
Lecture 10

Robust State Feedback
control

This lecture looks at a speci�c form of nonlinearly a�ne control system with a suit-
ably broad range of uncertainty. Here nonlinear uncertain systems are governed
by a vector Ordinary Di�erential Equation (ODE) with quasi-Lipschitz right-hand
sides that accept a wide range of external and internal uncertainty (including dis-
continuous nonlinearities such as relay and hysteresis elements, time-delay blocks
and so on). The linear state-feedback controllers are investigated. The su�cient
criteria that guarantee the boundedness of all conceivable controlled system traject-
ories are provided. Because any limited dynamics may be imposed in an ellipsoid, it
is proposed that the "robust-optimal" gain-matrices of the planned linear feedbacks
be chosen in such a manner that the "size" of this appealing ellipsoid is kept to a
minimum. Several numerical examples are used to illustrate the point.

10.1 Proportional linear feedback design

10.1.1 Model description

Here we consider the quasi-Lipschitz a�ne controlled system (9.18) presen-
ted in the following quasi-linear format:

�� (�) = �� (�) +�� (�) + �(�� �)� � (0) = �0�

	 (�) = � (�)

��
� (10.1)
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with

�(�� �) := 
 (�� �)��� (�) + �� (�) =


 (�� �)��� (�) + �̄� (�) + (��
+ � �)� (�� (�) � �) �

��
� (10.2)

where

� (�) � R� is the state vector at time � � R+ := {� : � � 0},

� � R�×� is the constant system matrix, which will be selected below,

� (�) � R� is the vector of admissible control inputs,

� � R�×� is the constant matrix of control gains,

�(�� �) : R × R� � R
� is the uncertain vector function, assumed to be

bounded as

�|(�� �)
��(�� �) � �0 + �|
�� (10.3)

and below referred to as a quasi-Lipschitz function.

The number �0 � 0 and positive de�nite quadratic matrix 
� is sup-
posed to be known.

We assume in this lecture that the control function � has a form of linear
state feedback

� (�) = �� (�) (10.4)

with matrix � � R�×� referred below as to a gain matrix which should be
designed to obtain a desired behavior of the closed-loop system.

10.1.2 Problem formulation

Problem 10.1 The problem now is to present a stabilizing control design
schemes, namely, to �nd a gain matrix� that allow to guarantee the bounded-
ness of all possible trajectories {� (�)}��0 of the closed-loop system (10.1)-
(10.4) and to estimate, adjust and minimize the "attractive ellipsoid" con-
taining these bounded trajectories asymptotically.
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10.2 Storage function method

Consider the quadratic function

� (�) = �|��� � = � | � 0 (10.5)

referred below to as the storage (or energetic) function and �nd its total
derivative along the trajectories of the closed-loop system

�� (�) = (�+��)� (�) + �(�� �)� (10.6)

Using the identity
2�|�� = �| (� + �|)��

we get

�� (�) = 2�|� �� = 2�|� [(�+��)� (�) + �(�� �)] =

μ
�
�

¶| �
� (�+��) + (�+��)� �

� 0

¸μ
�
�

¶
�

Adding and subtracting the terms �� (�) and ��|(�� �)
��(�� �) in the right-
hand side of the last equation, we obtain:

�� (�) =

μ
�
�

¶| �
� (�+��) + (�+��)�� + �� �

� ��
�

¸μ
�
�

¶

��� (�) + ��|(�� �)
��(�� �)�

The application of the upper estimate (10.3) to the last term implies

�� (�) �
μ

�
�

¶| �
� (�+��) + (�+��)�� + �� �

� ��
�

¸μ
�
�

¶

��� (�) + �
¡
�0 + ��
��

¢
=

μ
�
�

¶| �
� (�+��) + (�+��)�� + �� + �
� �

� ��
�

¸μ
�
�

¶

��� (�) + ��0�

Shortly the last di�erential inequality can be represented as

�� (�) �
μ

�
�

¶|
��	
 (�����)

μ
�
�

¶
� �� (�) + ��0� (10.7)
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where the matrix ��	
 (�����) is as follows:

��	
 (�����) :=�
� (�+��) + (�+��)�� + �� + �
� �

� ��
�

¸
�

��
� (10.8)

10.3 Attractive ellipsoid

10.3.1 De�nition of an attractive ellipsoid

De�nition 10.1 The ellipsoid

E��(�����) := {� � R� : (����)| ����� (����) � 1} (10.9)

with the center in the point �� and the ellipsoidal matrix ����� = � |���� � 0
is said to be attractive for the system (10.6) with uncertainties (10.2) and
the control (10.4) if for any trajectories {� (�)}��0

lim sup
���

(� (�)���)| ����� (� (�)���) � 1� (10.10)

Notice that if the attractive ellipsoid E��(� ) is located in the origine than
�� = 0, then (10.9) becomes

lim sup
���

� (�)| ������ (�) � 1 (10.11)

and
E��(�����) = E0(�����)�

10.3.2 Attractive ellipsoid for proportional linear feedback

Theorem 10.1 If for the gain feed back matrix � there exist a positive
de�nite matrix � , a matrix � � R�×� and positive scalars � and � such that

��	
 (�����) � 0� (10.12)

then we can guarantee the convergence (10.11) of all possible trajectories
{� (�)}��0 to the attractive ellipsoid E0(�����) with the ellipsoidal matrix

����� =
�

��0
�� (10.13)
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Proof. If the matrix inequality (10.12) holds, then from (10.7) we get

�� (�(�)) � ��� (�(�)) + ��0�

implying

� (�(�)) � ��0
�
+
³
� (�(0))� ��0

�

´
���� �

���
��0
�
�

and hence,

lim sup
���

� (�)| �� (�) � ��0
�
�

or equivalently,

lim sup
���

� (�)|
μ

�

��0
�

¶
� (�) � 1�

which proves (10.13).

Remark 10.1 This control design scheme is rather classical and well-known
for stabilization of disturbed linear control systems,i.e.,


 (�� �) = ��� � (�� (�) � �) = 0� 
� = 0 and 

 = 0

(see [13], [14] and [17]). For quasi-Lipschitz system, satisfying (10.3),
this fact is not obvious but expectable.

10.4 Minimization of the attractive ellipsoid

To �nd the "optimal" linear feedback minimizing the attractive ellipsoid of
the closed loop system (10.1)-(10.4) we will consider the following optimiza-
tion problem corresponding to the minimization of the "size" of the ellipsoid
E0(�����). When we speak about the "size" of an ellipsoid with a matrix �
we do not mean its volume. A volume of an ellipsoid (or, equivalently, its
determinant) in fact is a bad function for the characterization of its "size"
by two following reasons:

1) since

det��1 =
�Y
�=1

��(�
�1) and �2� (� ) = ��(�

�1)�

where ��(��1) (� = 1� ���� �) are the eigenvalues of the inverse ellipsoid
matrix ��1 and ��(� ) are the longitude of �-th semi-axises of the
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ellipsoid E0(� ) . In view of this, we may conclude that minimization
of det(� ) is equivalent to minimization of its volume:

vol(� ) = det��1 =
�Y
�=1

�2� (� )�

But, the product
�Q
�=1

�2� (� ) admits to have a very large value of one of

semi-axises, for example, ��0(� ) and all others may be very-very small!
This exactly means that the designed controller guarantees a very good
quality of control practically in all directions except one where it works
with a very bad quality. That’s why the criterion tr(��1) is preferable
since

tr��1 =
�X
�=1

��(�
�1) � max

�=1	���	�
��(�

�1) = �max(�
�1)�

and the minimization of tr��1 guarantees, at least, the minimization
of its maximum eigenvalue, and hence, this guarantees the minimiza-
tion of the corresponding maximal semi-axis �max(� ) =

p
�max(��1)

of the given ellipsoid E0(� ). So, the trace of the matrix ��1 de�nes
the sum of squares of the ellipsoid’s semi-axes.

2) The second reason, important from the numerical-computation point
of view, is that tr��1 is a linear function of the matrix ��1 and
det(��1) is not!

So, based on these comments, let us associate the optimal parameter
� (10.4) of the linear feedback with the solution of the following matrix
optimization problem

tr(��1)� inf
��0	�	�	��0	
�0

subject to the matrix constraint (10.12)
��	
 (�����) � 0�

(10.14)

10.5 Conversion of NMI in to LMI constraints

Notice �rst that matrix constraint (10.12) is bilinear (even scalar parameters
� and � are �xed) with respect to optimizing variable �����. Indeed, it
contains the pairs �� and ��� of matrix to be found. Recal the following
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fact from theory of quadratic form: the quadratic form �|
� is negative
de�nite, that is, �|
� � 0 for all � 6= 0 if and only if �| (� |
� )� � 0
(� 6= 0) for any nonsingular matrix � (det� 6= 0). In matrix format this
property looks as follows:


 � 0 equivalent � |
� � 0 for any nonsingular matrix ��

Let us apply this fact to the matrix ��	
 (�����) selecting � as

� =

�
��1 0�×�
0�×� ��×�

¸
� ��1 =

¡
��1¢| � (10.15)

Then, in view of (10.12), we obtain

� |��	
 (�����)� =

�
� (�+��)��1+

£
(�+��)��1¤|+

���1 + ���1
��
�1 ��×�

��×� ��
�

�
	 � 0�

(10.16)

Introduce new matrix variables

� := ��1�  := ���1� ! := ���1 (10.17)

and represent (10.16) in new variables:

�̄�	
 (�� �!) :=

�
! +� + !|+ |�|+�� + ��|
�� ��×�

��×� ��
�

¸
� 0�

(10.18)

The quadratic term �
�� in (10.18) may be estimated as

�|
�� � 
� 
��
�� � 0�

which by the Schur’s complement (1.6) may be equivalently represented as�

 �
�| 
�1

�

¸
� 0 (10.19)

and, �nally, the constraint (10.18), containing quadratic term, may be equi-
valently represented as two LMI’s:�

! +� + !|+ |�|+�� + �
 ��×�
��×� ��
�

¸
� 0�

� �
 ��
��| �
�1

�

¸
� 0�

�



�




�

(10.20)
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So, we are ready to formulate the following result.

Lemma 10.1 The nonlinear (bilinear) matrix optimization problem (10.14)
can be equivalently represented as a matrix optimization problem ) with
LMI’s constraints (under the �xed positive scalar parameters �� �, that is,

tr(�)� inf
��0	�	�	��0	��0	
�0

subject to the matrix constraints (10.20).
(10.21)

If the tuple (�� � 0�  �� !�� �� � 0� �� � 0) is the solution of (10.21),
then the optimal gain matrix �� of the corresponding "optimal" linear feed-
back can be calculated as

�� =  � (��)�1 � (10.22)

and the optimal ellipsoidal matrix � �
���� is calculated as

� �
���� =

��

���0
(��)�1 � (10.23)

The "best" (providing the minimal ellipsoid size) approximator ���
 (�� �)
of nonlinearity is

�� = !� (��)�1 � (10.24)

10.6 Numerical procedure for calculation of op-
timal feedback gain matrix

Algorithm:

1) At each step " (" = 1� 2� ���) of iterations for any �xed positive scalars
the constraints �� � 0� �� � 0 the matrix inequalities (10.20) becomes
LMI’s and the corresponding optimization problem can be e�ectively
solved using appropriate mathematical software such as MATLAB
with any SDP solver like SEDUMI or YALMIP. Let us denote by

#(��� ��) := min
��0	�	�	��0

tr(�)

the corresponding minimal value.
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2) The optimization of the function #(��� ��) with respect to parameter
��� �� can be realized locally basing on some derivative-free method,
for example, using the MATLAB function fminsearch. In particular,

��+1 = �� +���� ��� � 0�
��+1 := �� ����� ��� � 0�

If ��+1 becomes to be negative, we return back to the previous positive
value. The same should be done if the matrix optimization problem
says that admissible solutions do not exist.

3) Then iterations repeat.

10.7 Practical stabilization

a) The practical stabilization problem [15] also requires the consideration of
an optimization procedure slightly di�ered from the previous one. This
problem consists in designing a proportional linear feedback which
guarantees a convergence of all trajectories of the closed-loop system
(10.1)-(10.4) into the predetermined ellipsoid E0(���� ), where ���� � 0
is a given positive de�nite matrix. Such requirement can be easily
taken into account by incorporating the linear matrix inequality

��1 = � � ���� = ��1
��� (10.25)

into the system of inequalities (10.20).

b) Practical implementations always restricts the maximum admissible con-
trol magnitude, for example, by the following inequality

k�k2 � $� (10.26)

where $ is a given positive number. Taking into account the structure
(10.4), this addittional constraint may be represented as

������ � $ for all � � R��

or equivalently, in the matrix format as

��� � $��×� �
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In new matrix variables (10.17) � =  ��1 and the last matrix in-
equality becomes

¡
��1¢|  | ��1 � $��×� �

which may be equivalently represented as

0 � $�|� �  | �

By the Schur’s complement (1.6) it takes place if and only if
�
$�|�  
 | ��×�

¸
� 0�

which, in turn be valid if
�
$%��×�  
 | ��×�

¸
� 0

for a scalar % � 0� satisfying

�|� = �2 � %��×��

This leads to the following last additional matrix inequality

� �
�
%��×� �

Lemma 10.2 (on practical stabilization) "Optimal" feedback

�� =  � (��)�1

under speci�c practical conditions (10.25) and (10.26)

��1 � ��1
��� and k�k2 � $

corresponds to the solution of the following matrix optimization problem

tr(�)� inf
��0	�	�		��0	��0	
�0	��0

&�'(��� to the matrix constraints (10.20)
and the additional ones�

$%��×�  
 | ��×�

¸
� 0� � �

�
%��×� �

(10.27)
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Figure 10.1: Inverted pendulum.

10.8 Illustrative Example: an inverted pendulum

In this section we consider the inverted pendulum shown in Fig.10.1.
The control to be designed is intended to maintain (stabilize) the pen-

dulum in the vertical position. The mathematical model of the disturbed
inverted pendulum can be presented as

)*2%̈ +)#* sin(%) = '�+ +(�)� (10.28)

where

• the position coordinates (angle) % � R with associated velocities �% and
accelerations %̈ are controlled by the driving force � � R with the gain
' � R,

• ) is the mass of pendulum,

• * is the distance from the pivot point to the center of mass,

• the function + : R� R describes the bounded exogenous disturbances

|+(�)| � +0 	� � 0�

The parameters of the system (10.28) are assumed be calculated with
some errors

) = )0(1 + ,))� * = *0(1 + ,*)�
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where )0� *0� ' are given values, ,)� ,* are small modeling errors. In the
format (10.1) the original system (10.28) can be represented as as follows:

�� = �0�+��+ �(�� �� �)�

� = (�1� �2)
| � R2�

�1 =
-

2
� %� �2 = ��1 = � �%�

� = �0 +���

where

�0 =

μ
0 1

)0#*0 0

¶
� � =

μ
0
�'
¶
� �(�� �) =

μ
0

.(�� �)

¶
�

.(�� �) = � + (�)

(1 + ,))(1 + ,*)2
+)0#*0

�
1

1 + ,*
sin(�1)� �1

¸
�

Notice that .(�� �) satis�es the quasi-Lipschitz condition

.(�� �) � .0 + ��� �
� 
̃����

with

.0 =
3+20

(1 + ,))2(1 + ,*)4
� 
̃� = 3)

2
0#
2*20

μ
1 +

1

4(1 + ,*)

¶2
� �� =

¡
1 0

¢
�

Consider the following parameters of the model

)0 = 0�075 kg� ,) = �0�02� *0 = 0�3 m � ,* = �0�01�
' = 1� # = 9�81 m/sec2� +0 = 0�02 �

and restrict the maximum value of the control input inside the attractive
ellipsoid by $ = 0�3 (10.26). Applying the technique, presented above, we
obtain

�� =
�
0�0119 0�0128
�0�0128 �0�0199

¸
� �� =

£ �4�2606 �3�8566 ¤ �
The best (minimizing the size of attractive ellipsoid) linear approximation
�� has been found as

(��)� = !� (��)�1 ��0�

The dynamics were simulated using the Runge-Kutta method (ODE45)

within the MatLab Simulink 7.8 with �(0) =
h -

2
0
i|
� Fig.10.2 shows

the evolution of the system state (angle and angular velocity) with the de-
signed control law. Fig.10.3 depicts the obtained attractive ellipsoid.
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Figure 10.2: Pendulum trajectories.

10.9 Exercises

Exercise 10.1 For the dynamic controlled system

/

/�

μ
�̄1
�̄2

¶
=

μ
�̄1 + arctg (�̄2)
��̄1 � sin �̄2

¶
+

μ
2
0

¶
�̄ (�) +

μ
1
0

¶
�̄� (�) �

�̄� (�) = 0�1 sin (10�) �

design the control feedback using AEM concept in the tracking problem for
the desired trajectory �� (�) � R2 satisfying

�̈� (�) + 02�� (�) = 0� 0 = 2�

�� (0) =
μ
1
1

¶
� ��� (0) =

μ
0
1

¶
.
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Figure 10.3: Attractive ellipsoid.


