Lecture 12

Observer-Based Feedback
Design

12.1 State observer and the extended dynamic model

A state observer or state estimator is a system in control theory that estimates the
internal state of a given real system based on observations of the actual system’s
input and output. It’s usually computer-based, and it’s the foundation for a lot
of practical applications. Many control theory tasks, such as stabilizing a system
through state feedback, need knowledge of the system state. The physical condition
of a system cannot be known by direct observation in most circumstances. Instead,
the system outputs are used to examine indirect consequences of the internal state.

Let us consider here the system (11.1)-(11.6) with the linear feedback
designed as

u(t)= K& (t), KeR™™ (12.1)

where we use the, so called, observer state & € R", referred below to as the
state estimate, which is generated by the classical Luenberger observer [16]
having the structure

() = Az (t) + Bu(t) + Fly (t) — C& (t)), & (0) = 29, F € Rk .| (12.2)

Below we will show that the robust stabilization of the quasi-linear system
(11.1) may be realized by the application of the feedback (12.1)-(12.2) using
the Attractive Ellipsoid Method.

Problem 12.1 The main problem of this section is to design the observer-
based linear feedback control providing the boundedness of any trajectory of
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168 Lecture 12. Observer-Based Feedback Design

the system (11.1), (12.1), (12.2) within an attractive ellipsoid of the "min-
imal size", or, in other words, to find the "best” gain matrices K and F'.

Define the state estimation error e (t) as
e(t):=xz(t)—z(t). (12.3)
Then, in view of (11.3), (12.1) and (12.2), its time derivative satisfies
é(t) = (A—FCle(t) + & (t, x(t)) — F§, (L, x(t)).

Introduce the extended vector
2= ( “cf > e R, (12.4)

Obviously, it is governed by the following ordinary differential equation

(ODE)

2(t) =Az(t)+ Fw (t,x) (12.5)

where

A= 0 A—FC
. Onxn F L gm(twr)
F'_[Im —F]’ w(t,o) “(éyoﬁ,w))'

12.2 Stabilizing feedback gains K and F

P [A—i—BK FC ]

(12.6)

Our aim here is to find the control gain matrix K and the observer gain
matrix F' providing a stabilization (boundedness) of the state dynamics x (t)
as well as state estimation Z (¢) of the system (12.5) with the corresponding
attractive ellipsoid &y(Puur) in the z-space.

The following theorem gives the solution of this problem.

Theorem 12.1 If positive definite matrices X1, X2,Q, H, Ho, Hy € R™*",
matrices Y1 € R™*" Yy € R™F and positive scalars o and € satisfy the
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system of LMI’s

-(1,1) 0n><n Onxk :|
W [
i Xo =Yy
WT_ On><n Onxk T —EIan _Y2 < 07
where
(A X14+BY 1)+ T (12.7)
(AaX1_+BY1)T + eXq (Qm—ka)
W(lvl) _ e@Q+2H
o XpAg—Y 50+
€ (Q$+Qy)T XlT (X2Aa—Y20)T +
L € (Qx+Qy) +H¢c
) «
with Aa = A+ §In><n and
Q X7 } [ H I ]
-1 | >0, >0,
[ X1 (Qa: +Qy> ! Inxn X2
(12.8)
HC YQO Hy Y
|: CT}/2T X2 :| > O) |: }/2T X2 :| > O,
then the set
E0(Pastr) = {2z € R¥™ : 2T Py < 1}
with the matrix
« x-1 o
Pattr = —————P, P=| "1 12.9
" € (CO,Z’ + CO,y) |: 0 X :| ( )

is the attractive ellipsoid of the system (12.5), (11.5), (11.6), (12.1) with
the feedback control gain matriz

K=vX! (12.10)

and the observer gain matriz

F=X,'Y. (12.11)
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Proof. Define the Lyapunov function as

Pl 0n><n

Viz ::zTPz, P =
( ) |:On><n Py

} 1= diag(P1, P»),

where P > 0 is the matrix of an attractive ellipsoid has to be minimized.
Then

V=2"Tps=2"Tp [flz + Fw] =

2\ [ ATP+PA PF [ 2\
w FTp 0 w )

T sr A -
(z) [A P—i—AITDA—i—aP PF ](z>—aV—|—5||w||2§
w F*pP —el(ntk)x (ntk) w
<Z)T{ATp+pA+ap PE ](z)_av+
w FTp —€l(n1k)x (n+k) w

e(con+coy) +exT (Qr+ Qy)x

with a > 0, € > 0. Taking into account that

T
. 2z 2z
V< ( w > W (P, K,F,a,c¢) < w > —aV +e(coq +coy) (12.12)

where

ATP 4+ PA+ aP +2Q, PF
P, K, F = "
W (P, K, F,a,c¢) [ FTp —€I(n+k;)><(n+k:) 7

| Inxn | @t @y @t Qy

ITLXTL
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In the open format the matrix W (P, K, F, a, €) is as follows
W (P, K, F,a,¢) =
[ [ Pi(Aa+ BK)+ i
[Pl (Aa + BK)]T PlFC + EQ Onxn PlF
(PFC)T PQ(AQ—FC)-F ? P2 _P2F
! [Py (Aq — FO)T
0n><n PlF T
Py —PyF el (ntk)x (n+k)

We will have W < 0 if an only if Wy := TWTT < 0 for some non-singular
matrix 7'. Taking

Pt Opsn
|: 0 1>< I i :| 02n><(n+k)
T: n nv nxn
T
O(ntk)x2n T tk)yx (ntk)
we get
Wr =

T11 0 :| |: W(l’l) W(1’2) ] |: T11 0 ]
0 I(ntk)x(ntk) wEh w2 0 I(ntk)x(ntk)

[THW(M)TL Ty w2

}:

W(z’l)TH W(272)
I (Ao+BK) P 1+ T
(Ao +BEK)T P! Fe 0 P
Py (Ay—FC) + [ o }
T —
+€T11QZT1Tl

OTLXTL F T I

i PQ —PQF —€ (n+k)><(n+k) |

Notice that

Prt Qe+ Qy) (P P (Qu+@Qy)

ﬂ@m“{ (@ + Q) P! Q. + 0,

]<
Pt Qe+ Q) }

Q
[ Qe+ Q) Pt Qu+Qy
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with the upper estimate
P Qe+ Q) P <@,

if and only if by the Schur’s complement

Q (P
Z _ >0 12.13
P1 1 (Qz +Qy) 1 ( )
Using these facts, we obtain
WT < WT,
where
Wr =
r (Ao+BK) P+ T
(Ao +BEK)T P Fo
Py (A,—FC)+ Onxn F
T
(FC) [Py (Aa—FC)[T Py —PyF
H{ Q B (Qx+Qy)]
(Qu + Qy) Py Qx +Qy
Onxn  F T
i Py —PyF ~el iy xmtr) |
In new variables
X1 =P L, i=KP', Xo:=P,, Yo =PRF (12.14)
the matrix Wy looks as
7-(1,1) [ On><n X2_1Y'2 ]
_ T _
Wr = 1 T X2 Y2 <0,
On><n X2 Y2 T
X2 —Y2 —€ (n+k:)><(n+k:)
where
(A X1+BY) + —1
(AXi4BY ) + 20 2 20+eX1(Qrt@Q,)
W}l,l) = XoA,—Y o CH+
(X3 '2C0) +¢ (Qu+Q,) " XT (X2A,—YoC)T

e (Qat@y)
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T
Bilinear blocks X, 1y, C and Xy 1Y, in the quadratic form < 5] > Wr ( Z} )

correspons to the terms
2T X5 YaCe and 27X, 'Yow (12.15)
Applying A-inequality (see [5])
22Ty < aTAz + yTA Ly, (12.16)

valid for all z,y € R™ and any positive definite matrix A € R™*" (A = AT >
0), to both term in (12.15) we get

20T X5 YaCe = 2 (X;'2)T (YaCe) < 4TX; 'AX; i + eTCTY A1 ¥oCe =
T (X5 &+ € (CTY, X5 'Ys) Ce,
QZT[OW X2_1Y2}w:2<@>T[onxn XQ_IYQ](fm):
X, -V, e Xy =Yy Sy
a\" [ Xy 'vae
2( ) [ vat, ] = 207X, Vot 2T (-Y2) €,

€ _Y2§y

287Xy 1Yok, = 2 (X5 '8) TYa€, < 27X, AX 4 €, TYT A 1Y5e, V2

ATX R+ &Y XS YaE,,
Using upper estimates
X, < He R CTYT X, 'YoC < Ho € R™™, Y X, 'Yy < Hy € RF*F
and the equivalent Schur’s complements

[ e

Ho Y€ 0 Hy Y
In><n X2 ’

CTY; X2 Y2T X2

we derive

TXy WoCe < 3THE + €T Hee,

STXWYow < BTX Y€, 4+ €T (—Y2) €, <@ HE + §,TH,E, + €T (—Y2) &,
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This permits estimate Wy < Wy with Wy as in (12.7) and (12.8), which are
linear with respect to the new variables X1, Y7, Xs, Ys, H and H.. If W < 0,
from (12.12) it follows

V < —aV +e(cor+coy),

implying ‘ -
limsupV (z (t)) < > (coz+coy)

t—o00

which leads to (12.9). Theorem is proven. m

12.3 Minimization of attractive ellipsoid

To minimize the attractive ellipsoid Ey(Pgsr) of the system (12.5) we need
to resolve the following optimization problem

£
tr{ am 00x+c0y [tr {X 1}—|—tr Xg)] —
(12.17)
inf
X1>0, X2>0, Q>0, a>0, >0

subject to (12.7)-(12.8). Using the estimation from above

X t<H,
which is equivalent by the Schur’s complement to the LMI (as in (77))
H  Inxn
>0, H>0, 12.18
|: In><n X1 :| ( )

we are able to represent the problem (12.17) as follows:

tr {Popgy } = — (o + cog) [tr {H} + tr(X2)] —

_inf (12.19)
X1>0, X2>0, Y7, Yo, Q>0, H>0, Ho>0, Hy >0, a>0, >0

subject to the LMI’s constraints (12.7) and(12.8). |

As before, this matrix optimization problem (12.19) with LMI’s constraints
can be resolved using MATLAB toolboxes SeDuMi and Yalmip. If the solu-
tions of the optimization problem (12.19) are X7, X3, ¥;* and Y5, then the
optimal control and observere matrix gaines are given by

K*=vr (X)) ! (12.20)
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and the observer gain matrix

F=(Xx3)"tyy. (12.21)

12.4 Adaptive version of AEM

Consider here again the quasi-Lipschitz affine control system with the quasi-
Lipschitz state-output mapping, given by

i (t) = Az (t) + Bu (t) + £,(t, x),
z (0) =z € R, (12.22)
y(t) = Cx(t) +&,(t,2),

and controlled by the feedback (12.1)

u(t) = Kz (), Ky e R™, (12.23)

where we use the observer state £ € R"™ , generated by the Luenberger
observer (12.2) [16]

#(t) = A# (t) + Bu(t) + Fy [y (t) — Ci (1),
(12.24)
#(0) = &g, Fy € R™¥k,
Here, as before, we assume that
Lt 2),(t ) < cop+ 2T Qur, 0 < Qp € R,
(12.25)

&, x)E, (t ) < coy, Qy=0in (116).

The optimal control matrices K* and F*, minimizing the attractive ellips-
oid, are given by (12.20) and (12.21) with the according positive scalars o*
and £*. Suppose that we know these optimal parameters. The "size" of the
optimal Attractive Ellipsoid may be made significantly smaller, if the gain
parameters can be done variable in time with a special "adaptation mech-
anism" using available on-line data of the controlled process. Next theorem
describes this adaptation mechanism.
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Theorem 12.2 If for the system (12.22)-(12.25) the gain matrices are ad-
apted by the following adaptation (learning) algorithms

d *
~ DKy =T (K, — K*) + 2k BT Py,
dt 2
d 1 3 -, .
_aFt = ko [2P1 T+ P2* (Ft _ F*) (y . Cﬁ)] (y . CCE)T (12 26)
o k .
+ (7]n><n + 6—3P1*:171:'|'Pf + kZCO,yPQ*) (Ft _ F*) 7

with Py, Py, K*, F*,a* and €*, found as the solution of the matriz optim-
ization problem (12.19), where intead of the condition Wr < 0 the matriz

inequality

= (1,1)
- W( )
N dapt, T
Wadapt,T = [ %

(1,2 5(1,2) 72,1 5(2,1)  15(2,2 (2,2
W, )T:WI(‘ )v W(dap)t,T:W§ )7 Wédap)t,T:WT(’ )v

adapt,

18 applied, then the ellipsoid &y <P;

* J—
adapt,attr —

77(1,2)

adapt, T ] < 0,

W(2’2)

7(2,1)
W adapt, T

adapt, T
(L) 5(11) Onxn  Onxn
Wadapt,T - WT + |: On><n 2P2* :| )

a

dapt,attr

e* (Co,m + QCO’y)

(X o
0o X

) is attractive in z-space with

(XT and X3 are one of solutions of (12.19)), providing the property (z; =

(zf,ef)T)

lim sup
t—oo

—tr

2ks

1
(s Pt + gt (B = K0T = K9}

*

| [©)

*

Q

{(Fr— F*) (F - F*)}) <

(cow + 2co,y)
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or, equivalently

lim sungﬂP;dapwttht <1-
t—o00
lim inf o L (K, — KT (K, — K*)) +
imin —tr — —
t—oo £* (CD,QL‘ + 2@07,!/) le t t (1227)

1 *\T *
et (B = T (i~ F >})

Proof. In view of (12.5), for the extended vector z := ( &T €T )T € R
with the component e (t) := z (t) — & (t) we have

2(t) = Az (t) + Fow (t, )

where
A A+ BK; FC
b 0 A—FC |’
r 0n><n Ft g (t7$) >
Fi = ) t? = v
! |: Ik><n Ft :| w( x) ( gy (t,.fC)

For the energetic function Vigapt(2), defined as
1 1
Vadapt(z) = ZTP*Z + ﬁtr {(AKt)T AKt} + ﬁtr {(AFt)T AFt} y
1 2
P* = |: On><n P2>|< :| T dlag(PI’PZ)a
AK; = Ky — K*,AF, = F, — F*, k; >0, kg > 0,

where P* > 0 is found in (12.14), and taking into account that now the gain
matrices are permitted to be time varying, namely,

K=K, K=1FI,

we get
. 1 1
V(P7)=2:T PPt —tr {(%AKt)T AKt} ot { (LAR)T AFt} -
1 2
T AT p* * A * PDx * T
( z ) |:AtP +APTA:+06 P . P Ft :| ( z )—Ot*V(P*)
w F'P =& (1 k)x (ntk) w

+oitr {(AK)T AR} + g tr {(AF)TAF} + & [l
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Adding and subtracting the matrices K* and F* we obtain

T
. z Wia Wi z
V(P = ’ :
(#) ( w ) { Wiy =€ Inik)x(ntk) ] ( w >+
Eir{ (FAK)TAK |+t { (FAF)TAF, |

«
V4 —
« +2

e {(AK)T AR} + 3t {(AF)T AR + & w|? =
1 2

T
z = z ey (0% T (67 T
< : ) WT( : ) 0Vt {(AK)T AR} + St {(AR)T AR

k—lltr{(%AKt)T AKt} +k—12t1“{(%AFt)T AFt}

+ e* (cax + C(Z)yy) 4+ 27 (PrAF,C)T PyAF.C+

(PyAF,O)T

Y [ Opxn  PyAF, &,
e Onxn — P3AFy |\ &,

PfBAK+ (P BAK,)T PAFC ]
z

(12.28)
where

[ P (Aa+BK*)+

(P} (Aat BT + LS
P:BAK+ (PfBAK,)T 1=t
Wii= Py (Aa—F*C) +
(PTEC)T + [P5 (Aa—F"C)]T
(PfAF,C)T +PsAF,C
L + (P AFO)T

o _ [ Pf o PIFT+ PIAF,
27| Py —P5F*— P3AF,

and Wy is defined in (12.7). Since

Ce=y—-Cz
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we get

PrBAK+ (P;BAK,)T  PrAF,C
PrAF,C+ z=
* T 2 t
(PFAFC) (PAF,C)T
24T P} BAK 34237 PEAF, (y — Cf) + 26T PAAF, (y — C#)

by the A-inequality
<

tr {2247 P BAK, + 2 (y — C&) TP} AF,} +

A=(Py) !
eTPsAPje+ (y — C2)T (AF)TAIAF; (y — C#) (:2) e Pye+

tr {(2BTP;24T)T AK, + ([2P}& + P5AF, (y — C#)] (y — C2)T)T AR},

(12.29)
and (again by the A-inequality (12.16))

NE: [ Opxn PfAF; &\ o ® T ([ PIAF,
e Onxn  — PyAF, & ) “\e —P;AF(E,
= 28T P AF, — 2T Ps AFE, = 2([AFT Pf&)T ¢, — 2(Pye)T (AFE,)

by the A-inequality
< TP} [AFJA[AFT Pie + JA1E,
= ek, A1:(P2*)71

+eTPyA Pye + € [AFTATIAFE, = e ||¢,|* + e Pye+
tr { (2 PfE2TPfAFy)T AF ) + tr { PFAFE L] [AFT}
Using the upper estimates (12.25)
5;(t7$)§y(t,l') < coy + xTny7 0< Qy € Rnwz’

and

tr { PyAFE,E] [AFT) < ||¢, || tr {PFAF, [AF,T}

S tr {(CO7yP§AFt)T AFt} s
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NE: [ Opxn PfAF £, )
e Opxn — PYAF; ¢,

<&y t+eTPet

we obtain

(12.30)

tr { (L Py22TPfAF + co Py AF,)T AF,}
Applying (12.29)-(12.30) to (12.28), we get

T
V(P*) < < SJ > Wr < z) ) —a*V*+e* (co + 2c0,y) + €T (2P5) e+

Tprast 4 Ld )
tr (2B PrzaT + leAKt+k1 thKt) AK; » +
S1,t
t [2P%% + P5AF, (y — C4)] (y — C2)T + TAF
T an * *
EAAF+ <%IM+§P1 23T Py +Co,yP2) AFy '
St

The adaptation algorithm (12.26) corresponds to the conditions
Sl,t =0 and 527,5 = 0.

Including then the term eT (2P5) e into W}l’l) and defining

7-(1,1) 7-(1,2)
I/T/adapt T = ‘/Y%galp)tT I/I/%gazp)ﬁT
| Wadt’lptT Wad;zptj
(AOéXl +BY1) —+
(AaXi+BY )T+ eX1 (@)
x eQ +2H

XoA,—Y o CH+
9 (Qx—i-Qy)T Xir (XQAQ—YQC)T +
€ (Qx+Qy) +Hc

with

(L1 (L) Onxn  Onxn
Wodaptw = Wi+ [ Onxn 2P ]
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and
(1,2)  _ 7-(1,2) 7,21 5,21) 7-(22) _ 5-(2,2)
Wadapt,T - WT ’ WadapLT - WT ) Wadapt,T - WT )
with Wé;;p)tj < 0, we finally obtain

V(P*) < —a*V*+e" (cop + 2¢0,y)

which proves the theorem. m

12.5 Exercise

Exercise 12.1 Consider the model (as in Lecture 7) given by the strongly
non-linear differential equations

T1=—21+ 22+ 0.1xlsign(x2),
&9 = —x1 + 0.2sign (z1) + u,
y =1 + 22 + &, (1),
r1,x2 €ER, xg = (1, l)T,

(12.31)

where
€, < coy = 0.01.

Design the control

a) using observer state estimates I;

b) using the same controller as in a), but applying the gains adaptation
procedure;

¢) compare (graphically) both non-adaptive and adaptive gains ellipsoids.
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