Lecture 14

Robust Stabilization of
Time-Delay Systems

We will look at the class of uncertain time delay affine-controlled systems where a
delay is accepted in state variables as well as the control action separately. It will
be demonstrated that the Attractive Ellipsoid Method application allows for the
creation of a feedback that enables any state trajectory of the controlled system to
be converged to an ellipsoid, whose "size" is determined by the parameters of the
applied feedback. Finally, we provide a numerical approach for calculating these
parameters that yields the "smallest" zone-convergence for all conceivable controlled
trajectories. An overview of stability conditions in terms of the Lyapunov matrix
for time-delay systems may be found in [37].

14.1 Affine systems with a delay in state variables

14.1.1 System description and problem formulation
Let us consider the time delay control system of the form

z(t) = f(x(t),z(t — 7),t) + Bu(t), (14.1)
or, in quasi-linear format,

|(t) = Az(t) + Ara(t — 7) + Bu(t) + & ((t), a(t — 7),1) | (14.2)

with the initial conditions
‘T(S> =@ (S) S € [_7-7 O] (143)

where
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192 Lecture 14. Robust Stabilization of Time-Delay Systems

x € R™ is the vector of the system state,

A, A; € R™™ are the system matrices,

u € R™ is the vector of control inputs,

B € R™ " ig the matrix of the control gains,

the pair (A, B) is controllable,

7 > 0 is the constant state time delay assumed to be known,

the vector-valued function & (z(t),z(t — 7),t), describing the unknown part
of the model, is defined as

E(x(t),x(t —71),t) = f(x(t),x(t —71),t) — Azx(t) + Ayz(t — 7),

which assumed to be bounded as

1€ (2(t), 2(t =), )]|* <
(14.4)
co+aT(t)Qua(t) +2T(t — 7)Qra(t — 7)

with the positive definite symmetric matrices Q,, Q@ € R™ "™ (sup-
posed to be given),

the matrix B has a full rank(B) = m < n.

Problem 14.1 We need to design the control action u € R™ as a linear
feedback

u=Kuz(t) + K;z(t — 1),
(14.5)

K, K, € Rmxn,

which stabilizes all possible trajectories {x(t)},~ . in some bounded region,
containing origin in the space R™, and to make this region as small as pos-
sible.
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14.1.2 Lyapunov-Krasovskii’s functional and stability ana-
lysis

Let us defined the Lyapunov-Krasovskii’s functional as follows:

Vi(x(t),t) :=aT(t)Pz(t) + j DT (5) P (s) ds,
s=i—r (14.6)

h >0, P,P; € R"™" are positive definite.

and calculate its derivative over the trajectories of the system (14.2). We
get

V (x(t),t) = 227 (t) P& (t) +aT (t) Pz (t)

t
—e Tt — )P (t—7)—h [ eMTDaT(s)Pia(s)ds
t—

s=t—7

=227T(t)P (Ax(t) + Ajz(t — 1)
+B[Ka(t)+ K x(t — 7)) + & (x(t),z(t — 7),t))

+ aT(t)Pra(t) — e "aT(t — 7Pz (t — 7)

—h ft 5T ()P (5) ds + 22T (1) PE (x(t), z(t — 7),t) .

s=t—T
This expression in new variables
x(t)
z(t) = x(t—1)
E(x(t),z(t —1),1)

can be rewritten as

P(A+ BK)+
(A+BK)P+P, P(A+BK,) P
2T (t) z (t)
(A1+BK7—)T P _eihTPI Onxn
P 0n><n _5In><n (147)

—h ft eh(s_t):ET(s)le(s)ds—l—e||§(:1:(t),:1:(t—7‘),t)|]2.

s=t—T )
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Using the upper bound property (14.4)

1€ ((t), a(t =), )|* < o +aT(O)Qu(t) + 27 (t — 7)Qr(t — 7)

we may represent (14.7) as differential inequality

. t \
V<e—h [ M5 02T (s)Prx(s)ds+
s=t—T
P(A+ BK)+
(A+BK)™P
21| +Pi+eQ, +aP P(Ai+BK-)
(Ay+BK,;)T P —e P +eQ,

(14.8)

Adding and subtracting the term oV in the right-hand side of (14.8) we get

‘ t
V<—aV+ten—(h—a) [ 5 DgT(s)Pix(s)ds

s=t—T

+ 2T (t) Wae (P, P, K, K;) 2 (t)

where
Weaen (P, P, K, K;) = \
P(A+ BK)+
;
+(ﬁli~‘%[j)"i‘ ZP P(A1+BK;)
(A1+BK.)TP = "Pi4eQ,

Now we are ready to formulate the following theorem.

(14.9)

(14.10)

Theorem 14.1 If for the given matrices P > 0, Py > 0, K, K. and posive

constants o, €, h we have

Wa,s,h (P7 P17K7 K’r) < O,h Z o,

then the following stabilization pfoperty holds:

limsupV (z (t),t) <

ECp
t—o00 o

(14.11)

(14.12)
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Proof. It follows directly from (14.9), if the conditions (14.11) are fulfilled.
u

Corollary 14.1 The attractive ellipsoid
5O(Pattr) = {33 S R2n . CUTPattrCC < 1}

for such system corresponds to the attractivity property

lim supT () Py (t) < 1,

t—o0
with (14.13)
a
Puttr = —P.
EC)

Proof. It follows from the inequality
2T (t) Px (t) <V (x(t),t)
and (14.12). m

14.1.3 Optimal feedback parameters

Following the same optimization scheme as in the previous lectures, we may
formulate the problem of feedback parameters optimization in the following
way:

€ 1 _

tr {—P } — inf

! P>0,P1>0, K, K-, a>0,6>0,h>0 (14.14)
subject to the constraints (14.11)

As usual, let us transform matrix W, 5 (P, P1, K, K;) into

WT = TTWoc,a,h (P7 P17 Ka KT) T

. P71 0Opxn .
with T' = Z1 |, which leads to
Onxn P1

P71WT11P71 P71WT 12P1_1

Wr = —1ti/ . p-1 p-lyy. . p—1 | =
P Wra P Py Wraa Py

I (A+BK)P '+ ]
P71 (A+ BK)" + (14.15)

Plp P4 (A1+BK,) P
eP1Q, Pt + P!

P (A1+BK,)T —ehmprlreplQ Pt | )
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The terms P~' P, P!, P71Q,P~! and P['Q,P; ! in the diagonal blocks
may be estimated as

ptpPt<H, P'Q.P < Hy, PIQ. P < Hs,

which by the Schur’s complement equivalently expressed as the following
matrix inequalities:

H, P! H, P! Hy P!
[ P—ll Pfl ] >0, |: P—21 Q—l ] >0, [ P_31 Q_l :| >0 (14.16)

x T

In new variables
X=PYLY=KP!' Xy=P' V1 =K,P" (14.17)

the matrix inequalities W < 0 and (14.16) looks as LMI’s:

AX + BY +
TAT TRT
Wr = )Jilﬁe?;i; AXiEBY (14.18)
XTAT+Y] BT —e "X +eH;
and
{ I;l ;((1 ]>0, [ })1(2 Q); ]>0, [ })? Q); }>0 (14.19)

So, the optimization problem (14.14) in the new variables (14.17) may be
formulated as a matrix optimization problem with LMI’s constraints:

€ .
tre—X; — inf
a X>0,X1>0,Y, Y1, H >0, Hy>0, Ho>0,0<a<h, e>0
subject to the constraints (14.18)

and (14.19)

(14.20)

If X*,Y* X; and Y™ are the solutions of the optimization problem (14.20),
then the optimal feedback parameters of the feedback stabilizer are

K*=Y*(X*)', Kr =Yy (X)) . (14.21)
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14.2 Affine systems with a delay in control actions

14.2.1 System description
Here we will consider the following time-delay system
i(t) = f (2(t),t) + Bu(t — 7) + 1 (w(t), 1), (14.22)

with external perturbations 7 (x(t),t), or, in quasi-linear format,

#(t) = Az(t) + Bu(t — ) + € (z(t), 1),
A€ R™n, B e Rm, (14.23)

§(x(t),t) := f (2(t),t) — Aw(t) +n (x(t), 1)

with the initial conditions

Let us suppose that

1€ (z(2), 1)]” < co + 2T (1) Qua(t), (14.24)

and additionally that the matrix A is Hurwitz (stable), the pair {A, B} is
controllable and the matrix B has a full rank m, i.e.,

‘rank(B) =m <n,BTB > 0. |

14.2.2 Prediction approach and unavoidable stabilization er-
ror

To stabilize the time delay control system (14.23) the prediction approach
(see [18], [19], [20], and [21]) is used. The typical prediction equation for the
system (14.23) has the form

y(t) = eATx(t) + fET e *ABu(t + s)ds. (14.25)

Obviously, knowing the control function u(t) on the time interval [t—7,t)
is required to calculate the prediction variable y(t) . This information is
expected to be acceptable and usable for control design. It is simple to verify
that the prediction variable y(t) obeys the following delay-free equation:

§(t) = Ay(t) + Bu(t) + 7€ (). (14.26)
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According to the predictor method the stabilization of the original system
(14.23) can be ensured by designing the stabilizing controller for the predic-
tion system (14.26).

Lemma 14.1 For the processes (14.23) and (14.25) the following relations
holds:

a(t+7) =y(t) + [ eT™IAE(t + s) ds. (14.27)

Proof. Using the formula for the general solution of the system (14.23) we

obtain .
z(t+71)=ea(t) + /; Tt T=9)ABy (s — T)ds+

ftHT e(H7=9)A¢ (§) ds = eATa(t)+

[° e ABu(t + s)ds + [] 7A€ (t + ) ds,

from which the equality (14.27) follows. m

This lemma describes dependence of the original system state x(¢) on the
predictor variable y(t) and the uncertain term & (z(t),t). The integral term
in the right-hand side (14.27) obviously does not depend on control inputs
and the predictor variables, but it is linear functional of & (z(¢),t). So, it
defines an unavoidable stabilization error of the system (14.23),

According to this lemma the original system state x(¢) is dependent on
the predictor variable y(t) and the uncertain term & (x(¢),¢) . The integral
term on the right-hand side evidently is independent of the predictor vari-
ables and control inputs, but it is a linear function of £ (z(t),t). As a result,
it specifies an unavoidable system stabilization error (14.23)

wr (t) == [y eT=9AE (¢ + 5) ds, (14.28)

produced by the prediction technique, namely,

z(t+7)=y(t) +ws(t).

Therefore, minimization of the attractive set for the original system (14.23)
can be provided by the design of the appropriate controller for the prediction
system 14.26.

Remark 14.1 Unfortunately, under uncertainty presence (when & (x(t),t) #
0) the property y(t) — 0 does not imply x(t) — 0. Therefore, the time delay
control system (14.23) may only be practically stabilized in some prede-
termined zone (attractive set).
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So, now our aim is to develop the predictor-based control design scheme,
which minimizes (in some sense) the attractive set of the system (14.23).
For this purpose we will use the Attactive Ellipsoid Method (AEM) as it is
described in the previous lectures.

Assume that for the system (14.26) the standard proportional feedback
controller

u(t) = Ky(t) (14.29)

is applied.

14.2.3 Attractive ellipsoid

Introduce the "energetic function"

Ve(z (t+7),y(t) = 2T (t+7) Pea (t +7) +

yT(t)Pyy(t) + B t}Teh(S_t)xT(s)Qxx (s)ds, (14.30)

s=t

0<P, eR™ 0< P, e R"™™™, >0, h>0.

Theorem 14.2 If for the system (14.23) there exist positive definite matrices
P,, P, and positive constants «, €, 3, h such that

0>W, =
[ P,LA+ATP,+ i
ol ysen + P.BK P, Onxn
(1+ 8e") Qu
P, (A+ BK)+ (14.31)
(P,BK)T (A+ BK)" P, Opscn PyefT
+alnxn
Pm On><n _EIan 0n><n
L Onxn eATTPy Onxn —elnxn |

and

145

then the property

lim supV; (z (£ + 1), y(t)) < 2002 (14.33)

t—oo

s guaranteed.
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Proof. For V (z (t + 7),y(t) we have

Vil (t+7),yt) =27 (t+7)Ppx (t+7)+
VORI + 5 ] e 00T(5)Q, (5) ds =
ct+7)\'[ Pr Opxn z(t+7)

( y(t) > [ Owin P, ] ( y(t) )*

t+7
B[ D2 (5)Qu (s) ds,
s=t

(14.34)

and calculate its derivative:

Ve(z (t+7),y(t)) =
x(t+7) "l P Onxn T(t+7) B
2( u(t) ) { O Py } ( (1) )
h tI:eh(St)mT(s)Qmm (s)ds + BexT(t + 7)Qux (t + 7) —

—BzT(t)Qu (t) =

z(t+71)\ [ PAx(t+7)+ P, BKy(t)+ P £(t+T)
? ( y(t) ) ( Py(A+ BE)y(t) + Pe™7¢ (t) > "

—hB tJfrTeh(S_t)a:T(s)Qx:c (s)ds + Be"™aT(t + 7)Qux (t +7) —
t

S=

—BaT (t)Qz (1),
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which can be represented as

Vel (t+7),y(t) =
P A+ ATP,

+5€hTQag PmBK Pm Oan
P,(A+ BK) +
T T Y AT
z(t) (P,BK) (A+ BEK)T P, Ornxen Pye 2(t)
Px 0n><n _5In><n On><n
L Onxcn eATTPy Onxcn —elpxn |

e (le@+ I+ I @I) - BaT()Qaa ()

—hp tJfrTeh( )T (8)Qzx () ds,
s=t

where
z(t+7)
y(t)
W= ¢rn
£ (1)
Using the propertry (14.24), the right-hand side of the last differential equa-
tion can be estimated as

Ve(z (t+7),y(t) <z(1)TWrz(t) )

—aVr(z (t+7),y(t) + 2eco+ (e — B) 27 () Qo (t) (14.35)

t+7
~(h—a)B [ M0t () Qu () ds

If W, <0,e < and a < h, then from (14.35) we get
Vel (t47),y(t) < — aVo(z (t+7),y(t)) + 2eco
implying (14.33). =
Corollary 14.2 In view of the inequality
2T (t+1)Pex(t+7) < Vi(z(t+71),y(t))

we may conclude that

limsupzT (t) Pyx (t) < 2005,
o

t—o00
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and, as the result,

limsupzT (¢) Porz (1) < 1,
t—o00
(14.36)
«
Por = Q_Pm
(13

14.2.4 Minimal attractive ellipsoid for the original system

Following the standard technique, used in the previous lectures, instead of
the matrix nonlinear constraint W, < 0 we may consider the equivalent
constraint

Wep :=T"W;T <0

with
P;1 OTLXTL On)(n Oan
0 P10 0
T — nxn Yy nxn nxn _ dla P717P717I 7[ .
Onxn Onxn Inxn  Onxn g[ x y nxn n><n]
Oan On)(n Oan Ian
We get

0> WT,T =
AP;Y 4+ P71AT+
Pg;l [aIan+ BKP;:L Inxn Onxn
(1+8e") Qu] P
(A+ BK) P, '+

BrPy (A BRI 0, o
+a (P’
Inxn Onxn —elnxn Onxn
Onxn eA'T Onxn —&lnxn i

In new variables
_ p-1 _ p—1 _ -1
X=P ", Y=P ", Z=KP, ",
and using the upper estimates for quadratic elements in diagonal blocks

Pl [odpwn + (14 B8e") Q2] Pt < Qu,

(P < @2
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which by the Schur’s complement can be represented as LMI’s

Q1 Pt
B 11 >0 14.37
Pt [adnxn + (14 8e") Qq (14.37)
and )
Q2 Py
= > 0, 14.38
|: Py 1 In><n ( )
we are able to conclude that W, r < V_VT,T where
WT,T =
AX + XTPQ;1 +@Q, BZ Isn Onxcn
AY + BZ+
T AT
(BZ) [AY + BZ]" + aQ,  Omn ©
Inxn On><n _Elnxn 0n><n
T
Onxn eA T Onxcn —elnxn

(14.39)
We are ready to formulate the following result.

Theorem 14.3 The optimal feedback matrixz K*, minimazing the attractive
ellipsoid Ey (Par) , s equal to

K*=2*(Y") ™, (14.40)

where Z* and Y™ are the solution of the following matrix optimization prob-
lem

_ € .
tr {Pattlr} = 2cotr {—X} — inf
Q X>0,Y>0,7,Q1>0,Q2>0,6>0,a>0

subject to LMI’s constraints

WT,T < Oa
0 N (14.41)
1
[ X [alpen+ (14 8e")Qu] 7" -0
Q2 Y
{Y Inm}”’

Proof. It follows from the estimate W, 7 < WT,T < 0, the representation
(14.36) for P, and the LMI's (14.37) and (14.38) given in new variable
X,Y. m
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14.2.5 Example and Exercise

Example 14.1 For the dynamic system
&(t) = Az(t) + Bu(t — 1) + £ (1),

(14.42)
u(t) =0 fort € [—7,0]
with
-1 2 04 0.3 )
A=| —-15 —-07 2 , B= 0 , T=0.5,
0.5 —-06 -1 1.2
(14.43)

0.0028 cos(0.6t) — 0.0879 sin(0.6t)
£(t) =

0.0499 cos(0.6t) + 0.0049 sin(0.6¢) )

design a feedback controller using the predictive approach.
Solution 14.1 [t is easy to show that the upper bound (14.24)
1€ (), D)1 < co + 2T (1) Qua(t)

is valid for
co = 0.0103, Q = Opxp-

The obtained numerical solution of the constrained optimization problem
(14.41) is

[ 0.6280 —0.2592 —0.0494
X*=| —-0.2592 0.9754 —0.2716 |,
| —0.0494 —-0.2716  0.2775 |

[ 0.5233  —0.0260 —0.0761 ]
Y*= | —0.0260 0.5073 —0.1453 |,
| —0.0761 —0.1453  0.1892

Z*=10.1072 0.0861 —01798 |
a* =07, =7 ¢"=31 h=2,

which leads to

K*=1[0.055 —0.712 —0.1952 |

and

1.2772 0 0
Potr = 0 1.2772 0
0 0 1.2772
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The states behavior (@1 (¢) @2 (t) x3(t) ) withe initial point
( 371(0):(), .’172(0):—1, 373(0):3 )

in the single and 3D-format are presented in figures 14.1 and 14.2.

Figure 14.1: Trajectories of the controlled system.

Figure 14.2: Convergence into the attractive ellipsoid.
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Exercise 14.1 For the dynamic system

#(t) = Az(t) + Bu(t — 1) + £ (t),
(14.44)
u(t) =0 fort € [—7,0]

12 3
A_<—1.5 —0.7)’ B_<1>’ 7 =02,

[ 0.0028 cos(0.6t)
(1) = < 0.0049 sin(1.1¢) )

with

(14.45)

design a feedback controller using the predictive approach.



