
Lecture 7

Analysis of Absolute Global
Stability in
Frequency-Domain

7.1 On equivalency of Hermitian and quadratic
forms

Let � � C�×� be an Hermitian matrix so that
� = �� :=

¡
�̄
¢|
�

� = � + ��� �̄ := � + ��

and � be a conlex vector:

� = �+ �	 � C�� �2 = �1


De�nition 7.1 The function

�� (�) := (����) = ���� = (�� �	)| � (�+ �	) (7.1)

with the Hermitian matrix � is called

• the Hermitian form,
• converting to the quadratic form, if � � R�×� be a symmetric matrix
(� = �|) and � = � � R�.
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If E =
©
�(1)� 


� �(�)

ª
is a basic in C� such that

� =
�X
�=1

���
(�)�

then �� (
) may be represented as

�� (�) := (����) =

Ã
�P
�=1

���
(�)� �

�P
�=1

���
(�)

!
=

Ã
�P
�=1

���
(�)�

�P
�=1

����
(�)

!
=

�P
�=1

�P
�=1

������̄� �

��������
�������

(7.2)

where
��� =

³
�(�)� ��(�)

´



Proposition 7.1 If � = �| is real and � = �+ �	,
¡
�2 = �1¢, then

�� (�) := (����) = �� (�) + �� (	) 
 (7.3)

Proof. Indeed,

�� (�) := (����) = (����) + (	��	)

�� (	���) + � (���	) = (����) + (	��	) 


Corollary 7.1 (on the extension)

• Any real quadratic form �� (�) can be uniquely extended up to the
corresponding Hermitian form �� (�), using the formula (7.3).

• If �� (�) has a special form

�� (�) = |�|�|2 + (�|�) (�|�) � (7.4)

with complex vectors �� � and �� then

�� (�) = |���|2 +Re (���) (���) (7.5)
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Proof. Indeed,

�� (�) = |�|�|2 + (�|�) (�|�) =

μ
�P
�=1

����

¶Ã
�P
�=1

����

!
+

μ
�P
�=1

����

¶Ã
�P
�=1

����

!
=

�P
�=1

�P
�=1

(���� + ����)���� 


Implying by (7.3) we get

�� (�) = �� (�) + �� (	) =
�P
�=1

�P
�=1

(���� + ����)����+

�P
�=1

�P
�=1

(���� + ����) 	�	� =
�P
�=1

�P
�=1

(���� + ����) (���� + 	�	�)| {z }
Re ����

=
�P
�=1

�P
�=1

���� Re (����) +
�P
�=1

�P
�=1

���� Re (����) 


��������������
�������������

(7.6)

But

|���|2 =
μ

�P
�=1

�� (�� + �	�)

¶Ã
�P
�=1

�� (�� � �	�)

!
=

�P
�=1

�P
�=1

���� (�� + �	�) (�� � �	�) =

�P
�=1

�P
�=1

���� (���� + 	�	�) =
�P
�=1

�P
�=1

���� Re (����) �

�������������
������������

(7.7)
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and

Re [(���) (���)] = Re [�| (�+ �	) (�� �	)| �]

Re

"μ
�P
�=1

�� (�� + �	�)

¶Ã
�P
�=1

�� (�� � �	�)

!#
=

Re

"
�P
�=1

�P
�=1

���� (�� + �	�) (�� � �	�)

#
=

�P
�=1

�P
�=1

���� (���� + 	�	�)

=
�P
�=1

�P
�=1

���� Re (����) 


������������������
�����������������

(7.8)

Substitution (7.7) and (7.8) into (7.6) leaads to (7.5).

Corollary 7.2 Evidently that, by (7.3), �� (�) � 0 (�� (�) � 0) for any
� � C� if and only if �� (�) � 0 (�� (�) � 0) for all � � R�.
Proposition 7.2 If

� =

μ
�(1)

�(2)

¶
and � =

�
�11 �12
��12 �22

¸
�

then
�� (�) := (��� �) =

¡
�11�

(1)� �(1)
¢
+ 2Re

¡
�12�

(2)� �(1)
¢
+
¡
�22�

(2)� �(2)
¢



(7.9)

7.2 Representation of the stability conditions in
frequency domain

7.2.1 Scalar feedback

So, by (7.5) the condition (6.7), emposed to all 
 and � such that k
k2 +
k�k2 � 0�

�̃� (
� �) = �̃0 (
� �)� ��̃1 (
� �) � 0

may be expanded to the following one:

�̃� (���) = Re
³
�̃0 (���)� ��̃1 (���)

´
� 0

for all complex � � C� and all complex � � C�

���
�� (7.10)
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where � and � are the Furier transformations of 
 and � processes.

Theorem 7.1 ([16]) Suppose that

- the matrix � in (5.1) has no pure imaginary eigenvalues;

- the nonlinear feedback � (�) is from the class F�	
 (5.6).

To guarantee the existence of the function � (
) of the form (6.1) for
which

�

��
� (
 (�� 
0� �0)) � 0

in any points 
 (�� 
0� �0) � R� (which is the solution of (5.1) with the initial
condition 
0 at time �0) and any � = � (�) � R, realized by a feedback
from the class F�	
, satisfying the constraints (5.6), it is necessary and
su�cient that for all � � [����] the following "frequency inequality"
(it is known as the "Popov’s inequality) would be ful�lled:

�� Im� (��) + �Re� (��) + 1 � 0� (7.11)

where the complex function � (�) (5.3) is the transfer function of the linear
subsystem and � is a real number.

Proof.
a) Su�ciency. Let now �, � and  be the Furier transformations of 
,

� and � processes, connected as

��� = �� + ���

 = �|�

where � is a real number for which

det [�� ��!] 6= 0
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By (7.10) with � = 1 (see Remark 1.5) we get

�̃� (���) := �̃0 (���)� ��̃1 (���)
�=1
=

�� (�"���|" )� +��
³
�"�� ��|

�

2
+ �

�

2

´
�+

��
μ
��|" � �

�|

2
�+ �

�|

2

¶
� + �� (���|�+ 1)� =

�2Re��" (�� + ��)� �Re [���| (�� + ��)]+

Re [�� (� + � )] � 0

for all k�k+ |� | 6= 0. Also we have

Re��" (�� + ��) = Re �� (��"�) = 0

and
�Re [���| (�� + ��)] = �Re [�����|�] = �Re [���� ] 


So, the relation �̃� (���) � 0 becomes

�̃� (���) = �2Re��" (�� + ��)� �Re [���| (�� + ��)]+

Re [�� (� �  )] = ��Re [���� ] + Re [�� (� �  )] =

Re
£������ + ��

¡
��1� �  

¢¤
� 0

By (5.3), we also have that

 = � (��)��

where � (��) is the complex value (non matrix). So, we obtain

�̃� (���) = Re [������� (��)� + ��� + �� [�� (��)]� ] � 0
 (7.12)

Notice that ��� = |� |2,

Re��� (��)� = Re�� [Re� (��) + � Im� (��)]� =

[Re� (��) + Re � Im� (��)]��� = Re� (��) |� |2 �
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and

�Re [����� (��)� ] = �Re [���� [Re� (��) + � Im� (��)]� ] =

�Re [�� [Re� (��) + � Im� (��)]��� ] =

�Re [[��Re� (��)� � Im� (��)]��� ] = �Re [�� Im� (��)]����

which permits to represent (7.12) as

[�� Im� (��) + �Re� (��) + 1] |� |2 � 0

whereas |� | 6= 0� implying (7.11).
b) Necessity. It follows directly from the properties of #-procedure (1.4),

if take into account that it gives necessary and su�cient conditions of the
"equivalency" of the sets de�ned by the inequalities �̃0 (
� �) � 0 under the
constraint �̃1 (
� �) � 0 and

�̃� (
� �) � 0 (k
k+ |�| 6= 0) 


Theorem is proven.

Remark 7.1 In the considered class F�	
 of nonlinear feedbacks we still
have not proved the validity of the properties a) and b) of the Barbashin-
Krasovskii theorem given above. But these properties follows directly from
the accepted assumptions since

• if " = " | � 0 and � � 0 the properties a) and b) obviousely are
guranteed,

• if " = " | � 0 and � � 0 may be guaranteed for su�ciently small |�|.

7.2.2 The Popov’s line

De�ne new coordinates


� (�) := Re� (��) � �� (�) := � Im� (��) 


The parametric curve 
� (�), �� (�) (� � (����)) is referred to as the
Popov’s plot , and the line

�
� + ��� + 1 = 0 (7.13)

as the Popov’s line. The �gure Fig.7.1 represents the disposition of Popov’s
line

�� = ���1 (�
� + 1) � � 6= 0
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Figure 7.1: Popov’s lines for � = 0� � � 0 and � � 0

Proposition 7.3 According to the inequality (7.11), if the Popov’s plot is
only on one side of the Popov’s line (7.13) enclosing the origin, the linear
system (5.1) with the class F�	
 of nonlinear feedbacks (5.2) is globally
stable.

Next �gures (7.2),(7.3) and (7.4) illustrate how to test the frequency condi-
tion (7.11) using the Popov’s line (7.13).

Figure 7.2: The class of the systems is absolutely stable: the Popov’s plot
admits the existance of a Popv’s line with � � 0
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Figure 7.3: The class of the systems is absolutely stable: the Popov’s plot
admits the existance of a Popv’s line with � � 0

7.2.3 Vector feedback

Following the same scheme as in the scalar feedback case, we have that the
the linear system (5.1) - (5.6) with a nonlinear feedback � = �� (�) from
the class F�	
 is absolutely globally stable if

�̃� (���) := �̃0 (���)� ��̃1 (���)
�=1
=

�� (�"���|" )� +��
μ
�"$ � �

2
�|%|� +

�

2
%|�

¶
�+

��
μ
�$|" � �

2
�%�+

�

2
�%

¶
� + ��

³
��
2
(�%$ +$|%|�) + �

´
��

or equivalently,
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Figure 7.4: The class of the systems can not be considered as absolutely
stable: there no exists a Popov’s line such that the Popov’s plot would be
located on one side of it.

�̃� (���) = �2Re��" (�� +$�)�
�

2
Re [���%�� + ���%$� + (���%�� + ���%$�)|] +

Re

�
��
μ
�� +

�

2
( � +  |�)

¶¸
= �2Re��" (�� +$�)

��
2
Re [���% (�� +$�) + (�� +$�)�%|�� ] +

Re

�
��
μ
�� +

�

2
(� +  ��)

¶¸
� 0


Since

��� = �� +$��

 = %��  = � (��)��
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where � is a real number for which det [�� ��!] 6= 0, the last inequality
becomes

�̃� (���) = �2Re (����"�)| {z }
0

�

��
2
Re [���% (�� +$�) + (�� +$�)�%|�� ] +

Re [�� (�� + �� (��)�)] =

��
2
Re [�� (��� +  ���)]+

Re

�
���� +

�

2
�� (�� (��) +�� (��) �)�

¸
� 0

which, in fact, is

�̃� (���) = ��
2
Re [���� (�� (��) +�� (��) �)� ] +

Re

�
���� +

�

2
�� (�� (��) +�� (��) �)�

¸
=

�

2
[��� Im (�� (��) +�� (��) �)� ] +

�
�

2
��Re (�� (��) +�� (��) �)�

¸
+ ���� � 0�

implying

�̃� (���) = ��
h�
2
� Im (�� (��) +�� (��) �)+

�

2
Re (�� (��) +�� (��) �) + �

¸
� =

��H (� | �� ���)� � 0 forall � (k�k � 0) �

where the Hermitian matrix

H (� | �� ���) := �

2
� Im (�� (��) +�� (��) �)

+
�

2
Re (�� (��) +�� (��) �) + �

����
��� (7.14)
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is strictly positive, that is,

H (� | �� ���) � 0 for all � � (����) such that det [�� ��!] 6= 0


So, we are ready to formulate the following result.

Theorem 7.2 Suppose that

- the matrix � in (5.1) has no pure imaginary eigenvalues;

- the nonlinear feedback � (�) is from the class F�	
 (5.6).

To guarantee the existence of the function � (
) of the form (6.8) for
which

�

��
� (
 (�� 
0� �0)) � 0

in any points 
 (�� 
0� �0) � R� and any � = � (�) � R� from the class F�	
,
satisfying the constraints (5.9), it is necessary and su�cient that for all
� � [����] the following "generalized frequency inequality" would be
met for some real number �:

H (� | �� ���) := �

2
� Im (�� (��) +�� (��) �)

+
�

2
Re (�� (��) +�� (��) �) + � � 0

(7.15)

Remark 7.2 Notice that for scalar case, when & = 1 and � = � � 0, the
condition (7.15) consides with (7.11).


