
Lecture 21

Twist and Super-twist
controllers

21.1 Problem formulation

Both controllers considered in this lecture have been suggested and analyzed
by A. Levant in 90-es (see references in [4] and [5]). Consider again the
dynamic system

�� = � (�� �) + � (�� �)� (21.1)

where � : R×R� � R
� and � : R×R� � R

�×� are all argument continuous
vector and matrix, respectively, and � � R� is a control action. Let � =
� (�) � R be the only measurable output (sliding variable) which is assumed
to be twice di�erentiable on � ful�lling the conditions

�|�� � 0�

�|����+ �
|
���� 6= 0	

��
� (21.2)

Here and below we omit the time argument dependence for simplicity. Cal-
culating total second derivative of �, and selecting

� = �(�� ��)�
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we get

�̈ =




�
[�|� (�+ ��)] =





�

�
��|��+ (�|��)| {z }

0

�

�
� =





�
[�|��] = �|� ��+ [�

|
���+ �

|
���]

| �� =

�|� ��+ [�
|
���+ �

|
���]

|
(�+ ��) �

or, in the short form

�̈ = � (�� �) + � (�� �)� (21.3)

where
� (�� �) = �̈ |�=0= �|� ��+ [�

|
���+ �

|
���]

|
�

� (�� �) = [�|���+ �
|
���]

| �	

��
� (21.4)

The problem, which we are interested in, is as follows. Below we will suppose
that the inequalities

|� (�� �)| � 
�

0 � �� � k� (�� �)k � ��

��
� (21.5)

hold globally.

Problem 21.1 The task is to make the output � vanish in �nite time
���	
� �� and to keep � = 0 for all � � ���	
�, namely, to ful�ll

� = �� = 0	 (21.6)

The condition �� = 0 for all � � ���	
� means exactly that, starting from that
time, �̈ = 0 implying

� = �� = �̈ = 0. (21.7)

De�nition 21.1 If the property (21.7) holds we referred to this situation
as the Second Order Sliding Mode (SOSM).

Consider now two most popular control laws providing SOSM for the
system (21.1).
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21.2 Twist controller

21.2.1 Lyapunov function analysis

Consider now the scalar case with � = � = 1. Let the controller is designed
as

� = ��1sign (�)� �2sign ( ��) �

�1 � 0� �2 � 0	

��
� (21.8)

Then the di�erential equation (21.3) for the sliding variable � becomes

�̈ = � (�� �) + � (�� �)� =

� (�� �)� � (�� �) [�1sign (�) + �2sign ( ��)]

��
� (21.9)

Represent this dynamic in the standard form, using only the �rst derivative
values of the new variables �1 := �� �2 := ��:

��1 = �2�

��2 = �� � [�1sign (�1) + �2sign (�2)]

��
� (21.10)

Consider an arbitrary absolute continuos function � (�1� �2) and its full-time
derivative

�� =
��

��1
��1 +

��

��2
��2 =

��

��1
�2 +

��

��2
(�� � [�1sign (�1) + �2sign (�2)]) 	

(21.11)

Using bounds (21.5) in (21.11) we get

�� � �

��1
�2+


¯̄̄
�

��2

¯̄̄
� �

��2
� [�1sign (�1)+�2sign (�2)]=

�

��1
�2+


¯̄̄
�

��2

¯̄̄
�
¯̄̄
�

��2

¯̄̄
sign

³
�

��2

´
� [�1sign (�1)+�2sign (�2)]=

�

��1
�2+


¯̄̄
�

��2

¯̄̄
�
¯̄̄
�

��2

¯̄̄ ³
��1sign

³
�1

�

��2

´
+��2sign

³
�2

�

��2

´´
�

�

��1
�2+


¯̄̄
�

��2

¯̄̄
�
¯̄̄
�

��2

¯̄̄ ³
�1�1sign

³
�1

�

��2

´
+�2�2sign

³
�2

�

��2

´´

�												�
												�

(21.12)
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where

�

�1=


		�
		�
�� if sign

³
�1

�

��2

´
� 0

�� if sign
³
�1

�

��2

´
� 0

0 if �1
�

��2

= 0

�

�2=


		�
		�
�� if sign

³
�2

�

��2

´
� 0

�� if sign
³
�2

�

��2

´
� 0

0 if �2
�

��2

= 0

	

�										�
										�

(21.13)

Finally, we get

�� � ��

��1
�2+

��

��2
sign

μ
��

��2

¶


�
μ
�1�1sign

μ
�1
��

��2

¶
+�2�2sign

μ
�2
��

��2

¶¶¸
or, equivalently,

�� � ��

��1
�2 +

��

��2
�� (21.14)

where

� = sign

μ
��

��2

¶

��1�1sign (�1)� �2�2sign (�2) (21.15)

If � = � (�1� �2) satis�es the following partial di�erential equations

��

��1
�2 +

��

��2
� = ��� �� � � (0� 1) � � � 0� (21.16)

then by (21.14) it follows
�� � ��� �� (21.17)

or

�

� �
� ��
�	 1

1� �

¡
� 1��

¢ � ��
��
implying the �nite-time convergence, i.e.

0 � � (�1� �2)
1�� � � (�1(0)� �2(0))

1�� � � (1� �) ��
so that � (�1 (�) � �2 (�)) = 0 for any

� � ���	
� =
� (�1(0)� �2(0))

1��

� (1� �) 	 (21.18)
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21.2.2 Method of Characteristics for the Lyapunov function
design

To �nd the function � (�1� �2) as a soltion of (21.16) let us use the following
result.

Lemma 21.1 If an absolutely continuos positive de�nite function � (�1� �2)
satis�es the following systems of ODE


�1
�2

=

�2
�
=


�

��� �
(21.19)

for �21 + �
2
2 � 0, then the same function is a solution of (21.16).

Proof. For �21 + �
2
2 � 0 from (21.19) we have


�1 = ��2 
�
�� �

� 
�2 = �� 
�
�� �

�

and therefore


� =
��

��1

�1 +

��

��2

�2 =

��2 ��
��1


�

�� �
� � ��

��2


�

�� �
=

μ
��2 ��

��1

1

�� �
� � ��

��2

1

�� �

¶

��

implying

��2 ��
��1

1

�� �
� � ��

��2

1

�� �
= 1�

which consides with (21.16).
Solving the system (21.19) of ODE, rewritten as


�1
�2

=

�2
�
�

�


�1
= ���

�

�2
�


�


�2
= ���

�

�
�

�1
�2

=

�2
�
�

�	�
	�

we obtain the system of two 1-st integrals ("characteristics"), maintaining
the constant values on the trajectories of the system:


�1 =
�2
�2
�

�

�1 � �1 (0) = ��1

2

£
�22 � �22 (0)

¤
�

�			�
			�
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�

� �
= ��
�1

�2
= �� 
�1

±
r
2

�
[�1 � �1 (0)] + �22 (0)

�

m
� (�1� �2)

1�� � � (�1(0)� �2(0))1�� =

� R 
�1r

2

�
[�1 � �1 (0)] + �22 (0)

:= � (�1) �

m
�1 (�1� �2� � ) := � (�1� �2)

1�� � � (�1) =
� (�1(0)� �2(0))

1�� = const1�

�																	�
																	�


�

� �
= ��
�2

�
�

m
� (�1� �2)

1�� � � (�1(0)� �2(0))1�� = ��1� �
�

[�2 (�)� �2 (0)]
m

�2 (�1� �2� � ) := � 1�� + �
1� �
�

�2 = const2 =

� (�1(0)� �2(0))
1�� + �

1� �
�

�2 (0)

�													�
													�

represented as
�1 (�1� �2� � ) = �1 = const1�
�2 (�1� �2� � ) = �2 = const2	

¾
Since any function of constants is a constant for any function �� we have

�(�1 (�1� �2� � ) � �2 (�1� �2� � )) = � = const. (21.20)

Solving this algebraic equation with respect to the variable � we obtain

� = � (�1� �2� �)	

The function � and the constant � should be selected in such a way that the
function � (�1� �2� �) would be absolutely continuos and positive de�nite. So,
there exists a lot of functions satisfying (21.20). One of possible selections
is given in the theorem below.

Theorem 21.1 (Polyakov-Poznyak [12]) The Lyapunov function � for
the twist controller (21.8), which is a solution of the ODE system (21.19),



21.3. Super-Twist controller 293

is as follows

� (�1� �2)=


						�
						�

�

4

Ã
�2
�
sign (�1)+�0

s
|�1|+ �22

2�

!2
if �1�2 6= 0

�̄

4
�22 if �1 = 0

1

4
|�1| if �2 = 0

(21.21)

where

�0 � 0� � =
1

�0
�

and �̄ satis�es the inequalities

1p
2(�� (�1 + �2)� 


� �̄ �
1p

2(���1 � �2 + 

	 (21.22)

(all constants are de�ned in [12]).

Notice that the Lyapunov function (21.21) has a non-quadratic form
expression.

21.3 Super-Twist controller

21.3.1 Lyapunov function analysis

Let us consider the controller designed as

� = ��p|�|sign (�)� � �R
�=0

sign (�) 
��

� � 0� � � 0	

�		�
		� (21.23)

Remark 21.1 In fact, the control (21.23) is a continuous control.

Then the dynamics (21.3) of the sliding variable � becomes

�̈ = �� �
�
��p|�|sign (�) + � �Z

�=0

sign (�) 
�

�
� � (21.24)
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where � and � are as in (21.4). Introduce new variables

�1 = �� + �
�R

�=0

�
p|�|sign (�) 
��

�2 =
�R

�=0

[�� ��sign (�1)] 
�	

�				�
				�

(21.25)

for which the following dynamics holds

��1 = �2 � ��
p|�1|sign (�1) �

��2 = �� ��sign (�1) 	

��
� (21.26)

It is possible to apply the Method of Characteristic to this systems
of ODE and analogously obtain the corresponding Lyapunov function (see
[13]). But for the simple partial case when � � 1 and assuming

|�| �  �

it is possible to check directly that the function (see [11])

����� (�1� �2) = 2� |�1|+ 1
2
(�2)

2 +
1

2

h
�2 � �

p
|�1|sign (�1)

i2
satis�es the di�erential inequality (21.17)

������ � ��� �
����

with

� =
1

2
� � =

p
2�min

½
2 (�� �  �  �)

3�2 + 4�
�
�� 4 
1 + �

¾
� 0.

This means that we have a �nite time convergence in variables �1� �2 implying
the same e�ect in variables � and �� with

���	
� =

r
1

�

μ
4� +

�2

2

¶
min

½
2 (�� �  �  �)

3�2 + 4�
�
�� 4 
1 + �

¾ | �� (0)| 	
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21.4 Super-Twist observer and di�erentiator

21.4.1 Super-twist observer

Consider again a "mechanical" model given in the form

��1 = �2�

��2 = ! (�1� �2� �� �) + " (�1� �2� �� �) �

�1 � R��

�				�
				�

(21.27)

where ! (�1� �2� �� �) is a known part of the model and " (�1� �2� �� �) is un-
certain part. Here we suppose that

# = �1

is available on-line and �2 should be estimated. Defsign the observer as





�
�̂1 = �̂2 � $1�





�
�̂2 = ! (�1� �̂2� �� �)� $2�

�			�
			� (21.28)

where the correctors $1 and $2 are as follows

$1 = � k�1 � �̂1k1�2 SIGN (�̂1 � �1) �

$2 = �SIGN(�̂1 � �1) 	

��
� (21.29)

So, the estate estimation error

%(�) := �̂(�)� �(�) � R2�

satis�es

�%1 = %2 � � k�1 � �̂1k1�2 SIGN (%1) �

�%2 = & � �SIGN (�̂1 � �1) �

��
� (21.30)

where
& = ! (�1� �̂2� �� �)� ! (�1� �2� �� �)� " (�1� �2� �� �) 	
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Supposing
k&k � &+ ���

we obtain the same sheme as in (21.26)





�
�̂1 = �̂2 � � k�1 � �̂1k1�2 SIGN(�̂1 � �1) �





�
�̂2 = ! (�1� �̂2� �� �)� �SIGN (�̂1 � �1) �

�			�
			� (21.31)

providing the �nite -time convergence of % to zero.

21.4.2 Super-twist di�erentiator

The problem consists in estimating the �rst derivative of asignal ' (�) based
on its noisy measurement

#(�) = '(�) + ((�)	

Only two assumption will be made:
- the second derivative '̈(�) of the base signal '(�) is uniformly bounded

by a known constant  , i.e., ¯̄̄
'̈(�)
¯̄̄
�  �

- the measurement noise ((�) is uniformly bounded by )� i.e.

|((�)| � )	

Setting
�1 (�) := ' (�) � �2 (�) := �' (�) �

the problem is transformed into the design of an observer for the system

��1(�) = �2(�)�

��2(�) = '̈(�)�

#(�) = '(�) + ((�)�

�		�
		� (21.32)

based on the measured output #(�) only. The signal '̈(�) is unknown and
should be considered as a perturbation. Designing the state estimates
(�̂1 (�) � �̂2 (�)) using the supert-twist observer (21.28) we may conclude that
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�̂2 (�) may be considered as an estimate of �'(�)	 In our case we deal with the
model (21.27) where the known part ! = 0 and the uncertain part is " = '̈.
By (21.28) with the low-pass �lter application we have





�
�̂1 (�) = �̂2 (�)� � k' (�)� �̂1 (�)k1�2 SIGN(�̂1 (�)� # (�)) �





�
�̂2 (�) = ��SIGN (�̂1 (�)� # (�)) �

¯̄̄
�'(�)
¯̄̄
� ��

and low-pass �lter: * �$ (�) + $ (�) = �̂2 (�) � * = 0	01,

�							�
							�

(21.33)

so that
$ (�) ' �' (�) 	

21.5 Exercises

Exercise 21.1 Compare the Twist and Super-twist controllers for the sys-
tem

�� = � (�� �) + � (�� �)�

� � R�� � � R��

� : R×R� � R
�� � : R×R� � R

�×��

� = 2� � = 1�

�								�
								�

(21.34)

where � is a control action. Let

� (�� �) = 0	1 sin (2�) ln (1 + |�|) � � =
μ
0
2

¶

and
� = � (�) = �1

be the only measurable output (sliding variable) which is assumed to be twice
di�erentiable on � ful�lling the conditions

�|�� � 0�

�|����+ �
|
���� 6= 0�

��
� (cond twist-SUperTwist)
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taking Twist control as

� = ��1sign (�1) + �2sign (�2) � �1� �2 � 0

and Super-Twist control as

� = ��
�Z

�=0

p
|�|sign (�) 
� � �sign (�) 	

Exercise 21.2 Calculate numerically the derivative of the function

' (�) =
�0 + �1�

�0 + �1�
arctan �� � � 0�

for the simulation take
�1 = �2� �0 = 3� �1 = 0	1�

using the Super-twist di�erentiator (21.33) without noise ((�) in measure-
ments (((�) = 0).

Exercise 21.3 For the system

�̈+ ! (�� ��� �) + " (�� �) = ��

� � R2� k" (�� �)k � "+

� : * ��+ � = %�0�02�� * = 0	1

with bounded trajectories, estimate �� using ST- observer. Take

! (�� ��� �) = �0 ��+ �1�

with �0 = 0	1 and �1 = 4	


