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Lecture 16

About Sliding Mode Control

Robust Control Theory
without Sliding Mode approach

is like a nightingale without songs
(a version of one of Russian proverb).

Sliding Mode Control (SMC) is a nonlinear control approach in control
systems that changes the dynamics of a nonlinear system by applying a
discontinuous control signal (or, more precisely, a set-valued control signal)
that causes the system to "slide" along a cross-section of its usual behavior.
The state-feedback control law is not a time-dependent function. Instead,
depending on where it is in the state space, it can �ip from one continuous
structure to another. As a result, sliding mode control is a form of variable
structure control. Trajectories are continually moving toward a neighboring
zone with a di�erent control structure, therefore the end trajectory will not
reside fully inside one control structure. Instead, it will "slide" along the
control structures’ borders. The sliding mode [1]-[5] is the motion of the
system as it slides along these limits, and the sliding (hyper) surface is the
geometrical locus containing the boundaries. Any variable structure system,
such as a system under SMC, may be seen as a particular instance of a hybrid
dynamical system in the framework of contemporary control theory since it
�ows through a continuous state space but also moves through di�erent
discrete control modes.
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230 Lecture 16. About Sliding Mode Control

16.1 Tracking as Stabilization

Condider two di�erent control problems:

Problem 16.1 (Tracking problem) Design the admissible control action
� (�) in such a way that the trajectories � (�) of the considered dynamic model

�� (�) = � (� (�) � �) + � (� (�) � �)� (�) � � (0) = �0�

� (�) � R�� � (�) � R�

��
� (16.1)

follows the intended way to proceed

��� (�) = � (�� (�) � �) � �� (0) = ��0�

�� (�) � R�

��
� (16.2)

as close as possible. Note that the nonlinear term � (� (�) � �) may include
an external perturbation as well.

Problem 16.2 (Stabilization problem) Design the control action � (�)
which stabilizes the trajectories � (�) of the system (16.1) in the origin, that
is, providing the property

� (�)� 0 when ���	 (16.3)

Introduce now the tracking error variable

�(�) := � (�)� �� (�) �

which dynamics is governed by the following di�erential equation

�� (�) = � (� (�) � �) + � (� (�) � �)�� � � (�� (�) � �) =

� (� (�) + �� (�) � �) + � (� (�) + �� (�) � �)� (�)� � (�� (�) � �) �

implying

�� (�) = 
 (� (�) � �) +� (� (�) � �)��� �(0) = �0 = �0 � ��0 (16.4)

with

 (� (�) � �) := � (� (�) + �� (�) � �)� � (�� (�) � �) �

� (� (�) � �) := � (� (�) + �� (�) � �) 	
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Summary 16.1 It is easy to see that the tracking problem (16.1) of the
system (16.1) - (16.2) may be treated as the stabilization problem
(16.2) of the system (16.4).

So, below without loss of generality we will consider only the stabilization
problem (16.2) of the plant

�� (�) = � (� (�) � �) + � (� (�) � �)� (�) � � (0) = �0�

� (�) � R�� � (�) � R�� � � 0�

��
� (16.5)

keeping in mind that the general tracking problem (16.1) may be converted
in the �rst one if instead of the state variable � (�) to work with the tracking
error variable �(�).

16.2 Desired dynamics in the state space

The SMC approach’s major characteristics are as follows:

• the realization of the dynamics of the controlled plant in two steps,

- the �rst of which is to reach a desired dynamics in �nite time even
if the model of the considered plant is not completely known,

- and the second of which is the adequate selection of the desired
dynamics;

• the use of a discontinuous feedback as the main instrument providing
the robustness property for the controlled system at the �rst step of
the control process.

Introduce the auxilary variable � := � (�� �) � R�, often known as the
"sliding mode variable," which is independent of any plant features (16.5).
Only the appropriate dynamics properties are de�ned, which corresponds to
the condition when

� (�� � (�)) = 0 for all � � �0 � 0� (16.6)

where �0 denotes the start of the desired dynamcs. Let us consider some
examples of sliding mode variables.
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Example 16.1 (Simplest stability property) For the plant

�� (�) = � (� (�) � �) + � (� (�) � �)� (�)

the sliding mode variable may be selected as

� = �	 (16.7)

Example 16.2 (Models with 2-nd derivative) For the plant

�̈ (�) = � (� (�) � �� (�) � �) + � (� (�) � �)� (�) �

represented as

��1 (�) = �2 (�) � �1 (�) = � (�) �

��2 (�) = � (�1 (�) � �2 (�) � �) + � ((�1 (�) � �2 (�) � �) � �)� (�) �

��
�

the sliding mode variable may be selected as

� = �2 + �1 (16.8)

with the matrix  � R�×� providing the stability property � (�) � 0 for the
dynamic equation

�� (�) + � (�) = 0.

Example 16.3 (Models with �-th derivative) For the plant

�(�) (�) = �
¡
� (�) � �� (�) � 			� �(��1) (�) � �

¢
+

�
¡
� (�) � �� (�) � 			� �(��1) (�) � �

¢
� (�) �

represented as

��� (�) = ��+1 (�) � �1 (�) = � (�) � � = 1� 			��� 1�

��� (�) = �
¡
� (�) � �� (�) � 			� �(��1) (�) � �

¢
+

�
¡
� (�) � �� (�) � 			� �(��1) (�) � �

¢
� (�) �

������
�����

the sliding mode variable may be selected as

� =
�X
�=1

���� (16.9)



16.3. ODE with Discontinuous Right-Hand Side 233

with the parameters �� providing the stability property � (�) � 0 for the
dynamic equation

���
(�) (�) + ���1�(��1) (�) + 			+ �1� (�) = 0,

or, in other words, such that the polynomial

� (�) = ���
� + ���1���1 + 			+ �1

would be Hurwitz (stable).

Example 16.4 (Integral sliding variable) For the plant

�� (�) = � (� (�) � �) + � (� (�) � �)� (�)

the sliding mode variable may be selected also as

� = � (� (�) � � (�) � �) �

� (�) :=
�R

�=�0

� (� � � (�)) ��

����
���

(16.10)

containing the integral � (�) which includes the prehistory of the desired dy-
namics step.

Remark 16.1 In light of the above arguments, the value k�k may be seen
as the distance between the intended and the current dynamics.

16.3 ODE with Discontinuous Right-Hand Side

In this lecture we will follow [1] and [6]. For the simplicity we also will use
the following abbreviation:

- ODE meaning an ordinary di�erential equation,

- DRHS meaning the discontinuous right-hand side.

16.3.1 Why ODE with DRHS are important in Robust Con-
trol

We shall provide several compelling reasons for continuing our investigation
of ODE with DRHS in section. Let’s start with the simplest scalar example,
which is the following basic scalar ODE with a�ne (linear) control, that is:
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��(�) = � (�(�)) + �(�)� �0 is given, (16.11)

where �(�)� �(�) � R are interpreted here as the state of the system (16.11)
and, respectively, the control action applied to it at time � � [0� � ]. The func-
tion � : R �� R is a Lipschitz function satisfying the, so-called, Lipschitz
condition, that is, for any �� �0 � R

¯̄
� (�)� �

¡
�0
¢¯̄ � �

¯̄
�� �0

¯̄
� 0 � � ��	 (16.12)

Problem 16.3 Let us try to stabilize this system at the point �� = 0 using
the feedback control

� := � (�) (16.13)

and considering the following informative situations:

1) Case 1: the Lipschitz constant � is exactly known and �(0) = 0 (see
Fig.16.1);

Figure 16.1: A function with the property �(0) = 0	

2) Case 2: it is only known that the function � (�) is bounded as (see
Fig.16.2)

|� (�)| � �0 + �+ |�| � �0 ��� �+ �� (16.14)

(this inequality is assumed to be valid for any � � R and admits that
�0 6= 0).
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Figure 16.2: A function with �0 6= 0	

There are two possibilities to do that:

- to use any continuous control, namely, take � : R �� R as a con-
tinuous function of �, i.e., � � ;

- to use a discontinuous control which will be de�ned below.

Case 1: �(0) = 0

Evidently that at the stationary point �� = 0 any continuous control �(�) :=
� (�(�)) should satisfy the following identity

� (0) + � (0) = 0 (16.15)

Taking into account that � (0) = 0, this may be ful�lled if we use, for
example,

� (�) := ���� � � 0 (16.16)

impliying

��(�) = � (�(�))� ��(�)
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and, as the result, for � (�) =
1

2
�2

�� (�(�)) = �(�) ��(�) = � [� (�(�))� ��(�)] =

�2�� (�(�)) + �(�)� (�(�)) � �2�� (�(�)) + |�(�)| |� (�(�))| =

�2�� (�(�)) + |�(�)| |� (�(�))� �(0)| �

�2�� (�(�)) + |��|� |�(�)� 0| = �2 (� � �)� (�(�))

Taking � a little bit more than �, namely,

� = �+ �� � � 0�

we get
� (�(�)) = � (�(0))���� �

��� 0	

Conclusion 16.1 So, in this case 1 the continuous control (16.16), for ex-
ample, linear control with a large enouth gain parameter solves the stabiliz-
ation problem (16.3).

Case 2: |� (�)| � �0 + �+ |�| � �0 6= 0	
In this case we have

�� (�(�)) = �(�) ��(�) = �(�) [� (�(�)) + � (�(�))] �

|�(�)| |� (�(�))|+ �(�)� (�(�)) �

(�0 + �+ |�(�)|) |�(�)|+ �(�)� (�(�)) 	

������
�����

(16.17)

a) Select � (�) as before in (16.16):

� (�) := ���� � � �+ � 0	

From (16.17) we get

�� (�(�)) � (�0 + �+ |�(�)|) |�(�)| � ��2(�) =

�2 (� � �+)� (�(�)) + �0
p
2� (�(�) =

�2 (� � �+)
p
� (�(�))

μp
� (�(�))� �0�

2 (� � �+)

¶
� 0
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if p
� (�(�)) =

|� (�)|�
2

�
�0�

2 (� � �+)

or equivalently,

|� (�)| � �0�
2 (� � �+)

	 (16.18)

This means that when �0 6= 0 we have convergence property �� (�(�)) �

0 only outside of the sphere of the radius
�0�

2 (� � �+)
and inside of

this sphere trajectories do not converge to the origin.

b) Select now

� (�) = ��� (�)��sign (� (�)) � � � 0� � � 0� (16.19)

where

sign (�) :=

��
�

1 if � � 0
�1 if � � 0

� [�1� 1] if � = 0
(16.20)

(see Fig.16.3).The use of (16.19) in (16.17) leads to the following dif-

Figure 16.3: Signum function.

ferential inequality:

�� (� (�)) � (�0 + �+ |� (�)|) |� (�)|+ � (�)� (� (�)) =

�0 |� (�)|+ �+�2 (�)� ��2 (�)�� |��|
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Selecting � � �+ (the "high-gain proportional control") and taking

� = �0 + � � 0�

we get

�� (��) � ��2�p� (��)�

2
³p

� (��)�
p
� (�0)

´
� ��2���

0 �p2� (��) = |��| �
p
2� (�0)� �� = |�0| � ��

This means that in the considered informative situation the "high-
gain proportional control" together with a discontinuous controller
solves the stabilization problem in �nite time

��	
�� =
|�0|
�

. (16.21)

Conclusion 16.2 As it follows from the considerations above, the discon-
tinuous (in this case, sliding-mode) control (16.19) can stabilize the
class of the dynamic systems (16.11), (16.12), (16.14) in �nite time
(16.21) without the exact knowledge of its model. Besides, the reaching
phase may be done as small as you wish by the simple selection of the
gain parameter � in (16.21). In other words, the discontinuous control is
robust with respect to the presence of uncertainties in the descrip-
tion of the model (16.11) which means that it is capable to stabilize a wide
class of "black/grey-box" systems. Pure continuos control can not do that.

Remark 16.2 Evidently, that using such discontinuous control, the traject-
ories of the controlled system can not stay in the stationary point �� = 0
since it arrives to it in �nite time but with a nonzero rate, namely, with ���
such that

��(�) =

½
� (0) + �0 if �(�) �� +0
� (0)� �0 if �(�) �� �0 �

that provokes the, so-called, "chattering e�ect" (see Fig.16.4). Simple
engineering considerations show that some sort of smoothing (or, low-pass
�ltering) may be applied to keep dynamics close to the stationary point �� =
0.
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Figure 16.4: The chattering e�ect.

Remark 16.3 Notice that when �(�) = �� = 0 we only know that

��(�) � £� (0)� �0� � (0) + �0
¤

(16.22)

This indicates that we are dealing with a di�erential inclusion (rather
than an equation) (16.22). As a result, we must de�ne what a mathematic-
ally valid solution of a di�erential inclusion is, as well as what it is.

All these questions, arising in the remarks above, will be considered be-
low in details and be illustrated by the corresponding examples and �gures.

16.3.2 ODE with DRHS and di�erential inclusions

General requirements to a solution

As it is well known, a solution of the di�erential equation

��(�) = � (�� �(�)) (16.23)

with a continuous right-hand side (RHS) is a function �� which has a deriv-
ative and satis�es (16.23) everywhere (more exactly, almost everywhere) on
a given interval time-interval. This de�nition is not, however, valid for DE
with DRHS since in some points of discontinuity the derivative of �(�) does
not exists. That’s why the consideration of DE with DRHS requires a gen-
eralization of the concept of a solution. Anyway, such generalized concept
should necessarily meet the following requirements:
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- For di�erential equations with a continuous right-hand side the de�nition
of a solution must be equivalent to the usual (standard) one.

- For the equation ��(�) = �(�) the solution should be the functions �(�) =R
� (�) ��+ � only.

- For any initial data � (�0) = ����� within a given region the solution �(�)
should exist (at least, locally) for any � � �0 and admit the possibility
to be continued up to the boundary of this region or up to in�nity
(when (�� �)��).

- The limit of a uniformly convergent sequences of solutions should be a
solution too.

- Under the commonly used changes of variables a solution must be trans-
formed into a solution.

The de�nition of a solution

Here we follow [5] and [6].

De�nition 16.1 A vector-valued function � (�� �), de�ned by a mapping � :
R × R� � R

, is said to be piecewise continuous in a �nite domain
G 	 R�+1 if G consists of a �nite numbers of a domains G� (� = 1� 			� �), i.e.,

G =
�[

�=1

G�

such that in each of them the function � (�� �) is continuous up to the bound-
ary

M� := Ḡ�\G� (� = 1� 			� �) (16.24)

of a measure zero.

The most frequent case is the one where the set

M =
�[

�=1

M�

of all discontinuity points consists of a �nite number of hypersurfaces

0 =  � (�) � 1� � = 1� 			���

where  � (�) is a smooth function.
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De�nition 16.2 The setM de�ned as

M = {� � R� |  (�) = ( 1 (�) � 			�  � (�))| = 0} (16.25)

is called a manifold in R�. It is referred to as a smooth manifold if

 � (�) � 1� � = 1� 			��.

Now we are ready to formulate the main de�nition of this section.

De�nition 16.3 (A solution in the Filippov’s sense [6].) An absolutely
continuous on [�0� �� ] function �� (which can be represented as a Lebesque
integral of another function) satisfying

��(�) � F (�� ��) (16.26)

almost everywhere on [�0� �� ], where the set F (�� �) is the smallest convex
closed set containing all limit values of the vector-function � (�� ��)
for (�� ��) !� M, �� � �, � = const, is referred to as a solution of the
di�erential inclusion (16.26) in the Filippov’s sense

Remark 16.4 The set F (�� �)
1) consists of one point � (�� �) at points of continuity of the function

� (�� �);

2) is a segment (a convex polygon, or polyhedron), which in the case when
(�� �) � M� (16.24) has the vertices

�� (�� �) := lim
(����)�G�� ����

� (�� ��) 	 (16.27)

All points �� (�� �) are contained in F (�� �), but it is not obligatory that
all of them are vertices.

Example 16.5 For the scalar di�erential inclusion

��(�) � �sign (�(�))
the set F (�� �) is as follows (see Fig.16.5):
1. F (�� �) = �1 if � � 0;
2. F (�� �) = 1 if � � 0;
3. F (�� �) = [�1� 1] if � = 0.
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Figure 16.5: The RHS of the di�erential inclusion ��(�) = �sign (�(�)) 	


