
Lecture 22

Adaptive SMC

The main obstacles for application of Sliding Mode Control are two inter-
connected phenomena:

• chattering,

• and high activity of control action.

Claim 22.1 As we can see from the previous considerations that the amp-
litude of chattering is proportional to the magnitude of a discontinuous con-
trol.

This two problems can be handled simultaneously if the magnitude is
reduced to a minimal admissible level de�ned by the conditions for sliding
mode to exist. The adaptation methodology for obtaining the minimum
possible value of control is based on two approaches developed in recent
publications [15]:

• The � - adaptation, providing the adequate adjustments of the mag-
nitude of a discontinuous control within the "reaching phase", that is,
when state trajectories are out of a sliding surface [16];

• Dynamic adaptation or the adaptation within a sliding mode (on a
sliding surface), based on the, so-called, Equivalent Control Method
(ECM) obtained by the direct measurements of the output signals of
a �rst-order low-pass �lter containing in the input the discontinuous
control with the specially adapted magnitude value [17].
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22.1 The �-adaptation method

Consider the nonlinear uncertain system

�� (�) = � (� (�)) + � (� (�))��

� (0) = �0� � � 0

��
� (22.1)

where � (�) � X � R
� the state vector and � � R the control input to be

designed. The function � (�) and the vector function � (�) are supposed to
be smooth uncertain functions and are bounded for all � � X ; furthermore,
� (�) contains unmeasured perturbations term and � (�) 	 0 for all � � X .

The control objective consists in forcing the continuous function �(�� �),
named sliding variable, to 0. Supposing that � admits the relative degree
equal to 1 with respect to �, one gets

��(�� �) = 
 (�� �) + � (�� �)��


 (�� �) :=
��(�� �)

��
+

μ
��(�� �)

��

¶|
� (�) �

� (�� �) :=

μ
��(�� �)

��

¶|
� (�)

����������
���������

(22.2)

Functions 
 (�� �) and � (�� �) are supposed to be bounded such that for all
� � X and all � � 0

|
 (�� �)| � 
� � 0 
 �� � � (�� �) � �� (22.3)

It is assumed that 
� , �� and �� exist but are not known. The objective
for a designer is to propose a sliding mode controller � (�� �) with the same
features as classical SMC, namely, robustness and �nite-time convergence
but without any information on uncertainties and perturbations (appearing
in �(�)). Furthermore, this objective allows to ensure a global stability of
closed-loop system whereas the classical way (with knowledge of uncertain-
ties bounds) only ensures its semi-global stability.

In the sequel, the de�nitions of ideal and real sliding mode are recalled.

De�nition 22.1 We say that an ideal sliding mode exists if

lim
��+0

�� 
 0 and lim
���0 �� 	 0�
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If, due to some small positive parameter �, the state trajectories belong to
domain

|� (�)| � �(�) � lim
��0�(�) = 0�

then the motion is called a real sliding mode.

In real applications, an "ideal" sliding mode, as de�ned in De�nition
22.1, cannot be established. But the concept of a "real" sliding mode seems
to be workable.

As it is common for Sliding Mode Theory, we will consider the scalar
discontinuous control action � = � (�� �) at time � as

� (�� �) = �� (�) sign (�(� (�) � �)) �

�� (�) =

��
�
�̄ |�(� (�) � �)| sign (|�(� (�) � �)| � �) if � (�) 	 �

0 if � (�) � �

����
���

(22.4)

with �̄ 	 0� � 	 0 and a small enough positive �. The parameter � is
introduced in order to get only positive values for � (�).

Once sliding mode with respect to �(� (�) � �) is established, the proposed
gain-adaptation law (22.4) allows the gain � (�) declining (while |�(� (�) � �)| 

� ). In other words, the gain � (�) will be kept at the smallest level that al-
lows a given accuracy of � - stabilization. Of course, as described in the
sequel, this adaptation law allows to get an adequate gain with respect to
uncertainties/perturbations magnitude.

Theorem 22.1 ([16]) Given the nonlinear uncertain system (22.1) with
the sliding variable �(� (�) � �) dynamics (22.2) controlled by (22.4), there
exists a �nite time �� so that a real sliding mode is established for all � � �� ,
i.e., |�(� (�) � �)| 
 � for all � � �� with

� =
q
�2+
2��

¡
�̄��

¢
� (22.5)

So, the convergence to the domain |�(� (�) � �)| � � is in a �nite time, but
could be sustained in the bigger domain |�(� (�) � �)| � �. Therefore, the real
sliding mode exists in the domain |�(� (�) � �)| � �. The choice of parameter
� has to be made by an adequate way because a ‘bad’ tuning could provide
either instability and control gain increasing to in�nity, or bad accuracy for
closed-loop system. In [16] there is suggested to select � adjusted in time as

� (�) = 4�(�)�� �
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22.2 The dynamic adaptation based on ECM

22.2.1 The simple motivating example

Consider the �rst-order scalar system

�� (�) = � (�) + ��

� = ��sign (� (�)) � � 	 0�

��
� (22.6)

The ranges of a time varying parameter

0 
 |� (�)| � �+

and the upper bound � for its time derivative

| �� (�)| � �

are known only. The sliding mode with � (�) � 0 exists for all values of
unknown parameter � (�) if � 	 �+. However if parameter � (�) is varying,
the gain � can be decreased and, as a result, chattering amplitude can be
reduced. The objective of adaptation is decreasing � to the minimal value
preserving sliding mode, if parameter � is unknown. If the condition � 	 �+
holds, then sliding mode with � (�) � 0 occurs and control in (22.6) should
be replaced by the, so-called, equivalent control ��	 (see [1] and lecture 17)
for which the right-hand side in (22.6) is equal to zero, namely,

�� (�) = 0 = � (�) + ��	� (22.7)

that leads to
� (�) [sign (� (�))]�	 = � (�)

�
� (�)

¯̄̄
[sign (� (�))]�	

¯̄̄
= |� (�)|

���
�� (22.8)

If � 
 |� (�)|, the set � (�) � 0 is of zero measure in time and can be disreg-
arded. The function [sign (� (�))]�	 is an average value, or a slow component
of discontinuous function sign (� (�)) switching at high frequency and can be
easily obtained by a low pass �lter �ltering out the high frequency compon-
ent. Of course, the average value is in the range (�1� 1). Then the design
idea of adaptation seems to be evident:

after sliding mode occurs the control parameter [sign (� (�))]�	 should be
increased until it becomes close to 1.
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On one hand, the condition � (�) 	 � (�) should hold. But the chattering
amplitude is proportional to � (�). The objective of adaptation process looks
now transparent:

the gain � (�) should tend to |� (�)| �� with � � (0� 1) which is very
close to 1.
As a result, the minimal possible value of discontinuity magnitude is found
for the current value of parameter � (�) to reduce the amplitude of chattering.
For that purpose select the adaptation algorithm in the form

�� (�) = ��(�)sign (� (�))�� [�(�)� �+]+ +� [�� �(�)]+ �

� (�) :=
¯̄̄
[sign (� (�))]�	

¯̄̄
� �� � � (0� 1) �

[�]+ :=

½
1 if � � 0
0 if � 
 0

� � 	 ��+� �+ 	 �+� � 	 0�

���������
��������

(22.9)

The gain � can vary in the range [�� �+], � 	 0 is a preselected minimal
value of �. For the adaptation algorithm (22.9) sliding mode will occur after
a �nite time interval. Indeed, if it does not exist, then¯̄̄

[sign (� (�))]�	

¯̄̄
= 1�

that leads to � 	 0, and the increasing gain � (�) will reach the value �+

which is su�cient for enforcing sliding mode for any value of parameter � (�).
In sliding mode the adaptation process (22.9) with � (�) = 0 is over after a
�nite time �� . Indeed, calculate the time derivative of the Lyapunov function
� (�) = �2�2 assuming that during the adaptation process � (�) � [�� �+]
which means that |� (�)| �� 	 � or (|� (�)| 	 ��). The time derivatives of¯̄̄
[sign (� (�))]�	

¯̄̄
(22.8) and |� (�)| exist and the terms depending on � in the

adaptation algorithm (22.9) are equal to zero. Calculate the time derivative
of the Lyapunov function � (�) by virtue of (22.8) and (22.9):

�� (�) = � �� = �
�

��

¯̄̄
[sign (�)]�	

¯̄̄
= �

�

��
(|�| ��) =

� |�| ���1�sign ¡� �� [� � �+]+ +� [�� �]+
¢

+ ���1 ��sign (�) � � |�| ���1�sign (�) + |�| ��1�

� ������1 |�|+ |�| ��1� = � |�| ��1 (�����)

������������
�����������

(22.10)



304 Lecture 22. Adaptive SMC

and if � 	 ���� it follows

�� (�) � �
	
2
(�����)

�+

p
� (�)�

implying that
p
� (�) = 0 at least after

�� =
�+

(�����)
p
2� (� (0))=

�+

(�����) |� (0)|

and, as a result, � (�) becomes equal to zero identically after the �nite time
�� .

After the adaptation process is over (� 	 �� ) we have

¯̄̄
[sign (� (�))]�	

¯̄̄
=
|�|
�
= ��

So, � = |�| ��. If in the course of motion |� (�)| �� 
 �, then the gain � (�)
decreases until � (�) = � and, as it follows from (22.9), it will be maintained
at this level. Since the gain �(�) is time varying its increase can result in
|� (�)| �� = � and � (�) = 0 at a time �� . As it follows from the above
analysis, for the further motion in the domain � (�) � (�� �+] with the initial
condition � (�� ) = 0 the time function � (�) will be equal to zero with � (�) =
|� (�)| ��.

Remark 22.1 The function [sign (� (�))]�	 is needed here for the implement-
ation of the adaptation algorithm (22.9). It can be derived by �ltering out a
high frequency component of the discontinuous function sign (� (�)) by a low
pass �lter

� �� + � = sign (� (�)) � � (0) = 0

with a small time constant � 	 0 and the output � (�) which is, in fact, an
estimate of [sign (� (�))]�	 satisfying

¯̄̄
� (�)� [sign (� (�))]�	

¯̄̄
� � (�) 



�0 0�

Then the convergence analysis of (22.9)-(22.10) with � (�) = � (�) � � is
valid beyond the domain |� (�)| � � (�). This inequality de�nes the accuracy
of adaptation. Note that the switching frequencies of the modern power
converters are of order dozens of kHz, and very small time constant � can
be selected to get a high accuracy of adaptation.
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Notice also that, as follows from [1],

�(�) = 
(�) +�(sup|� (�) |+ �) +�(sup|� (�) |��)
where 
(�) is the fast rate exponentially decreasing function. The term
sup|� (�) | is inverse proportional to the sliding mode frequency � . It is
of order of dozen ��� in the modern switching devices. Therefore it is not
a problem to make the term

�(sup|�|+ �) +�(sup|�|�\�)
negligible. Of course, this engineering language can be translated into math-
ematical one, for example as follows: for any � 	 0 there exists a switching
frequency �0 such that |� � ��	| 
 � if � 	 �0 implying

sign[
¯̄̄
[sign (� (�))]�	

¯̄̄
� �] = sign[|� (�)| � �]

22.2.2 Multidimesiona case

Main assumptions

Here we consider an arbitrary order system

�� (�) = � (�� � (�)) + � (�� � (�))� (�� � (�)) �

� (�) � R�� � : R+ ×R� 
 R
��

� :  + ×R� 
 R� � : R+ ×R� 
 R
�

������
�����

(22.11)

for which we assume that

A1 the control � = � (�� �) enforces siding mode on some surface

� (�) = 0 (� � !1)
and is in the following form

� (�� �) = �� (�)
μ
1 + "

q
k�k2 + �

¶
sign (� (�)) �

" � 0� � 	 0� � (�) � [�� �+] � � 	 0�

����
���

(22.12)

Similarly to the example (22.6) the control gain � (�) is a time varying
function governed by the adaptation procedure described below.
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A2 the uncertain functions � (�� �) and � (�� �) satisfy the commonly ac-
cepted conditions (which are much more general then in (22.3)):

k� (�� �)k � �0 + �1 k�k �

0 
 �0 � �|� (�) � (�� �) �

k� (�� �)k � �+� k�� (�)k � �+�

������
�����

(22.13)

�(�� �) :=
�|� (�) � (�� �)
�|� (�) � (�� �) �

k�|�(�� �)k � �0 +�1 k�k �
¯̄̄
¯ ����(�� �)

¯̄̄
¯ � #0 + #1 k�k �

����������
���������

(22.14)

All coe�cients in the right-hand sides of these inequalities are constant and
positive. The function � (�) and its time derivative

�� (�) = �|� (�) � (�� �)�

�|� (�) � (�� �) � (�)
μ
1 + "

q
k�k2 + �

¶
sign (� (�))

����
���

(22.15)

should have opposite signs (� (�) �� (�) 
 0 if � (�) 6= 0) for sliding mode to
exist on the surface � (�) = 0. The su�cient condition for this follows from
(22.13),(22.14) and (22.15):

� (�) �� (�) = � (�)�|� (�) � (�� �)�

�|� (�) � (�� �) � (�)
μ
1 + "

q
k�k2 + �

¶
|� (�)|

� [�|� (�) � (�� �)] |� (�)| ×
μ
|�(�� �)| � � (�)

μ
1 + "

q
k�k2 + �

¶¶

 0�

if

|�(�� �)| � � (�)
μ
1 + "

q
k�k2+�

¶

 0� (22.16)
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which is always holds when

" � �1��0� � 	 �0�+��0� � (�) �
¡
�� �+

¤
(22.17)

in view of the relation

|�(�� �)| � � (�)
μ
1 + "

q
k�k2 + �

¶
�

�0
�+ (1 + k�k �1��0)

�0
� � (1 + " k�k) �

To derive the sliding mode equation the function sign (� (�)) should be re-
placed by the solution of the equation �� (�) = 0 with respect to the term
sign (� (�)), called the equivalent control :

[sign (� (�))]�	 :=

������
�����

�(�� �)

� (�)

μ
1 + "

q
k�k2 + �

¶ if
� (� (�)) = 0

sign (� (� (�)))
if

� (� (�)) 6= 0

(22.18)

satisfying (in view of (22.16)) in the sliding mode (� (� (�)) = 0)
¯̄̄
[sign (� (�))]�	

¯̄̄

 1 (22.19)

Description of the adaptation procedure The idea of the adaptation
law for the control gain � (�) is similar to that for our �rst-order system in
the previous subsection:

��(�) =

��
�

(�0 + �1 k�k) �(�)sign (� (�))

� � [�(�)� �+]+ +� [�� �(�)]+ �
(22.20)

where
�(�) :=

¯̄̄
[sign (� (� (�)))]�	

¯̄̄
� ��

� � (0� 1) � " 	 0� �0� �1 	 0�

���
�� (22.21)

Select in (22.20)

�+ 	 �+
�0
�0
�
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If sliding mode does not exist, then¯̄̄
[sign (� (�))]�	

¯̄̄
= 1�

and the gain �(�) will be equal to �+ which results in the occurrence of this
motion in the surface � (� (�)) = 0.

Theorem 22.2 ([17]) For the dynamic system (22.11) closed by the control
(22.12) with the gain adaptation law (22.20) - (22.21) with the parameters
satisfying

�+ 	 �+
�0
�0
� � 	 �0�

+��0� 0 
 �¿ 1�

�0	 �
�1
	μ
�0
�
+�+

¶
�0+

#0
�
+�0+�

+�+
¸
�

�1 � ��1
μ
�0
�
+�+

¶
�1� � 	 �0�

+�

������������
�����������

(22.22)

there exist

$ := ��0 �
	μ
�0
�
+ �+

¶
�0 +

#0
�
+ �0 + �

+�+
¸
	 0 (22.23)

and
�� = $

�1 |� (0)|
(where � (0) is de�ned by (22.21)) such that for all � � �� the condition¯̄̄

[sign (� (� (�)))]�	

¯̄̄
= � (22.24)

holds. It means that the sliding surface � (�) = 0 is attained in a �nite
time �� , and for � = 1 � �0 (�0 	 0) is a small enough positive number)
the suggested adaptation procedure provides � (�) tending to a vicinity of the
minimum possible value �min (�), that is, as it follows from (22.18), in sliding
mode

�(�) =

��
�

1

1� �0�min (�) %� �min (�) � �
� %� �min (�) 
 �

�

�min (�) :=
|�(�� � (�))|

1 + "
q
k� (�)k2 + �

�

���������
��������

(22.25)
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22.2.3 Super-twist control with adaptation

The dynamic system with super-twist controller can be represented as

��
�

��1 = �2 � �̄
p|�1|sign(�1)�

��2 = &(�)� �sign(�1)�
(22.26)

Take �(�) = �1 and permit for the gain parameter to be time-varying, i.e.,

� = � (�) �

Theorem 22.3 (on adaptive super-twist [17]) The system (22.26) with

disturbances &(�) having a bounded derivative (ful�lling
�

��
|&(�)| � '), and

with the parameter �(�) adapted on-line according to the adaptation law

�� (�) =

����
���

�0�(�)sign (� (�))�� [�(�)� �+]++� [�� �(�)]+
if 0 
 � � � (�) � �+�

0 otherwise

�(�) :=
¯̄̄
[sign (� (�))]�	

¯̄̄
� �� � = 1� �0� �0 	 '��

(22.27)

converges in the �nite time

�� = |� (0)| �+� (��0 � ')

to the sliding mode regime �(�) = �1 = 0 maintaining within the relation

|&(�)| � |�(�)| = � = 1� �0

for small enough �0 	 0.

22.3 Exercises

Exercise 22.1 For the same system as in Exercise (17.1) compare the ad-
aptive SM controllers based on �-adaptation and the equivalent control
method.
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Exercise 22.2 For the super-twist controller

��1 = �2 � �̄
p|�1|sign(�1)

��2 = &(�)� � (�) sign(�1)

�̄ = 0�5� �1 (0) = 1� �2 (0) = �1
&(�) = &(0) sin ((�) is unmeasurable signal

&(0) = 0�1� ( = 2

��������
�������

design the adaptive gain parameter � (�) (22.27) providing �1 (�) ' 0 after
� 	 �� , and demonstrate the �gure depicting � (�) and |&(�)| which should be
very closed.
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