
Lecture 2

Linear Matrix Inequalities

This lecture covers the de�nitions of Linear Matrix Inequalities (LMIs) with respect
to a vector and a matrix, as well as their equivalence. The viability (feasibility)
of LMI is explored, and all possible solutions are parametrized. The equivalent
representation of various nonlinear matrix inequalities (such as matrix norm con-
straint, nonlinear trace norm constraint, Lyapunov inequality, algebraic Riccati-
matrix Lurie’s inequality) as LMIs is demonstrated. Here only the elements of the
LMI theory, required for understanding of the following materials, are presented.
More profound information on this theory can be found in [10] and [11].

2.1 Matrix inequality with respect to a vector and
a matrix

De�nition 2.1 (Matrix inequality with respect to a vector) The mat-
rix inequality

� (�) := �0 + �1�1 + ���+ ���� � 0 (2.1)

is said to be a Linear (A�ne) Matrix Inequality (LMI) if

•
� = (�1� ���� ��) � R�

and

• �0� �1 ... �� are real symmetric �× � matrices, that is,

�� = � |� � R�×� �
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De�nition 2.2 Denote by S� the set of all real symmetric �× � matrices,
namely,

S� =
©
� |� = �| � R�×�ª �

Notice that the space S� is isomorphic to the standard Euclidian space
R� with

	 = �(�+ 1)
2 �

De�nition 2.3 (Matrix inequality with respect to a matrix) A lin-
ear matrix inequality (LMI) with respect to a matrix argument � has the
following form

0 � � (�) := 
 +��� +�|��| (2.2)

where the matrices ��
 � R�×� are symmetric and ��� � R�×� such that
the function � (�) is an a�ne transformation (mapping) from R�×� to
R�×�, that is,

� : R�×� � R�×� �

This inequality means that � (�) is positive de�nite, i.e.,

�|� (�)� � 0

for all nonzero � � R�.

De�nition 2.4 A non strict LMI has the form

� (�) � 0 � (2.3)

Both inequalities (2.2) and (2.3) are closely related since the last one is
equivalent the following inequality

�̃ (�) := � (�) +� � � � 0�

where � � R�×� is any positive de�nite matrix. So, �̃ (�) has the same
form as (2.2), but with 
̃ = 
 + �. In view of that without loss of
generality we will consider below only strict LMI (2.2).

Multiple LMI’s

� (1) (�) � 0� ���� � (�) (�) � 0 (2.4)
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can be expressed as a single LMI using the block-diagonal representation

diag
³
� (1) (�) � ���� � (�) (�)

´
� 0 � (2.5)

Therefore we will make no distinction between a set of LMI’s (2.4) and a
single LMI (2.2).

Remark 2.1 (on the equivalence of vector and matrix LMIs) Let
{�1� ���� ��} be a basis in S�, that is, any matrix � � S� can be represented
as

� =
�X
�=1

����

and, hence, the LMI (2.2) can be represented as

0 � � (�) := 
 +�

μ
�P
�=1

����

¶
� +�|

μ
�P
�=1

���
|
�

¶
�|

= 
 +
�P
�=1

�� (���� +�|�|� �
|) = 
 +

�P
�=1

���� �

This means that the matrix LMI (2.2) consides with the vector LMI (2.1) if
take

�� := ���� +�|�|� �
|� � = 1� ����	

and
�0 = 
�

For example, if � = 2 we may take the basis as (	 = 3)

�1 =

�
1 0
0 0

¸
� �2 =

�
0 1
1 0

¸
� �3 =

�
0 0
0 1

¸
�

and, as the result, we get

� =

�
�1 �2
�2 �3

¸
= �1�1 + �2�2 + �3�3 =

�1

�
1 0
0 0

¸
+ �2

�
0 1
1 0

¸
+ �3

�
0 0
0 1

¸
�



48 Lecture 2. Linear Matrix Inequalities

2.2 LMI´s feasibility

Here we consider the neccesary conditions for the feasibility of the LMI of
the special form (which is the most common in Modern Control Theory):

�+ � |�|�+�|�� � 0� (2.6)

where
� � S� is a given symmetric (�× �)-matrix,
� � R�×�, � � R�×� are given matrices of the orders (� × �) and (� × �),

respectively,
� � R�×� is a unknown matrix of the order (� × �) �
Here we are interested when the LMI (2.6) is feasible (has a solution)

wih respect to matrix � (the original version see in [5]).

Theorem 2.1 (on the feasibility of LMI’s)

1) If
rank� = � and rank� := �� � � � (2.7)

then the LMI (2.6)

�+ � |�|�+�|�� � 0

has a solution with respect to � if and only if

� |
���� � 0 (2.8)

where the columns of the matrix �� constitute the basis of the kernel
(right-nullspace)

N (�) = ker� := {� � R� | �� = 0} (2.9)

of the matrix �, that is, �� satis�es the condition

��� = 0 � (2.10)

2) If
rank� := �	 � � and rank� := �� � � � (2.11)

then the LMI (2.6)

�+ � |�|�+�|�� � 0
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has a solution with respect to � if and only if

� |
	��	 � 0 and � |

���� � 0 (2.12)

where the columns of the matrix �	 constitute the basis of the kernal
(left-nullspace)

N (� ) = ker� := {� � R� | �� = 0}
of the matrix � , that is, �	 � analogousely to (2.10), satis�es the con-
dition

��	 = 0 � (2.13)

Proof of this theorem see in Appendix to this chapter.

The following lemma represents the conditions of feasibility of LMI (2.6)
equivalent to the conditions of Theorem 2.1.

Lemma 2.1 (On the feasibility of the basic LMI)

• For the case (2.7) the LMI (2.6) has a solution with respect to � if
and only if there exists a parameter � � 0 such that

�� ��|� � 0 � (2.14)

• For the case (2.11) the LMI (2.6) has a solution with respect to � if
and only if there exists a parameter � � 0 such that

�� �� |� � 0 and �� ��|� � 0 � (2.15)

Proof. The results of this statement directly follows from Finsler’s lemma
1.2.

1) In the case (2.7), by Theorem 1.2, the feasibility criterion is given by

� |
���� � 0� ��� = 0

By Corolary 1.5 the conditions above are equivalent to the following state-
ment:

�� ��|� � 0

2) In the case (2.11) by Theorem 1.2 the LMI (2.6) is feasible if and only
if

� |
	��	 � 0� ��	 = 0 and � |

���� � 0� ��� = 0

which by Corollary 1.5 is equivalent to (2.15).
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2.3 Parametrization of all solutions

Here we will discuss the possibility to parametrize all solutions � of the
LMI (2.6) following [5]. To do that let us represent � and � in the form
(��-decomposition in terms of Matlab description)

� = �
��� � = �
�� (2.16)

where all matrices �
� ��� �
 and �� are the matrices of a full rank. For
example, one can take as �
 (or �
) any �	 (or ��) linear independent
columns of the matrix � (or �). Then any other �-column of � may be
represented as a linear combination of the columns of �
 so that the �-
column of � be such linear combination with the coe�cients forming this
�-column. By the fact that �
� ��� �
 and �� has a full ranks, it follows
that

�
�
|

 � 0� ���

|
� � 0� �
�

|

 � 0� ���

|
� � 0� (2.17)

Theorem 2.2 (on the parametrization of all solutions) Let the LMI
(2.6) be feasible. Then there exist a large enough constant � � 0 and
matrices � � R�×� and � (of the corresponding dimensions), satisfying the
condition

��| � ���×�� = diag

���
��1� ���� 1| {z }

��

���
�	 �

such that any solution � � R�×� of the LMI (2.6) may be presented as

� =
¡
�|

¢+

��+
 + � � ¡�|
¢+�|
��
�
+

 (2.18)

where

� = �
¡

1
2������ |�

¢ ¡
���� |�

¢�1
2

 = ��1���×�� ����

h
��1 � � |�

¡
���� |�

¢�1
��

i
��|�

��1 = ��|��� �� � 0�

���
�	 (2.19)

and the operator [·]+ corresponds to Moore-Penrose’s pseudo-invers opera-
tion, that is,

�+
 = � |

¡
�
�

|



¢�1
� �+
 =

¡
�
�

|



¢�1
�
�

Proof of this theorem see also in Appendix to this chapter.



2.4. Nonlinear matrix inequalities equivalent to LMI 51

2.4 Nonlinear matrix inequalities equivalent to LMI

In this subection we follow [6].

2.4.1 Matrix norm constraint

The matrix norm constraint

k�(�)k � 1 (2.20)

where �(�) � R�×� depends a�nely on �, that is,

�(�) = �0 + �1��2 + �3�
|�4 �

or, equivalently,
��×� � �(�)�|(�) � 0

is represented as (following to the Schur’s complement 1.1)

�
��×� �(�)

�|(�) ��×�

¸
� 0 (2.21)

2.4.2 Nonlinear weighted norm constraint

The nonlinear weighted norm constraint

 |(�)��1 (�)  (�) � 1 (2.22)

(where  (�) � R�� 0 � � (�) � R�×� depend a�nely on �) is expressed by
the Schur’s complement (Theorem 1.1) as the following LMI

�
� (�)  (�)
 |(�) 1

¸
� 0. (2.23)

2.4.3 Nonlinear trace norm constraint

The nonlinear trace norm constraint

Tr
¡

|(�)��1 (�)
(�)

¢
� 1 (2.24)

(where 
(�) � R�×�� 0 � � (�) � R�×� depend a�nely on �) is handled
by introducing a new (slack) variable � = �| � R�×�, satisfying


|(�)��1 (�)
(�) � �� Tr (�) � 1�
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and by the Schur’s complement (Theorem 1.1) the following LMI in �:

Tr(�) � 1�

�
� 
|(�)


(�) � (�)

¸
� 0� (2.25)

2.4.4 Lyapunov’s inequality

The Lyapunov’s inequality

�!+!|� � 0 (2.26)

where ! � R�×� is a stable matrix and already has the LMI formate.

2.4.5 Algebraic Riccati - Lurie’s matrix inequality

The algebraic Riccati - Lurie’s matrix inequality

�!+!|� +�"��1"|� +� � 0 (2.27)

where !�"�� = �|� � = �| � 0 are given matrices of appropriate sizes and
� = �| is variable, is a quadratic matrix inequality in �. By the Schur’s
complement (Theorem 1.1) it may be represented as the following LMI:

� ��!�!|� �� �"
"|� �

¸
� 0� (2.28)

2.5 Appendix

2.5.1 Some simple properties of Linear Matrix Equations

In this course two simple lemmas [5], given below, will be use throughout.

Lemma 2.2 If the matrix equation

!� = # (2.29)

(with ! � R�×�� # � R�×�) is resolvable with respect to unknown matrix
� � R�×�, then among its solutions there exists a solution �� of a minimal
rank such that

rank�� = rank# := ��� (2.30)

which can be presented as
�� = $ #� (2.31)

where $ � R�×� is some matrix.
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Proof. Without any the loss of generality, one may suggest that the �rst ��
columns of the matrix # are linearly independent and other ones are linear
combinations of these �rst ones. This exactly means that

# =

�
#1

...#2

¸
� #2 = #1%

for some matrix % � �(����)×�. Represent � in the form

� =

�
�1

...�2

¸
� �1 � R�×�� ��2 � R(����)×��

where �1 is a solution of (2.29), i.e.,

!�1 = #1�

so that the columns of �1 are linearly independent. De�ne

��2 = �1%

satisfying
!��2 = #2�

Then we can say that thematrix �� =

�
�1

...��2

¸
can be taken as a solution of

(2.29) with a minimal rank. Since we have !�� = #, then the matrix # is
a linear combination of the rows of the matrix ��. And inverse, by (2.30), it
follows that the rows of �� is a linear combination of the rows of the matrix
#, that can be expressed as (2.31).

Lemma 2.3 The matrix equation

!�" = # (2.32)

is feasible (resolvable) with respect to the matrix � if and only if the following
two matrix equations

!& = #� �" = # (2.33)

are feasible with respect to the unknown matrices & and �.

Proof.
a) Necessity. If � is a solution of (2.32) then obviously that

& = �" and � = !�
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satisfy (2.33).
b) Su�ciency. Let & and � be solutions of (2.33). Then, by lemma 2.2

the �rst equation in (2.33) has a solution �& of a minimal rank �� such that
it may be presented as �& = $ #. Hence,

# = !�& = !$ # = !$ �"

and, as the result, the matrix � := $ � be a solution of (2.32).

2.5.2 Proofs of the main theorems on LMI’s

Proof of Theorem 2.1.
1) Consider �rst the case (2.7)
Necessity. Suppose that (2.6) ful�lled. Multiplying (2.6) by � |

� from left
and by �� we obtain (2.8).

Su�ciency. Suppose that (2.8) ful�lled. Let us represent the space ��

as
R (�)�N (�) �

where
R (�) = Im! := {' � R� : ' = ��� � � R�}

is the image (or range) of the matrix � and ( (�) is its kernal (2.9). Select
the corresponding basis in �� such that the matrix will have the following
presentation

� =

�
�1

... 0�×(����)

¸
�

where �1 � ��×�� has the full rank. In this basis the matrices � and �
have the following structure

� =

�
�1

... �2

¸
� � =

�
�11 �12
�|12 �22

¸
�

where

�1 � R�×�� � �2 � R�×(����)� �11 � R�×�� �22 � R��×��

Remember that the matrix �� has the maximal rank �� (since it constitutes
a basis) and satis�es (2.10). That’s why �� may be taken as

�� =

�
0�×��
���×��

¸
or � |

� =
£
0��×� ���×��

¤
(2.34)
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Then the condiion (2.8) may be rewritten as

�22 � 0

since
� |
���� =

£
0��×� ���×��

¤ � �11 �12
�|12 �22

¸ �
0�×��
���×��

¸

=
£
0��×� ���×��

¤ � �12
�22

¸
= �22�

Moreover, the main inequality becomes�
�11 +�|1��1 + � |1��1 �12 +�|1��2

�|12 + � |2��1 �22

¸
� 0

According to Lemma 2.3, for a given matrix � =

�
�1

... �2

¸
the matrix

equation
�|1��1 = � (2.35)

has a solution with respect to � if and only if the following two matrix
equations

�|1& = � and �� = �� = �

�
�1

... �2

¸
= � =

�
�1

... �2

¸

are feasible. Since (�� × �) - matrix �|1 has the rank �� � � and (� × �) -

matrix � =

�
�1

... �2

¸
has rank� = � both equations above are resolvable

with respect to the matrices & and �, then always there exist � ful�lling
(2.35), since all three blocks may be done any of you wish selecting ��

2) Now consider the case (2.11).
Necessity. Suppose that (2.6) ful�lled. Multiplying, �rst, (2.6) by � |

	

from left and by �	 from right, and then, analogously, multiplying, (2.6)
by � |

� from left and by �� from right, we obtain (2.12).
Su�ciency. Suppose now that both inequalities (2.12) are ful�lled. Let

us represent �� as the direct sum:

R� = (N (� )Â [N (� ) �N (�)])� [N (� ) �N (�)]

� (N (�)Â [N (� ) �N (�)])�M
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where is the compliment of [N (� ) �N (�)] such that

R� = [N (� ) �N (�)]�M
Selecting the speci�c basis, we will have the following representation

� =

�
0

... 0
... �1

... �2

¸
� � =

�
�1

... 0
... 0

... �2

¸

� = [��� ]���=1�2�3�4

Obviously, in such format the matrices �	 and �� has the following forms

�	 =



���

� 0
0 �
0 0
0 0



��� � �� =



���

0 0
� 0
0 �
0 0



���

and the inequalities (2.12) become�
�11 �12
�|12 �22

¸
� 0�

�
�22 �23
�|23 �33

¸
� 0 (2.36)

So, now we need to check the feasibility of the following matrix inequality

�+ � |�|�+�|�� =



���

�11 �12 �13 + �11 �14 + �12
�|12 �22 �23 �24

�|13 + �|11 �|23 �33 �34 + �|21
�|14 + �|12 �|24 �|34 + �21 �44 + �22 + �|22



��� � 0

(2.37)

where
��� = �|���� � �� � = 1� 2

First, show that the matrix equation�
�|1
�|2

¸
�
£
�1 �2

¤
= � =

�
�11 �12

�21 �22

¸

is resolvable with respect to � for any matrix � of the corresponding size.
Indeed, according to Lemma 2.3, to ful�ll this demands it is necessary and
su�cient to prove the feasibility of the following two matrix equations�

�|1
�|2

¸
& =

�
�11 �12

�21 �22

¸
� �

£
�1 �2

¤
=

�
�11 �12

�21 �22

¸
(2.38)
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Notice that since (� × ��) - matrix
�
�1

... �2

¸
has the rank �� � � and

(� × �	 ) - matrix
�
�1

... �2

¸
has the rank �	 � �, both these these equations

are resolvable. Therefore, for any ��� (�� � = 1� 2) there exists the matrix �
such that the relations (2.38) hold.

De�ne now

� :=



� �11 �12 �13 + �11

�|12 �22 �23
�|13 + �|11 �|23 �33



�

Then, by the Schur’s complement (Theorem 1.1), the relation (20.22) is
ful�lled if and only if

� � 0

(�44 + �22 + �|22)�



���

�14 + �12
�24

�34 + �|21
�44 + �22 + �|22



���
|

��1



���

�14 + �12
�24

�34 + �|21
�44 + �22 + �|22



��� � 0

Ful�lling the second inequality one can provide by the corresponding selec-
tion of �22� So, to �nish the proof it is su�cient demonstrate that � � 0.
Taking in to account that by (2.36) �22 � 0� consider the corresponding
quadratic form

)|�) =



� )1

)2
)3



�
| 

� �11 �12 �13 + �11

�|12 �22 �23
�|13 + �|11 �|23 �33



�


� )1

)2
)3



� =

¡
)2 +��122 �

|
12)1 +��122 �23)3

¢|
�22

¡
)2 +��122 �

|
12)1 +��122 �23)3

¢
+

μ
)1
)3

¶| �
�11��12��122 �|12 �13+�11��12��122 �23£

�13 + �11 ��12�
�1
22 �23

¤|
�33��|23��122 �23

¸μ
)1
)3

¶
�

The �rst term is negative since �22 � 0. Taking �11, for example, as

�13 + �11 ��12�
�1
22 �23 = 0

we obtain that the second term is negative too, since again by the Schur’s
complement (Lemma 1.1), applied to (2.36), it follows that

�11 ��12�
�1
22 �

|
12 � 0
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and
�33 ��|23�

�1
22 �23 � 0

Theorem is proven.

Proof of Theorem 2.2.
a) Let � be a solution of (2.6). Then � = �|
��
 exists and satis�es

�+ � |��
|�� +�|���� � 0

and, hence, there exists large enough � � 0 such that

�+ � |��
|�� +�|���� + ��1� |��

|��� � 0�

The last inequality can be rewritten as

0 � �
¡
��1��� +��

¢| ¡
��1��� +��

¢
+�� ��|���

= �
¡
��1��� +��

¢| ¡
��1��� +��

¢���1�
(2.39)

So, for large enough � we have

��1 = ��|��� �� � 0�

b) By Schur’ complement Theorem 1.1, the property � � 0 and (2.39)
are equivalent to the inequality

�
��1���×�� ��1��� +��¡

��1��� +��

¢|
��1

¸
� 0�

which in turn is equivalent to the following one

��1���×�� �
¡
��1��� +��

¢
�
¡
��1��� +��

¢|
�

Transforming the last inequality to

�̄
¡
���� |�

¢
�̄| � 
 (2.40)

with
�̄ = ��1� +���� |�

¡
���� |�

¢�1
and


 = ��1���×�� ����
h
��1 � � |�

¡
���� |�

¢�1
��

i
��|�
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for large enough �, one can see that 
 � 0. So, the basic LMI (2.6) is
equivalent to (2.40), which is equivalent to the condition ��| � ���×�� :

��| = 
�1
2�̄
¡
���� |�

¢
�̄|
�1
2 � ���×�� �

From the de�nition of �̄ one can �nd � as in (2.19):

�̄ = 
1
2�
¡
���� |�

¢�1
2
� = ��̄� ����� |�

¡
���� |�

¢�1
=

�
1
2�
¡
���� |�

¢�1
2 � ����� |�
¡
���� |�

¢�1
But

� = �|
��
� (2.41)

which implies (2.18) for any matrix � � R�×� of the same dimensions as �.
The last step can be veri�ed by the direct substitution of (2.18) in (2.41).

2.6 Examples

Example 2.1 Check to see if the LMI

�+ � |�|�+�|�� � 0

� =

�
1 0
0 �2

¸
� � =

�
0 �1
1 1

¸
� � =

� �1 1
0 0

¸
����
��	 (2.42)

has a solution. If the answer is yes, parametrize the entire solutions.

Solution. Notice that

rank� = � = 2 and rank� := �� = 1 � � = 2�

So, we may apply Theorem 2.1 (the version 1) and verify the condition (2.8)

� |
���� � 0�

In our case the nullspace basis is
�
1
1

¸
, that is,

�� =

�
1
1

¸
�
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and hence

� |
���� =

£
1 1

¤ � 1 0
0 �2

¸ �
1
1

¸
= �1�

This means that the LMI (2.42) has at least one solution and the set of all
possible solutions � � R1×2 can be parametrized as in Theorem (2.2. In
our case we may calculate (using �� - decomposition command in Matlab)

� = �
�� : �
 = � =

�
0 �1
1 1

¸
� �� = �2×2 =

�
1 0
0 1

¸
�

� = �
�� =
£ �1 1

¤
: �
 = �1� �� =

£
1 �1 ¤ �

so that

�+
 = � |

¡
�
�

|



¢�1
=

� �1 2
�2 3

¸
� �
�

+

 =

�
2 �3
�3 5

¸
�

�+
 =
¡
�
�

|



¢�1
�
 = �1� ¡�|
¢+�|
 = 1�

Then, in view of (2.18),

� = � ¡�1
2�� �
£
1 �1 ¤�1
2¢

� �1 2
�2 3

¸
+�

� �1 3
3 �4

¸
�

where � is any matrix from R1×2 and by (2.19)

� � 3� � =
1

�� 2

�
�+ 2 �
� �� 1

¸
� � � �1×2� k�k � 1

with

��1= ��|����� = �

�
1 �1
�1 1

¸
�
�
1 0
0 �2

¸
=

�
�� 1 ��
�� �+ 2

¸
� 0

i� (by Sylvester’s criterion) � � 3�

and (see (2.19))


 = ��1���×������
h
��1�� |�

¡
���� |�

¢�1
��

i
��|�= ��1�1×1= ��1�

Example 2.2 To �nd at least one solution � = �| � �2×2 satisfying the
matrix inequality

Tr
¡

|(�)��1 (�)
(�)

¢
� 1
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with

� (�)=

�
1 1
1 4

¸
� +�

�
1 1
1 4

¸
�
�
5 0
0 5

¸
�


(�) = �

�
1
�1

¸
+

�
1
1

¸
�

Solution. By the Schur’s complement the considered matrix inequality
is equivalent to (2.25)��

� 
|(�)

(�) � (�)

¸
� 0� Tr (�) � 1�

which in the open format is

� �

£
1 �1 ¤� +

£
1 1

¤
�

�
1
�1

¸
+

�
1
1

¸ �
1 1
1 4

¸
� +�

�
1 1
1 4

¸
�
�
5 0
0 5

¸ 
� � 0

with
Tr (�) � 1�

Using the packages SEDUMI and YALMIP of Matlab we get

� = 0�5889� � =

�
1�6667 0�8333
0�8333 0�4167

¸
�

2.7 Exercises

Exercise 2.1 To �nd at least one � � �2×2 such that

 |(�)��1 (�)  (�) � 1

for

 (�) =

�
1
�1

¸
+�

�
1
1

¸

and

� =

�
2 0
0 2

¸
+�

�
2 1
�1 1

¸
+

�
2 �1
1 1

¸
�

Exercise 2.2 Check to see if the LMI

�+ � |�|�+�|�� � 0

� =

�
2 0
0 �2

¸
� � =

�
0 �1
1 2

¸
� � =

� �1 1
0 0

¸
����
��	

has a solution. If the answer is yes, parametrize the entire solutions.
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