
Lecture 20

ASG-version of ISM control

20.0.1 Model description and problem setting

Here we will deal with the construction of a feedback, which designing is
very close to the ISM approach [1], together with the, so-called, Averaged
Sub-Gradient (ASG) Technique [14]).

Consider the dynamic model of a Lagrangian mechanical system with
�-degrees of freedom in the standard form given by the following set of
di�erential equations:

� (� (�)) �̈ (�) +� (� (�) � �� (�)) �� (�) +� (� (�)) = 	 (�) + 
 (�) � (20.1)

where � (�) � �� (�) � �� are the state vectors (generalized coordinates and
their velocities, � � 0), 	 (�) � �� is a vector of external torques (control)
acting to the mechanical system, and 
 (�) � �� is the disturbance (or
uncertainty) vector.

If we wish to resolve the tracking problem for the given nominal tra-
jectory ��(�), then we can represent the dynamics of the controlled plant in
deviation coordinates

� (�) := � (�)� ��(�) (20.2)

as follows

�̃ (� (�)) �̈ (�) = 	 (�) + 
 (�)� �̃
³
� (�) � �� (�)

´
�� (�)� �̃ (� (�)) (20.3)

with

�̃ (�) := � (� + ��) � �̃
³
�� ��
´
:= �

³
� + ��� �� + ���

´
� �̃ (�) := � (� + ��) 
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Notice that the deviation dynamics (20.3) may be represented as (omit-
ting the time-argument)

�̈ = �̃�1 (�) 	 + �̃�1 (�) �� (20.4)

or, equivalently, as

��1 = �2� �1 := ��

��2 = �̃�1 (�1) 	 + �̃�1 (�1) �


��
� (20.5)

20.0.2 Accepted assumptions

A1. The vector of generalized coordinate �(�) and its derivative ��(�) are
measurable on-line during the process.

A2. The matrix � (�) is supposed to be known and invertible (the usual
property of any mechanical system).

A3. The uncertain term

� (�) := 
 (�)� �̃
³
� (�) � �� (�)

´
�� (�)� �̃ (� (�)) (20.6)

is admitted to be unknown and unmeasurable, but is bounded as

k� (�)k � �+ �0 k� (�)k+ �1

°°° �� (�)°°° � �� �0� �1 � 0
 (20.7)

A4. The loss function � : R� � R
1� characterizing the quality of a con-

trolled process, is assumed to be unknown, convex (not obligatory,
strongly convex), di�erentiable for almost all � � R� (the Radamacher
theorem) and its sub-gradient � (�) is supposed to be measurable1 and
bounded at any point �1, that is,

(k� (� (�))k � �� ��)

and the reaction � (�) is available for any argument � � ��.

1By the de�nition (see (?)) a vector � � ��, satisfying the inequality

� (�+ �) � � (�) + �| (�)�

for all � � ��� is called the sub-gradient of the function � (�) at the point � � �� and
is denoted by �(�) � �� (�) - the set of all subgradients of � (�) at the point �. If
� (�) is di�erentiable at a point �, then �(�) = �� (�)	 In the minimal point �� we have
0 � �� (��)	
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A5. The minimum of the loss function � (�) exists, namely, 2

� � = min
��R�

� (�) � ��


Problem 20.1 Under the assumptions A1-A3 we need to design a control
strategy 	 (�) as a feedback 	 (� (·)), which provides the functional conver-
gence of the cost function � (� (�)) to its minimum value � �, in the presence
of uncertainties � (�), that is, to guarantee

� (� (�)) ��
���� inf

��R�
� (�) = � �� (20.8)

supposing that the current sub-gradient �(� (�)) of the convex function
� (�), to be optimized, is available on-line.

The convex (not obligatory strongly) loss function � : R� � R
1 de�nes

the quality of control actions {	 (�)}��0 in the point � (�). For example, the
following two functions belong to the considered class of the convex loss
functions to be optimized:

1.

� (�) =
�X
�=1

|��| � ��(�) = sign (��) �

2.

� (�) =
�P
�=1

|��|+� � |�|+� :=

��
�

� � � if � � �
�� � � if � � ��

0 if |�| � �
�

��(��) =

��
�

1 if �� � �
�1 if �� � ��

(�1� 1) if |��| � �
= sign (|�| � �) 


In both these examples

� � = � (0) = 0


2 In some problems the minimum of a loss function may be negative. For example, in
conservative systems a stable equilibrium by the Lagrange-Dirichlet theorem corresponds
to the minimum of potential energy which admits to have negative values.
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20.0.3 Desired dynamics and its properties

Auxilary sliding variable � (�)

De�ne the vector function � (�)�R�, which from now on and throughout this
lecture will be referred to as "sliding variable" :

� (�) = �� (�) +
� (�) + �

�+ �
+ �̃ (�) � � = const�R��

�̃ (�) :=
1

�+ �

�R
�=�0

� (� (	)) �	� � � 0�

� (�1 (	)) � �� (�1 (	))

(20.9)

Here � (�)�R� is de�ned in (20.2), � is a constant vector and �̃ (�) is the
averaged subgradient (ASG) of the function � (� (�)) (23.39).

Remark 20.1 Note that the sliding variable � (�) contains the integral term
which is physically measurable.

Desired dynamic

De�ne the desired ASG dynamics as

� (�) = �� (�) = 0, � � �0� (20.10)

which corresponds exactly to the situation when the sliding variable � (�) is
equal to zero for all � � �0. Below we will show why the dynamic (23.44) is
called a desired. Since

(�+ �) � (�) = (�+ �) �� (�) + � (�) + � = � (�) �

�� (�) = �� (� (�)) � � (�0) = 0�

��
� (20.11)

in the desired regime (23.42) we have

(�+ �) �� (�) + � (�) + � = � (�) � � � �0 � 0�

�0 is the moment when the desired dynamics may begin.

��
� (20.12)
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Lemma 20.1 (Functional convergence in the desired regime.) For
the variable � (�) � satisfying the ideal dynamics (23.42), with any � � 0 and
�, for all � � �0 � 0 the following inequality is guaranteed:

� (� (�))� � � � �(�0)

�+ �
�
��� 0� (20.13)

where

�(�0) = � (� (�0) � �� �) := (�0 + �)� (� (�0))� � � +
1

2
k�� � �k2 
 (20.14)

and
�� � Arg inf

inf ��R�
:

� (�)

(�� may be not unique).
(20.15)

Proof. De�ning � (�) := �+ � we have

�

��

�
1

2
k� (�)k2 � �| (�) ��

¸
= ��

|
(�) (� (�)� ��) =

��| (� (�))
h
� (�) �� (�) + � (�) + � � ��

i
=

��| (� (�)) (� (�)� ��)� �| (� (�))
³
� (�) �� (�) + �

´



Using the inequality (see Chapter 23 in [7])

(� � ��)	 � (�) � � (�)� � ��

valid for convex (not obligatory stongly convex) functions in the �rst term
on the right side, and applying the identity

�	 (� (�)) �� (�) =
�

��
[� (� (�))� � �] �

we get
�

��

�
1

2
k� (�)k2 � �| (�) ��

¸
� � [� (� (�))� � �]

�� (�)
�

��
[� (� (�))� � �]� �	 (� (�)) �
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Then, integrating the last inequality in the interval [�0� �] and applying the
formula of integration by parts, we derive

�R
�=�0

[� (� (	))� � �] �	 � 1

2

³
k� (�0)k2 � k� (�)k2

´
+

(� (�)� � (�0))
	 �� � (� (�) [� (� (�))� � �])��0 +

�R
�=�0

[� (� (	))� � �] �� (	) �	 �
"

�R
�=�0

�| (� (	)) �	

#
�


Since ��� = 1, the above inequality becomes

� (�) [� (� (�))� � �] � � (�0) [� (� (�0))� � �] +

1
2

³
k� (�0)k2 � k� (�)k2

´
+ (� (�)� � (�0))

| �� + �| (�) � =

(�0 + �) [� (� (�0))� � �] +
³
1
2 k� (�0)k2 � �| (�0) �

�
´
+

1
2 k�� � �k2 � 1

2

h
k� (�)k2 � 2 �| (�) (�� � �) + k�� � �k2

i
| {z }

k
(�)�(����)k2

� (�0 + �) [� (� (�0))� � �]� 1
2 k� (�)� (�� � �)k2+³

1
2 k� (�0)k2 � �| (�0) �

�
´
+ 1

2 k�� � �k2 � ��0 �

�																								�
																								�

(20.16)

from which we obtain (23.46). Lemma is proved.

Remark 20.2 The parameter � will be chosen below in such a way that the
desired optimization regime starts from the beginning of the process, namely,
when, �0 = 0.

Corollary 20.1 In the partial case when

�� = 0� �0 = 0 and � � = 0

the formula (23.46) becomes

�(�0) = � (� (�0) � �� �) := �� (� (0)) +
1

2
k�k2 
 (20.17)
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20.0.4 Main theorem on ASG robust controller

Theorem 20.1 Under assumptions 1-5 the ISM robust controller

	 (�) = �̃ (� (�)) [���SIGN (� (�)) + ��
�� (�)] �

��
�� (�) = ��reali� �

�� =
°°°�̃�1 (� (�))

°°°³�+ �0 k� (�)k+ �1

°°° �� (�)°°°´+  0�  0 � 0�

�					�
					�

(20.18)

where

�reali� :=
1

�+ �

μ
�� (�)� � (�) + �

�+ �
� �̃ (�) + � (� (�))

¶
(20.19)

with
� = ���2�0 � �1�0 (20.20)

guarantees the functional convergence (23.45) from the beginning of the pro-
cess (�0 = 0).
Proof. In view of the assumption A2 we have that the matrix �(�) is
invertible, and then, by (20.5), it follows

� (�) := � (�)� �� (�) � �� (�) = �� (�)� ��� (�) �

�̈ (�) = �̃�1 (� (�)) 	 (�) + �̃�1 (� (�)) � (�) 


��
�

For the Lyapunov function ! (�) = 1
2�
|� we have

�! (� (�)) = �| (�) �� (�) =

�| (�)

Ã
�̈ (�) +

�� (�)

�+ �
� � (�) + �

(�+ �)2
� 1

�+ �
�̃ (�) +

1

�+ �
� (� (�))

!
=

�| (�)
³
�̃�1 (� (�)) 	 (�) + �̃�1 (� (�)) � (�)

´
+

�| (�)

μ
1

�+ �

μ
�� (�)� � (�) + �

�+ �
� �̃ (�) + � (� (�))

¶¶
=

�| (�) �reali� + �| (�) �̃�1 (� (�)) 	 (�) + �| (�) �̃�1 (� (�)) � (�) 


(20.21)
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Selecting 	 as in (20.18) for the second term in (20.21) we get

�! (��) = ����| (�) SIGN(� (�)) + �| (�) �̃�1 (� (�)) � (�)

� ���
�X
�=1

|�� (�)|+ k� (�)k
°°°�̃�1 (� (�))

°°° k� (�)k (20.22)

Taking into account that
�X
�=1

|�� (�)| � k� (�)k

and, in view of (20.7) and (20.22), we derive

�! (� (�)) � ��� k� (�)k+
k� (�)k

°°°�̃�1 (� (�))
°°°³�+ �0 k� (�)k+ �1

°°° �� (�)°°°´ =

� 0 k� (�)k = ��2 0
p
! (� (�))�

implying

2
³p

! (� (�))�
p
! (� (�0))

´
� �

�
2 0�

and
0 �

p
! (� (�)) �

p
! (� (�0))�  0�

2
��

which leads to the conclusion that for all

� � ������ :=
1

 0

p
2! (��0) =

k��0k
 0

we have that ! (� (�)) = 0 and � (�) = 0. To make the reaching time ������ =
0 it is su�cient to gurantee that ��0=0 = 0. But since by (23.43)

(�+ �) � (�) = (�+ �) �� (�) + � (�) + � = � (�) �

(�0 + �) � (�0) = (�0 + �) �� (�0) + � (�0) + � = � (�0)

��0 =
���0 +

��0 + �

�0 + �
�

we need to ful�ll the condition ��0=0 = 0 :

��0=0 =
���0=0 +

��0=0 + �

�
= 0�

which is possible if take � as in (23.48), providing

������ =
k�0k
 0

= 0


Theorem is proven.
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20.1 Exercise

Exercise 20.1 For the system

�2

��2
"̄ (�) = �1

"̄ (�)

1 + |"̄ (�)| + �2 arctan

μ
�

��
"̄ (�)

¶
+ 	 + �0 sin(#�)�

with

"̄ (0) = 1�
�

��
"̄ (0) = 0� �1 = �0
5� �2 = 0
1� �0 = 0
01� # = 10


�			�
			�

as in Exercise 14.1, but assuming that "̄ (�) and
�

��
"̄ (�) are measurable

(available on-line) and supposing that �0 and # are not known, i.e., 
 (�) =
�0 sin(#�), design the control feedback 	 which provides a good tracking for
the process

��(�) = $ cos(��)�

$ = 2� � = 0
1� assumed to be known.

��
�
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