Lecture 21

Twist and Super-twist controllers

21.1 Problem formulation

Both controllers considered in this lecture have been suggested and analyzed by A. Levant in 90-es (see references in [4] and [5]). Consider again the dynamic system

$$\dot{x} = a(t,x) + b(t,x)u$$
 (21.1)

where $a : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ and $b : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^{n \times r}$ are all argument continuous vector and matrix, respectively, and $u \in \mathbb{R}^r$ is a control action. Let $\sigma = \sigma(x) \in \mathbb{R}$ be the only measurable output *(sliding variable)* which is assumed to be twice differentiable on x fulfilling the conditions

$$\left. \begin{array}{l} \sigma_x^{\mathsf{T}}b \equiv 0, \\ a^{\mathsf{T}}\sigma_{xx}b + \sigma_x^{\mathsf{T}}a_xb \neq 0. \end{array} \right\}$$
(21.2)

Here and below we omit the time argument dependence for simplicity. Calculating total second derivative of σ , and selecting

$$u = u(\sigma, \dot{\sigma}),$$

we get

$$\ddot{\sigma} = \frac{d}{dt} \left[\sigma_x^{\mathsf{T}} \left(a + bu \right) \right] = \frac{d}{dt} \left[\sigma_x^{\mathsf{T}} a + \underbrace{\left(\sigma_x^{\mathsf{T}} b \right)}_0 u \right] = \frac{d}{dt} \left[\sigma_x^{\mathsf{T}} a \right] = \sigma_x^{\mathsf{T}} \dot{a} + \left[\sigma_{xx}^{\mathsf{T}} a + \sigma_x^{\mathsf{T}} a_x \right]^{\mathsf{T}} \dot{x} = \sigma_x^{\mathsf{T}} \dot{a} + \left[\sigma_{xx}^{\mathsf{T}} a + \sigma_x^{\mathsf{T}} a_x \right]^{\mathsf{T}} \left(a + bu \right),$$

or, in the short form

$$\ddot{\sigma} = h(t, x) + g(t, x) u \qquad (21.3)$$

where

$$\begin{pmatrix}
h(t,x) = \ddot{\sigma} \mid_{u=0} = \sigma_x^{\mathsf{T}} \dot{a} + [\sigma_{xx}^{\mathsf{T}} a + \sigma_x^{\mathsf{T}} a_x]^{\mathsf{T}} a \\
g(t,x) = [\sigma_{xx}^{\mathsf{T}} a + \sigma_x^{\mathsf{T}} a_x]^{\mathsf{T}} b.
\end{cases}$$
(21.4)

The problem, which we are interested in, is as follows. Below we will suppose that the inequalities

$$|h(t,x)| \le C,$$

$$0 < K_m \le ||g(t,x)|| \le K_M$$

$$(21.5)$$

hold globally.

Problem 21.1 The task is to make the output σ vanish in finite time $t_{reach} < \infty$ and to keep $\sigma = 0$ for all $t \ge t_{reach}$, namely, to fulfill

$$\sigma = \dot{\sigma} = 0. \tag{21.6}$$

The condition $\dot{\sigma} = 0$ for all $t \ge t_{reach}$ means exactly that, starting from that time, $\ddot{\sigma} = 0$ implying

$$\sigma = \dot{\sigma} = \ddot{\sigma} = 0. \tag{21.7}$$

Definition 21.1 If the property (21.7) holds we referred to this situation as the Second Order Sliding Mode (SOSM).

Consider now two most popular control laws providing SOSM for the system (21.1).

21.2 Twist controller

21.2.1 Lyapunov function analysis

Consider now the scalar case with n = r = 1. Let the controller is designed as

$$u = -r_1 \text{sign}(\sigma) - r_2 \text{sign}(\dot{\sigma}), \\ r_1 > 0, \ r_2 > 0.$$
 (21.8)

Then the differential equation (21.3) for the sliding variable σ becomes

$$\ddot{\sigma} = h(t,x) + g(t,x) u =$$

$$h(t,x) - g(t,x) [r_1 \text{sign}(\sigma) + r_2 \text{sign}(\dot{\sigma})]$$

$$(21.9)$$

Represent this dynamic in the standard form, using only the first derivative values of the new variables $z_1 := \sigma$, $z_2 := \dot{\sigma}$:

$$\dot{z}_1 = z_2, \dot{z}_2 = h - g \left[r_1 \text{sign} \left(z_1 \right) + r_2 \text{sign} \left(z_2 \right) \right]$$
(21.10)

Consider an arbitrary absolute continuos function $V(z_1, z_2)$ and its full-time derivative

$$\dot{V} = \frac{\partial V}{\partial z_1} \dot{z}_1 + \frac{\partial V}{\partial z_2} \dot{z}_2 =$$

$$\frac{\partial V}{\partial z_1} z_2 + \frac{\partial V}{\partial z_2} \left(h - g \left[r_1 \text{sign} \left(z_1 \right) + r_2 \text{sign} \left(z_2 \right) \right] \right).$$
(21.11)

Using bounds (21.5) in (21.11) we get

$$\dot{V} \leq \frac{\partial V}{\partial z_1} z_2 + C \left| \frac{\partial V}{\partial z_2} \right| - \frac{\partial V}{\partial z_2} g \left[r_1 \operatorname{sign} \left(z_1 \right) + r_2 \operatorname{sign} \left(z_2 \right) \right] = \\ \frac{\partial V}{\partial z_1} z_2 + C \left| \frac{\partial V}{\partial z_2} \right| - \left| \frac{\partial V}{\partial z_2} \right| \operatorname{sign} \left(\frac{\partial V}{\partial z_2} \right) g \left[r_1 \operatorname{sign} \left(z_1 \right) + r_2 \operatorname{sign} \left(z_2 \right) \right] = \\ \frac{\partial V}{\partial z_1} z_2 + C \left| \frac{\partial V}{\partial z_2} \right| - \left| \frac{\partial V}{\partial z_2} \right| \left(gr_1 \operatorname{sign} \left(z_1 \frac{\partial V}{\partial z_2} \right) + gr_2 \operatorname{sign} \left(z_2 \frac{\partial V}{\partial z_2} \right) \right) \leq \\ \frac{\partial V}{\partial z_1} z_2 + C \left| \frac{\partial V}{\partial z_2} \right| - \left| \frac{\partial V}{\partial z_2} \right| \left(g_1 r_1 \operatorname{sign} \left(z_1 \frac{\partial V}{\partial z_2} \right) + g_2 r_2 \operatorname{sign} \left(z_2 \frac{\partial V}{\partial z_2} \right) \right) \right\}$$
(21.12)

where

$$g_{1} = \begin{cases} K_{m} & \text{if } \operatorname{sign}\left(z_{1}\frac{\partial V}{\partial z_{2}}\right) < 0 \\ k_{m} & \text{if } \operatorname{sign}\left(z_{1}\frac{\partial V}{\partial z_{2}}\right) > 0 \\ 0 & \text{if } z_{1}\frac{\partial V}{\partial z_{2}} = 0 \\ K_{m} & \text{if } \operatorname{sign}\left(z_{2}\frac{\partial V}{\partial z_{2}}\right) < 0 \\ k_{m} & \text{if } \operatorname{sign}\left(z_{2}\frac{\partial V}{\partial z_{2}}\right) > 0 \\ 0 & \text{if } z_{2}\frac{\partial V}{\partial z_{2}} = 0 \end{cases}$$

$$(21.13)$$

Finally, we get

$$\dot{V} \leq \frac{\partial V}{\partial z_1} z_2 + \frac{\partial V}{\partial z_2} \operatorname{sign}\left(\frac{\partial V}{\partial z_2}\right) \left[C - \left(g_1 r_1 \operatorname{sign}\left(z_1 \frac{\partial V}{\partial z_2}\right) + g_2 r_2 \operatorname{sign}\left(z_2 \frac{\partial V}{\partial z_2}\right) \right) \right]$$

or, equivalently,

$$\dot{V} \le \frac{\partial V}{\partial z_1} z_2 + \frac{\partial V}{\partial z_2} \gamma,$$
 (21.14)

where

$$\gamma = \operatorname{sign}\left(\frac{\partial V}{\partial z_2}\right) C - g_1 r_1 \operatorname{sign}\left(z_1\right) - g_2 r_2 \operatorname{sign}\left(z_2\right)$$
(21.15)

If $V = V(z_1, z_2)$ satisfies the following partial differential equations

$$\frac{\partial V}{\partial z_1} z_2 + \frac{\partial V}{\partial z_2} \gamma = -q V^{\rho}, \ \rho \in (0,1), q > 0,$$
(21.16)

then by (21.14) it follows

$$\dot{V} \le -qV^{\rho},\tag{21.17}$$

or

$$\frac{dV}{V^{\rho}} \le -qdt \Leftrightarrow \frac{1}{1-\rho}d\left(V^{1-\rho}\right) \le -qdt,$$

implying the finite-time convergence, i.e.

$$0 \le V(z_1, z_2)^{1-\rho} \le V(z_1(0), z_2(0))^{1-\rho} - q(1-\rho)t,$$

so that $V(z_1(t), z_2(t)) = 0$ for any

$$t \ge t_{reach} = \frac{V(z_1(0), z_2(0))^{1-\rho}}{q(1-\rho)}.$$
(21.18)

21.2.2 Method of Characteristics for the Lyapunov function design

To find the function $V(z_1, z_2)$ as a solution of (21.16) let us use the following result.

Lemma 21.1 If an absolutely continuos positive definite function $V(z_1, z_2)$ satisfies the following systems of ODE

$$\frac{dz_1}{z_2} = \frac{dz_2}{\gamma} = \frac{dV}{-qV^{\rho}} \tag{21.19}$$

for $z_1^2 + z_2^2 > 0$, then the same function is a solution of (21.16).

Proof. For $z_1^2 + z_2^2 > 0$ from (21.19) we have

$$dz_1 = -z_2 \frac{dV}{qV^{\rho}}, \ dz_2 = -\gamma \frac{dV}{qV^{\rho}},$$

and therefore

$$dV = \frac{\partial V}{\partial z_1} dz_1 + \frac{\partial V}{\partial z_2} dz_2 =$$
$$-z_2 \frac{\partial V}{\partial z_1} \frac{dV}{qV^{\rho}} - \gamma \frac{\partial V}{\partial z_2} \frac{dV}{qV^{\rho}} =$$
$$\left(-z_2 \frac{\partial V}{\partial z_1} \frac{1}{qV^{\rho}} - \gamma \frac{\partial V}{\partial z_2} \frac{1}{qV^{\rho}}\right) dV,$$

implying

$$-z_2\frac{\partial V}{\partial z_1}\frac{1}{qV^{\rho}} - \gamma\frac{\partial V}{\partial z_2}\frac{1}{qV^{\rho}} = 1,$$

which consides with (21.16).

Solving the system (21.19) of ODE, rewritten as

$$\frac{dz_1}{z_2} = \frac{dz_2}{\gamma}, \frac{dV}{dz_1} = -q\frac{V^{\rho}}{z_2}, \\
\frac{dV}{dz_2} = -q\frac{V^{\rho}}{\gamma}, \frac{dz_1}{z_2} = \frac{dz_2}{\gamma},$$

we obtain the system of two 1-st integrals ("*characteristics*"), maintaining the constant values on the trajectories of the system:

$$dz_{1} = \frac{z_{2}dz_{2}}{\gamma},$$

$$z_{1} - z_{1}(0) = \frac{\gamma^{-1}}{2} \left[z_{2}^{2} - z_{2}^{2}(0) \right],$$

represented as

V

$$\varphi_1(z_1, z_2, V) = c_1 = \text{const}_1, \\ \varphi_2(z_1, z_2, V) = c_2 = \text{const}_2.$$

Since any function of constants is a constant for any function Φ , we have

$$\Phi(\varphi_1(z_1, z_2, V), \varphi_2(z_1, z_2, V)) = c = \text{const.}$$
(21.20)

Solving this algebraic equation with respect to the variable V we obtain

$$V = V(z_1, z_2, c).$$

The function Φ and the constant *c* should be selected in such a way that the function $V(z_1, z_2, c)$ would be absolutely continuous and positive definite. So, there exists a lot of functions satisfying (21.20). One of possible selections is given in the theorem below.

Theorem 21.1 (Polyakov-Poznyak [12]) The Lyapunov function V for the twist controller (21.8), which is a solution of the ODE system (21.19),

is as follows

$$V(z_1, z_2) = \begin{cases} \frac{k}{4} \left(\frac{z_2}{\gamma} \operatorname{sign}(z_1) + k_0 \sqrt{|z_1| + \frac{z_2^2}{2\gamma}} \right)^2 & \text{if } z_1 z_2 \neq 0 \\ \frac{\bar{k}}{4} z_2^2 & \text{if } z_1 = 0 \\ \frac{1}{4} |z_1| & \text{if } z_2 = 0 \end{cases}$$
(21.21)

where

$$k_0 > 0, k = \frac{1}{k_0},$$

and \bar{k} satisfies the inequalities

$$\frac{1}{\sqrt{2(K_m(r_1+r_2)-C)}} < \bar{k} < \frac{1}{\sqrt{2(k_mr_1-r_2+C)}}.$$
(21.22)

(all constants are defined in [12]).

Notice that the Lyapunov function (21.21) has a non-quadratic form expression.

21.3 Super-Twist controller

21.3.1 Lyapunov function analysis

Let us consider the controller designed as

$$u = -\alpha \sqrt{|\sigma|} \operatorname{sign}(\sigma) - \beta \int_{\tau=0}^{t} \operatorname{sign}(\sigma) d\tau,$$

$$\alpha > 0, \ \beta > 0.$$

$$(21.23)$$

Remark 21.1 In fact, the control (21.23) is a continuous control.

Then the dynamics (21.3) of the sliding variable σ becomes

$$\ddot{\sigma} = h - g \left[\alpha \sqrt{|\sigma|} \operatorname{sign}\left(\sigma\right) + \beta \int_{\tau=0}^{t} \operatorname{sign}\left(\sigma\right) d\tau \right], \qquad (21.24)$$

where h and g are as in (21.4). Introduce new variables

$$z_{1} = \dot{\sigma} + \alpha \int_{\tau=0}^{t} g\sqrt{|\sigma|} \operatorname{sign}(\sigma) d\tau,$$

$$z_{2} = \int_{\tau=0}^{t} [h - g\beta \operatorname{sign}(z_{1})] d\tau.$$

$$(21.25)$$

for which the following dynamics holds

$$\dot{z}_1 = z_2 - g\alpha \sqrt{|z_1|} \operatorname{sign}(z_1),$$

$$\dot{z}_2 = h - g\beta \operatorname{sign}(z_1).$$

$$(21.26)$$

It is possible to apply the Method of Characteristic to this systems of ODE and analogously obtain the corresponding Lyapunov function (see [13]). But for the simple partial case when $g \equiv 1$ and assuming

$$|h| \le L,$$

it is possible to check directly that the function (see [11])

$$V_{OACh}(z_1, z_2) = 2\beta |z_1| + \frac{1}{2} (z_2)^2 + \frac{1}{2} \left[z_2 - \alpha \sqrt{|z_1|} \operatorname{sign}(z_1) \right]^2$$

satisfies the differential inequality (21.17)

$$V_{OACh} \le -qV_{OACh}^{\rho}$$

with

$$\rho = \frac{1}{2}, \ q = \sqrt{2\beta} \min\left\{\frac{2\left(\alpha\beta - L - L\alpha\right)}{3\alpha^2 + 4\beta}, \frac{\alpha - 4L}{1 + \alpha}\right\} > 0.$$

This means that we have a finite time convergence in variables z_1, z_2 implying the same effect in variables σ and $\dot{\sigma}$ with

$$t_{reach} = \frac{\sqrt{\frac{1}{\beta}} \left(4\beta + \frac{\alpha^2}{2}\right)}{\min\left\{\frac{2\left(\alpha\beta - L - L\alpha\right)}{3\alpha^2 + 4\beta}, \frac{\alpha - 4L}{1 + \alpha}\right\}} \left|\dot{\sigma}\left(0\right)\right|.$$

21.4 Super-Twist observer and differentiator

21.4.1 Super-twist observer

Consider again a "mechanical" model given in the form

$$\dot{x}_1 = x_2, \dot{x}_2 = f(x_1, x_2, t, u) + \xi(x_1, x_2, t, u), x_1 \in \mathbb{R}^n,$$
 (21.27)

where $f(x_1, x_2, t, u)$ is a known part of the model and $\xi(x_1, x_2, t, u)$ is uncertain part. Here we suppose that

$$y = x_1$$

is available on-line and x_2 should be estimated. Defsign the observer as

$$\frac{d}{dt}\hat{x}_{1} = \hat{x}_{2} - v_{1},$$

$$\frac{d}{dt}\hat{x}_{2} = f(x_{1}, \hat{x}_{2}, t, u) - v_{2},$$
(21.28)

where the **correctors** v_1 and v_2 are as follows

$$v_{1} = \alpha \|x_{1} - \hat{x}_{1}\|^{1/2} \operatorname{SIGN}(\hat{x}_{1} - x_{1}), \\ v_{2} = \beta \operatorname{SIGN}(\hat{x}_{1} - x_{1}).$$

$$(21.29)$$

So, the estate estimation error

$$e(t) := \hat{x}(t) - x(t) \in \mathbb{R}^{2n}$$

satisfies

$$\begin{array}{l}
\dot{e}_{1} = e_{2} - \alpha \|x_{1} - \hat{x}_{1}\|^{1/2} \operatorname{SIGN}(e_{1}), \\
\dot{e}_{2} = F - \beta \operatorname{SIGN}(\hat{x}_{1} - x_{1}), \end{array}$$
(21.30)

where

$$F = f(x_1, \hat{x}_2, t, u) - f(x_1, x_2, t, u) - \xi(x_1, x_2, t, u)$$

Supposing

$$\|F\| \le F^+ < \infty,$$

we obtain the same sheme as in (21.26)

$$\frac{d}{dt}\hat{x}_{1} = \hat{x}_{2} - \alpha \|x_{1} - \hat{x}_{1}\|^{1/2} \operatorname{SIGN}(\hat{x}_{1} - x_{1}), \\
\frac{d}{dt}\hat{x}_{2} = f(x_{1}, \hat{x}_{2}, t, u) - \beta \operatorname{SIGN}(\hat{x}_{1} - x_{1}), \\
\end{cases}$$
(21.31)

providing the finite -time convergence of e to zero.

21.4.2 Super-twist differentiator

The problem consists in estimating the first derivative of a signal $\phi(t)$ based on its noisy measurement

$$y(t) = \phi(t) + \eta(t).$$

Only two assumption will be made:

- the second derivative $\ddot{\phi}(t)$ of the base signal $\phi(t)$ is uniformly bounded by a known constant L, i.e.,

$$\left|\ddot{\phi}(t)\right| \leq L,$$

- the measurement noise $\eta(t)$ is uniformly bounded by δ , i.e.

$$|\eta(t)| \le \delta.$$

Setting

$$x_1(t) := \phi(t), \ x_2(t) := \phi(t)$$

the problem is transformed into the design of an observer for the system

$$\left. \begin{array}{c} \dot{x}_{1}(t) = x_{2}(t), \\ \dot{x}_{2}(t) = \ddot{\phi}(t), \\ y(t) = \phi(t) + \eta(t), \end{array} \right\}$$
(21.32)

based on the measured output y(t) only. The signal $\ddot{\phi}(t)$ is unknown and should be considered as a perturbation. Designing the state estimates $(\hat{x}_1(t), \hat{x}_2(t))$ using the supert-twist observer (21.28) we may conclude that

21.5. Exercises

 $\hat{x}_2(t)$ may be considered as an estimate of $\dot{\phi}(t)$. In our case we deal with the model (21.27) where the known part f = 0 and the uncertain part is $\xi = \ddot{\phi}$. By (21.28) with the low-pass filter application we have

$$\frac{d}{dt}\hat{x}_{1}(t) = \hat{x}_{2}(t) - \alpha \|\phi(t) - \hat{x}_{1}(t)\|^{1/2} \operatorname{SIGN}\left(\hat{x}_{1}(t) - y(t)\right), \\
\frac{d}{dt}\hat{x}_{2}(t) = -\beta \operatorname{SIGN}\left(\hat{x}_{1}(t) - y(t)\right), \quad \left|\dot{\phi}(t)\right| \leq \beta, \\
\text{and low-pass filter:} \quad \mu \dot{v}(t) + v(t) = \hat{x}_{2}(t), \quad \mu = 0.01,
\end{cases}$$
(21.33)

so that

$$v\left(t\right)\simeq\dot{\phi}\left(t
ight).$$

21.5 Exercises

Exercise 21.1 Compare the Twist and Super-twist controllers for the system

$$\begin{array}{c}
\dot{x} = a\left(t, x\right) + b\left(t, x\right) u \\
x \in \mathbb{R}^{n}, \ u \in \mathbb{R}^{r}, \\
a : \mathbb{R} \times \mathbb{R}^{n} \to \mathbb{R}^{n}, \ b : \mathbb{R} \times \mathbb{R}^{n} \to \mathbb{R}^{n \times r}, \\
n = 2, \ r = 1,
\end{array}$$
(21.34)

where u is a control action. Let

$$a(t,x) = 0.1\sin(2t)\ln(1+|x|), \ b = \begin{pmatrix} 0\\2 \end{pmatrix}$$

and

$$\sigma = \sigma\left(x\right) = x_1$$

be the only measurable output (sliding variable) which is assumed to be twice differentiable on x fulfilling the conditions

$$\left. \begin{array}{l} \sigma_x^{\mathsf{T}} b \equiv 0, \\ a^{\mathsf{T}} \sigma_{xx} b + \sigma_x^{\mathsf{T}} a_x b \neq 0, \end{array} \right\}$$
(cond twist-SUperTwist)

taking Twist control as

$$u = -r_1 \operatorname{sign}(z_1) + r_2 \operatorname{sign}(z_2), r_1, r_2 > 0$$

and Super-Twist control as

$$u = -\alpha \int_{\tau=0}^{t} \sqrt{|\sigma|} \operatorname{sign}(\sigma) \, d\tau - \beta \operatorname{sign}(\sigma) \, .$$

Exercise 21.2 Calculate numerically the derivative of the function

$$\phi(t) = \frac{a_0 + a_1 t}{b_0 + b_1 t} \arctan t, \ t \ge 0,$$

for the simulation take
$$a_1 = -2, b_0 = 3, b_1 = 0.1,$$

using the Super-twist differentiator (21.33) without noise $\eta(t)$ in measurements ($\eta(t) = 0$).

Exercise 21.3 For the system

$$\ddot{x} + f(x, \dot{x}, t) + \xi(x, t) = u,$$
$$x \in \mathbb{R}^2, \quad \|\xi(x, t)\| \le \xi^+$$
$$u: \quad \mu \dot{u} + u = e^{-0.02t}, \quad \mu = 0.1$$

with bounded trajectories, estimate \dot{x} using ST- observer. Take

 $f(x, \dot{x}, t) = a_0 \dot{x} + a_1 x$

with $a_0 = 0.1$ and $a_1 = 4$.