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Lecture 1

Mathematical Background

The fundamental characteristics of quadratic forms are addressed in the �rst lecture.
The positive de�nitiveness of partitioned matrices is investigated using Schur’s com-
plement lemma. Finsler’s lemma is provided, as well as the so-called � - method,
which deals with extra restricting quadratic forms.

1.1 Quadratic forms

1.1.1 Nonnegative and positive de�nite matrices

Consider the Riemann space R� of vectors and the quadratic form �(�) =
�|�̄� with a matrix �̄ � R�×�. Since

�(�) = �|�̄� =
¡
�� �̄�

¢
=
¡
�̄|�� �

¢
=
¡
�� �̄|�

¢
=

μ
��

�̄ + �̄|

2
�

¶
= (�� ��) �

� =
�̄ + �̄|

2
= �|

we may suppose hereafter that in any quadratic form �(�) = (�� ��) the
matrix � is symmetric.

Nonnegative de�niteness

De�nition 1.1 A symmetric matrix � � R�×� is said to be nonnegative
de�nite if

�|�� � 0 (1.1)

for all � � R�.

The next simple lemma (given without proof) holds.
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26 Lecture 1. Mathematical Background

Lemma 1.1 The following statements are equivalent:

1. � is nonnegative de�nite;

2. � may be represented as
� = ��| (1.2)

for some matrix �;

3. The eigenvalues of � are nonnegative, that is, for all � = 1� ���� �

	� (�) � 0 ; (1.3)

4. There is a symmetric matrix 
 � R�×� such that

� = 
2 ; (1.4)


 is called the square root of �, and is denoted by the symbol �1�2 =

.

Positive de�niteness

De�nition 1.2 If � is nonnegative and nonsingular (det� 6= 0), it is said
to be positive de�nite.

Remark 1.1 In the case when � is positive de�nite we have

�|�� � 0 for all � 6= 0

and �1�2 is also positive de�nite so that for all � 6= 0

�|�1�2� � 0 for all � 6= 0�

The statement "� is nonnegative de�nite" is abbreviated

� � 0�

and, similarly,
� � 0

means "� is positive de�nite".
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Remark 1.2 The abbreviation

� � 
 (or � � 
) (1.5)

may be applied only to two symmetric matrices of the same size and means
that

��
 � 0 (or ��
 � 0).

Remark 1.3 Evidently, if � � 0� then for any quadratic nonsingular matrix
� (det� 6= 0) it follows

��� | � 0

and inverse, if ��� | � 0 for some nonsingular matrix � , then � � 0.

Remark 1.4 If � � 
 (or � � 
), then for any quadratic nonsingular �
(det� 6= 0)

��� | � �
� | (or ��� | � �
� |)

and, inverse, if ��� | � �
� | (or ��� | � �
� |) for some nonsingular
� , then � � 
 (or � � 
). In the special case � � 
 there exists an
orthogonal matrix � (� | = ��1) transforming �� 
 to a diagonal matrix
with positive elements.

Proposition 1.1 If
� � 
 � 0�

then

�1 � ��1 � 0 �

Proof. Let �� be an orthogonal transformation which transforms � to
a diagonal matrix �� := diag (	1(�)� ���� 	�(�)) and

�� = �
1�2
� �

1�2
� � �

1�2
� = diag

³p
	1(�)� ����

p
	�(�)

´
� 0 �

Then, by the previous remark,

����
|
� = �� � ��
� |�

and, as the result,
��×� � �

�1�2
� ��
� |��

�1�2
� �

Denoting by � an orthogonal transformation which transforms the right-
hand side of of the last inequality to a diagonal matrix �, we obtain

��×� = �� | � �
³
�
�1�2
� ��
� |��

�1�2
�

´
� | = � = diag (	1� ���� 	�) �
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Inverting this inequality by components, one has

��×� � ��1 =
h
�
³
�
�1�2
� ��
� |��

�1�2
�

´
� |
i�1

=

�
³
�
1�2
� ��


�1� |��
1�2
�

´
� | �

that implies
��×� � �

1�2
� ��


�1� |��
1�2
�

and
��1� � ��


�1� |� �

Hence,
� |��

�1
� �� = ��1 � 
�1 �

Proposition is proven.

Proposition 1.2 If � � 0 and � � 0, then
� + � � 0

with strict inequality holding if and only if

N (�) �N (� ) = �

where
N (�) = ker� := {� | �� = 0}

is the kernel (or, nule-space) of the matrix �.

The proofs of these statements are evident.

1.1.2 Positive de�niteness of a partitioned matrix: Schur’s
complement

Theorem 1.1 (Schur’s complement) Let � be a square matrix parti-
tioned as

� =

�
�11 �12
�|12 �22

¸
� R(�+�)×(�+�)

where �11 � R
�×� is a symmetric � × � matrix and �22 � R

�×� is a
symmetric �×� matrix. Then � � 0 if and only if

�11 � 0�
�22 � 0�

�11 � �12�
�1
22 �

|
12 � 0�

�22 � �|12�
�1
11 �12 � 0�

(1.6)
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moreover,

det� = det�11 det
¡
�22 � �|12�

�1
11 �12

¢
= det�22 det

¡
�11 � �12�

�1
22 �

|
12

¢
�

(1.7)

Proof. Necessity. Suppose that � � 0. Then for any � =

μ
�1
�2

¶
(�1 � R��

�2 � R�) non equal to zero we have

0 � �|�� =

μ
�1
�2

¶| �
�11 �12
�|12 �22

¸μ
�1
�2

¶

= �|1�11�1 + �|1�12�2 + �|2�
|
12�1 + �|2�22�2 �

Taking �2 = 0 it follows �|1�11�1 � 0, or, equivalently, �11 � 0� Analogously,
Taking �1 = 0 we get �|2�11�2 � 0, or, equivalently, �22 � 0. Putting

�2 = ���122 �12�1
we get

0 � �|1�11�1 � �|1�12�
�1
22 �

|
12�1 � �|1�12�

�1
22 �

|
12�1+

�|1�12�
�1
22 �22�

�1
22 �

|
12�1 = �|1

¡
�11 � �12�

�1
22 �

|
12

¢
�1 �

or, equivalently, �11 � �12�
�1
22 �

|
12 � 0� Analogously, taking

�1 = ���111 �12�2
we get

0 � �|2�
|
12�

�1
11 �11�

�1
11 �12�2 � �|2�

|
12�

�1
11 �12�2 � �|2�

|
12�

�1
11 �12�2 + �|2�22�2

= �|2
¡
�22 � �|12�

�1
11 �12

¢
�1 �

or, equivalently, �22 � �|12�
�1
11 �12 � 0� Analogousely, we can prove that

�11 � �12�
�1
22 �

|
12 � 0.

This proves necessity of (1.6).
Su�ciency. Suppose that (1.6) holds. De�ne matrices

� :=
¡
�11 � �12�

�1
22 �

|
12

¢�1
�

� :=
¡
�22 � �|12�

�1
11 �12

¢�1
�


 := ���111 �12� �



30 Lecture 1. Mathematical Background

It is easy to show that


 = ���111 �12� = �� £��1��111 �12�¤ =
��

h¡
�11 � �12�

�1
22 �

|
12

¢
��111 �12

¡
�22 � �|12�

�1
11 �12

¢�1i
= �

�
h¡
�11�

�1
11 �12 � �12�

�1
22 �

|
12�

�1
11 �12

¢ ¡
��×� � ��122 �

|
12�

�1
11 �12

¢�1
��122

i

= ��
h
�12

¡
��×� � ��122 �

|
12�

�1
11 �12

¢ ¡
��×� � ��122 �

|
12�

�1
11 �12

¢�1
��122

i

= ���12��122 �

Then routine calculations verify that

�

�
� 


| �

¸
= �(�+�)×(�+�)

So, ��1 =
�

� 


| �

¸
exists and, hence, � is nonsingular and � � 0.

The formula (1.7) results from the matrix identity�
�11 �12
�|12 �22

¸
=�

��×� 0

�|12�
�1
11 ��×�

¸ �
�11 0

0 �22 � �|12�
�1
11 �12

¸ �
��×� ��111 �12
0 ��×�

¸

and the following determinat’s properties

det (��) = det (� ) det (�)

det

μ�
� 0
� �

¸¶
= det (� ) det (�) �

Corollary 1.1 A matrix � is negative de�nite (� � 0) if and only if

�11 � 0�
�22 � 0�

�11 � �12�
�1
22 �

|
12 � 0�

�22 � �|12�
�1
11 �12 � 0�

(1.8)
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Corollary 1.2 To guarantee that the matrix � � 0 it is necessary that all
diagonal ellements would be positive.

Corollary 1.3 Suppose that in the previous theorem � = 1, that is, the
following representation holds

��+1 =

�
�� ��
�|� ��+1

¸
�

�� � R�� ��+1 � R�
(1.9)

where 0 � �� � R�×�. Then ��+1 � 0 if and only if

�� = ��+1 � �|
�
��1� �� � 0 (1.10)

and, as the result,

��1�+1 =
�
��1� +

£
��1� ���

|
���1�

¤
��1� � ¡��1� ��

¢
��1�

� ¡��1� ��
¢|

��1� ��1�

¸
� (1.11)

1.1.3 Sylvester’s criterion

Here we present a simple proof of the known criterion which gives a power
instrument for numerical test of positive de�niteness.

Theorem 1.2 (Sylvester’s criterion) A symmetric matrix � � R�×� is
positive de�nite if and only if all leading principle minors

�

μ
1 2 · · · �
1 2 · · · �

¶
:=

¯̄̄
¯̄̄
¯
�11 · · · �1�
...

. . .
...

��1 · · · ���

¯̄̄
¯̄̄
¯ � � = 1� 2� ���� �

are strictly positive, that is, for all � = 1� 2� ���� �

�

μ
1 2 · · · �
1 2 · · · �

¶
� 0 � (1.12)

Proof. Let us prove this result by the induction method implementation.
For � = 2 the result is evident. Indeed, for

� =

�
�11 �12
�12 �22

¸
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under the assumption that �11 6= 0, we have

�|�� = �11�
2
1 + 2�12�1�2 + �22�

2
2 =

�11

μ
�1 +

�12
�11

¶2
+

μ
�22 � �212

�11

¶
�22 �

from which it follows that �|�� � 0 (� 6= 0), or equivalently, � � 0 if and
only if

�11 � 0� �22 � �212
�11

= det� � 0 �

Let us represent � � R�×� in the form (1.9)

�� =

�
���1 ���1
�|��1 ��

¸
�

���1 � R��1� �� � R
and suppose that ���1 � 0. This implies that det���1 � 0. Then by (1.3)
�� � 0 if and only if the condition (1.10) holds, that is, when

���1 = �� � �|��1�
�1
��1���1 � 0 �

But by the Schur’s formulas (1.6) and (1.7) we have

�

μ
1 2 · · · �
1 2 · · · �

¶
= det� = det

¡
�� � �|��1�

�1
��1���1

¢
(det���1) =¡

�� � �|��1�
�1
��1���1

¢
(det���1) = ���1 (det���1) � 0

if and only if (1.10) holds, that proves the result.

1.1.4 Nonnegative de�niteness of a partitioned matrix

Theorem 1.3 Let � be a square matrix partitioned as

� =

�
�11 �12
�|12 �22

¸
�

where �11 is a symmetric �×� matrix and �22 is a symmetric �×� matrix.
Then � � 0 if and only if

�11 � 0�
�22 � 0�

�11�
+
11�12 = �12�

�22�
+
22�

|
12 = �|12�

�22 � �|12�
+
11�12 � 0�

�11 � �12�
+
22�

|
12 � 0�

(1.13)
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Here the �+ is the matrix, pseudoinversed (in the Moore-Penrouse sence)
to �, satisfying the identities

��+� = �� �+��+ = �+�

(��+)
|
= ��+� �+ = �| (��|)+ �

(1.14)

Proof. Necessity. Suppose that � � 0. Then there exist a matrix � with
(�+�) rows such that � = ��|. Let us write � as a partitioned matrix

� =

�
�
�

¸
� � � R�×�� � � R�×�

Then

� = ��| =

�
��| �� |

� �| � � |

¸
�

so that
�11 = ��| � 0� �12 = �� |

By (1.14)

�11�
+
11 = (��|) (��|)+ = �

£
�| (��|)+

¤
= ��+�

so that

�11�
+
11�12 = ��+ (�� |) =

¡
��+�

¢
� | = �� | = �12

Finally, if we let
� := � � �|12�

+
11�

then
0 � ��| = �22 � �|12�

+
11�12�

Analogously, the other two relations follows by changing � to � .
Su�ciency. Let (1.13) holds. De�ne

� :=
h
��×�

... O�×�
i
� � :=

h
O�×�

... ��×�
i

� := �
1�2
11 �

� := �|12�
+
11�

1�2
11 � +

¡
�22 � �|12�

+
11�12

¢1�2
�

Here O�×� and O�×� are the matrices with null-elements. Since

�� | = O�×�

one can see that

0 �
�
�
�

¸ �
�
�

¸|
=

�
��| �� |

� �| � � |

¸
=

�
�11 �12
�|12 �22

¸
= ��
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Corollary 1.4 Suppose that in the previous theorem � = 1, that is, the
following representation holds

��+1 =

�
�� ��
�|� ��+1

¸
�

�� � R�� ��+1 � R�
(1.15)

where 0 � �� � R�×�. Let
�� := �+� ��� �� := ��+1 � �|

�
�+� ���

�� := 1 + k��k2 � �� � ���
|
� ���

Then ��+1 � 0 if and only if
���� = �� and �� � 0 (1.16)

and

�+�+1 =

����
���

�
�+� + ���

|
���1� �����1�

��|���1� ��1�

¸
if �� � 0�

���
+
� �� ���

+
� ���

�1
�¡

���
+
� ���

�1
�

¢|
(�|��+� ��)�

�2
�

¸
if �� = 0

(1.17)

The proof of this corollary follows directly from the previous theorem
and the application of the Cline’s formula (1.18):

�
�

... �
¸+
=

�
�+ � �+� !

!

¸
�

! = �+ + (� � �+�)"� | (�+)| �+ (� � � �+) �
� = (� � ��+)��

" =
¡
� + [�+� (� � �+�)]

|
[�+� (� � �+�)]

¢�1
�

(1.18)

1.2 Finsler’s lemma and � - procedure

1.2.1 Finsler’s lemma

Finsler’s lemma [1] is also known as D´ebreu’s lemma. Here we present its
slightly modi�ed version.

Lemma 1.2 (the modi�ed version of Finsler’s lemma) For any two
matrices # = #| � R�×� and � � R�×� (rank� � �) the following state-
ments are equivalent:
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•
�|#� � 0 for any � � {� � R� | �� = 0} (1.19)

• there exists $ � 0 such that

#� $� |� � 0 (1.20)

for all � 6= 0�
Proof.

1) Necessity. Show that (1.19) implies (1.20). Represent R� as the direct
sum

R
� = N (� )�R(� )

where

�Ker� = N (� ) := {� � R� : �� = 0} is the kernel (or null space) of
the linear transformation � : R� 7�� R

�,
� Im� = R(� ) := {% � R� : % = ��� � � R�} - the image (or range)

of the linear transformation � : R� 7�� R
�.

Let R is the set of real numbers. Select the special basis such that the
matrices # and � |� can be represented as

# =

�
#11 #12
#|12 #22

¸
and � |� =

�
0 0
0 &|&

¸

where
0 � #11 � R(���)×(���)� 0 � #22 � R�×��

0 � &|& � R�×�� rank& = ��

Then for any � =

μ
�1
�2

¶
� �1 � R���� �2 � R� we have

�| (#� $� |� )� =

μ
�1
�2

¶| �
#11 #12
#|12 #22 � $&|&

¸μ
�1
�2

¶
=

�|1#11�1 + 2�
|
1#12�2 + �|2 (#22 � $&|&)�2 =

¡
�1 +#�111 #12�2

¢|
#11

¡
�1 +#�111 #12�2

¢
+

�|2
¡
#22 �#|12#

�1
11 #12 � $&&|¢�2 �

�|2
¡
#22 �#|12#

�1
11 #12 � $&&|¢�2 � 0
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if $ satis�es the inequality

#22 �#|12#
�1
11 #12 � $&|& � 0 �

Hence it exists satisfying the inequality

$ � 	max

³
&�1 £#22 �#|12#

�1
11 #12

¤
(&|)�1

´
�

2) Su�ciency. Show now that (1.20) implies (1.19). Evidently that

�| (#� $� |� )� = �|#� � 0

for all � such that �� = 0.

Corollary 1.5 Two statesments are equivalent:

• For some nonsingular �

�|#� � 0 and �� = 0 � (1.21)

• There exists $ � 0 such that

#� $� |� � 0 � (1.22)

Proof. De�ning ' := ��� the relations (1.21) equivalently can be represen-
ted as

'|#' � 0� �' = 0

which by Finsler’s lemma 1.2 leads to (1.22).

1.2.2 � - Procedure (lemma)

� - Procedure deals with nonnegativity of a quadratic form under quadratic
constrains as inequalities. In 1971, Yakubovich [2] proved � - Lemma which
became very popular in control theory. There exist several methods to prove
it (see for example [3], [4]) but we want to give here a proof that uses Dines’
theorem to emphasize the link between convexity and � - Lemma which is
a separation theorem for convex sets. Putinar’s Positivstellensatz [12] can
be viewed as a broad generalization of the � - procedure.
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The case of two quadratic forms

Theorem 1.4 (� - Lemma: neccessary and su�cent condition) Let
�, 
 be symmetric �×� matrices, and assume that the quadratic inequality

A (�) = �|�� � 0 (1.23)

is strictly feasible for some set of argument � � R�, that is, there exists ��
such that ��|��� � 0. Then the quadratic inequality:

B (�) = �|
� � 0 (1.24)

is a consequence of (1.23), i.e.,

�|�� � 0	 �|
� � 0
(in other word, (1.24) holds for all � � R�� satisfying (1.23)), if and only if
there exists a nonnegative ( � 0 such that for all � � R�

B (�)� (� (�) � 0� (1.25)

or equivalently

 � (� � 0�

Proof. a) Su�ciency. The su�ciency part immediately follows. Indeed,

�|
� � (�|�� � 0 �
b) Neccessity. To prove neccesity let us assume that �|
� � 0 is a con-
sequence of �|�� � 0. De�ne the sets

� := {(�|��� �|
�) : � � R�}
and

� = {()1� )2) : )1 � R+ = {) � R : ) � 0} � )2 � R� = {) � R : ) � 0}}�
� is a convex set by Dines’ theorem while � is a convex cone. Since their in-
tersection is empty, a separating hyperplane exists, i.e., there exists nonzero
* = (*1� *2) � R2, such that (*� �) � 0�
� � � and (*� )) � 0�
) � � . For
(0��1) � � we have *2 � 0. For (1���) � � where � is a small positive
number arbitrarily chosen, we obtain *1 � �*2. Letting � tend to zero, we
get *1 � 0. Since there exists �� such that ��|��� � 0 and by the separation
argument we have

*1�
|��+ *2�

|
� � 0
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for all � � R� implying

*1��
|���+ *2��

|
�� � 0�
Since *1 � 0 and by hypothesis ��|��� � 0 and ��|
�� � 0� and taking into
account that *1 and *2 cannot both be zero, the last inequality implies that
*2 � 0. Indeed,

*2��
|
�� � �*1��|��� � 0

Therefore, we obtain:
�|
� � �*1

*2
�|��

for all � � R�, which is equivalent to 
 � (� � 0 after de�ning ( = �*1
*2

.

This completes the proof of the necessity part. Hence, the result is proven.

Remark 1.5 If Theorem 1.4 is valid for some positive parameter ( , then it
can be taken equal to 1, and the condition (1.25) may be always considered
in the simpli�ed form as

B (�)�A (�) � 0 (1.26)

for all � � R�. Indeed, if (1.25) holds for ( � 0, then the inequality (1.23)
can be equivalently represented as

�|
μ
1

(
�

¶
� � 0

that transforms (1.25) directly to (1.26).

The case of m � 2 quadratic forms
Consider the collection of quadratic forms

A� (�) := �|��� (� = 1� 2� �����)� B(�) := �|
�

where � � R� and ��
� are symmetric �× � matrices.

De�nition 1.3 � - Procedure consists in the creation of the quadratic form

�(�) = B (�)� (1A1(�)� ���� (�A�(�) (1.27)

for some nonnegative scalars ( � � 0 (� = 1� 2� �����).
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In fact, the nonnegative parameters ( � play the role of Lagrange multi-
pliers for quadratic forms.

Lemma 1.3 (su�cient condition) Let the inequalities

A�(�) = �|��� � 0 (� = 1� 2� �����) (1.28)

hold. Then the quadratic inequality:

B (�) := �|
� � 0

is consequences of (1.28), i.e.,

��
�=1
(�|��� � 0)	 �|
� � 0

if there exists nonnegative ( � such that

�(�) = B(�)� (1A1(�)� ���� (�A�(�) � 0 (1.29)

or equivalently


 �
�X
�=1

( ��� � 0

Proof. Indeed, suppose that (1.29) is met. Then

B(�) �
�X
�=1

( �A�(�) � 0

Lemma is proven.

Remark 1.6 It is important to note that for � � 2 the analogue of the
neccessary condition in Theorem 1.4, is not valid, that is, � - procedure
becomes to be the �awed.

Extension of Theorem 1.4

Theorem 1.5 Let inequalities

A�(�) := �|��� � �� (� = 1� �����) (1.30)

imply
B(�) := �|
� � �0 (1.31)
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where �� (� = 0� 1� �����) are some real numbers. If there exist ( � � 0
(� = 1� �����) such that


 �
�X
�=1

( ���, �0 �
�X
�=1

( ���� (1.32)

then (1.30) implies (1.31). Inversely, if (1.30) implies (1.31) and, addition-
ally, one of the following conditions ful�lled:

1.
� = 1

2.
� = 2� � � 3

and there exists a vector �(0), $1, $2 such that

G�(�(0)) � �� (� = 1� 2) �
$1�1 + $2�2 � 0�

then there exist ( � � 0 (� = 1� �����) such that (1.32) holds.
For � � 2 the analogue results is not true.

Proof. Su�ciency is trivial. Indeed, the proof of this theorem can be
converted to the conditions of lemma 1.3: the constraint

�|��� � ��

can be rewritten as μ
�
1

¶| �
�� 0
0 ���

¸μ
�
1

¶
� 0�

Therefore, by Lemma 1.3, we get

�

 0
0 ��0

¸
�

�X
�=1

( �

�
�� 0
0 ���

¸
=

�
��	


 �
�P
�=1

( ��� 0

0 ��0 +
�P
�=1

( ���



��� � 0

which corresponds to (1.32).
Necessity follows from previous Theorem (1.4). Then simple counter-

example may show that this theorem is not valid for � � 2.
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1.3 Examples

Example 1.1 Using Schur’s lemma �nd for which � the matrix

� =

�
	 �1 1 �

1 �2 0
� 0 �1



� = � �11 �12

�|12 �22

¸
�

�11 =

� �1 1
1 �2

¸
� �12 =

�
�
0

¸
� �22 = �1

is strictly negative, i.e.,
� � 0

Solution. By Schur’s formula (1.8) � � 0 if and only if

�11 � �12�
�1
22 �

|
12 =

� �1 1
1 �2

¸
�
�
�
0

¸
[�1] £ � 0

¤
=

� �1 1
1 �2

¸
+

�
�2 0
0 0

¸
=

�
�2 � 1 1
1 �2

¸
� 0 �

or equivalently, �
1� �2 �1
�1 2

¸
� 0 �

implying
1� �2 � 0� 2

¡
1� �2

¢� 1 � 0
and

|�| � 1 and 2�2 � 1 �

As the result we have that � � 0 for all � satisfying

� 1�
2
� � �

1�
2
�

Example 1.2 For which * the set X de�ned as

X =
©
� � R2 | �|#� � 0 for any � � ©� � R2 | �� = 0

ªª
� = 2� # =

�
1 �1
�1 �2

¸
� � =

¡
1 *

¢
is non empty (X 6= �).
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Solution. By Finsler’s lemma X 6= � if and only if there exists $ � 0
such that

#� $� |� � 0

for all � 6= 0 which is equivalent to the following condition�
1 �1
�1 �2

¸
� $

�
1
*

¸ £
1 *

¤
=�

1 �1
�1 �2

¸
�$

�
1 *
* 0

¸
=

�
1� $ �1� $*
�1� $* �2

¸
� 0

which is met if �
$� 1 1 + $*
1 + $* 2

¸
� 0 �

or equivalently
$ � 1� 2 ($� 1)� (1 + $*)2 � 0 �

The last inequality holds if

+($) := �3 + 2$ (*� 1)� $2*2 � 0

which is ful�lled together with $ � 1 if

max
	
1

+($) � 0 �

This takes place if 0 = +0($) = 2 (*� 1) � 2$*2 in the point $ = $� � 1 :

$� =
1� *

*2
� 1� (1.33)

The condition (1.33) is possible for all parameters * satisfying

1� * � *2 � *2 + *� 1 � 0 �
which corresponds to the interval (*1� *2) between the roots of the polynomial
�(*) := *2 + *� 1 :

*1�2 =
�1±�5

2
�

So, the following open interval

* �
Ã
�1��5

2
�
�1 +�5

2

!

of parameters * provides the property X 6= �.
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Example 1.3 Using � - procedure �nd multipliers ( � 0 such that

�(�) = 
 (�)� (�(�) � 0 (1.34)

for all � � R3, satisfying �(�) � 0 with

� =

�
	 2 �1 0
�1 1 0
0 0 �1



� � 0 �

implies 
 (�) := �|
� � 0 with


 =

�
	 1 �1 0
�1 �2 0
0 0 �3



� �

Solution. By � - procedure for (1.34) we have

�(�) = 
 (�)� (�(�) =

�|

�
	 1 �1 0
�1 �2 0
0 0 �3



��� (�|

�
	 2 �1 0
�1 1 0
0 0 �1



�� =

�|

�
	 1� 2( �1 + ( 0
�1 + ( �2� ( 0
0 0 �3 + (



�� � 0�

This means that the last inequality holds for all � � R3�
	 1� 2( �1 + ( 0
�1 + ( �2� ( 0
0 0 �3 + (



� � 0

By the Silvester criterion this is true if and only if

1� 2( � 0� det
�
1� 2( ( � 1
( � 1 �2� (

¸
� 0 �

det

�
	 1� 2( ( � 1 0

( � 1 �2� ( 0
0 0 �3 + (



� � 0 �

which leads to

( � 1

2
� (2( � 1) (2 + ()� (1� ()2 = (2 + 5( � 3 � 0�h
(2( � 1) (2 + ()� (1� ()2

i
(�3 + () � 0 �
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The set of the last constraints is as follows

( � 1

2
�

½
( � 3� � 3 + 5( + (2 � 0
( � 3� � 3 + 5( + (2 � 0

m
( � 0�5� ( � 3� ( �

�
37� 5
2

= 0�54138
	 ( no exists �

( � 0�5� ( � 3� 0 � ( �
�
37� 5
2

= 0�54138
	 0 � ( � 0�5

So, the property (1.34) takes place for all

0 � ( � 0�5�

1.4 Exercises

Exercise 1.1 Find for which �

� =

�
	 1 �1 �1
�1 2 ��
�1 �� 1



� � 0 �

Exercise 1.2 Suppose that for all � � 
3� satisfying

�|�� = �|

�
	 2 �1 0
�1 � 0
0 0 �1



�� � 0 �

the inequality 
 (�) := �|
� � 0 with�
	 1 �0�5 0
�0�5 0 0
0 0 1



� � 0

is met. For which � is it possible?


