Lecture 20

ASG-version of ISM control

20.0.1 Model description and problem setting

Here we will deal with the construction of a feedback, which designing is
very close to the ISM approach [1], together with the, so-called, Averaged
Sub-Gradient (ASG) Technique [14]).

Consider the dynamic model of a Lagrangian mechanical system with
n-degrees of freedom in the standard form given by the following set of
differential equations:

D(q(#)dt)+C(q(t),4(8)q@) +G(qt) =7(E)+9 (),  (20.1)

where ¢ (t),q4(t) € R™ are the state vectors (generalized coordinates and
their velocities, ¢ > 0), 7(t) € R™ is a vector of external torques (control)
acting to the mechanical system, and ¢ (¢) € R" is the disturbance (or
uncertainty) vector.

If we wish to resolve the tracking problem for the given nominal tra-
jectory ¢*(t), then we can represent the dynamics of the controlled plant in
deviation coordinates

6 (1) :=q(t) —q" (@) (20.2)

as follows

DEWNSW) =7 +0(t)~C(51).6M)d@®) -GG®)|  (20.3)

with

D) =D +q"), 6(5,5) ::C(5+q*,5+q*), G6) =G +q).
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Notice that the deviation dynamics (20.3) may be represented as (omit-
ting the time-argument)

6=D71() T+ D1 ()¢, (20.4)
or, equivalently, as
51 = 52, 51 = 5,
‘ . . (20.5)
09 = D1 (61) T+ D1 ((51) £.

20.0.2 Accepted assumptions

A1l. The vector of generalized coordinate ¢(t) and its derivative ¢(t) are
measurable on-line during the process.

A2. The matrix D (q) is supposed to be known and invertible (the usual
property of any mechanical system).

A3. The uncertain term

§W =0 -C(8),60)dW-GOw®)  (206)
is admitted to be unknown and unmeasurable, but is bounded as

le@l <c+eolld@l+e|6®) caoerz0. (20

A4. The loss function F : R* — R!, characterizing the quality of a con-
trolled process, is assumed to be unknown, convex (not obligatory,
strongly convex), differentiable for almost all § € R™ (the Radamacher
theorem) and its sub-gradient a () is supposed to be measurable' and
bounded at any point d1, that is,

(la @@ < dy <o0)

and the reaction a () is available for any argument § € R".

!By the definition (see (?)) a vector a € R™, satisfying the inequality
Flz+y) = F(z) +a (2)y

for all y € R", is called the sub-gradient of the function F(z) at the point z € R™ and
is denoted by a(z) € OF(x) - the set of all subgradients of F(z) at the point z. If

F(x) is differentiable at a point z, then a(z) = VF(x). In the minimal point z* we have
0 € 9dF(z").
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A5. The minimum of the loss function F (§) exists, namely, 2

F* = minF (0) > —o0.
oeRn

Problem 20.1 Under the assumptions A1-A3 we need to design a control
strategy T (t) as a feedback T (0 (+)), which provides the functional conver-
gence of the cost function F(0 (t)) to its minimum value F*, in the presence
of uncertainties £ (t), that is, to guarantee

F(5(t) — inf F(6) = F*, (20.8)

t—o0 JeR”

supposing that the current sub-gradient a(6(t)) of the convex function
F(9), to be optimized, is available on-line.

The convex (not obligatory strongly) loss function F' : R® — R! defines
the quality of control actions {7 (¢)},~, in the point d (¢). For example, the
following two functions belong to the considered class of the convex loss
functions to be optimized:

F(6) = Z |0i] , a;(6) = sign () ,

n z—e if z>e¢
F@O) =Y 165, |z =8 —z2—¢ if 2<—¢
=l 0 if |zl <e

az(éz) = —1 if (51 <—e = Sign(|5! — E) .
(=1,1) if |86 <e

*In some problems the minimum of a loss function may be negative. For example, in
conservative systems a stable equilibrium by the Lagrange-Dirichlet theorem corresponds
to the minimum of potential energy which admits to have negative values.
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20.0.3 Desired dynamics and its properties
Auxilary sliding variable s (t)

Define the vector function s (t) €R"™, which from now on and throughout this
lecture will be referred to as "sliding variable":

s (t) :5(t)—|—5§t_)l_—+0n+é(t), 1 = const €ER",
TR T 20.9
G(t) = H—GT:fth(a(T))dT, 0> 0, (20.9)

a (01 (7)) € OF (61 (7))

Here 4 (t) €R™ is defined in (20.2), 7 is a constant vector and G (¢) is the
averaged subgradient (ASG) of the function F'(d (t)) (23.39).

Remark 20.1 Note that the sliding variable s (t) contains the integral term
which is physically measurable.

Desired dynamic

Define the desired ASG dynamics as
s)=51)=0,t>t, (20.10)

which corresponds exactly to the situation when the sliding variable s (t) is
equal to zero for all ¢t > ty. Below we will show why the dynamic (23.44) is
called a desired. Since

t+0)st)=(t+0)5@t)+0(t)+n=C(t),

(20.11)
C(t)==a(d(t), C(to) =0,
in the desired regime (23.42) we have
(t+0) 5B +0(t) +n=C(t), t>1t020,
(20.12)
to is the moment when the desired dynamics may begin.
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Lemma 20.1 (Functional convergence in the desired regime.) For
the variable § (t), satisfying the ideal dynamics (23.42), with any 60 > 0 and
n, for all t >ty > 0 the following inequality is guaranteed:

A

t
o) _, 0, (20.13)

— * L
FOO)=F <3775 2

where
1
® (to) = @ (0 (t) . 0.1) == (to +0) F' (6 (to)) — F" + 5 [|6" — nl*. (20.14)
and
0" € Arg inf F (9)
inf ock” (20.15)
(6™ may be not unique).

Proof. Defining pu (t) :=t + 6 we have

d |1

2 s1cor-coe|=coco-o-

a7 (5(1) [ ()5 (1) +0 (1) +n— "] =

~aT(5(1) (1) = 5) —aT (5(0)) (1 ()5 (1) +n).
Using the inequality (see Chapter 23 in [7])
(636" a(8) = F(5) — F,

valid for convex (not obligatory stongly convex) functions in the first term
on the right side, and applying the identity

o (5 (1) (1) = [F (5.(1)) ~ F*],
we get
LS ICWIP = ¢T (05| <~ [F(5(0) ~ ]
dt |2 -
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Then, integrating the last inequality in the interval [to,t] and applying the
formula of integration by parts, we derive

f * 1 2 2
J IFG@) - Fdr < 5 (1) - @2 +

T=to

(C(1) = (t0))" 6% = (&) [F (8(8)) — F*]); +

J oot (5(r)dr

T=tg

:f; (F (5 (7)) — F¥)ju(r) dr — "

Since ji. = 1, the above inequality becomes
p(t)[F(3(t) = F*] < p(to) [F (6 (to)) — F*]+ )
3 (e (o)~ C ()1F) + (¢ () — € (1)) 6° +CT (1) =
(to+0) [F (3 (t0)) = F*] + (3¢ (t0)|* = €7 (10) &) +
s =l - S[icol? -2 @ @ —m+ 15 —ar?] [

()~ )

< (to+0) [F (3 (t)) = F*] = 5 € (8) — (6" = m)II* +

(3106 o)l = ¢T (t0) ) + 4 16" = > < @iy,
from which we obtain (23.46). Lemma is proved. m

Remark 20.2 The parameter n will be chosen below in such a way that the
desired optimization regime starts from the beginning of the process, namely,
when, tog = 0.

Corollary 20.1 In the partial case when
0*=0,tg=0and F* =0
the formula (23.46) becomes

D (t0) = ® (5 (10) 0, ) := OF (5 (0)) + 3 > (2017)
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20.0.4 Main theorem on ASG robust controller

Theorem 20.1 Under assumptions 1-5 the ISM robust controller

7 (8) = D (6 () [~FeSIGN (5 () + tcomp (1],

_ __reali

Ucomp (t) = —pi“™", (20.18)

ko= D@ @)|| (c+cola @l +ex [§0)]) + pos 00 >0,

where
, 1 : S(t)+n  ~
reali .__ _ _
Pyttt = o ((5 (t) oy G(t)+al(d (t))) (20.19)
with
|77 = —0620 — 01,0 ‘ (20.20)

guarantees the functional convergence (23.45) from the beginning of the pro-
cess (to =0).

Proof. In view of the assumption A2 we have that the matriz D(q) is
invertible, and then, by (20.5), it follows

6(t):=q(t)—q"(t), 0(t) =q(t)—g"(t), }

0(t) =DM (8(t) T () + DM (3(1)E().

For the Lyapunov function V (s) = 3sTs we have

V(s(t)=sT()§(t) =

i) s +n 1 o 1

st () <S(t)+t+9_ (t+0)2 t+0

sT(t) (D‘1 (6 ()7 (t)+ D1 (5(t) € (t)) + (20.21)

70 (735 (0 - T -G +a6w)) -

t+0 t+0

ST(O)p +sT () D1 (5 (1) 7 (1) + T (1) DM (3(1)) € (1)
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Selecting T as in (20.18) for the second term in (20.21) we get
V (st) = —kesT (t) SIGN (s (1)) +sT () D1 (6 (1) £ (1)

n i (20.22)
< —ke Y lsi )]+ s @)1 [ D 3 0] g ()
i=1

Taking into account that

lez )= s (@)l

and, in view of (20.7) and (2022) we derive
V < k’t HS H +

Is (¢ ||HD c+co||(5 ||+01 ]5 H
—Po||3 H— \/_Po

implying
2 (w/ @) - V/V (s ) < —2pt
and
0<VV ) < VV (s — —t
<G <V o,
which leads to the conclusion that for all
1
t 2> treach := —/2V (Sto) = HStOH
Po

we have that V (s (t)) = 0 and s (t) = 0. To make the reaching time treqch =
0 it is sufficient to gurantee that si,—o = 0. But since by (23.43)

(t+0)st)=({t+0)5t)+01t)+n=C(t),

(to +0) s (to) = (to + 0) § (to) + 6 (to) +n = C (to)
5150 + 1
to+0’
we need to fulfill the condition si,—o =0 :

5150:0 + n
0
which is possible if take n as in (23.48), providing
[[soll
Po

Sty = 5150 +

Sto=0 = 5150:0 + = 07

=0.

treach =

Theorem is proven. M
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20.1 Exercise

Exercise 20.1 For the system

d? T (t d
@:f (t) = alﬁ + ag arctan (af (t)) + 7 + dp sin(wt),
with
d
2(0) =1, =%(0) =0, a1 = ~0.5, a5 = 0.1, do = 0.0L, w = 10.

d
as in Exercise 14.1, but assuming that T (t) and %i (t) are measurable

(available on-line) and supposing that dy and w are not known, i.e., ¥ (t) =
dp sin(wt), design the control feedback T which provides a good tracking for
the process

q*(t) = Acos(Qt),

A=2 Q=0.1— assumed to be known.
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