
Lecture 17

Sliding mode control

17.1 Sliding mode surface as desired dynamics

Consider the special case where the function � (�� �) is discontinuous on a
smooth surface � given by the equation

� (�) = 0� � : R�� R� � (·) � �1 (17.1)

The surface separates its neighborhood (in R�) into domains G+ and G�.
For � = const and for the point �� approaching the point � � � from
the domains G+ and G� let us suppose that the function � (�� ��) has the
following limits:

lim
(����)�G�� ����

� (�� ��) = �� (�� �) �

lim
(����)�G+� ����

� (�� ��) = �+ (�� �) 	

����
��� (17.2)

Then by the Filippov’s de�nition, F (�� �) is a linear segment joining the
endpoints of the vectors �� (�� �) and �+ (�� �). Two situations are possible:

- If for � � (�1� �2) this segment lies on one side of the plane P tangent to the
surface � at the point �, the solutions for these � pass from one side
of the surface � to the other one (see Fig.17.1 depicted at the point
� = 0);

- If this segment intersects the plane P, the intersection point is the endpoint
of the vector �0 (�� �) which de�nes the velocity of the motion

��� = �
0 (�� ��) (17.3)
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Figure 17.1: The sliding surface and the rate vector �eld at the point � = 0.

along the surface � in R� (see Fig.17.2 depicted at the point � = 0).
Such a solution, lying on � for all � � (�1� �2), is often called a sliding
motion ( or, mode). De�ning the projections of the vectors �� (�� �)
and �+ (�� �) to the surface � (�� (�) 6= 0) as


� (�� �) :=
μ �� (�)
k�� (�)k � �

� (�� �)
¶
�


+ (�� �) :=

μ �� (�)
k�� (�)k � �

+ (�� �)

¶

one can �nd that when 
� (�� �) � 0 and 
+ (�� �) � 0 we have that

�0 (�� �) = 
�� (�� �) + (1� 
) �+ (�� �) 	

Here 
 can be easily found from the equation

¡�� (�) � �0 (�� �)¢ = 0�
or, equivalently,

0 = (�� (�) � 
�� (�� �) + (1� 
) �+ (�� �))

= 

� (�� �) + (1� 
) 
+ (�� �) �



17.1. Sliding mode surface as desired dynamics 245

Figure 17.2: The velocity vector on a sliding surface.

which implies


 =

+ (�� �)


+ (�� �)� 
� (�� �) 	

Finally, we obtain that

�0 (�� �) =

+ (�� �)


+ (�� �)� 
� (�� �)�
� (�� �)+

μ
1� 
+ (�� �)


+ (�� �)� 
� (�� �)
¶
�+ (�� �)

(17.4)

Consider now in this subsection several examples demonstrating that a
desired dynamic behavior of a controlled system may be expressed not only
in the traditional manner, using some cost (or payo�) functionals as possible
performance indices, but also representing a nominal (desired) dynamics in
the form of a surface (or, manifold) in a space of coordinates.

17.1.1 First-order tracking system

Consider a �rst-order scalar system given by the following ODE:

��(�) = � (�� �(�)) + �(�) (17.5)
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where �� is a control action and � : R×R� R is supposed to be bounded,
that is,

|� (�� �(�))| � �+ ��	
Assume that the desired dynamics (signal), which should be tracked, is
given by a smooth function �� (| ���| � �), such that the tracking error �� is
(see Fig.17.3)

�(�) := �(�)� �(�)	
Select a desired surface � as follows

Figure 17.3: A tracking system.

� (�) = � = 0 (17.6)

that exactly corresponds to an "ideal tracking" process. Then, designing
the control �(�) as

�(�) := ��sign(��) �

we derive that
��(�) = � (�� �(�))� ��(�)� �sign (�(�))

and for � (�) = �2�2 one has

�� (�(�)) = �(�) ��(�) = �(�) [� (�� �(�))� ��(�)� �sign (�(�))] =

�(�) [� (�� �(�))� ��(�)]� � |�(�)| � |�(�)| [�+ + �]� � |�(�)| =

|�(�)| [�+ + �� �] = ��2 [� � �+ � �]p� (�(�))�
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and, hence,

p
� (�(�)) �

p
� (� (0))� 1�

2

£
� � �+ � �¤ �

So, taking � � �+ + � implies the �nite time convergence of �(�) to the
surface (17.6) with the reaching time

�� =

p
2� (� (0))

� � �+ � � =
|� (0)|

� � �+ � �
(see Fig.17.4 and Fig.17.5).

Figure 17.4: The �nite time tracking to the surface � = � = 0	

17.1.2 Stabilization of a second order relay-system

Let us consider now a second order relay-system given by the following ODE

�̈(�) + �2 ��(�) + �1�(�) = �(�) + �(�)�

�(�) = ��sign (�(�)) - the relay-control,

� = � (�(�)� ��(�)) := ��(�) + ��(�)� � � 0�

|��| � �+ - a bounded unknown disturbance.

����������
���������

(17.7)
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Figure 17.5: The �nite time tracking the tragectories � (�) 	

One may rewrite the dynamic (�1 := �) as

��1(�) = �2(�)�

��2(�) = ��1�1(�)� �2�2(�) + �(�) + �(�)�

�(�) = ��sign (�2(�) + ��1(�)) 	

������
�����

(17.8)

Select here the sliding surface � as

� (�) = �2 + ��1� � � 0	

So, the sliding motion, corresponding the dynamics

� := ��(�) + ��(�) = 0�

is given by (see Fig.17.6)

�� = �0�
���	

Let us introduce the following Lyapunov function candidate:

� (�) = �2�2�
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Figure 17.6: The sliding motion on the sliding surface � (�) = �2 + ��1	

for which we have:

�� (�) = � �� = � (�(�))

�
�� (�(�))

��1
��1(�) +

�� (��)

��2
��2(�)

¸
=

� (�(�)) [��2(�)� �1�1(�)� �2�2(�) + �(�) + �(�)] �

|� (�(�))| £|�1| |�1(�)|+ (�+ |�2|) |�2(�)|+ �+¤� �� (�(�)) sign (� (�(�)))
= � £� � |�1| |�1(�)| � (�+ |�2|) |�2(�)| � �+¤ |� (�(�))| � 0�

if take

� = |�1| |�1(�)|+ (�+ |�2|) |�2(�)|+ �+ + �� � � 0 (17.9)

This implies

�� (�) � ��
p
2� (�)

and, hence, the reaching time �� (see Fig.17.6) is

�� =

p
2� (�(0))

�
=
| ��(0) + ��(0)|

�
	 (17.10)
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17.2 Equivalent control method

17.2.1 Equivalent control construction

Here a formal procedure will be described to obtain sliding equations along
the intersection of sets of discontinuity for a nonlinear system given by

��(�) = � (�� �(�)� �(�)) �

�(0) is given, �(�) � R�� �(�) � R�

��
� (17.11)

and the manifold M (16.25) de�ned as

� (�) = (�1 (�) � 			� �	 (�))
| = 0� (17.12)

representing an intersection of � submanifolds �
 (�) (� = 1� 			��).

De�nition 17.1 Hereinafter the control �(�) will be referred to (according
to [1]) as the equivalent control �(��)(�) in the system (17.11) if it satis�es
the equation

�� (�(�)) = � (�(�)) ��(�) = � (�(�)) � (�� �(�)� �(�)) = 0

� (�(�)) � R	×�� � (�(�)) = �

��
� (�(�))

���
�� (17.13)

It is quite obvious that, by virtue of the condition (17.13), a motion
starting at � (�(�0)) = 0 in time �0 will proceed along the trajectories

��(�) = �
¡
�� �(�)� �(��)(�)

¢
(17.14)

which lies on the manifold � (�) = 0.

De�nition 17.2 The above procedure is called the equivalent control
method [1], [3], [5] and the equation (17.14), obtained as a result of applying
this method, will be regarded as the sliding mode equation describing the
motion on the manifold � (�) = 0.

From the geometric viewpoint, the equivalent control method implies
a replacement of the unde�ned discontinued control on the discontinuity
boundary with a continuous control which directs the velocity vector in the
system state space along the discontinuity surface intersection. In other
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words, it exactly realizes the velocity �0
¡
�� �� �(��)(�)

¢
(17.4) corresponding

to the Filippov’s de�nition of the di�erential inclusion in the point �.
Consider now the equivalent control procedure for an important partic-

ular case of a nonlinear system which is a�ne on �, the right-hand side of
whose di�erential equation is a linear function of the control, that is,

��(�) = � (�� �(�)) +� (�� �(�))�(�)� (17.15)

where � : R×R� � R
� and � : R×R� � R

�×� are all argument continuous
vector and matrix, respectively, and �(�) � R� is a control action. The
corresponding equivalent control should satis�es (17.13), namely,

�� (�(�)) = � (�(�)) ��(�) = � (�(�)) � (�� �(�)� �(�)) =

� (�(�)) � (�� �(�)) +� (�(�))� (�� �(�))�(�) = 0

��
� (17.16)

Assuming that the matrix � (�(�))� (�� �(�)) is nonsingular for all � and �,
one can �nd the equivalent control from (17.16) as

�(��)(�) = � [� (�(�))� (�� �(�))]�1� (�(�)) � (�� �(�)) 	 (17.17)

Substitution this control into (17.15) yields the following ODE:

��(�) =
h
��×� � [� (�(�))� (�� �(�))]�1� (�(�))

i
� (�� �(�)) � (17.18)

which describes the sliding mode motion on the manifold � (�) = 0. Below
the corresponding trajectories in (17.18) will be referred to as �(�) = �(
�)(�).

Remark 17.1 If we deal with an uncertain dynamic model (17.11) with
(17.15) when the function � (�� �(�)) is not known a priory, then the equi-
valent control �(��)(�) is not physically realizable.

Below we will show that �(��)(�) may be successfully approximated (in
some sense) by the output of the �rst order low-pass �lter with the input
equal to the corresponding sliding mode control.

17.2.2 Sliding mode motion

Let us try to stabilize the system (17.15) applying sliding mode approach.
For the Lyapunov function

� (�) := k� (�)k2 �2�
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considered on the trajectories of the controlled system (17.15), one has

�� (�(�)) =
³
� (�(�)) � �� (�(�))

´
=

(� (�(�)) � � (�(�)) � (�� �(�)) +� (�(�))� (�� �(�))�(�)) =

(� (�(�)) � � (�(�)) � (�� �(�))) + (� (�(�)) � � (�(�))� (�� �(�))�(�)) �

k� (�(�))k k� (�(�)) � (�� �(�))k+ (� (�(�)) � � (�(�))� (�� �(�))�(�)) 	
Taking �(�) as a sliding mode control , i.e.,

�(�) = �(
�)(�)�

�(
�)(�) := ��(�) [� (�(�))� (�� �(�))]�1 SIGN(� (�(�))) �
�� � 0�

SIGN (� (�(�))) := (sign (�1 (�(�))) � 			� sign (�	 (�(�))))
| �

����
��� (17.19)

we obtain

�� (�(�)) � k� (�(�))k k� (�(�)) � (�� �(�))k � �(�)
	X

=1

|�
 (�(�))|

that, in view of the inequality
	P

=1
|�
| 	 k�k, implies

�� (�(�)) � �k� (�(�))k (�(�)� k� (�(�)) � (�� �(�))k)
Assuming that for all � 	 0

k� (�� �)k � �0 + �1 k�k (17.20)

we get the upper estimate

�� (�(�)) � �k� (�(�))k �(�) + k� (�(�))k k� (�(�))k k� (�� �(�))k �

�k� (�(�))k [�(�)� k� (�(�))k (�0 + �1 k�(�)k)]
The selection

�(�) = k� (�(�))k (�0 + �1 k�(�)k) + �� � � 0 (17.21)

gives
�� (�(�)) � �� k� (�(�))k = ��

p
2� (�(�))
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that provides the reaching phase in time

�� =

p
2� (�0)

�
=
k� (�0)k

�
(17.22)

Remark 17.2 If the sliding motion on the manifold �(�) = 0 is stable,
then there exists a constant �0 � (0��) such that

k� (�(�))k (�0 + �1 k�(�)k) � �0,
and hence, �(�) (17.21) may be selected as a constant

�(�) := �0 + �	 (17.23)

17.2.3 Low-pass �ltering

As it follows from the presentation

�(
�)(�) := ��(�) [� (�(�))� (�� �(�))]�1 SIGN (� (�(�))) �
after the reaching phase, the dynamics of the controlled system around
the sliding surface � (�(�)) ' 0 must have considerable "jumpings" (the
chattering e�ect) because of the presence of the discontinuous function
SIGN (� (�(�))) in the control action �(
�)(�).

To minimize the in�uence of the chattering e�ect arising after the reach-
ing phase let us consider the property of the signal obtained as an output
of a low-pass �lter (the �rst order ODE) with the input equal to the sliding
mode control, that is,

� ��(��)(�) + �(��)(�) = �(
�)(�)� �(��)(0) = 0� � � 0� (17.24)

where �(
�)� is given by (17.19). The solution of (17.24) is

�(��)(�) =
1

�

�R

=0

��(��
)���(
�)
 �� (17.25)

The amplitude-frequency characteristic  (!) of the �lter is

 (!) =
1q

1 + (�!)2
, ! � [0��) (17.26)

and its plot is depicted at Fig.17.7 for � = 0	01, where " =  (!) and � = !.
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Figure 17.7: The amplitude-frequency characteristic of the �lter.

17.2.4 The realizable approximation of the equivalent con-
trol

By (17.25) �(��)� may be represented as

�(��)(�) =

�Z

=0

�(
�)(�)�
³
��(��
)��

´

Consider the dynamics �(��)� of the system (17.11) controlled by �(��)� (17.25)
at two time intervals:

- during the reaching phase: � (�) = �(��)(�)�
- and during the sliding mode regime: � (�) = �(��)(�).

1. Reaching phase (� � [0� �� ]). Here the integration by part implies

�(��) (�) =
�R


=0

�(
�) (�) �
¡
��(��
)��

¢
=

�(
�) (�)� �(
�) (0) ����� �
�R


=0

��(
�) (�) ��(��
)����	

Supposing that �(
�)� (17.19) is bounded almost everywhere together
with its derivative when we are in the reaching phase, i.e.,°°° ��(
�) (�)°°° � ��
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the identity above leads to the following estimation:

°°�(��) (�)� �(
�) (�)°° � °°�(
�) (0)°° ����� + � �R

=0

��(��
)���� =

°°�(
�) (0)°° ����� + �� �R

=0

��(��
)��� (���) =

°°�(
�) (0)°° ����� + �� ���R

̃=0

��(����
̃)��̃ =

°°�(
�) (0)°° ����� + �� ¡1� �����¢ = ��+# ¡�����¢
So, �(��)� may be represented as

�(��) (�) = �(
�) (�) + � (�) � (17.27)

where � (�) may be done as small as you wish taking � tending to zero,
since

k� (�)k � ��+#
³
�����

´
	

As a result, the trajectories �(
�)� and �(��)� will be somewhat di�erent.
Indeed, we have

��(
�) (�) = �
¡
�� �(
�) (�)

¢�� ¡�� �(
�) (�)¢�(
�) (�) �
��(��) (�) = �

¡
�� �(��) (�)

¢�� ¡�� �(��) (�)¢�(��) (�)
De�ning

�̃ (�) = �
¡
�� �(��) (�)

¢
� �̃ (�) = � (�� ��� (�)) �

�̃ (�) = �
¡
�� �(��) (�)

¢
�

the last equation may be represented as

��(
�) (�) = � (�)�� (�)�(
�) (�) �

��(��) (�) = �̃ (�)� �̃ (�)�(��) (�) 	
Hence by (17.27), the di�erence

�(�) := �(
�) (�)� �(��) (�)
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satis�es

�(�) = �(0) +
�R


=0

h³
�(�)� �̃(�)

´
���(
�)(�) + �̃�(��)(�)

i
�� =

�0 +
�R


=0

h³
�(�)� �̃(�)

´
���(
�)(�) + �̃ ¡�(
�)(�) + �(�)¢i ��

Taking into account that �0 = 0 (the system starts with the same
initial conditions independently on an applied control) and that � (�� �)
satis�es (17.20) and � (�) is Lipschitz (with the constant $�) on � it
follows

k�(�)k �
�R


=0

h°°°�(�)� �̃(�)°°°+ °°°³�̃ ��´�(
�)(�) + �̃�(�)°°°i ��
�

�R

=0

h
�1 k�(�)k+ $� k�(�)k

°°�(
�)(�)°°+ °°°�̃°°° k�(�)ki �� �
�R


=0

h¡
�1 + $�

°°�(
�)(�)°°¢ k�(�)k+ °°°�̃°°° ¡��+# ¡��
��¢¢i ��
Since for any % � 0 after large enough time

#
³
��
��

´
= �#

μ
1

�
��
��

¶
= �& (1) � �%

and °°°�(
�)
 (�)
°°° � �(
�)+ ���

°°°�̃°°° � �+ ���
we �nally get

k�(�)k �
�R


=0

h³
�1 + $��

(
�)
+

´
k�(�)k+�+� (�+ %)

i
��

� �+� (�+ %) �� +
�R


=0

³
�1 + $��

(
�)
+

´
k�(�)k ��

Now let us apply the Bihari lemma (see Lemma 19.1 in [7] ), which says
that if ' (�) and � (�) are nonnegative continuous functions on [�0��)
verifying

' (�) � �+
�Z


=�0

� (�) ' (�) �� (17.28)
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then for any � � [�0��) the following inequality holds:

' (�) � � exp
�
� �Z

=�0

� (�) ��

	

 	 (17.29)

This results remains true if � = 0. In our case

' (�) = k�(�)k � � = �+� (�+ %) �� � � (�) = �1 + $��(
�)+ � �0 = 0

for any � � [0� �� ). So,

k�(�)k � �+� (�+ %) �� exp
³³
�1 + $��

(
�)
+

´
��

´
(17.30)

Claim. For any �nite reaching time �� and any small value ( � 0
there exists a small enough � such that k��k is less than (, that is°°�(
�) (�)� �(��) (�)°° � (	

2. Sliding mode phase (� � �� ). During the sliding mode phase we
have

�
¡
�(
�)(�)

¢
= 0

and
��
¡
�(
�)(�)

¢
= �

¡
�(�)���(��)(�)¢ = 0

��
� (17.31)

if �� = �
(��)
� for all � � �� . Applying �� = �

(��)
� we can not guarantee

(17.31) already. Indeed,

�
³
�(��)(�)

´
= �

³
�(��)(�� )

´
+

�Z

=��

��
³
�(��)(�)

´
���

and, by (17.30),

°°� ¡�(��)(�� )¢°° =
°°°°°°°�
¡
�(��)(�� )

¢� � ³�(
�)��

´
| {z }

0

°°°°°°°�
°°� ¡�(
�)(�� )¢�(�� )°°�#(�)	

Hence, in view of (17.31),
°°� ¡�(��)(�)¢°° = #(�).

Claim 17.1 During the sliding-mode phase°°� ¡�(��)(�)¢°° = #(�)	 (17.32)
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17.3 Exercise

Exercise 17.1 Consider the model

�̈(�) + 
 ��(�) + )�(�) = �+ �(�)�
where �(0)� ��(0) are given,

�(�) = �0 sin (!�) is unmeasurable signal,

 and ) are unknown but positive.

������
�����

Take some parameters 
 � 0, ) � 0, �0, ! � 0 and, supposing that �(�)
and ��(�) are available, design a standard SM controller providing conver-
gence �(�)� ��(�) � 0. To compare the equivalent control (its low-frequency
realization) with external perturbation �(�). Estimate �(�).


