
Lecture 15

Systems with Sampled-Data
and Quantized Output

The approach for resilient feedback designing is provided for a wide range of nonlin-
ear systems with internal uncertainty as well as external constrained disturbances.
The associated BMI’s, which are demonstrated to be reduced to the system of
LMI’s, describe the class of stabilizing dynamic feedbacks with a speci�ed linear
structure. Under a set of speci�ed linear matrix constraints, the optimal parameters
of the feedback controllers actualize the matrix solution to conditional optimization
problems. The normal MATLAB packages are used to address this optimization
issue. The recommended approach’s viability is demonstrated by numerical ex-
amples.

15.1 Sampling and quantization

The control community has seen a revived interest in phenomena that are
intrinsic to the digital implementation of continuous-time control systems,
such as sampling and quantization, spurred by increasing applications in
networked control systems [22-24]. A signi�cant line of study in this �eld
integrates information-theoretical components of the networked control issue
(such as channel capacity) and tries to develop a theory that is comparable
to the well-known mathematical theory of communication [25]. Following
this path has yielded some interesting outcomes. For example, it is now feas-
ible to connect the absolute magnitude of a system’s unstable eigenvalues
to the minimal channel capacity necessary to stabilize it [26-28]. While the-
oretically fascinating, the majority of these �ndings are restricted to linear
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208 Lecture 15. Systems with Sampled-Data and Quantized Output

systems thus far. The topic is framed in a stochastic framework, with the
coding and decoding components of the communication channel receiving
special attention (see [29] for a coding scheme).

Depending on whether quantization in�uences the control or output sig-
nals, quantization can be viewed as deterministic noise or deterministic per-
turbation. To deal with the quantization problem, a robust-control tech-
nique, such as �� [30] or the sector bound [31], can be used. Again, the
majority of the �ndings obtained with this method are restricted to linear
systems. In this regard, the present lecture can be seen as an extension of the
work presented in [32] to the case nonlinear models when quantization phe-
nomena are present. Notice that the same problem has been considered in
[33] where the feedback has built using the state estimates generated by the
Luenberger-like �lter. Here we follow [1], [34] and considere the designing
of robust full-order dynamic feedback as in lecture 13.

15.2 System Description and problem formulation

Consider the nonlinear system

��(�) = �(�� �(�)) +��(�) + 	� (�) (15.1)

where �(�) � R
�� �(�) � R

� (
 � �) and 	� (�) � R
� are, respectively,

the state vector, control input and perturbation at time � � 0. We use the
following model to describe a noisy, sampled and quantized output �(�):

�̃(�) = 
�(�) + 	� (�) (15.2)

�̄(�) =
X
�

�̃(��)� (� � [��� ��+1)) (15.3)

� (�) = � (�̄(�)) (15.4)

The vector 	� (�) � R
� in (15.2) is the deterministic noise. The symbol

� (� � [��� ��+1)) in (15.3) means thecharacteristic function of the time inter-
val [��� ��+1), i.e.,

� (� � [��� ��+1)) =
½
1 if � � [��� ��+1)
0 if otherwise�

� � = 0� 1� 2� ���; �0 = 0�

Thus, �̄(�) : R+ � R
� is a piecewise constant function which is obtained

by sampling and holding �̄(�) at the discrete instants ��. The actual system
output at time � is �(�) � R�, and is obtained by quantizing the sampled
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signal �̄(�). Formally, let � � R
� be a countable set of possible output

values. Then, � : R� � � in (15.4) is de�ned as a projection operator , i.e.,
as an operator that satis�es

� � � (�̄(�)) � � (�̄(�)) �

The image of � is a discrete subset of R�. For example, each component
��(�) after the projection may take its values on the set of �xed points

n
�
(1)
� � �

(2)
� � ���

o

as they are depicted in Fig.15.1.

Figure 15.1: Sampled and quantized output signal.
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Notice that from (15.2) - (15.4) it follows that for all � � [��� ��+1)

� (�) = � (�̄(�)) = �
¡

�(��) + 	� (��)

¢
= 
�(�) + 	� (�)+

�
¡

�(��) + 	� (��)

¢	 £
�(�) + 	� (�)¤+

�(��) + 	� (��)	

¡

�(��) + 	� (��)

¢
=


�(�) + 	� (�)+

�
¡

�(��) + 	� (��)

¢	 ¡
�(��) + 	� (��)
¢| {z }

��0 (	
	�)

+


�(��) + 	� (��)	
£

�(�) + 	� (�)

¤| {z }
��00(	
	�)

�

and hence, the output signal � (�) may be represented as

� (�) = 
�(�) + 	� (�) + �� (�� ��) (15.5)

where

�� (�� ��) = ��
0 (�� ��) + ��00 (�� ��) �

��0 (�� ��) := �
¡

�(��) + 	� (��)

¢	 £
�(�) + 	� (�)
¤
�

��00 (�� ��) := 
 [�(��)	 �(�)] +
£
	� (��)	 	� (�)

¤
�

����
��� (15.6)

Here ��0 (�� ��) may be treated as an error of quantization, and ��00 (�� ��)
as an error of sampling.

15.3 Basic Assumptions

Let us now formulate our basic assumptions.

(1) The perturbation and noise are unknown but bounded. More precisely,
there are known positive de�nite matrices �� � R�×� and �� � R�×�
such that

2 k	� (�)k2��
+
°°	� (�)°°2��

� 1 (15.7)

(here k·k��
and k·k��

are weighted norms given by �� and ��.
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(2) The function � : R+ × R� � R
� is also supposed to be unknown but

satis�es the quasi-Lipschitz bound

k� (�� �)	��k2� �
1

2

³
� + k�k2�

´
for all (�� �) � R+ ×R� (15.8)

where � � 0 is a scalar and � � 0 and � are known (�×�)-dimensional
matrices.

(3) The pair (���) is controllable and (
��) is observable.

(4) The sampling intervals need not be regular, but there exists a maximum
sampling interval

� := max
�
(��+1 	 ��) � ��+1 � ��� (15.9)

(5) The quantization error is bounded, i.e., the positive scalar

� := max
�̄�R�

k� (�̄)	 � (�̄)k2��
(15.10)

is �nite.

Notice that (15.8) is not restrictive and comprises a large class of un-
known nonlinear functions. De�ning the auxiliary function

��(�� � (�)) := 	� (�) + � (�� � (�))	�� (�) (15.11)

we can rewrite (15.1) and (15.2)—(15.4) in the quasi-linear format

��(�) = �� (�) +��(�) + ��(�� � (�))�

�(�) = 
�(�) + 	� (�) +�� (�� ��) � � � [��� ��+1)

��
� (15.12)

Remark 15.1 The assumption 3, given above, then becomes to be natural.
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15.4 Feedback Structure

The proposed feedback designing is used here in combination with the clas-
sical full-order linear dynamic output controllers (see lecture 13) given by

�(�) = 
��� (�) +���(�)�

��� (�) = ���� (�) +���(�)�

�� (�) = ��0�

������
�����

(15.13)

where
�� � R�� �� � R�×�� �� � R�×�� 
� � R�×��

The control design associated with (15.13) is completely de�ned by a
selection of the matrix

� :=

�
�� 
�

�� ��

¸
� R(�+�)×(�+�)� (15.14)

We call � the dynamic controller matrix . Introducing the extended vectors

�(�) :=
¡
�| (�) �|� (�)

¢| � R2��
� (�� ��) :=

¡
�|�(�� � (�)) 	� (�) �|� (�� ��)

¢| � R�+2�
��
� (15.15)

we can represent the closed-loop realization of (15.12) under (15.13) as

��(�) =

�
�+���
 �
�

��
 ��

¸
� (�) +

�
��×� ��� ���

0�×� �� ��

¸
� (�� ��)

or, equivalently, with �(0) = (�0� ��0) and for any� � [��� ��+1)

��(�) = [�0 +�0�
0] � (�) + [�0 +�0��0] � (�� ��) (15.16)

where

�0 =

�
� 0�×�
0�×� 0�×�

¸
� �0 =

�
� 0�×�
0�×� ��×�

¸
�


0 =

�

 0�×�
0�×� ��×�

¸
�

�0=

�
��×� 0�×� 0�×�
0�×� 0�×� 0�×�

¸
� �0=

�
0�×� ��×� ��×�
0�×� 0�×� 0�×�

¸
�

��������
�������

(15.17)
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15.5 Stability Analysis

15.5.1 The Lyapunov - Krasovskii functional and its deriv-
ative

Since sampling entails delays, instead of a regular Lyapunov function let us
use a Lyapunov - Krasovskii functional. More precisely, let C0 ¡R�R2�¢ be
the space of all continuous functions of mapping R into R2�, di�erentiable
almost everywhere; let matrices � � 0 and  � 0 be (2�× 2�)-dimensional
matrices and let ! � 0 be a scalar. Following [1], propose the functional
" : R× C0 ¡R�R2�¢� R+, de�ned as

" (�� � (·)) := �| (�) � (�) + �

0Z

=��

	Z
�=	+


#�(��	) ��| ($)� �� ($) %$%&� (15.18)

Direct calculation of its time-derivative gives

�" (�� � (·)) =
2�| (�) �� (�)	 !�

0R

=��

	R
�=	+


#�(��	) ��| ($)� �� ($) %$%&

+�
0R


=��
�
�	

	R
�=	+


#�(��	) ��| ($)� �� ($) %$%& =

2�| (�) �� (�)	 !�
0R


=��

	R
�=	+


#�(��	) ��| ($)� �� ($) %$%&

+�
0R


=��
��| (�)� �� (�) %& + �

0R

=��

#�
 ��| (�+ &)� �� (�+ &) %&

= 2�| (�) �� (�)	 !�
0R


=��

	R
�=	+


#�(��	) ��| ($)� �� ($) %$%&

+�2 ��| (�)� �� (�)	 �
	R

�=	��
#�(��	) ��| ($)� �� ($) %$

�������������������������
������������������������

(15.19)

By adding and subtracting the term !�| (�) � (�) to the right-hand side of
(15.19) we get

�" (�� � (·)) = 2�| (�) �� (�) + !�| (�) � (�)	 !" (�� � (·))

+�2 ��| (�)� �� (�)	 �
	R

�=	��
#�(��	) ��| ($)� �� ($) %$

����
��� (15.20)
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Then using the upper estimate

	�
	R

�=	��
#�(��	) ��| ($)� �� ($) %$ � 	#���

	R
�=	��

��| ($)� �� ($) %$ �

	#���
	R

�=	�max
�
(	�+1�	�)

��| ($)� �� ($) %$ � 	#���
	R

�=	�(	�+1�	�)
��| ($)� �� ($) %$

= 	#���
	R

�=	�+	�	�+1
��| ($)� �� ($) %$

	�	�+1
= 	#���

	R
�=	�

��| ($)� �� ($) %$

and the Jensen’s inequality (for details see Theorem 16.30 in [5])

	R
�=	�

��| ($)� �� ($) %$ =
	R

�=	�

¡
�1�2 �� ($)

¢|
�1�2 �� ($) %$ =

	R
�=	�

°°�1�2 �� ($)°°2 %$ �
°°°°° 	R
�=	�

�1�2 �� ($) %$

°°°°°
2

=

Ã
	R

�=	�

�� ($) %$

!|
�

Ã
	R

�=	�

�� ($) %$

!
= [� (�)	 � (��)]

| � [� (�)	 � (��)]

valid for any given � (·) � C0 ¡R�R2�¢, � � 0, ! � 0 and � � 0, from the
identity (15.20) we derive the following di�erential inequality:

�" (�� � (·)) � 2�| (�) �� (�) + !�| (�) � (�)	 !" (�� � (·))

+�2 ��| (�)� �� (�)	 #��� [� (�)	 � (��)]
| � [� (�)	 � (��)] �

which may be represented as

�" (�� � (·)) � 	!" (�� � (·)) + '|1 (�)(1'1 (�) � (15.21)

where

'1 (�) =

�
��	

� (�)
�� (�)

	R
�=	�

�� ($) %$



��� =

�
	 � (�)

�� (�)
� (�)	 � (��)



� (15.22)
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and

(1 =



� !  02�×2�

 �2� 02�×2�
02�×2� 02�×2� 	�#����

�
� � (15.23)

15.5.2 Descriptor form

Now we will re�ne the bound given in (15.21) by restricting �(�) to the set
of solutions of (15.16). To do so, we follow the idea presented in [35, 36]
which, originally devised for systems in descriptor form, consists in adding
a term (the descriptor term) to the expression (15.21) for �" (�� � (·)). The
descriptor term has to be zero for any solution �(�) of the system. In our
case, we will add the term

D (�� � (·)) :=

2 [�|(�)��+ ��
|(�)��] [(�0+�0�
0) � (�)+ (�0+�0��0) � (�� ��)	 ��(�)] = 0�

where �� and �� are (2�× 2�) matrices. Obviously, D is zero along the
solutions of (15.16). As the result we obtain

�" (�� � (·)) � 	!" (�� � (·)) + '|1 (�)(1'1 (�) +D (�� � (·))

= 	!" (�� � (·)) + �| (�� ��)�� (�� ��) + '| (�)(2' (�)

��
� (15.24)

with

' (�) =
¡
'|1 (�) �| (�� ��)

¢| � R� � � = 7�+ 2)�

� =



� �� 0 0
0 �� 0
0 0 ��

�
�

and
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(2 =

�����

(
(1
1)
2 (

(1
2)
2 0 (

(1
4)
2³

(
(1
2)
2

´|
(
(2
2)
2 0 (

(2
4)
2

0 0 	�#���� 0³
(
(1
4)
2

´| ³
(
(2
4)
2

´|
0 	�

�
����� �

(
(1
1)
2 = ! +�� (�0+�0�
0)+
(�0+�0�
0)

| �|� � R2�×2��
(
(1
2)
2 =  +�� (�0+�0�
0) � R2�×2��

(
(1
4)
2 = �� (�0+�0��0) � R2�×(�+2�)
(
(2
2)
2 = �2�	��	�|� � R2�×2��

(
(2
4)
2 = �� (�0+�0��0) � R2�×(�+2�)�

�������������������������
������������������������

(15.25)

Recall that
�(�) =*�(�)�* :=

£
��×� 0�×�

¤
(15.26)

so that

k�(�)k2��
= �| (�) [*|��* ] �(�)�

��00 (�� ��) := 
 [�(��)	 �(�)] +
£
	� (��)	 	� (�)

¤
= 	
* [�(�)	 �(��)] +

£
	� (��)	 	� (�)

¤
�

Notice also that by the assumptions (1) and (2), relations (15.6) and
(15.26) becomes

�| (�� ��)�� (�� ��) = k� (�� ��)k2� = k	� (��)k2��
+

°°	� (��)°°2��
+ k�� (�� ��)k2��

� 2 k	� (��)k2��
+

2 k� (�� � (�))	��k2��
+
°°	� (��)°°2��

+ k�� (�� ��)k2��

� + + �| (�) [*|��* ] �(�)+

[� (�)	 � (��)]
| [4*|
|��
* ] [� (�)	 � (��)]

����������������
���������������

(15.27)

with
+ = 9 + � + 2�� (15.28)
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Finally, substituting (15.27) into (15.24) implies

�" (�� � (·)) � 	!" (�� � (·)) + + + '| (�)(' (�) (15.29)

with

( =(2 +



���
*|��* 0 0 0

0 0 0 0
0 0 4*|
|��
* 0
0 0 0 0

�
���. (15.30)

15.6 Main Result

Now we are ready to formulate the main result of this paper, concerning the
parametrization of all full-order dynamic feedbacks with the parameter �
which guaranty the boundedness of any possible trajectory of the considered
dynamic system closed by this feedback.

Theorem 15.1 Under the assumptions (1)—(5), given above, the control
system (15.12), closed by the dynamic feedback (15.13) with the parametric
matrix �, provides the boundedness of all possible trajectories,which asymp-

totically tend to the attractive ellipsoid E
μ
0�
+

!
 

¶
� if there exist positive

scalar !, matrices �� and ��, and a positive de�nite matrix  =  | � 0
satisfying the matrix inequality

( =( ( ��������� !) , 0 (15.31)

where ( is de�ned by (15.30).

Proof. It follows directly from (15.29) if take into account (15.31) and
obtain

�" (�� � (·)) � 	!" (�� � (·)) + +�

which implies

" (�� � (·)) � +

!
+

�
" (0� � (0))	 +

!

¸
#��	�

Tending ��
 leads to

lim sup
	��

�| (�) � (�) � lim sup
	��

" (�� � (·)) � +

!
�
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or, equivalently, to

lim sup
	��

�| (�)

μ
!

+
 

¶
� (�) � 1�

Theorem is proven.

15.7 Matrix Inequality Simpli�cation

Introduce the following orthogonal matrix

-� � R�×�� -�-
|
� = ��×�� -�� =

μ
0(���)×�
��×�

¶
(15.32)

The corresponding matrix -� can be easily found in MATLAB using
the function null. For given matrix * the function null(*) returns the
matrix that columns are orthonormal basis of the null space of the matrix
* , namely,

-� =

μ
��

�0

¶
�

where
�� = [null(�|)]| � �0 =

h
null(��)

i|
�

Since the descriptive multipliers �� and ���may be any (2�× 2�) - matrices,
select them as

�� = �� =  -̃�� (15.33)

where

-̃� :=

�
-� 0�×�
0�×� ��×�

¸
� R2�×2�

satisfying

-̃�-̃
|
� = �2�×2�� -̃��0 =

�
-� 0�×�
0�×� ��×�

¸ �
� 0�×�
0�×� ��×�

¸

=



�
�
0(���)×�
��×�

¸
0�×�

0�×� ��×�

�
� = � 0(���)×(�+�)

�(�+�)×(�+�)

¸
�

Then for

 =

�
 1 0(���)×(�+�)

0(�+�)×(���)  2

¸
�

 1 � R(���)×(���)�  2 � R(�+�)×(�+�)
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it follows

 -̃��0�
0 =

�
0(���)×(�+�)

� 
0

¸
� � 
0 � R(�+�)×(�+�)

 -̃��0��0 =

�
0(���)×(�+�)

� �0

¸
� � �0 � R(�+�)×(�+�)

where
� =  2�� (15.34)

and de�ning

. =  =

�
.1 0(���)×(�+�)

0(�+�)×(���) .2

¸
� .1 =  1� .2 =  2� (15.35)

as the result, for the transforming matrix

/ = diag
³
-̃�� �2�×2�� �2�×2�� �(�+2�)×(�+2�)

´
we get

(�̃�
(.�� | !) := /(/ | =



������

(
(1
1)

�̃�
(
(1
2)

�̃�
0 (

(1
4)

�̃�³
(
(1
2)

�̃�

´|
(
(2
2)

�̃�
0 (

(2
4)

�̃�

0 0 (
(3
3)

�̃�
0³

(
(1
4)

�̃�

´| ³
(
(2
4)

�̃�

´|
0 (

(4
4)

�̃�

�
������ , 0

� (15.36)

where

(
(1
1)

�̃�
= !. +*|��* +.-̃��0 +�|0

³
-̃�

´|
.+�

0(���)×(�+�)
� 
0

¸
+

�
0(���)×(�+�)

� 
0

¸|
�

(
(1
2)

�̃�
= .

³
�2�×2� + -̃��0

´
+

�
0(���)×(�+�)

� 
0

¸
�

(
(1
4)

�̃�
=(

(2
4)

�̃�
= .-̃��0 +

�
0(���)×(�+�)

� �0

¸
� (

(4
4)

�̃�
= 	��

(
(2
2)

�̃�
= �2�	.-̃� 	

³
-̃�

´|
.� (

(3
3)

�̃�
= 	�#����+ 4*|
|��
*�

Notice that (15.36) is a linear form with respect to the matrix variables .
and � .
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15.8 Optimal Feedback Parameters

If an attractive ellipsoid E (0�  �		�) with

 �		� =
+

!
 

has the smallest size (we mean the trace of the associated ellipsoid matrix
 �1�		�), then it seems to be natural to call the corresponding parameters
�� of the designed robust feedback optimal. Introducing the upper matrix
estimate

� � .�1�

that can be equivalently represented (by the Schur inequality) as�
� �2�×2�

2�×2� .

¸
� 0� (15.37)

we may de�ne the optimal parameters �� of the dynamic controller as the
solution to the following matrix optimization problem

tr

μ
!

+
.�1

¶
� tr

μ
!

+
�

¶
� min

��0
 ��0
 �
 ��0
(15.38)

subject the matrix constraints (15.36) and (15.37)

(�̃�
(.�� | !) , 0�

�
� �2�×2�

�2�×2� .

¸
� 0

such that if .� and � � are the solutions of the problem (15.38), then by
(15.34) and (15.35)

�� = (.�2 )
�1 � �� (15.39)

15.8.1 Example

Example 15.1 Consider the dynamic plant governed by

��1 (�) = 0�5
p|�1 (�)|sign (�1 (�)) + �+ 	1 (�) �

��2 (�) = sin (�1 (�)) + �+ 	2 (�) �

� (�) = �1 (�) + 0�15 sin (5�) � � � 0

�1 (0) = 	1�5� �2 (0) = 	2

����������
���������

(15.40)
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where 	1 (�), 	2 (�) are independent “white” noise (generated by the Simulink
tool-box) with the amplitude * = 0�2, the output is quantized with interval
� = 0�05, the maximal sample-time is � = 0�2. Here in the format (15.1) -
(15.2)

� =

�	1
2

¸
� 
 =

£
1 0

¤
�

We also selected

� =

�	10 	2
	5 	2

¸
� � = 1� � = �2×2� + = 9 + � + 2� = 10�01�

and the matrix R in (15.18) as

� =



���
25 21 0 0
21 21�512 0 0
0 0 0 0
0 0 0 5�2808

�
���

As the result, we obtained
!� = 0�1562

and the solution of the optimization problem (15.38) is

.� =



���
1�1147 0 0 0
0 1�1871 0 0
0 0 1�1419 0
0 0 0 1�2971

�
��� � � � =



�	0�9016 0 	1

0�5 	1 0
0�5 0 	1

�
� �

(.�2 )
�1 =



�1�1871 0 0

0 1�1419 0
0 0 1�2971

�
� � �� =



���
1�5637 0 0 0
0 1�1594 0 0
0 0 1�6786 0
0 0 0 1�1778

�
��� �

�� = (.�2 )
�1 � � =

�
��� 
��
��� ���

¸
=



�	0�7587 0 	0�8419
0�4389 	0�8752 0
0�3861 0 	0�7733

�
� �

��� = 	0�7587� 
�� =
£
0� 	0�8419¤ � ��� =

�
0�4389
0�3861

¸
� ��� =

�	0�8752 0
0 	0�7733

¸
�

The �gurs below illustrate the process (see Figues 15.3 - 15.5) controlled
under obtained values of the feedback.
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Figure 15.2: Measurable output �(�)�
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