
Lecture 4

Optimization problems with
LMI constraints

Many optimization and control issues may be expressed as a series of LMIs with a
feasible solution. The majority of issues, on the other hand, are best expressed as
a simple objective function optimization over a set of LMIs. This lecture presents
the formulation of certain optimization problems that arise when utilizing LMIs to
solve some problems in control area.

4.1 Eigenvalue problem (EVP)

Eigenvalue problem (EVP) consists in the minimization of the maximum
eigenvalue of a � × � symmetric matrix �(� ) that depends a�nely on a
variable, subject to LMI (symmetric) constraint �(� ) � 0, i.e.,

�max(�(� ))� min
�=� |

�(� ) � 0�
(4.1)

Since for large enough �
�(� ) � �	�×� 


this problem can be equivalently represented as follows:

�� min
���=� |

�
�	�×� ��(� ) � 0 0

0 �(� )

¸
� 0�

�����
����

(4.2)
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4.2 Tolerance level optimization

The tolerance level optimization problem can be represented in the following
manner:

� � min
0���0��=� |

��+�|� + �|� + ��1���|�  0

(4.3)

Equivalently, it can be rewritten by the Schur’s complement (Theorem 1.1)
as an optimization problem with LMI constraints:

� � min
0���0��=� |

�
� �����|� � �|� �� 0

�|� �	 0
0 0 �

	

 � 0�

(4.4)

4.3 Maximization of the quadratic stability degree

The quadratic stability degree of a stable � × � matrix � is de�ned as a
positive value � satisfying the matrix inequality

�|� + ��  ���
for some positive de�nite matrix �
 involved into the quadratic Lyapunov
function � = �|��
 and for the matrix �, de�ning the linear dynamics ��
= ��. The problem of the maximization of the quadratic stability degree
consists in the following optimization problem

�� max
0���0��=� |

�|� + ��+ ��  0


(4.5)

which can be expressed by the Schur’s complement (Theorem 1.1) as an
optimization with LMI constraint, namely,

�� max
0��� 0��=� |

� ��|� � ��� �� 0
0 �

¸
� 0�

(4.6)
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4.4 Minimization of linear function Tr (���|) un-
der the Lyapunov-type constraint

Lemma 4.1 ([8]) Let

1) the matrix � � R�×� is Hurwitz;

2) the pair (�
�) is controllable, i.e., there exists a matrix � such that
(�+��) is Hurwitz.

Then for any matrix � � R	×� the solution of the problem

Tr (���|)� min
��0

(4.7)

under the constraint
�� + ��| +��| � 0 (4.8)

is attained on the Lyapunov matrix equation

�� � + � ��| +��| = 0


� � =
�Z


=0

��
��|��
| 
���

(4.9)

Proof. Suppose that the minimizing solution satis�es the equation

�� + ��| +��| = ��  0�

Then

� =

�Z

=0

��
 (�+��|) ��
| 
�� �

�Z

=0

��
��|��
| 
�� = � �


and, hence,

Tr (���|) = Tr (�� ��|)+Tr

�
��

�Z

=0

��
���
| 
���|


� � Tr (�� ��|) �

This means that � � is minimizer. Lemma is proven.
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4.5 The convex function log det ��1 (�) minimiza-
tion

First notice that log det ��1 (�) is a convex function of �. We will en-
counter the following problem:

log det��1 (�)� min
�=�|�R�×�

(4.10)

subjected to the constraints

� (�) � 0
 �(�) � 0
 (4.11)

where � (�) 
 �(�) are symmetric matrices that depend a�nely (linearly)
on �.

Example 4.1 As an example of the problem (4.10)-(4.11) consider the fol-
lowing one: �nd a minimal ellipsoid

E := {� | �|�� � 1} 
 � � 0
 (4.12)

containing the set of given points � (� = 1
 ���
 �), i.e., � � E. Since
the volume of E is proportional to (det� )�1�2 , minimizing log det��1 is
the same as minimizing the volume of E, this problem is converted into the
following one:

log det��1 � min
��R�×�

� � 0
 �| �� � 1 (� = 1
 ���
 �) �

���
�� (4.13)

4.6 Numerical methods for LMIs resolution

Numerical methods for LMI’s resolution are discussed in details in this section.

4.6.1 What does it mean "to solve LMI"?

There exist several e�cient methods for LMIs resolution. By "solve an
LMI " we mean here:

• determine whether or not the LMI (or, the corresponding problem) is
feasible;
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• if it is, compute then a feasible point with "an objective value" that
exceeds the global minimum by less than some prespeci�ed accuracy.

What does it mean "an objective value", it depends on each concrete
problem to be solved. Here we will assume that the problem we are solving
has at least one "optimal point", i.e., the constraints are feasible.

To realize the numerical methods describe below, �rst, let us repres-
ent the matrix � � R�×� as the corresponding extended vector � � R�2
obtained by the simple implementation of the operator col, that is,

� := col�� (4.14)

4.6.2 Ellipsoid algorithm

In a feasible problem, we may consider any feasible point as being optimal.
The basic idea of the ellipsoid algorithm is as follows:

1. One may start with an ellipsoid E(0) that is guaranteed to contain an
optimal point.

2. Then the cutting plane for our problem is computed that passes through
the center point �(0) of the initial ellipsoid E(0). This means that we
need to �nd a nonzero vector �(0) (namely, a vector orthogonal to the
plane to be computed) such that an optimal point lies in the half-spacen

� � R�2 | �(0)|
³
� � �(0)

´
 0

o
(4.15)

(below, we shall present some example how calculate �(0) in some
concrete problems).

3. After that one may conclude that the sliced half-ellipsoid

E(0) �
n
� � R�2 | �(0)|

³
� � �(0)

´
 0

o
contains an optimal point.

4. Then we compute the ellipsoid E(1) of a minimum volume that contains
this sliced half-ellipsoid. This ellipsoid E(1) is guaranteed to contain an
optimal point, but its volume is expected to be less then the volume
of the initial ellipsoid E(0), i.e.

volE(1)  volE(0)�
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5. The process is then iterated.

More explicitly, this algorithm may be describe as follows. Any ellipsoid
E may be associated with some positive de�nite matrix �, that is,

E :=
n
� � R�2 | (� � �)| ��1 (� � �) � 1

o
(4.16)

where � = �| � 0. The minimum volume ellipsoid Ẽ containing the slice
half-ellipsoidn

� � R�2 | (� � �)| ��1 (� � �) � 1
 �| (� � �)  0
o

is given by the symmetric matrix �̃ and the vector �̃ as its center, namely,

Ẽ :=
n
� � R�2 | (� � �̃)| �̃�1 (� � �̃) � 1

o

�̃ = �� ��̃

�+ 1

 � := �2 � 1

�̃ =
�2

�2 � 1
μ
�� 2

�+ 1
�|�̃�̃|�

¶

�̃ =
��
�|��

(4.17)

(In the case of one variable (� = 1) the minimal length interval containing a
half-interval is the half-interval itself). So, the ellipsoid algorithm starts with
the initial points �(0) and the initial matrix �(0). Then for each intermediate
pair �(	) and �(	) (� = 0
 1
 2���) one may compute a vector �(	) and then
calculate

�(	+1) = �(	) � �(	)�̃

�+ 1

 � := �2 � 1


�(	+1) =
�2

�2 � 1
μ
�(	) � 2

�+ 1

¡
�(	)

¢|
�̃�̃|�(	)

¶



�̃ =
�(	)p

�(	)|�(	)�(	)
�
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It turns out that the volume

volE(	) = det�(	)

of these ellipsoids decreases geometrically, that is,

volE(	+1) � ��	�2�volE(	)

This means that the recursion above generates a sequence of ellipsoids that
are guaranteed to contain an optimal point and converges to it geometrically.
It may be proven that this algorithm converges more quickly, namely, in
"polynomial time" (see [9] and references within).

Next examples illustrate the rule of selection of the nonzero vector �
orthogonal to the cutting plane which is speci�ed for each concrete problem.

Example 4.2 Let LMI is represented in the form

� (�) := �0 +
�X
=1

�� � 0 (4.18)

where � (� = 0
 1
 2
 ���
�) are symmetric matrices. If � is infeasible, this
means that at least there exists a nonzero vector  such that

 |� (�) � 0
De�ne � = (�1
 ���
 ��)

| by

� = � |� (4.19)

Then for any � satisfying �| (� � �) � 0 it follows

 |� (�) =  |
"
�0 +

�X
=1

��

#
 =  |�0 +

�X
=1

� 
|� =

 |�0 �
�X
=1

�� =  |�0 � �|� =  |�0 + �|�� �| (� � �) =

 |� (�) � �| (� � �) � 0
So, any feasible point belongs to the half-space

{� � R� | �| (� � �)  0}
or in other words, this �, given by (4.19), is a cutting plane for this LMI
problem at the point �.
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Example 4.3 If we deal with the minimization problem of linear function
!|� subjected LMI (4.18), that is,

!|�� min
��R�2

� (�) := �0 +
�X
=1

�� � 0

one may encounter two possible situation:
1) � is infeasible, i.e., � (�) � 0; in this case � can be taken as in the

previous example (4.19) since we are discarding the half-spacen
� � R�2 | �| (� � �) � 0

o
because all such points are infeasible;

2) � is feasible, i.e., � (�) � 0; in this case � can be taken as

� = !

since we are discarding the half-spacen
� � R�2 | �| (� � �) � 0

o
because all such points have an objective value larger than � and hence cannot
be optimal.

4.6.3 Interior-point method

For LMI problem

� (�) := �0 +
�X
=1

�� � 0

let us de�ne the, so-called, barrier function " (�) for the feasible set:

" (�) :=

½
log det��1 (�) if � (�) � 0


	 if � (�) � 0� (4.20)

Suppose then that the feasible set is nonempty and bounded. This implies
that the matrices �1
...
 �� are linearly independent (otherwise the feasible
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set will contain a line, i.e., be unbounded). It can be shown that " (�) is
strictly convex on the feasible set and, hence, it has a unique minimizer
which we denote by ��, that is,

�� := arg min
�:� (�)�0

" (�) �

This point is referred as the analytical center of the LMI � (�) � 0. It is
evident that

�� := arg max
� (�)�0

det� (�) �

Remark 4.1 Two LMI´s � (�) � 0 and # |� (�)# � 0 have the same
analytical center provided # is nonsingular.

Let us apply the Newton’s method for the search of the analytical center
�� of LMI, starting from a feasible initial point:

�(	+1) = �(	) � �(	)$�1 ¡�(	)¢ � ¡�(	)¢ 
 (4.21)

where 0  �(	) is a damping factor at the �-th iteration, $
¡
�(	)

¢
is the

Hessian and �
¡
�(	)

¢
is the gradient, respectively, of " (�) at the point �(	).

In [9] it is shown that if the damping factor is

�(	) :=

½
1 if %

¡
�(	)

¢ � 1&4
1&

¡
1 + %

¡
�(	)

¢¢
otherwise




%
¡
�(	)

¢
:=

q
�|

¡
�(	)

¢
$�1 ¡�(	)¢ � ¡�(	)¢


(4.22)

then this step length always results in �(	+1) which is feasible, namely,

�
³
�(	+1)

´
� 0

and leads to the convergence of �(	) to �� when � �	.
There exist another interior-point methods (for details, see [10]).

Important comment: the MATLAB packages realizing the numerical
solutions of LMI’s are

SEDUMI and YALMIP.
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