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Lecture 1

Mathematical Background

The fundamental characteristics of quadratic forms are addressed in the first lecture.
The positive definitiveness of partitioned matrices is investigated using Schur’s com-
plement lemma. Finsler’s lemma is provided, as well as the so-called S - method,
which deals with extra restricting quadratic forms.

1.1 Quadratic forms

1.1.1 Nonnegative and positive definite matrices

Consider the Riemann space R™ of vectors and the quadratic form S(z) =

TSz with a matrix S € R™"™. Since

S+ 57
2

S(z) = 75z = (2, 5¢) = (ST, 2) = (2, §7a) = <:c x) — (&, 1),

we may suppose hereafter that in any quadratic form S(z) = (z,Sx) the
matrix S is symmetric.

Nonnegative definiteness

Definition 1.1 A symmetric matriz S € R"*" is said to be nonnegative

definite if
0

for all x € R™.

The next simple lemma (given without proof) holds.

25



26 Lecture 1. Mathematical Background

Lemma 1.1 The following statements are equivalent:

1. S is nonnegative definite;

2. S may be represented as
(1.2)

for some matriz H;

3. The eigenvalues of S are nonnegative, that is, for all i =1,...,n

Ai (8) > 0; (1.3)

4. There is a symmetric matriz R € R™"™ such that

S =R?; (1.4)

R is called the square Toot of S, and is denoted by the symbol SV/? =
R.

Positive definiteness

Definition 1.2 If S is nonnegative and nonsingular (det S # 0), it is said
to be positive definite.

Remark 1.1 In the case when S is positive definite we have
TSz >0 for all x # 0
and SY? is also positive definite so that for all x # 0
27520 > 0 for all # 0.
The statement "S is nonnegative definite" is abbreviated
S >0,

and, similarly,

means "S is positive definite".
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Remark 1.2 The abbreviation

A>B (orA>B) (1.5)

may be applied only to two symmetric matrices of the same size and means
that
A-—B>0 (orA—B>0).

Remark 1.3 Fuvidently, if A > 0, then for any quadratic nonsingular matrix
T (detT # 0) it follows
TATT >0

and inverse, if TATT > 0 for some nonsingular matrixz T, then A > 0.
Remark 1.4 If A> B (or A > B), then for any quadratic nonsingular T

(det T # 0)
TATT > TBTT (or TATT > TBTT)

and, inverse, if TATT > TBTT (or TATT > TBTT) for some nonsingular
T, then A > B (or A > B). In the special case A > B there exists an
orthogonal matriz T (I'T = T~') transforming A — B to a diagonal matriz
with positive elements.

Proposition 1.1 If

|1B1>41>0.|

then

Proof. Let T4 be an orthogonal transformation which transforms A to
a diagonal matrix A 4 := diag (A1(4), ..., A\n(A)) and

Aa = APAY? AY? = diag (\/Al(A), \/)\n(A)> >0.

Then, by the previous remark,
TAATJZ =Ay> TABTJ‘
and, as the result,
Isn > NPTy BTIA LY.

Denoting by T an orthogonal transformation which transforms the right-
hand side of of the last inequality to a diagonal matrix A, we obtain

Lixn =TTT > T (A;” 2TABT;,Agl/z) TT = A = diag (A1, .., An) -
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Inverting this inequality by components, one has

Ien < A7 = [T (A3 T4BTIALY?) TT}_I _
T (A*TAB TN T,
that implies
Lsen < AYPTaB1TTAY?
and
A < TuB T
Hence,
TN Ta=A" < B .
Proposition is proven. m
Proposition 1.2 If S >0 and T > 0, then
S+T2>0
with strict inequality holding if and only if
NS)NN((T) =02

where

N (S)=kerS :={z| Sz =0}

is the kernel (or, nule-space) of the matriz S.

The proofs of these statements are evident.

1.1.2 Positive definiteness of a partitioned matrix: Schur’s
complement

Theorem 1.1 (Schur’s complement) Let S be a square matriz parti-
tioned as
g 51T1 S12 c R+m)x(ntm)
512 S22
where S11 € R™ ™ 4s a symmetric n X n matriz and Saa € R™*™ s q
symmetric m X m matriz. Then S > 0 if and only if

S11 >0,

Sa2 > 0,
S11 — 51252_21512 >0,
Sog — SI2Sf11512 > 0,

(1.6)
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moreover,

det S = det Sy det (S22 — S, S12)
(1.7)
= det Spa det (S11 — S12555 S5 -

Proof. Necessity. Suppose that S > 0. Then for any x = ( il ) (1 € R™,
2

x2 € R™) non equal to zero we have
T
1 S Si2 1
0<aTSx =
s (n) 158 S ](0)

— T T TQT T
= 561511331 -+ 561512562 -+ $2S12$1 + $2S22$2 .

Taking zo = 0 it follows 2] S1121 > 0, or, equivalently, S1; > 0. Analogously,
Taking z1 = 0 we get l’;SHZEQ > 0, or, equivalently, S32 > 0. Putting

To = —52_215’12:131
we get
0 < 2]S1121 — 2] S1255 STow1 — 2] S12555 STow1+
2] 512555 922555 STow1 = ] (S11 — S12955 ST5) 71,
or, equivalently, S1; — 51252_215’{2 > (0. Analogously, taking
z1 = —S; 1222

we get

-1 -1 -1 -1

=] (S22 — SngSﬂ1512) x1,

or, equivalently, Soo — SIQSﬁlSlg > 0. Analogousely, we can prove that
S11 — 51252_215{2 > 0.

This proves necessity of (1.6).

Sufficiency. Suppose that (1.6) holds. Define matrices

A= (S — 5125521512)_1 )

C = (S22 — 81,9711 51) ",

B:= —S.'S15C.
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It is easy to show that

B=—5512C=—-A[A718]]'512C] =
A [(511 — 12551 8T,) St S (San — 5125;11512)*1} —_
A [(5115;11512 — 19553 ST, S S12) (I — Sgpt ST, 557 Sha) ™ S;ﬂ
— A [512 (I — S33STy515-512) (Inmscm — Sy STy St S12) " S;;}

= —A51252_21 .

Then routine calculations verify that

A B
° [ BT C } = Lntm)x(n+m)

So, S~ = ;T g exists and, hence, S is nonsingular and S > 0.
The formula (1.7) results from the matrix identity
Su Sz | _
STy S22
Inxn 0 Sll 0 Inxn 51_11512
SIQSl_ll Losom 0 SS9y — szsﬁlsm 0 Losom

and the following determinat’s properties
det (FG) = det (F') det (G)
F 0
det ([ o o ]) = det (F) det (G) .

Corollary 1.1 A matriz S is negative definite (S < 0) if and only if

S11 <0,

Sa2 < 0,
S11 — 51252_215{2 <0,
Sao — ST, 81 S12 < 0.
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Corollary 1.2 To guarantee that the matriz S > 0 it is necessary that all
diagonal ellements would be positive.

Corollary 1.3 Suppose that in the previous theorem m = 1, that is, the
following representation holds

Sn  Sn
Sn-}—l = ST o )
n n+1 (19>
Sn €R", opg1 € R,

where 0 < S,, € R™"™. Then Sp4+1 > 0 if and only if

o, :an+1—slS;15n >0 (1.10)
and, as the result,
_ St + [SytsnshSyt ant = (Sptsn) ot
1 _ n n °n°onn n n °n n

Shy1 = _ (S;lsn)T a a;t (1.11)

1.1.3 Sylvester’s criterion

Here we present a simple proof of the known criterion which gives a power
instrument for numerical test of positive definiteness.

Theorem 1.2 (Sylvester’s criterion) A symmetric matriz S € R"*" is
positive definite if and only if all leading principle minors

a1 e a‘lp

12 - p\ . . . _
A<1 5 ... p).— : -, p=1L2,...,n

ap 1 “ e app

are strictly positive, that is, for allp=1,2,...,n

1 2 -+ p
A(l 5 p)>o. (1.12)

Proof. Let us prove this result by the induction method implementation.
For n = 2 the result is evident. Indeed, for

S:[an au]

a12 a2
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under the assumption that a1 # 0, we have

TSy = anx% + 2a192122 + agzx% =

2 2
ai2 arg

ail (96‘1 + —> + <a22 - 96‘%
ail a1l

from which it follows that TSz > 0 (z # 0), or equivalently, S > 0 if and

only if
2

a
ai; > 0, a22—£2d6t5>0.
ail

Let us represent S € R™*™ in the form (1.9)

S, = |: S¢—1 Sn—1 :| 7

Sn—l On
Sp_1 €R™ o, R

and suppose that S,_1 > 0. This implies that det S,,—1 > 0. Then by (1.3)
Sy, > 0 if and only if the condition (1.10) holds, that is, when

_ T -1
Op—1 =0, —5, 15, 15n—1>0.

But by the Schur’s formulas (1.6) and (1.7) we have

1 2
(on — 82_15;_1157171) (det Sp—1) = ap—1 (det S,,—1) >0

A< Lo " ) — det S = det (0, — 871571 50 1) (det S,1) =

if and only if (1.10) holds, that proves the result. m

1.1.4 Nonnegative definiteness of a partitioned matrix

Theorem 1.3 Let S be a square matrix partitioned as

S11 Sz
S = ,
[ sz S22 }

where S11 is a symmetric n xn matriz and Ses 1 a symmetric m X m matriz.
Then S > 0 if and only if

S11 >0,

S22 >0,
S115{, 512 = Sha,
522555512 = 5127

Sao — 51,511 512 > 0,
S11 — 5125;251T2 > 0.

(1.13)
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Here the H™ is the matriz, pseudoinversed (in the Moore-Penrouse sence)

to H, satisfying the identities

HH*H=H, HtHH* = H™,
(HH" = HH*, Ht = HT (HHT)".

(1.14)

Proof. Necessity. Suppose that S > 0. Then there exist a matrix H with
(n 4+ m) rows such that S = HHT. Let us write H as a partitioned matrix

H:[X],XER”X”,YGRW”‘

Y
Then xT Xy
5= HHT= [ YXT VYT ]
so that
Si1=XXT>0, Sjp=XYT

By (1.14)

SuSf = (XXT) (XXT)' = X [XT(XXT)"] = XX,
so that

S11571512 = XX (XYT) = (XXTX)YT = XYT =Sy
Finally, if we let
U:=Y - SLS1X
then
0 <UUT = Sy — ST, 5 S12.
Analogously, the other two relations follows by changing X to Y.
Sufficiency. Let (1.13) holds. Define

U:= [ In><n On><m ]’ V= [ Om><n Im><m :|
1/2
X = Sl{ U
Y i= S, 85512U + (Sag — ST,51;.519)
Here Oy xm and Oy, xy, are the matrices with null-elements. Since

UVT - On><m

121,

one can see that

(I8 -1 s

Y ||Y YXT YYT ST, Sao



34 Lecture 1. Mathematical Background

Corollary 1.4 Suppose that in the previous theorem m = 1, that is, the
following representation holds

g | Sn sa
N () S (1.15)
sp € R", opy1 € R,
where 0 < S,, € R"*"™, Let
bty i= Sy Sn, Q= Opy1 — ST, sn,
B, =1+ |[tell®, Tn — tuth/B,,.
Then Sn+1 > 0 if and only if
‘Sntn =5, and oy > 0‘ (1.16)
and
+ T,.-1 4 -1
S O R
SﬁLH - o ¥y 5-1 (1.17)
1,5, T, TnS,tnf3,, i ay =0
(TuSitaB )T (RS tn) B, "

The proof of this corollary follows directly from the previous theorem
and the application of the Cline’s formula (1.18):

+ + _p+t
o] [V
J=CT+(I—-CrC)KVT(UN)TUT(I-VCTh), (1.18)
C=(I-UU"YV,
1

K= (I+[U+V (I -Cro)T [U+V (I - o))

1.2 Finsler’s lemma and S - procedure

1.2.1 Finsler’s lemma

Finsler’s lemma [1] is also known as D “ebreu’s lemma. Here we present its
slightly modified version.

Lemma 1.2 (the modified version of Finsler’s lemma) For any two
matrices Q = QT € R™™ and F € R™*"™ (rankF' < n) the following state-
ments are equivalent:
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2TQr <0 for any x € {x e R" | Fx =0} (1.19)

e there exists p > 0 such that

|Q — pFTF <0 (1.20)

for all x # 0.

Proof.
1) Necessity. Show that (1.19) implies (1.20). Represent R" as the direct

R" = N'(F) @ R(F)

where

—KerF = N (F) :={z € R": Fz = 0} is the kernel (or null space) of
the linear transformation F': R"” —— R™,
—ImF =R(F):={yeR":y=Fx, v € R"} - the image (or range)
of the linear transformation F': R" —— R™.
Let R is the set of real numbers. Select the special basis such that the
matrices () and FTF can be represented as

_ | Qu Qa2 [0 o0
Q‘[% sz] a“dFTF‘[O DTD]

where
0> Q1 € RO=mx(n=m) > Q9 € RMX™,

0< DD e R™ "™ rankD =m.

x
Then for any x = < :cl ) , 1 € R"™™ x5 € R™ we have
2

(a1 \"[ Qn Q12 T1o\ _
r@-wrre= () |G on Sion | (4) -

2] Quiz1 + 221 Qraze + 2] (Qe — uDTD) z9 =
(21 + Q11 Qu222) " Q11 (21 + Q' Quamwa) +
23 (@22 — QL,Q' @iz — pDDT) <

3 (sz - Q{QQI11Q12 - ,uDDT) 22 <0
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if p satisfies the inequality
Qa2 — Q1,Q11 Q12 — uDTD < 0.
Hence it exists satisfying the inequality
> Amax (Dil (Qa2 — QIQQﬂlQu] (DT)_l) .
2) Sufficiency. Show now that (1.20) implies (1.19). Evidently that
2T (Q—pFTF)rx=2TQz <0
for all x such that Fx =0. =
Corollary 1.5 Two statesments are equivalent:

e For some nonsingular X

| XTQX <0 and FX =0 | (1.21)

o There exists > 0 such that

Q- pFTF<0.| (1.22)

Proof. Defining z := Xz, the relations (1.21) equivalently can be represen-
ted as

2TQz <0, Fz=0

which by Finsler’s lemma 1.2 leads to (1.22). =

1.2.2 S - Procedure (lemma)

S - Procedure deals with nonnegativity of a quadratic form under quadratic
constrains as inequalities. In 1971, Yakubovich [2] proved S - Lemma which
became very popular in control theory. There exist several methods to prove
it (see for example [3], [4]) but we want to give here a proof that uses Dines’
theorem to emphasize the link between convexity and S - Lemma which is
a separation theorem for convex sets. Putinar’s Positivstellensatz [12] can
be viewed as a broad generalization of the S - procedure.
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The case of two quadratic forms

Theorem 1.4 (S - Lemma: neccessary and sufficent condition) Let
A, B be symmetric n X n matrices, and assume that the quadratic inequality

A(z) =2TAxz >0 (1.23)

is strictly feasible for some set of argument x € R™, that is, there exists &
such that £T Az > 0. Then the quadratic inequality:

B(x)=2"Bx >0 (1.24)
is a consequence of (1.23), i.e.,
2TAx > 0= 2TBx >0

(in other word, (1.24) holds for all x € R™, satisfying (1.23)), if and only if
there exists a nonnegative T > 0 such that for all x € R"

B(z)—1A(x) >0, (1.25)

Proof. a) Sufficiency. The sufficiency part immediately follows. Indeed,

or equivalently

2TBx > 1aTAxz > 0.

b) Neccessity. To prove neccesity let us assume that xTBz > 0 is a con-
sequence of 2T Az > 0. Define the sets

S :={(2TAz,2z"Bzx) : x € R"}
and
U={(ur,u2):u1 e Ry ={ueR:u>0},us e R.={uecR:u<0}}.

S is a convex set by Dines’ theorem while U is a convex cone. Since their in-
tersection is empty, a separating hyperplane exists, i.e., there exists nonzero
¢ = (c1,c2) € R?, such that (c,s) < 0,Vs € S and (c,u) > 0,Yu € U. For
(0,—1) € U we have c¢a < 0. For (1, —«a) € U where « is a small positive
number arbitrarily chosen, we obtain ¢; > acs. Letting « tend to zero, we
get ¢1 > 0. Since there exists & such that £TAz > 0 and by the separation
argument we have
c1xTAz + coxTBx <0
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for all z € R" implying
12T AT + cpx" Bz < 0.

Since ¢; > 0 and by hypothesis £TAzx > 0 and £7Bz > 0, and taking into
account that c; and co cannot both be zero, the last inequality implies that
ca2 < 0. Indeed,

cxTBr < —c1xT Az < 0

Therefore, we obtain:
c
2TBz < AT Ax

C2
. . . . &
for all x € R™, which is equivalent to B — 7A > 0 after defining 7 = -
C2
This completes the proof of the necessity part. Hence, the result is proven.

Remark 1.5 If Theorem 1.4 is valid for some positive parameter T, then it
can be taken equal to 1, and the condition (1.25) may be always considered
in the simplified form as

|B(x) — A(z) > 0 (1.26)

for all x € R™. Indeed, if (1.25) holds for T > 0, then the inequality (1.23)
can be equivalently represented as

zT <lA> z>0
T
that transforms (1.25) directly to (1.26).

The case of m > 2 quadratic forms

Consider the collection of quadratic forms
Ai(x) :=2TAz (i=1,2,....,m), B(z):=2"Bx
where x € R™ and A, B; are symmetric n X n matrices.

Definition 1.3 S - Procedure consists in the creation of the quadratic form

S(z)=B(x) — 11 A1(z) — ... — TmAm(x) (1.27)

for some nonnegative scalars T; >0 (i =1,2,...,m).
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In fact, the nonnegative parameters 7; play the role of Lagrange multi-

pliers for quadratic forms.
Lemma 1.3 (sufficient condition) Let the inequalities
Ai(x) =2TAjz >0 (1 =1,2,...,m)
hold. Then the quadratic inequality:
B(x):=2TBx >0
is consequences of (1.28), i.e.,

ﬁl (xTAjz >0) = 2TBx >0

1=

if there exists nonnegative T; such that

S(z) =B(z) — 11A1(z) — ... — T Am(x) >0
or equivalently
B 7i4; >0
i=1

Proof. Indeed, suppose that (1.29) is met. Then
B(z) > miAi(z) =0
i=1

Lemma is proven. m

(1.28)

(1.29)

Remark 1.6 [t is important to note that for m > 2 the analogue of the
neccessary condition in Theorem 1.4, is not wvalid, that is, S - procedure

becomes to be the flawed.

Extension of Theorem 1.4

Theorem 1.5 Let inequalities

Ai(z) :=2TAix <oy (i =1,...,m)

imply

‘B(m) :=2TBz < a0|

(1.30)

(1.31)
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where «; (i =0,1,...,m) are some real numbers. If there exist T; > 0
(i =1,...,m) such that

B S Xm:TZ'AZ', (7)) Z Xm:TiOéi, (1.32)
i=1 i=1

then (1.30) implies (1.31). Inversely, if (1.30) implies (1.31) and, addition-
ally, one of the following conditions fulfilled:

1.

and there exists a vector 9, py, o such that

Ql(w(o)) < oy (Z = 1,2),
,LLlA]_ + HQAQ > O,

then there exist 7; > 0 (i = 1,...,m) such that (1.32) holds.

For m > 2 the analogue results is not true.

Proof. Sufficiency is trivial. Indeed, the proof of this theorem can be
converted to the conditions of lemma 1.3: the constraint

zT Az < oy

()18 ()=

Therefore, by Lemma 1.3, we get

can be rewritten as

D o N Y - M '
0 —ao ] = 0 —a 0 —ag+ YTy |
i=1

which corresponds to (1.32).
Necessity follows from previous Theorem (1.4). Then simple counter-
example may show that this theorem is not valid for m > 2. m
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1.3 Examples

Example 1.1 Using Schur’s lemma find for which o the matriz

-1 1 o
s—| 1 92 o | = S Siz
ST Sog |’
a 0 -1 12
-1 1 «
5112[1 _2},5122[0}75222—1
1s strictly negative, i.e.,
S<0

Solution. By Schur’s formula (1.8) S < 0 if and only if

511—51252—215{2:[_11 _12]—[8‘}[—1][@ 0]=

-1 1 +a20_a2—11 <0
1 =2 0 0] 1 -2 ’
or equivalently,
1—a? -1 50
-1 2 ’

implying
1-a>>0,2(1-0a%)—1>0

and
la| < 1 and 2% < 1.

As the result we have that S < 0 for all « satisfying

Example 1.2 For which c the set X defined as
X:{xERQ\xTQx<Oforanyx€ {xERQ\F:B:0}}

an,Q:[_ll :é],F:(l c)

is non empty (X # ).

41
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Solution. By Finsler’s lemma X # & if and only if there exists u > 0
such that
Q—nFTF <0

for all z # 0 which is equivalent to the following condition

1 -1 1
5 ] oee] e
r —-1] 1 c| 1—p —1—pe
{—1 —2} “{c O]_[—l—,uc —2 }<O
which is met if

[ p—1 1+ pc

l+pc 2 ]>0’

or equivalently
p>1,2(n—1)— (14 pc)? >0.
The last inequality holds if

d(n) = =3+ 2u(c—1) =y’ >0
which is fulfilled together with p > 1 if

max¢(u) > 0.

This takes place if 0 = ¢/(u) = 2(c — 1) — 2uc? in the point u = p* > 1:
1—c¢
f=— > 1 1.33
W= (1.33)
The condition (1.33) is possible for all parameters ¢ satisfying

l-c>fecd+e—-1<0,

which corresponds to the interval (c1, ¢2) between the roots of the polynomial
p(c):=c?+c—1:
~1+£+5
C12 = T .

So, the following open interval

e (—1—\/37—1—1-\/5)

2 2

of parameters ¢ provides the property X # .
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Example 1.3 Using S - procedure find multipliers T > 0 such that

S(x)=B(z)—TA(x) >0

for all x € R3, satisfying A(z) > 0 with

2 -1 0
0O 0 -1

implies B (z) := 7Bz > 0 with

1 -1 0
B=| -1 -2 0
0o 0 =3

Solution. By S - procedure for (1.34) we have
S(z) = B(z) — TA(z) =

1 -1 0 2 -1 0
zT | -1 =2 0 r—T2T | =1 1 0 T =
0 0o -3 0 0 -1

1-27 —-1+7 0
2T | =147 —2—71 0 x> 0.
0 0 —3+T

This means that the last inequality holds for all z € R?

1-27 —-1+47 0
—14+7 —2—-71 0 >0
0 0 —3+T

By the Silvester criterion this is true if and only if

1-2r 7-—-1
T—1 —2-—7 |~
1-27 7-1 0
det | 7—1 —-2-—r7 0 >0,
0 0 -3+

1—27 >0, det

which leads to
2r—1)2+7)—(1—-7)?=72457—-3>0,

1

7<=
_27

[(27—1)(2+T)—(1—T)2 (—=3+7)>0.

43

(1.34)
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The set of the last constraints is as follows

] {723, —3457+722>0

=2 7<3, —3457+72<0
i

@ — 0.54138 <= 7 no exists,
V37 -5
2

7<05 7>3, 17>

7<05, 7<3, 0<7< =0.54138 <= 0<7<0.5

So, the property (1.34) takes place for all

1.4 Exercises
Exercise 1.1 Find for which £
1 -1 -1
S=|-1 2 —-p|>0.
-1 -5 1
Exercise 1.2 Suppose that for all x € R3, satisfying
2 -1 0
2TAz =27 | -1 « 0 |x>0,
0 0 -1
the inequality B (z) := T Bx > 0 with
—0.
-05 0
0 0

is met. For which « is it possible?



