Lecture 2

Linear Matrix Inequalities

This lecture covers the definitions of Linear Matrix Inequalities (LMIs) with respect
to a vector and a matrix, as well as their equivalence. The viability (feasibility)
of LMI is explored, and all possible solutions are parametrized. The equivalent
representation of various nonlinear matrix inequalities (such as matrix norm con-
straint, nonlinear trace norm constraint, Lyapunov inequality, algebraic Riccati-
matrix Lurie’s inequality) as LMIs is demonstrated. Here only the elements of the
LMI theory, required for understanding of the following materials, are presented.
More profound information on this theory can be found in [10] and [11].

2.1 Matrix inequality with respect to a vector and
a matrix

Definition 2.1 (Matrix inequality with respect to a vector) The mat-
rix inequality

Fz)=F+x1F1+..+x,F,>0 (2.1)
is said to be a Linear (Affine) Matrixz Inequality (LMI) if

[ ]
z=(z1,....,2n) € R"

and

o Iy, F1 ... F, are real symmetric n X n matrices, that is,

F, = F] e R

45
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Definition 2.2 Denote by 8™ the set of all real symmetric n X n matrices,
namely,

S"={M|M=M eR™}.

Notice that the space 8™ is isomorphic to the standard Euclidian space
R™ with
m=n(n+1)/2.

Definition 2.3 (Matrix inequality with respect to a matrix) A lin-
ear matrix inequality (LMI) with respect to a matriz argument X has the
following form

[0< F(X):=8+GXH+ HXGT| (2.2)

where the matrices X, S € R™™™ are symmetric and G, H € R™™" such that

the function F (X) is an affine transformation (mapping) from R™*™ to
R™ ™ that 1s,
F . Ran N Ran .

This inequality means that F' (X)) is positive definite, i.e.,
uTF(X)u>0

for all nonzero u € R™.

Definition 2.4 A non strict LMI has the form
F(X)>0. (2.3)

Both inequalities (2.2) and (2.3) are closely related since the last one is
equivalent the following inequality

FX)=FX)+Q=Q>0,

where Q € R™*™ is any positive definite matrix. So, F'(X) has the same
form as (2.2), but with S = S 4+ Q. In view of that without loss of
generality we will consider below only strict LMI (2.2).

Multiple LMI’s

FO(X)>0,.,FP(X)>0 (2.4)
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can be expressed as a single LMI using the block-diagonal representation
diag (F(1> (X),..., F®) (X)) >0. (2.5)

Therefore we will make no distinction between a set of LMI’s (2.4) and a
single LMI (2.2).

Remark 2.1 (on the equivalence of vector and matrix LMIs) Let
{E1, ..., Ep} be a basis in 8™, that is, any matrix X € 8™ can be represented

as
m

X = Z.CCZEZ

i=1
and, hence, the LMI (2.2) can be represented as

(2

0< F(X) ::S+G(§x¢E¢)H+HT<m xz‘EiT>GT
=1 =1

=S5+ 2 (GE;H+ HTEIGT) =5+ a;F; .
i=1 =1

This means that the matriz LMI (2.2) consides with the vector LMI (2.1) if
take
F,:=GE;H + HTE;I-GT, 1=1,....,m

and
Fy=25.

For example, if n = 2 we may take the basis as (m = 3)

10 01 00

and, as the result, we get

T2 I3

1o0] 017, 0 0
Lo o ™21 0|70 1|

X = [ oLT } =11Ey + 10Fs + 13E3 =
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2.2 LMI s feasibility

Here we consider the neccesary conditions for the feasibility of the LMI of
the special form (which is the most common in Modern Control Theory):

U+ PTXTQ+QTXP <0,| (2.6)

where

¥ € 8" is a given symmetric (n X n)-matrix,

P € R*" Q€ R¥*™ are given matrices of the orders (I x n) and (k x n),
respectively,

X € R¥*!is a unknown matrix of the order (k x ) .

Here we are interested when the LMI (2.6) is feasible (has a solution)
wih respect to matrix X (the original version see in [5]).

Theorem 2.1 (on the feasibility of LMI’s)

1) If
rankP = n and rank@ =19 <n, (2.7)

then the LMI (2.6)
U+PIXTQO+QTXP <0
has a solution with respect to X if and only if
WCT?\I/WQ <0 (2.8)

where the columns of the matrix Wq constitute the basis of the kernel
(right-nullspace)

N(Q) =ker@Q :={z €R" | Qx =0} (2.9)
of the matriz Q, that is, Wq satisfies the condition

QWqo =0. (2.10)

2) If

rankP :=rp <n and rank@ :=rg <n, (2.11)
then the LMI (2.6)

U+ PXTQ+QTXP <0
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has a solution with respect to X if and only if
WEIWp <0 and WHTWg <0 (2.12)

where the columns of the matriz Wp constitute the basis of the kernal

(left-nullspace)
N (P)=k%ker P:={z € R"| Px =0}
of the matriz P, that is, Wp, analogousely to (2.10), satisfies the con-

dition
PWp=0. (2.13)

Proof of this theorem see in Appendix to this chapter.

The following lemma represents the conditions of feasibility of LMI (2.6)
equivalent to the conditions of Theorem 2.1.

Lemma 2.1 (On the feasibility of the basic LMI)

e For the case (2.7) the LMI (2.6) has a solution with respect to X if
and only if there exists a parameter p > 0 such that

U uQTQ < 0. (2.14)

e For the case (2.11) the LMI (2.6) has a solution with respect to X if
and only if there exists a parameter p > 0 such that

VU —puPTP <0 and ¥V —puQT@Q < 0. (2.15)

Proof. The results of this statement directly follows from Finsler’s lemma
1.2.
1) In the case (2.7), by Theorem 1.2, the feasibility criterion is given by

WCTQ\I/WQ <0, QWQ =0

By Corolary 1.5 the conditions above are equivalent to the following state-
ment:
¥ —pQ'Q <0
2) In the case (2.11) by Theorem 1.2 the LMI (2.6) is feasible if and only
if
WELUWp <0, QWp =0 and WQT)\IJWQ <0, QW =0
which by Corollary 1.5 is equivalent to (2.15). m
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2.3 Parametrization of all solutions

Here we will discuss the possibility to parametrize all solutions X of the
LMI (2.6) following [5]. To do that let us represent P and @ in the form
(QR-decomposition in terms of Matlab description)

P =PLPr, Q=QLQRr (2.16)

where all matrices Py, Pr, Q1 and Qg are the matrices of a full rank. For
example, one can take as P (or Q) any 7p (or rq) linear independent
columns of the matrix P (or ). Then any other j-column of P may be
represented as a linear combination of the columns of Pp so that the j-
column of P be such linear combination with the coefficients forming this
j-column. By the fact that Pr, Pr, @ and Qg has a full ranks, it follows
that

PP >0, PP} >0, QrLQ] >0, QrQ} > 0. (2.17)

Theorem 2.2 (on the parametrization of all solutions) Let the LMI
(2.6) be feasible. Then there exist a large enough constant p > 0 and
matrices Z € R¥*! and L (of the corresponding dimensions), satisfying the
condition

LLT < I, =diag{1,..,1%,
——

QXTQ
rQ

such that any solution X € RF¥*! of the LMI (2.6) may be presented as

X =(Q) KPf+2Z—(Q]) QLZP.P} (2.18)
where
K = p (SY2L — QroPL) (ProPL)
S = i rgxrg — Qr® |07 = PL (Pr®PF) " Pr| @QT, (2.19)

&t = uQLQr — V¥ >0,

and the operator []+ corresponds to Moore-Penrose’s pseudo-invers opera-
tion, that is,

Pf =Pl (PP])7, QF = (Q1Ql) " Q1.

Proof of this theorem see also in Appendix to this chapter.
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2.4 Nonlinear matrix inequalities equivalent to LIMI

In this subection we follow [6].

2.4.1 Matrix norm constraint

The matrix norm constraint
1Z(X)] <1 (2.20)
where Z(X) € R"*? depends affinely on X, that is,
Z2(X) =20+ Z1 X Zo+ Z3 X727y,

or, equivalently,
Inxn — Z(X)ZT(X) >0

is represented as (following to the Schur’s complement 1.1)

[ Inxn  Z(X)

Z1X) Lo ] >0 (2.21)

2.4.2 Nonlinear weighted norm constraint

The nonlinear weighted norm constraint

T(X)P1(X)e(X) <1 (2.22)

(where ¢(X) € R", 0 < P(X) € R™" depend affinely on X) is expressed by
the Schur’s complement (Theorem 1.1) as the following LMI

[ P(X) eX)

X)) 1 ]>0. (2.23)

2.4.3 Nonlinear trace norm constraint

The nonlinear trace norm constraint

Tr(ST(X)PH(X)S(X)) <1 (2.24)

(where S(X) € R"™? 0 < P(X) € R"™"™ depend affinely on X) is handled
by introducing a new (slack) variable Q) = QT € RP*P| satisfying

STX)PH(X)S(X)<Q, Tr(Q) <1,
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and by the Schur’s complement (Theorem 1.1) the following LMI in X:

Q ST(X)
Tr(Q) < 1, [S(X) P(X) > 0. (2.25)
2.4.4 Lyapunov’s inequality
The Lyapunov’s inequality
[ XA+ ATX <0 (2.26)

where A € R"*" is a stable matrix and already has the LMI formate.

2.4.5 Algebraic Riccati - Lurie’s matrix inequality

The algebraic Riccati - Lurie’s matrix inequality

XA+ ATX + XBR'BTX+Q <0 (2.27)

where A, B, = QT, R = RT > 0 are given matrices of appropriate sizes and
X = XT is variable, is a quadratic matrix inequality in X. By the Schur’s
complement (Theorem 1.1) it may be represented as the following LMI:

~XA-ATX-Q XB

i R | >0 (2.28)

2.5 Appendix

2.5.1 Some simple properties of Linear Matrix Equations

In this course two simple lemmas [5], given below, will be use throughout.

Lemma 2.2 If the matrixz equation
AX =C (2.29)

(with A € R™ " C € R™*1) is resolvable with respect to unknown matriz
X € R™ 4 then among its solutions there exists a solution X of a minimal

rank such that )
rank X = rankC := r, (2.30)

which can be presented as )
X =VC, (2.31)

where V- € R™™ 4s some matrix.
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Proof. Without any the loss of generality, one may suggest that the first r.
columns of the matrix C' are linearly independent and other ones are linear
combinations of these first ones. This exactly means that

C= [01502} , Co =C1D
for some matrix D € R(™~7¢)*4, Represent X in the form
X = |:X1X2:| , X1 € RnXTC’X2 c R(n—rc)Xq’

where X is a solution of (2.29), i.e.,
AX, = (Ch,

so that the columns of X; are linearly independent. Define
Xo =X, D

satisfying
AX2 = 02.
Then we can say that thematrix X = [X 15)2'2} can be taken as a solution of

(2.29) with a minimal rank. Since we have AX = C, then the matrix C' is
a linear combination of the rows of the matrix X. And inverse, by (2.30), it
follows that the rows of X is a linear combination of the rows of the matrix
C, that can be expressed as (2.31). =

Lemma 2.3 The matrix equation
AXB=C (2.32)

is feasible (resolvable) with respect to the matriz X if and only if the following
two matrix equations
AY =C, ZB=C (2.33)

are feasible with respect to the unknown matrices Y and Z.

Proof.
a) Necessity. If X is a solution of (2.32) then obviously that

Y=XBand Z =AX
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satisfy (2.33).

b) Sufficiency. Let Y and Z be solutions of (2.33). Then, by lemma 2.2
the first equation in (2.33) has a solution Y of a minimal rank r. such that
it may be presented as Y =VC. Hence,

C =AY = AVC = AVZB

and, as the result, the matrix X := VZ be a solution of (2.32). m

2.5.2 Proofs of the main theorems on LMI’s

Proof of Theorem 2.1.

1) Consider first the case (2.7)

Necessity. Suppose that (2.6) fulfilled. Multiplying (2.6) by I/VCT2 from left
and by Wy we obtain (2.8).

Sufficiency. Suppose that (2.8) fulfilled. Let us represent the space R"
as

R(@QeN(Q),

where

R(Q)=ImA :={yeRF:y=Qz, z ¢ R"}

is the image (or range) of the matrix @ and N (Q) is its kernal (2.9). Select
the corresponding basis in R™ such that the matrix will have the following
presentation

Q= {Ql : ka(n_rQ)} :

where Q1 € RF*"@ has the full rank. In this basis the matrices P and ¥
have the following structure

. Ui Yy
P=|P:P|, V= ,
{ ! 2] [‘I’b V2o

where
Pl c RkXTQ’ P2 c ka(n—rQ>’ \1111 c Rka, \1122 c R7Q@XTQ

Remember that the matrix W has the maximal rank r¢ (since it constitutes
a basis) and satisfies (2.10). That’s why W may be taken as

0
WQ = |: IkXTQ :| or WCB = |: Oerk IT‘QXTQ ] (234)
TQXTQ
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Then the condiion (2.8) may be rewritten as
Wy < 0

since

WIIWq =

Wi Wy (5
[ OT’QXk IT’QX’I‘Q :| |: \111'2 \1/22 :| |: ITQXT:; :|

\\
= [ OTQX]C I’I‘QXT’Q ] |: \I];z :| - \1122

Moreover, the main inequality becomes

Ui+ QIXPi+PIXQ1 Vis+QIXPs <0
\I/IQ +P2TXQ1 Woo

According to Lemma 2.3, for a given matrix K = [Kl : Kg] the matrix
equation
QIXP =K (2.35)

has a solution with respect to X if and only if the following two matrix
equations

QIY:KandZP:ZP:Z[Plng]:K:[Klng}

are feasible. Since (rg x k) - matrix Q] has the rank rg < k and (I x n) -
matrix P = |P; : P»| has rankP = n both equations above are resolvable

with respect to the matrices Y and Z, then always there exist X fulfilling
(2.35), since all three blocks may be done any of you wish selecting X.

2) Now consider the case (2.11).

Necessity. Suppose that (2.6) fulfilled. Multiplying, first, (2.6) by W}
from left and by Wp from right, and then, analogously, multiplying, (2.6)
by W, from left and by W, from right, we obtain (2.12).

Sufficiency. Suppose now that both inequalities (2.12) are fulfilled. Let
us represent R" as the direct sum:

R" = (N (P)NIV (P)NN(Q)]) ® [NV (P) NNV (Q)]

SN @\ (P)NN(Q)]) e M
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where is the compliment of [NV (P) NN (Q)] such that
R* =NV (P)nN(Q)] &M

Selecting the specific basis, we will have the following representation

P:[OEOEPlng},Q:[QlfoiOfQQ}

V= [‘I’U]aj:lz,sA

Obviously, in such format the matrices Wp and W has the following forms

I 0 0 0
0 1 10
We=1lo o "e=|0o 1
0 0 0 0
and the inequalities (2.12) become
Ui Wi Wop W3
<0, <0 2.36
[‘I’b ‘1’22} [‘1’53 125 (230

So, now we need to check the feasibility of the following matrix inequality

U+ PTXTQ+QTXP =

V11 Vi Wiz + Lnn W14 + L2
v, Wao Wag Woy
vl + L], Wi, W33 Way + LY,
Ui, + L], Wl Wl + Lo Way+ Lao+ L,

(2.37)
<0

where

First, show that the matrix equation

Q7 | K1 Ky
{Qi]X[PI PQ]_K_[Km K22}

is resolvable with respect to X for any matrix K of the corresponding size.
Indeed, according to Lemma 2.3, to fulfill this demands it is necessary and
sufficient to prove the feasibility of the following two matrix equations

Q1 } [ K1 Ko ] K1 Kig
Y = , 4| P Py | = 2.38
[ Q4 Ko Ko (A P Ko Koo (2.38)
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Notice that since (k x rg) - matrix [Ql : Q2:| has the rank rg < k and

(I x 7p) - matrix | Py : P»| has the rank 7p < [, both these these equations

are resolvable. Therefore, for any K;; (i,j = 1,2) there exists the matrix X
such that the relations (2.38) hold.
Define now

Wy Wio Wi3+ Lia
o= vl W2 a3
‘1’13 + LL ‘1’53 W33

Then, by the Schur’s complement (Theorem 1.1), the relation (20.22) is
fulfilled if and only if

b <0
Wiy + Lo T W4 + L2
\I/24 _ \I/24
G L Ll) - o1 <0
( 44 + 22 + 22) \1134 + L;l \1134 + L;l
Wy + Lo + L, Way + Lo + L,

Fulfilling the second inequality one can provide by the corresponding selec-
tion of Los. So, to finish the proof it is sufficient demonstrate that & < 0.
Taking in to account that by (2.36) Waa < 0, consider the corresponding
quadratic form

T
21 LT Vip Wiz+ L1 21
2Tdz = z92 \111-2 \I/22 \1123 z92 =
T T T
23 \1113 + Lll \1123 WU3s 23

(72 + Wy Wlpz1 + Wpy Waszs) " Wap (22 + Way Wiyzn + Woy Wasey) +
( 21 >T [ Uy U0, 0T, Wyg+L11— V105, Uay ] < 21 )
23 (U153 4+ L1y — U12Toy Uas]T V33— Wl 0o Wog 23 )
The first term is negative since W9y < 0. Taking L1;, for example, as

W3+ L1g — U1aWpy Wag = 0

we obtain that the second term is negative too, since again by the Schur’s
complement (Lemma 1.1), applied to (2.36), it follows that

Uy — \1112\1’2_21\1»'{2 <0
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and
W33 — UL W5 Uo3 < 0

Theorem is proven. m

Proof of Theorem 2.2.
a) Let X be a solution of (2.6). Then K = Q] X Py, exists and satisfies

U+ PLKTQr+ QLKPr <0
and, hence, there exists large enough g > 0 such that
U+ PLKTQp + QLK Pr+ p ' PRKTK PR < 0.
The last inequality can be rewritten as

0>p (W 'KPr+Qr)" (0 'KPr+Qgr) + ¥ — puQLQr
(2.39)
=p(p 'KPr+Qr)" (W 'KPr+Qr) — @ L.

So, for large enough i we have

= pQLQr — ¥ > 0.

b) By Schur’ complement Theorem 1.1, the property ® > 0 and (2.39)
are equivalent to the inequality

i rgwrg | WK PR+ Qg

(W KPR+Qe)T et |70

which in turn is equivalent to the following one
p  rgxrg > (W KPR+ Qr) ® (1 ' KPr+Qr)".
Transforming the last inequality to
L (PrOP}) LT < S (2.40)

with
L=p 'K+ Qro®P], (ProP}) "
and
— _ —1
S = 1 Irgxrg — Qr® [ @71 = PL (PrOPE) ' Pr| 2Q],
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for large enough p, one can see that S > 0. So, the basic LMI (2.6) is

equivalent to (2.40), which is equivalent to the condition LLT < I, xrg :

LLT = STV2L (PROPE) LTS™2 < Iy srg,-

From the definition of L one can find K as in (2.19):

L= S'2L (ProP]) "/

K = pL — pQr®P}, (PrOPL) ' =

—-1/2

pSY2L (ProPY) % — uQre P}, (PrOPL) ™

But
K = QEXPL, (2.41)

which implies (2.18) for any matrix Z € R**! of the same dimensions as X.
The last step can be verified by the direct substitution of (2.18) in (2.41).
|

2.6 Examples

Example 2.1 Check to see if the LMI
UV+PIXTQ+QTXP<O0

v=[o B]r=[0 3 e [3]

has a solution. If the answer is yes, parametrize the entire solutions.

(2.42)

Solution. Notice that
rankP = n = 2 and rank@ :=rg =1 <n = 2.
So, we may apply Theorem 2.1 (the version 1) and verify the condition (2.8)
WLIWg < 0.

. 1 :
In our case the nullspace basis is [ ] , that is,

1

wo=|1].
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and hence
1 0 1
T _ _
WhHoWe = 1 1]{0 _2][1]_—1.

This means that the LMI (2.42) has at least one solution and the set of all
possible solutions X € R'*2? can be parametrized as in Theorem (2.2. In
our case we may calculate (using QR - decomposition command in Matlab)

0 -1 1 0
P:PLPR5PL:P:[1 1 :|7PR:IQ><2:{O 1},

Q=QrQr=[-1 1]:Qr=-1,Qr=[1 —-1],
so that

-1 -1 2 2 -3
PZ:PE(PLPD :[_2 3},PLP+:[_3 5 ],

Qf = (QQ]) 'Qr=-1 Q)" Q] =1
Then, in view of (2.18),

x=—rnoal1 e[ T 2z 2]

where Z is any matrix from R'*2 and by (2.19)

1 2
w>3, @:m[“‘; M’il], LeR™ |L|<1

with

_ 1 -1 1 0 p—1  —pu
1 T U = — =
d —MQRQR\I’ ,u|:_1 1 :| |:0 _2] |: o 2]>0

iff (by Sylvester’s criterion) pu > 3,
and (see (2.19))
S = 1 rgxrg ~Qp® @7 = PL, (PROPY) ™" Pr| 0Q= p Tia= ™!
Example 2.2 To find at least one solution X = XT € R**? satisfying the

matriz inequality

Tr (ST(X)PH(X)S(X)) <1
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with

1 4 4

0= HH

Solution. By the Schur’s complement the considered matrix inequality
is equivalent to (2.25),

@ s10x)
| sto B | o @<

which in the open format is
Q (1 -1 ]X+

LA L e

with
Tr(Q) < 1,
Using the packages SEDUMI and YALMIP of Matlab we get

1.6667 0.8333
0.8333 0.4167

P(X):[l x+x| bt [50},

Q = 0.5889, X = [

2.7 Exercises

Exercise 2.1 To find at least one X € R**? such that
T(X)PH(X)e(X) <1

=[]}

HIER NI

for

and

0 2 -1 1 1 1
Exercise 2.2 Check to see if the LMI
U+ PIXTQ+QTXP <0

[3 8 [8 3 e[

has a solution. If the answer is yes, parametrize the entire solutions.
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