- the nonlinear feedback $\varphi(y)$ is from the class $\mathcal{F}_{\gamma,k}$ (5.6).

To guarantee the existence of the function V(x) of the form (6.1) for which

$$\frac{d}{dt}V\left(x\left(t,x_{0},t_{0}\right)\right)<0$$

in any points $x(t, x_0, t_0) \in \mathbb{R}^n$ (which is the solution of (5.1) with the initial condition x_0 at time t_0) and any $u = u(t) \in \mathbb{R}$, realized by a feedback from the class $\mathcal{F}_{\gamma,k}$, satisfying the constraints (5.6), it is **necessary and sufficient** that for all $\omega \in [-\infty, \infty]$ the following "frequency inequality" (it is known as the "Popov's inequality) would be fulfilled:

$$\left| q\omega \operatorname{Im} H\left(i\omega\right) + k \operatorname{Re} H\left(i\omega\right) + 1 > 0, \right|$$
(7.11)

where the complex function H(s) (5.3) is the transfer function of the linear subsystem and q is a real number.

Proof.

a) Sufficiency. Let now X, U and Y be the Furier transformations of x, u and y processes, connected as

$$i\omega X = AX + bU,$$
$$Y = c^{\mathsf{T}} X$$

where ω is a real number for which

$$\det\left[A - i\omega I\right] \neq 0.$$

106 Lecture 7. Analysis of Absolute Global Stability in Frequency-Domain

By (7.10) with $\tau = 1$ (see Remark 1.5) we get

$$\begin{split} \tilde{Q}_{\tau} \left(X, U \right) &:= \tilde{Q}_{0} \left(X, U \right) - \tau \tilde{Q}_{1} \left(X, U \right)^{\tau} \stackrel{\tau=1}{=} \\ X^{*} \left(-PA - A^{\mathsf{T}}P \right) X + X^{*} \left(-Pb - qA^{\mathsf{T}} \frac{c}{2} + k \frac{c}{2} \right) U + \\ U^{*} \left(-b^{\mathsf{T}}P - q \frac{c^{\mathsf{T}}}{2}A + k \frac{c^{\mathsf{T}}}{2} \right) X + U^{*} \left(-qc^{\mathsf{T}}b + 1 \right) U = \\ -2 \operatorname{Re} X^{*}P \left(AX + bU \right) - q \operatorname{Re} \left[U^{*}c^{\mathsf{T}} \left(AX + bU \right) \right] + \\ \operatorname{Re} \left[U^{*} \left(U + kY \right) \right] > 0 \end{split}$$

for all $||X|| + |U| \neq 0$. Also we have

$$\operatorname{Re} X^* P \left(AX + bU \right) = \operatorname{Re} i\omega \left(X^* PX \right) = 0$$

and

$$q \operatorname{Re}\left[U^* c^{\mathsf{T}} \left(AX + bU\right)\right] = q \operatorname{Re}\left[i\omega U^* c^{\mathsf{T}}X\right] = q \operatorname{Re}\left[i\omega U^*Y\right].$$

So, the relation $\tilde{Q}_{\tau}\left(X,U\right) > 0$ becomes

$$\tilde{Q}_{\tau}(X,U) = -2 \operatorname{Re} X^* P \left(AX + bU\right) - q \operatorname{Re} \left[U^* c^{\mathsf{T}} \left(AX + bU\right)\right] + \operatorname{Re} \left[U^* \left(U - Y\right)\right] = -q \operatorname{Re} \left[i\omega U^* Y\right] + \operatorname{Re} \left[U^* \left(U - Y\right)\right] = \operatorname{Re} \left[-q i \omega U^* Y + U^* \left(k^{-1} U - Y\right)\right] > 0$$

By (5.3), we also have that

$$Y = H\left(i\omega\right)U,$$

where $H(i\omega)$ is the complex value (non matrix). So, we obtain

$$\tilde{Q}_{\tau}(X,U) = \operatorname{Re}\left[-qi\omega U^{*}H\left(i\omega\right)U + U^{*}U + U^{*}\left[kH\left(i\omega\right)\right]U\right] > 0.$$
(7.12)

Notice that $U^*U = |U|^2$,

$$\operatorname{Re} U^{*}H(i\omega) U = \operatorname{Re} U^{*} \left[\operatorname{Re} H(i\omega) + i\operatorname{Im} H(i\omega)\right] U =$$
$$\left[\operatorname{Re} H(i\omega) + \operatorname{Re} i\operatorname{Im} H(i\omega)\right] U^{*}U = \operatorname{Re} H(i\omega) |U|^{2},$$

and

$$q \operatorname{Re} \left[i\omega U^* H (i\omega) U \right] = q \operatorname{Re} \left[i\omega U^* \left[\operatorname{Re} H (i\omega) + i \operatorname{Im} H (i\omega) \right] U \right] =$$
$$q \operatorname{Re} \left[i\omega \left[\operatorname{Re} H (i\omega) + i \operatorname{Im} H (i\omega) \right] U^* U \right] =$$

$$q \operatorname{Re}\left[\left[i\omega \operatorname{Re} H\left(i\omega\right) - \omega \operatorname{Im} H\left(i\omega\right)\right] U^{*}U\right] = q \operatorname{Re}\left[-\omega \operatorname{Im} H\left(i\omega\right)\right] U^{*}U,$$

which permits to represent (7.12) as

$$\left[q\omega \operatorname{Im} H\left(i\omega\right) + k\operatorname{Re} H\left(i\omega\right) + 1\right]|U|^{2} > 0$$

whereas $|U| \neq 0$, implying (7.11).

b) Necessity. It follows directly from the properties of S-procedure (1.4), if take into account that it gives necessary and sufficient conditions of the "equivalency" of the sets defined by the inequalities $\tilde{Q}_0(x, u) > 0$ under the constraint $\tilde{Q}_1(x, u) > 0$ and

$$\tilde{Q}_{\tau}(x,u) > 0 \left(\|x\| + |u| \neq 0 \right).$$

Theorem is proven. ■

Remark 7.1 In the considered class $\mathcal{F}_{\gamma,k}$ of nonlinear feedbacks we still have not proved the validity of the properties a) and b) of the Barbashin-Krasovskii theorem given above. But these properties follows directly from the accepted assumptions since

- if $P = P^{\intercal} > 0$ and $q \ge 0$ the properties a) and b) obviously are guranteed,
- if $P = P^{\intercal} > 0$ and q < 0 may be guaranteed for sufficiently small |q|.

7.2.2 The Popov's line

Define new coordinates

$$x_H(\omega) := \operatorname{Re} H(i\omega), \ y_H(\omega) := \omega \operatorname{Im} H(i\omega).$$

The parametric curve $x_H(\omega)$, $y_H(\omega)$ ($\omega \in (-\infty, \infty)$) is referred to as the *Popov's plot*, and the line

$$kx_H + qy_H + 1 = 0 (7.13)$$

as the Popov's line. The figure Fig.7.1 represents the disposition of Popov's line

$$y_H = -q^{-1} \left(k x_H + 1 \right), q \neq 0.$$

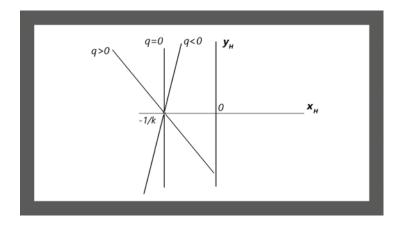


Figure 7.1: Popov's lines for q = 0, q < 0 and q > 0

Proposition 7.3 According to the inequality (7.11), if the Popov's plot is only on one side of the Popov's line (7.13) enclosing the origin, the linear system (5.1) with the class $\mathcal{F}_{\gamma,k}$ of nonlinear feedbacks (5.2) is globally stable.

Next figures (7.2), (7.3) and (7.4) illustrate how to test the frequency condition (7.11) using the Popov's line (7.13).

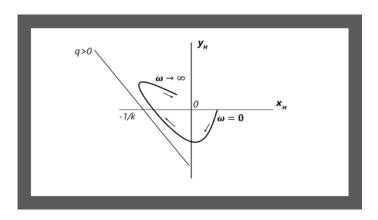


Figure 7.2: The class of the systems is absolutely stable: the Popov's plot admits the existance of a Popv's line with q > 0

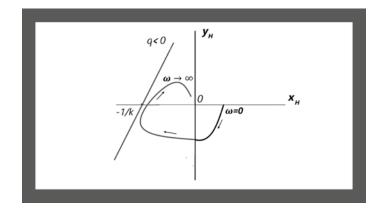


Figure 7.3: The class of the systems is absolutely stable: the Popov's plot admits the existance of a Popv's line with q < 0

7.2.3 Vector feedback

Following the same scheme as in the scalar feedback case, we have that the the linear system (5.1) - (5.6) with a nonlinear feedback $u = -\varphi(y)$ from the class $\mathcal{F}_{\Gamma,k}$ is absolutely globally stable if

$$\begin{split} \tilde{Q}_{\tau}\left(X,U\right) &:= \tilde{Q}_{0}\left(X,U\right) - \tau \tilde{Q}_{1}\left(X,U\right) \stackrel{\tau=1}{=} \\ X^{*}\left(-PA - A^{\mathsf{T}}P\right)X + X^{*}\left(-PB - \frac{q}{2}A^{\mathsf{T}}C^{\mathsf{T}}\Gamma + \frac{k}{2}C^{\mathsf{T}}\Gamma\right)U + \\ U^{*}\left(-B^{\mathsf{T}}P - \frac{q}{2}\Gamma CA + \frac{k}{2}\Gamma C\right)X + U^{*}\left(-\frac{q}{2}\left(\Gamma CB + B^{\mathsf{T}}C^{\mathsf{T}}\Gamma\right) + \Gamma\right)U, \end{split}$$

or equivalently,

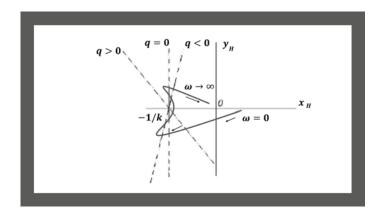


Figure 7.4: The class of the systems can not be considered as absolutely stable: there no exists a Popov's line such that the Popov's plot would be located on one side of it.

$$\begin{split} \tilde{Q}_{\tau}\left(X,U\right) &= -2\operatorname{Re}X^*P\left(AX+BU\right) - \\ \frac{q}{2}\operatorname{Re}\left[U^*\Gamma CAX + U^*\Gamma CBU + \left(U^*\Gamma CAX + U^*\Gamma CBU\right)^{\mathsf{T}}\right] + \\ \operatorname{Re}\left[U^*\left(\Gamma U + \frac{k}{2}\left(Y\Gamma + Y^{\mathsf{T}}\Gamma\right)\right)\right] &= -2\operatorname{Re}X^*P\left(AX + BU\right) \\ &- \frac{q}{2}\operatorname{Re}\left[U^*\Gamma C\left(AX + BU\right) + \left(AX + BU\right)^*C^{\mathsf{T}}\Gamma U\right] + \\ \operatorname{Re}\left[U^*\left(\Gamma U + \frac{k}{2}\left(\Gamma Y + Y^*\Gamma\right)\right)\right] > 0. \end{split}$$

Since

$$i\omega X = AX + BU,$$

 $Y = CX, Y = H(i\omega)U,$

where ω is a real number for which det $[A - i\omega I] \neq 0$, the last inequality becomes

$$\begin{split} \tilde{Q}_{\tau}\left(X,U\right) &= -2\underbrace{\operatorname{Re}\left(i\omega X^{*}PX\right)}_{0} - \\ &-\frac{q}{2}\operatorname{Re}\left[U^{*}\Gamma C\left(AX+BU\right)+\left(AX+BU\right)^{*}C^{\intercal}\Gamma U\right] + \\ &\operatorname{Re}\left[U^{*}\left(\Gamma U+kH\left(i\omega\right)U\right)\right] = \\ &-\frac{q}{2}\operatorname{Re}\left[i\omega\left(U^{*}\Gamma Y+Y^{*}\Gamma U\right)\right] + \\ &\operatorname{Re}\left[U^{*}\Gamma U+\frac{k}{2}U^{*}\left(\Gamma H\left(i\omega\right)+H^{*}\left(i\omega\right)\Gamma\right)U\right] > 0 \end{split}$$

which, in fact, is

$$\begin{split} \tilde{Q}_{\tau}\left(X,U\right) &= -\frac{q}{2}\operatorname{Re}\left[i\omega U^{*}\left(\Gamma H\left(i\omega\right) + H^{*}\left(i\omega\right)\Gamma\right)U\right] + \\ \operatorname{Re}\left[U^{*}\Gamma U + \frac{k}{2}U^{*}\left(\Gamma H\left(i\omega\right) + H^{*}\left(i\omega\right)\Gamma\right)U\right] = \\ &\frac{q}{2}\left[U^{*}\omega\operatorname{Im}\left(\Gamma H\left(i\omega\right) + H^{*}\left(i\omega\right)\Gamma\right)U\right] + \\ &\left[\frac{k}{2}U^{*}\operatorname{Re}\left(\Gamma H\left(i\omega\right) + H^{*}\left(i\omega\right)\Gamma\right)U\right] + U^{*}\Gamma U > 0, \end{split}$$

implying

$$\tilde{Q}_{\tau} (X, U) = U^* \left[\frac{q}{2} \omega \operatorname{Im} \left(\Gamma H (i\omega) + H^* (i\omega) \Gamma \right) + \frac{k}{2} \operatorname{Re} \left(\Gamma H (i\omega) + H^* (i\omega) \Gamma \right) + \Gamma \right] U =$$

$$U^{*}\mathcal{H}\left(\omega \mid q, k, \Gamma\right) U > 0 \text{ for all } U \left(\left\| U \right\| > 0 \right),$$

where the Hermitian matrix

$$\left. \mathcal{H}\left(\omega \mid q, k, \Gamma\right) := \frac{q}{2} \omega \operatorname{Im}\left(\Gamma H\left(i\omega\right) + H^{*}\left(i\omega\right)\Gamma\right) \\
+ \frac{k}{2} \operatorname{Re}\left(\Gamma H\left(i\omega\right) + H^{*}\left(i\omega\right)\Gamma\right) + \Gamma \right)$$
(7.14)

is strictly positive, that is,

 $\mathcal{H}(\omega \mid q, k, \Gamma) > 0$ for all $\omega \in (-\infty, \infty)$ such that det $[A - i\omega I] \neq 0$.

So, we are ready to formulate the following result.

Theorem 7.2 Suppose that

- the matrix A in (5.1) has no pure imaginary eigenvalues;
- the nonlinear feedback $\varphi(y)$ is from the class $\mathcal{F}_{\Gamma,k}$ (5.6).

To guarantee the existence of the function V(x) of the form (6.8) for which

$$\frac{d}{dt}V\left(x\left(t,x_{0},t_{0}\right)\right)<0$$

in any points $x(t, x_0, t_0) \in \mathbb{R}^n$ and any $u = u(t) \in \mathbb{R}^m$ from the class $\mathcal{F}_{\Gamma,k}$, satisfying the constraints (5.9), it is **necessary and sufficient** that for all $\omega \in [-\infty, \infty]$ the following "**generalized frequency inequality**" would be met for some real number q:

$$\mathcal{H}(\omega \mid q, k, \Gamma) := \frac{q}{2} \omega \operatorname{Im} \left(\Gamma H(i\omega) + H^{*}(i\omega) \Gamma \right) + \frac{k}{2} \operatorname{Re} \left(\Gamma H(i\omega) + H^{*}(i\omega) \Gamma \right) + \Gamma > 0$$
(7.15)

Remark 7.2 Notice that for scalar case, when m = 1 and $\Gamma = \gamma > 0$, the condition (7.15) consides with (7.11).