Lecture 18

Sliding Mode Observers

18.1 General observer for nonlinear systems

Consider a dynamic model given in the quasi-linear format:
#(t) = Az(t) + Bu+ ( (x(t),t), x(0) = xp is given, )

(t) = Cx(t),
m(t),C(ﬁ(t),t)yE R™, u € R* y(t) € R™ (18.1)

I¢ (@, )17 < do + d ||
and the full-order observer with the Luenberger’s Sliding-Mode structure
given by

i@(t) = A#(t) + Bu+ Lo(t) + LsSIGN (o (t)),

A@(O) is given, N
o(t) = y(t) - Ci(t) = ~Ce(t), L, L, € R, (18.2)

SIGN (o) := (sign (o1) , ...,sign (om))7,

e; := Ty — x4 is the observation error.

J

We also assume that the system (18.1) is BIBO-stable, i.e.,
lz(®)]* < X < o0

implying
I¢ (@(8),)]1* < do + du [lz(t)[|* < do + di X == d
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Theorem 18.1 If in the observer (18.2)
Ly = %P‘l(ﬁ (18.3)

and the gain matriz L fulfills the matriz inequality
W (P, L|a,e):=
PA—LC) 4+ (A—LC) P+aP  —P (18.4)

—-P —elnxn <0

for some matriz P = PT > 0 and some positive scalars o and e, then we
may guarantee that

1) the state estimation error e; converges to a bounded zone, namely,

ed
aAmin(P)

o0
/HO’TH dr < oo
0

lo(@®)]l — 0

le(®)]|” < +0 (e (18.5)

2)

which means that

excepting the time moments (spikes) of zero-measure.

Proof. Define the Lyapunov function as V'(e(t)) = eT(¢)Pe(t). Then its deriv-
ative on trajectories of the system (18.1) is

V(e(t)) = 2eT(t)Pé(t) =

2eT(t)P[(A — LC)e(t) + LsSIGN (o(t)) — ¢ (z(t),1)] (18.6)
=2eT(t)P (A — LC)e(t)+
2eT(t)PLsSIGN (o (t)) — 2€T(¢) P¢ (z(t),t)

Select Lgas in (18.3). Then, because of the relation
2eT(t)PLs = pe (t)CT = p (Ce(t))T = —poT(t),

it follows

2eT(t)PLsSIGN (0(t)) = —poT(t)SIGN (o(t)) = —,uz loi(t)] .
i=1
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Using the estimate

m

oT(t)SIGN (a(1)) = Y loi(t)] = [lo(®)l]

=1

we get

2eT(t)PLsSIGN (o(t)) < —p|lo(®)]| -
In view of that the right-hand side of the last identity (18.6) may be estimated as

)

V(e(t)) < 2eT()P (A — LC) e(t)—
267 (1) PC (2(t).£) — el (1) =
[ P(A-LO)+
e(t) - T -P e(t)
(o) { Ao ] (et )

o)) < ( L ) W(P.L| ae) < L ) (18.7)

—klle@l = aV(e@)) +el¢ (2(@), )] <

—pllo(e®)] —aVie(t)) +ed )

Supposing W (P, L | a,e) < 0 from (18.7) we get

Vier) < —pllo(e®)] — aV(e®)) + ed.

~ ed
For the new variable V (t) := V (e(t)) — — it follows the inequalities
«

9V(0) < o) - aV(t) < —alo®)] <0,

9V(0) < o) - 0V (1) < —aV(1) <0,

d -
pllo@®ll < ==V (1),
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implying

u O/ ol dr < — (V) = V(0)) =

V(e(0)) =V (e(t)) <V (e(0)) < o0,

which for ¢ — oo lead to

V(e(0))e™ + — (1—e™) = — 40 (e
and -
/Ha(T)H dr < 0o
0
[ |

18.2 SM observations for the class of mechanical
models

18.2.1 Model of the system

Consider the class of mechanical systems given by the following dynamics

G0 =1 (20, 520),t) + ¢ 0.0,
(18.8)

z(0) and %:E (0) are given,

where Z () € R™ the systems states at time ¢ > 0. Denoting x; := z () € R"

(and omitting the time-argument for simplicity) we can represent this system
in the following extended form

il = X2,
(18.9)
Ty = f(x1,22,1) + ((21,1) .

Here 1 € R™ is the state vector, zo € R is the velocities vector and ¢ (x1,1t)
is the uncertain term influencing the dynamics of the system (18.8).
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18.2.2 Main assumptions

The following assumptions will be in force:

e the state variable x1 is measurable only, that is,

y=1x

e the velocity vector x5 is bounded:

Jeall < 23 < oo

e the uncertain term ( (x1,t) as well as the own dynamics f (x1,x2,t)
may be uknown but both are bounded as

||f ($1,$2,t)||2 < co + 1 ||$”2 )
(18.10)
IS (21, )1* < do + du |||

18.2.3 Observer structure

Select the observer structure as follows:

d .
—X1 =

dt

where 27 is the estimate of the state vector x1 and v is the correction term
to be designed. Notice that #; is the auxiliary variable, since, in fact, the
state estimation is not required because of the x; availability. Let

v = —pSIGN (e;1), p >0, (18.11)

where
SIGN (eq) := (sign(e,1), ...sign(e1,,))"

and
e1:=T1 — 21 (18.12)

is the error of the state estimate.



264 Lecture 18. Sliding Mode Observers

18.2.4 Equivalent control concept application

For
1
V(er) = lei]?

we have )
V (e1) = elé; = el (—pSIGN (e1) — 29) =

—pe]SIGN (e1) — efza <

n
—py_lew
=1

_\/5 (p—$;) V(el)a

+lleillas < —lleall (p —23) =

which for p > z3 implies

| eol|
(p—=3)

To maintain e; = 0 for all £ > ¢,cqcn We need to fulfill the condition

e1 = 0 after t,eqen =

él =V — T2 = 0
defining the equivalent control v = vy as
Veqiv = T2 (18.13)

As it was mentioned above, v, is unrealizable (z3 is not available),
but can be approximated by the vector g, generated by the the following
law-pas filter

d . d .
1y Vegiv + 7 Veaiv =V = —pSIGN (e1), p<0.1

So, we have

Vegiv = Veqiv,

and according to (18.13) we may define the velocity estimation Zy as

B9 = Degiv - (18.14)
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18.3 Exercises

18.3.1 Exercises

Exercise 18.1 For the system

d? z(t d
T(t) = z(®) + ag arctan (EIE (t)) + dp sin(wt),

with
z(0)=1, —z(0) =0, a1 = —0.5, ag = 0.1, dyp = 0.01, w = 10.
y(t) =z ()

d
design the observer for Ei (t)

a) using general Sliding mode approach (18.2);
b) using Equivalent Control Concept.
Demonstrate for both cases a) and b) the graphics for

x1(t),21(t),e1(t) and xo (t),22(t),ea(t).

Exercise 18.2 For the same system as in Exercise (17.1), supposing that
only x(t) is available, construct the observers of i(t) using the stand-
ard observer structure and observer based on the equivalent control
method. As a controller use a sliding mode controller with u(z).
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