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Abstract. The time optimal control problem occupies a central place in the control theory. In this paper we show with the help of the Potapov

Fundamental Matrix Inequality that the solution of the time optimal control problem in the canonical linear system case can be given in terms of

the solution of an interpolation problem in a certain class of holomorphic functions.

1 Introduction

Let A be a realn×n matrix andb a given constant vector inRn. Consider the following completely controllable system

ẋ = Ax+bũ (1.1)

for vector functionsx∈ Rn: For a given initial vectorx0 6= 0 find the minimal possible timeθmin of the transfer (or the
optimal time) and the optimal controlũ = ũx0(t) with |ũ| ≤ 1 such that the trajectory of the closed systemẋ = Ax+bũx0

starting atx0 terminates at the origin at timeθmin, i.e., x(θmin) = 0. Such control problem is called the time optimal
control (TOC), see [10].

Apparently N.N. Krasovskii [7] was first who proposed the use of moment problem methods for solving optimal
control problems (OCP). He reduced linear OCP to moment problems by interpreting the cost function as a norm, which
in fact was an application of the KreinL–moment problem [8]. An analytical solution of the TOC problem was given
by V.I. Korobov and G.M. Sklyar [5], [6] on the basis of a treatment of an equivalent Markov power moment problem,
the so-called Markov moment min-problem.

In the present paper we obtain the solution of the TOC problem in the canonical system case, that is, for

A := {δ j,k+1}n
j,k=1, b := (1, 0, . . . ,0)T , (1.2)

whereδ j,k is the Kronecker symbol. Our solution method is based on some deep results for classical moment and
interpolation problems.

First we reduce the TOC problem to a Hausdorff moment problem. In its turn, the Hausdorff moment problem is
translated into a Nevanlinna–Pick interpolation problem in the class of Nevanlinna functions, i.e., the class of holomor-
phic functions in the upper half–plane that have a nonnegative imaginary part. The interpolation problem is handled by
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using the Fundamental Matrix Inequality (FMI) of Potapov. This method is based on transforming the original problem
into equivalent matrix inequalities.

In contrast to [5] and [6], the solution we give to the TOC problem is explicit and not recursive. Here we do not use
in advance the facts that the optimal control takes the extremal values1 or−1 and that the number of switches does not
exceedn−1, wheren is the dimension of the system.

To apply our approach and give a complete solution of the mentioned problem, technically one needs to find a) a
root of a polynomial to determine the minimal time, b) a vectorν 6= 0 such thatH1ν = 0 and/orH2ν = 0 where the
matricesH1 andH2 are given in Definitions 2.3 and 2.4.

We find the optimal timeθmin(x0) by Theorem 3.6 below as the maximal solution of the equationsdetH1(θ,x0) = 0
anddetH1(θ,x0) = 0. Then we find the vectorsν 6= 0 such thatH1(θmin(x0),x0)ν = 0 or H2(θmin(x0),x0)ν = 0. Knowing
θmin(x0) and vectorsν, we can construct rational functionss(z) for all z∈ C \ [0,θmin(x0)] by Theorem 2.10. On the
other hand, knowings(z) we can find the optimal controlũ(t) for t ∈ [0,θmin(x0)] making use of Theorem 3.7. It remains
to substitute the optimal timeθmin(x0) and the optimal control̃u(t) into (3.1).

Moreover, Lemma 3.1 allows us to claim that every TOC problem for the canonical system is equivalent to a
degenerate Hausdorff moment problem and, conversely, every degenerate Hausdorff moment problem corresponds to a
TOC problem.

The FMI approach allowed in [4] to solve the Admissible Control problem, i.e., the problem of finding the set of
all bounded controlsux0,θ(t) that drive a starting pointx0 to the origin at timeθ > θmin, whereθmin denotes the minimal
possible time of this transfer.

2 Preliminaries

We start with some necessary notions related to moment problems on[0,θ].

2.1 L–Markov and Hausdorff moment problems

Let C0,L denote the set of all measurable functionsf : [0,θ]→R such that0≤ f (τ)≤ L for all τ ∈ [0,θ], and letM [0,θ]
stand for the set of all nonnegative measures on[0,θ] identifying with nondecreasing functionsσ : [0,θ]→ R.

The L–Markov moment problem (MMP) for an interval[0,θ] is stated as follows: Let a finite sequence of real

numbers{c j}k
j=0 be given. Find the set of functionsf ∈ C0,L such thatc j =

θ∫

0

τ j f (τ)dτ for all j ∈ {0, · · · ,k}.

The Hausdorff moment problem (HMP) for an interval[0,θ] is stated as follows: Let a finite sequence of real

numbers{sj}k
j=0 be given. Find the set of measuresσ ∈ M [0,θ] such thatsj =

θ∫

0

τ j dσ(τ) for all j ∈ {0, · · · ,k}. We

denote byM
(
[0,θ],{sj}k

j=0

)
the set of solutions of this HMP.

2.2 The classR [0,θ] of holomorphic functions

The TOC problem can be restated in the language of functions in the classR [0,θ]. This class consists of functions
s : C\ [0,θ]→ C that satisfy the following conditions: (i)s is holomorphic inC\ [0,θ], (ii) Ims(z)≥ 0 for Imz> 0,
(iii) s(t)≥ 0 for eacht ∈ (−∞,0), (iv) −s(t)≥ 0 for eacht ∈ (θ,+∞).

Functions inR [0,θ] admit the following integral representation (see [9, Theorem A6]).

Theorem 2.1. A functionsbelongs toR [0,θ] if and only if there exists a measureσ ∈M [0,θ] such that

s(z) =
∫ θ

0
(τ−z)−1dσ(τ) for all z∈ C\ [0,θ]. (2.1)
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The holomorphic functionz 7→ s(z) defined by (2.1) is called the Stieltjes transform of the measureσ ∈ M [0,θ].
Thus, by Theorem 2.1, the Stieltjes transform of a measureσ ∈M [0,θ] belongs to the classR [0,θ].

2.3 The Stieltjes inverse formula

Givens∈ R [0,θ], the measureσ satisfying the equation

s(z) =
∫ θ

0
(τ−z)−1dσ(τ)

and normalized by the conditions

σ(t) =
(
σ(t +0)−σ(t−0)

)
/2, σ(0) = 0,

is uniquely determined by the following Stieltjes inverse formula:

σ(t) =
1
π

lim
ε→0

∫ t

0
Ims(x+ iε)dx, t ∈ [0,θ]. (2.2)

With this notation the HMP can be reformulated in the form: Describe the setR
(
[0,θ],{sj}k

j=0

)
of the Stieltjes

transforms of all nonnegative measures inM
(
[0,θ],{sj}k

j=0

)
.

2.4 Relation between theL–Markov moment problem and the finite Hausdorff moment problem

There is a bijection (see [9]) between the setC0,L and the measuresσ ∈M [0,θ] satisfying
∫ θ

0
dσ(τ) = 1, which is given

by
θ∫

0

dσ(τ)
τ−z

=−1
z

exp


1

L

θ∫

0

f (τ)dτ
z− τ


 . (2.3)

The formal asymptotic expansions of the left- and right-hand sides of (2.3) determine an explicit relation between
{c j}n−1

j=0 and{sj}n
j=0 (see [1]):

sj =
1

j!L j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 −L 0 · · · 0 0
2c1 c0 −2L · · · 0 0

3c2 2c1 c0
... 0 0

...
...

... ... ...
...

( j−1)c j−2 ( j−2)c j−3 ( j−3)c j−4
... c0 −( j−1)L

jc j−1 ( j−1)c j−2 ( j−2)c j−3 · · · 2c1 c0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.4)

=
b j,1

L
+

b j,2

L2 + . . .+
b j, j

L j for j = 1,2, . . . ,

and
s0 = 1 and c j = 0, sj = 0 for j < 0, (2.5)

where

b j,1 = c j−1, b j,2 =

{
∑k−2

m=0cmc j−2−m+c2
k−1/2 if j = 2k,

∑k−1
m=0cmc j−2−m if j = 2k+1,

. . . , b j, j =
c j

0

j!
.

If the sequence{sj} j≥0 satisfies (2.4)–(2.5), then, applying Laplace’s expansion with respect to the last row of
determinant (2.4) and mathematical induction, we obtain the following identity:

L js j = sj−1c0 +2sj−2c1 +3sj−3c2 + . . .+ js0c j−1, j ≥ 1. (2.6)
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Theorem 2.2. [9, Theorem 2.1]The L–Markov moment problem for the interval[0,θ] with data{c j−1(θ,x0)}n
j=1 is

solvable if and only if the Hausdorff moment problem for the interval[0,θ] with data{sj(θ,x0)}n
j=0 is solvable.

Due to bijective relation (2.4), theL–Markov moment problem for[0,θ] can be solved in terms of the Hausdorff
moment problem for[0,θ]. We carry out the treatment of the latter problem making use of Potapov’s FMI approach
(cf. [2], [3]). Note that in [2] and [3] an explicit solution of the nondegenerate matrix version of the Hausdorff moment
problem was given.

2.5 Potapov’s Fundamental Matrix Inequality

V.P. Potapov developed a powerful approach to matrix interpolation problems, which we now use in its scalar version.
This approach is based on a generalization of a classical lemma by H.A. Schwarz and a modification of this result which
goes back to G. Pick. Potapov converted the original problem into an equivalent matrix inequality, FMI. In the case,
where the so-called information block of this inequality is nondegenerate (see the matricesH1 andH2 in Definitions 2.3
and 2.4), he created an ingenious factorization method which allows one to determine the solution set for the matrix
inequality and, consequently, for the original HMP.

Note that, in the construction of the solution, there is a remarkable difference between the cases of even and odd
number of data (see Theorem 2.10 below). Taking this into account, we first introduce the matrices which appear in the
FMI in the even case (scalar version).

Definition 2.3. Let n = 2p+1. Using the momentss0,s1, . . . ,s2p+1, we construct the following matrices:

H1 := [sj+k+1]
p
j,k=0, H2 := [θsj+k−sj+k+1]

p
j,k=0,

T := [δ j,k+1]
p+1
j,k=1, RT(z) := (I −zT)−1,

u := (−s0,−s1, . . . ,−sp)T , υ := (1,0, . . . ,0)T ,

u1 := u, u2 =−u+θTu,

whereu,υ ∈ Rp+1 andI is the identity matrix of corresponding dimension. Further, we introduce two auxiliary holo-
morphic functions

s̃1(z) := zs(z), s̃2(z) := (θ−z)s(z), z∈ C\ [0,θ], (2.7)

wheres(z) is the Stieltjes transform of a measureσ ∈M [0,θ].

In a similar way, we introduce the matrices that appear in Potapov’s FMI in the odd case.

Definition 2.4. Let n = 2p. Using the momentss0,s1, . . . ,s2p, we construct the following matrices:

H1 := [sj+k]
p
j,k=0, H2 := [θsj+k+1−sj+k+2]

p−1
j,k=0,

T1 := [δ j,k+1]
p+1
j,k=1, T2 := [δ j,k+1]

p
j,k=1,

RTk(z) := (I −zTk)−1, k = 1,2,

u1 := (0,−s0, . . . ,−sp−1)T , υ1 = (1,0, . . . ,0)T ,

ũ1 := (−s0,−s1, . . . ,−sp−1)T , ũ3 := (−s1,−s2, . . . ,−sp)T ,

u2 := θũ1− ũ3, υ2 := (1,0, . . . ,0)T ,

whereu1,υ1 ∈ Rp+1, u2,υ2 ∈ Rp. We also introduce two auxiliary holomorphic functions

s̃1(z) := s(z), s̃2(z) := (θ−z)zs(z)−s0z, z∈ C\ [0,θ], (2.8)

wheres(z) is the Stieltjes transform of a measureσ ∈M [0,θ].
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The following result gives a solvability criterion for the Hausdorff moment problem (see [9]).

Proposition 2.5. The Hausdorff moment problem is solvable if and only ifH1 ≥ 0 andH2 ≥ 0, i.e., the matricesHr for
r = 1,2 are positive semidefinite.

We now define the systems of Potapov’s FMI for the even and odd cases (see [2],[3]). In what follows, forn= 2p+1,
we setT1 = T2 = T andυ1 = υ2 = υ. The complex conjugate of a numberz∈C and the Hermitian conjugate of a matrix
functionw∈ Cm×n is denoted bȳzandw∗, respectively.

Definition 2.6. A function s is called a solution of the associated system of Potapov’s Fundamental Matrix Inequality,
if ssatisfies the following conditions: i)s is holomorphic inC\ [0,θ], ii) for every r = 1,2 the inequality

[
Hr RTr (z) [υr s̃r(z)−ur ]

(RTr (z) [υr s̃r(z)−ur ])∗ (sr(z)− s̃∗r (z))/(z− z̄)

]
≥ 0 (2.9)

holds.

It turns out that the treatment of the matrix moment problem is equivalent to finding all solutions of the correspond-
ing system of FMI (see [2],[3]):

Theorem 2.7. The functions(z) is a Stieltjes transform of a measureσ ∈ M
(
[0,θ],{sj}k

j=0

)
if and only if s(z) is a

solution of the system of Potapov’s Fundamental Matrix Inequalities(2.9).

This theorem holds for both the even and odd cases of data. In this way, the problem of finding the Stieltjes transform
of σ is reduced to the problem of finding the holomorphic functions(z) in Definition 2.6.

Definition 2.8. The Hausdorff moment problem is called degenerate if one of the determinantsdetHr , r = 1,2, is equal
to zero.

Below we use the following important result (see [9, Theorem 4.1]).

Theorem 2.9. The degenerate Hausdorff moment problem has a unique solution.

Following the Potapov scheme, the solution of the degenerate HMP is given by the following result.

Theorem 2.10. The holomorphic functions(z), z∈ C \ [0,θ], associated to the positive measureσ of the degenerate
HMP has the following rational representation:

1) if n = 2p+1, thens(z) is equal to

P1(z)
Q1(z)

:=
ν∗RT(z)u1

zν∗RT(z)υ
, or

P2(z)
Q2(z)

:=
ν∗RT(z)u2

(θ−z)ν∗RT(z)υ
; (2.10)

2) if n = 2p, thens(z) is equal to

P3(z)
Q3(z)

:=
ν∗RT1(z)u1

ν∗RT1(z)υ1
, or

P4(z)
Q4(z)

:=
ν∗RT2(z)(u2 +s0zυ2)
(θ−z)zν∗RT2(z)υ2

. (2.11)

Proof. Denote byĤ the matrixHr (even or odd case) such thatdetHr = 0 for r = 1 or r = 2. PutM :=
[

ν 0
0 1

]
, where

ν ∈ Rp+1 or ν ∈ Rp is such thatĤν = 0. HenceM ∈ R(p+2)×2 or M ∈ R(p+1)×2. Taking into account Proposition 2.2
and Theorem 2.7, we consider the FMI (2.9). Write the inequality (2.9) in the equivalent form

M∗
[

Ĥ RTr (z) [υr s̃r(z)−ur ]
(RTr (z) [υr s̃r(z)−ur ])∗ (s̃r(z)− s̃∗r (z))/(z− z̄)

]
M

=
[

ν∗Ĥν ν∗RTr (z) [υr s̃r(z)−ur ]
(RTr (z) [υr s̃r(z)−ur ])∗ν (s̃r(z)− s̃∗r (z))/(z− z̄)

]
≥ 0. (2.12)
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Sinceν∗Ĥν = 0 and since all the eigenvalues of the (Hermite) positive semidefinite matrix are nonnegative, we infer
from (2.12) that−|ν∗RTr (z) [υr s̃r(z)−ur ]|2 ≥ 0. Consequently,ν∗RTr (z) [υr s̃r(z)−ur ] = 0, and therefore

s̃r(z) =
ν∗RTr (z)ur

ν∗RTr (z)υr
. (2.13)

Hence, for the even case (n= 2p+1), taking into account (2.7) and (2.13), we obtain (2.10). Similarly, for the odd case
(n = 2p), from (2.8) and (2.13) it follows (2.11).

Note that all functionsPk andQk for k = 1,2,3,4 are polynomials. Let
P(t)
Q(t)

denote one of the rational fractions

Pk(t)
Qk(t)

(k = 1,2,3,4) corresponding to the conditiondetĤ = 0.

3 Solution of the TOC problem

In this section we give a solution of the TOC problem. In what follows letL = 1 and letxk, j denote thej-entry of any
vectorxk ∈ Rm. Thus,xk = {xk, j}m

j=1.

Lemma 3.1. The TOC problem for the canonical system is equivalent to a degenerate Hausdorff moment problem.

Proof. Because of the complete controllability of (1.1), there exists aθ such thatx(θ) = 0. The system (1.1) with initial
conditionx(0) = x0 has the unique solution

x(t) = eAt
(

x0 +
∫ t

0
e−Aτbũ(τ)dτ

)
for all t ∈ [0,θ]. (3.1)

Then conditionx(θ) = 0 is equivalent to

−x0 =
θ∫

0

e−Aτbũ(τ)dτ. (3.2)

Using the fact thatA andb are canonical, and henceAn = 0 due to (1.2), we conclude that the equality (3.2) can be
rewritten in the equivalent form

−x0, j =
(−1) j−1

( j−1)!

θ∫

0

τ j−1ũ(τ)dτ, j = 1,2, . . . ,n, (3.3)

wherex0, j is the j-entry of the vectorx0 ∈ Rn. Setting f := (ũ+1)/2, we get

θ j +(−1) j j! x0, j

2 j
=

θ∫

0

τ j−1 f (τ)dτ, j = 1,2, . . . ,n.

Denoting

c j−1(θ,x0) :=
θ j +(−1) j j! x0, j

2 j
, j = 1,2, . . . ,n, (3.4)

the TOC problem is reduced to a Markov moment problem, i.e., to the problem of finding a set of functionsf such that
0≤ f (τ)≤ 1 for τ ∈ [0,θ] and

c j−1(θ,x0) =
θ∫

0

τ j−1 f (τ)dτ for all j = 1,2, . . . ,n. (3.5)
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Applying now the relation (2.4) withL = 1, we obtain the data momentssj(θ,x0) ( j = 1,2, . . . ,n) of the classical
Hausdorff moment problem for the interval[0,θ],

sj(θ,x0) =
∫ θ

0
t jdσ(t), j = 0, . . . ,n, (3.6)

with additional condition thatθ should be the minimal possible value such that (3.6) has a solution. This condition takes
place whendetHr(θ,x0) = 0 (the existence of suchθ in the canonical case (1.2) follows from Theorems 3.6 and 3.7),
i.e., in the case of degenerate Hausdorff moment problem.

As to the sufficiency part of the proof, we use the Theorems 2.3 and 2.4 in [9, page 62], which say that the Hausdorff
moment problem with even or odd number of given moments{sj(θ,x0)}k

j=0 is solvable if and only if their corresponding
matrix functionsH1(θ,x0) andH2(θ,x0) are nonnegative. If the Hausdorff moment problem is degenerate, we can find
the optimal timeθmin(x0). Taking θ = θmin(x0), we can get the optimal control̃u(t) for t ∈ [0,θmin(x0)] from the
equations (3.3) or (3.2). To obtain the solution of the TOC problem, it remains to substituteũ(t) in (3.1).

Corollary 3.2. If x̃ j = (0, . . . ,0,x0, j , . . . ,x0,n) ∈ Rn wherex0, j 6= 0, then

sj(0, x̃ j) = c j−1(0,x0) =
(−1) j( j−1)! x0, j

2
, j ≥ 1. (3.7)

Proof. It is sufficient to apply (2.6) withL = 1, and then (3.4).

Theorem 3.3. Let x0 ∈ Rn be a fixed state and letθ1 > 0 be sufficiently large. Then for allθ > θ1 and for both even
and odd cases,H1(θ,x0) > 0 andH2(θ,x0) > 0, i.e., the matricesHr(θ,x0) for r = 1,2 are positive definite.

Proof. Applying (2.4) in the caseL = 1 with c j−1(θ,x0) given by (3.4), we obtain

sj(θ,x0) =
1
j!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ
2−

x0,1
2 −1 · · · 0

θ2

2 + 2!x0,2
2

θ
2−

x0,1
2

... 0
...

... ...
...

θ j−1

2 + (−1) j−1( j−1)! x0, j−1

2
θ j−2

2 + (−1) j−2( j−2)! x0, j−2

2 · · · −( j−1)

θ j

2 + (−1) j j! x0, j

2
θ j−1

2 + (−1) j−1( j−1)! x0, j−1

2 · · · θ
2−

x0,1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2 j j!

∣∣∣∣∣∣∣∣∣∣∣∣

θ −2 · · · 0 0

θ2 θ ... 0 0
...

... ... ...
...

θ j−1 θ j−2 · · · θ −2( j−1)
θ j θ j−1 · · · θ2 θ

∣∣∣∣∣∣∣∣∣∣∣∣

+Pj−1(θ,x0)

:=
1

2 j j!
∆ j(θ)+Pj−1(θ,x0), (3.8)

wherePj−1(θ,x0) is a polynomial of degreej−1 in θ. To calculate the determinant∆ j(θ) we use the recursive formula
∆ j(θ) = (2 j −1)θ∆ j−1(θ), which is obtained by applying Laplace’s expansion with respect to the last column. As a
result, we get∆ j(θ) = (2 j−1)!! θ j , whence (3.8) implies that

sj(θ,x0) =
(2 j−1)!!

2 j j!
θ j +Pj−1(θ,x0), (3.9)
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Now we consider the casen= 2p+1 andr = 1. Let y∈Rp+1. Takingsj = sj(θ,x0), we deduce from Definition 2.3
and (2.4) that

(
H1(θ,x0)y,y

)
=

(
[sj+k+1]

p
j,k=0y,y

)
=

p+1

∑
k=1

(
2

k−1

∑
i=1

sk+i−1yiyk +s2k−1y2
k

)
, (3.10)

By (3.9), each summand in (3.10) is of the form

2
k−1

∑
i=1

sk+i−1yiyk +s2k−1y2
k =

(4k−3)!!
22k−1(2k−1)!

θ2k−1y2
k +R2k−2(θ,x0,y)yk,

whereR2k−2(θ,x0,y) is a polynomial of degree2k−2 in θ. Thus, we infer from (3.10) that

(
H1(θ,x0)y,y

)
=

p+1

∑
k=1

(
(4k−3)!!

22k−1(2k−1)!
θ2k−1y2

k +R2k−2(θ,x0,y)yk

)
.

Hence there is aθ1 > 0 such that for allθ > θ1 and ally 6= 0, we have
(
H1(θ,x0)y,y

)
> 0, which means thatH1(θ,x0)

is positive definite. In a similar way
(
H2(θ,x0)y,y

)
> 0 for all sufficiently largeθ and ally 6= 0. The same arguments

are valid for the odd case of given moments.

Lemma 3.4. If n = 2p+1, then forθ = 0 and all j = 1,2, . . . , p we have the following:

(
H1(0,x0)y1,y1

)
=−(

H2(0,x0)y1,y1
)

=−1
2

x0,1, (3.11)

(
H1(0, x̃2 j)y j+1,y j+1

)
=−(

H2(0, x̃2 j)y j+1,y j+1
)

=−(2 j)!
2

x0,2 j+1, (3.12)

(
H1(0, x̃2 j)ỹ j , ỹ j

)
=−(

H2(0, x̃2 j)ỹ j , ỹ j
)

= (2 j−1)! x0,2 j − (2 j)!
2

x0,2 j+1, (3.13)

wherey j = (0, . . . ,0,1,0, . . . ,0)T ∈ Rp+1 with y j, j = 1 for j = 1,2, . . . , p+1, andỹ j = (0, . . . ,0,1,1,0, . . . ,0)T ∈ Rp+1

with ỹ j, j = ỹ j, j+1 = 1 for j = 1,2, . . . , p.

Proof. By Definition 2.3 and Corollary 3.2, we obtain

(
H1(0,x0)y1,y1

)
=−(

H2(0,x0)y1,y1
)

= s1(0,x0) =−x0,1

2
,

which gives (3.11). Further, for allj = 1,2, . . . , p, Definition 2.3 and (2.6) imply that
(
H1(0, x̃2 j)y j+1,y j+1

)
=−(

H2(0, x̃2 j)y j+1,y j+1
)

= s2 j+1(0, x̃2 j)

=
2 j

2 j +1
s1(0, x̃2 j)c2 j(0, x̃2 j)+c2 j(0, x̃2 j). (3.14)

Sinces1(0, x̃2 j) =−1
2x̃2 j,1 = 0 in view of the first equality in (3.8) and sincec2 j(0, x̃2 j) =− (2 j)!

2 x0,2 j+1, we infer (3.12)
from (3.14).

On the other hand, from Definition 2.3 it follows that
(
H1(0, x̃2 j)ỹ j , ỹ j

)
=−(

H2(0, x̃2 j)ỹ j , ỹ j
)

= s2 j−1(0, x̃2 j)+2s2 j(0, x̃2 j)+s2 j+1(0, x̃2 j). (3.15)

By Corollary 3.2 and (2.6), we conclude that

s2 j−1(0, x̃2 j) = 0, 2s2 j(0, x̃2 j) = (2 j−1)! x0,2 j , (3.16)
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and

s2 j+1(0, x̃2 j) =
2 j

2 j +1
s1(0, x̃2 j)c2 j−1(0, x̃2 j)+c2 j(0, x̃2 j)

= c2 j(0, x̃2 j) =−(2 j)! x0,2 j+1

2
, . (3.17)

Combining (3.15)–(3.17), we get (3.13).

Lemma 3.5. If n = 2p, then forθ = 0 the following relations hold:

(
H1(0,x0)y2,y2

)
=−(

H2(0,x0)ŷ1, ŷ1
)

=
1
8

(x2
0,1 +4x0,2), (3.18)

(
H1(0,x0)y0,y0

)
= 1−x0,1y0,2 +

1
8

(x2
0,1 +4x0,2)y2

0,2, (3.19)

(
H1(0, x̃2 j−1)y j+1,y j+1

)
=−(

H2(0, x̃2 j−1)ŷ j , ŷ j
)

=
(2 j−1)!

2
x0,2 j , (3.20)

(
H1(0, x̃2 j−1)ỹ j , ỹ j

)
=−(

H2(0, x̃2 j−1)y̆ j−1, y̆ j−1
)

=−(2 j−2)! x0,2 j−1 +
(2 j−1)!

2
x0,2 j , (3.21)

wherey0 = (1,y0,2,0, . . . ,0)T ∈ Rp+1, ŷ j = (0, . . . ,0,1,0, . . . ,0)T ∈ Rp with ŷ j, j = 1 for j = 2,3, . . . , p, and y̆ j−1 =
(0, . . . ,0,1,1,0, . . . ,0)T ∈ Rp with y̆ j−1, j−1 = y̆ j−1, j = 1 for j = 2,3, . . . , p.

Proof. Applying Definition 2.4, (2.6) and the first equality in (3.8), we deduce that

(
H1(0,x0)y2,y2

)
=−(

H2(0,x0)ŷ1, ŷ1
)

= s2(0,x0) =
1
8

(x2
0,1 +4x0,2),

which gives (3.18). Analogously,

(
H1(0,x0)y0,y0

)
= 1+2s1(0,x0)y0,2 +s2(0,x0)y2

0,2

= 1−x0,1y0,2 +
1
8

(x2
0,1 +4x0,2)y2

0,2,

which proves (3.19).
Further, we infer from Definition 2.4, (2.6) and Corollary 3.2 that for allj = 2,3, . . . , p,

(
H1(0, x̃2 j−1)y j+1,y j+1

)
=−(

H2(0, x̃2 j−1)ŷ j , ŷ j
)

= s2 j(0, x̃2 j−1)

=
2 j−1

2 j
s1(0, x̃2 j−1)c2 j−2(0, x̃2 j−1)+c2 j−1(0, x̃2 j−1)

=
(2 j−1)! x0,2 j

2
,

which gives (3.20). On the other hand, by analogy with (3.13), from Definition 2.4, Corollary 3.2 and (2.6) it follows
that for all j = 2,3. . . , p,

(
H1(0, x̃2 j−1)ỹ j , ỹ j

)
=−(

H2(0, x̃2 j−1)y̆ j−1, y̆ j−1
)

= s2 j−2(0, x̃2 j−1)+2s2 j−1(0, x̃2 j−1)+s2 j(0, x̃2 j−1)

=−(2 j−2)! x0,2 j−1 +
(2 j−1)! x0,2 j

2
,

which proves (3.21).
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Theorem 3.6. For everyn∈ N and every nonzero vectorx0 ∈ Rn there exists a maximal positive solution (root)θn(x0)
of detH1(θ,x0) = 0 or/anddetH2(θ,x0) = 0.

Proof. It follows from Theorem 3.3 that(Hr(θ,x0)y,y) > 0 for all sufficiently largeθ > 0 and ally 6= 0. On the other
hand, by Lemma 3.4, forn = 2p+ 1 we have the following. Relations (3.11) imply that one of the quadratic forms(
Hr(0,x0)y1,y1

)
for r = 1,2 has the negative value−|x0,1|/2 at the pointx0, if x0,1 6= 0. If x0,1 = 0, then applying the

same arguments we infer from (3.12) forj = 1 that one of the quadratic forms
(
Hr(0,x0)y2,y2

)
=

(
Hr(0, x̃2)y2,y2

)
for

r = 1,2 has a negative value−|x0,3| in casex0,3 6= 0. If x0,1 = x0,3 = 0, then from (3.13) it follows that again one of the
quadratic forms

(
Hr(0,x0)ỹ1, ỹ1

)
=

(
Hr(0, x̃2)y2,y2

)
for r = 1,2 has a negative value−|x0,2| wheneverx0,2 6= 0. Thus,

we may substitutex0 by x̃4 and repeat our arguments, by applying first (3.12) forj = 2 and then (3.13) forj = 2, and so
on. Hence, forx0,1 = 0 and everyj = 1,2, . . . , p we successively obtain

∣∣(Hr(0,x0)y j+1,y j+1
)∣∣ =

∣∣(Hr(0, x̃2 j)y j+1,y j+1
)∣∣ =−(2 j)!

2
|x0,2 j+1|,

∣∣(Hr(0,x0)ỹ j , ỹ j
)∣∣ =

∣∣(Hr(0, x̃2 j)ỹ j , ỹ j
)∣∣ =−(2 j−1)! |x0,2 j |,

which implies that in the casen = 2p+ 1 for every nonzero vectorx0 ∈ Rn at least one of the quadratic forms(
Hr(0,x0)y,y

)
for r = 1,2 is negative for somey∈ Rp+1.

In the casen= 2p we use Lemma 3.5. Ifx2
0,2+4x0,1 6= 0, then by (3.18) one of the quadratic forms

(
H1(0,x0)y2,y2

)

or
(
H2(0,x0)ŷ1, ŷ1

)
has the negative value−|x2

0,2 +4x0,1|. If x2
0,2 +4x0,1 = 0, then from (3.19) it follows that

(
H1(0,x0)y0,y0

)
= 1−x0,1y0,2,

which is negative forx0,1 6= 0 andy0,2 = 2/x0,1. If x2
0,2 + 4x0,1 = 0 andx0,1 = 0, thenx0,2 = 0 as well. Let j = 2.

Applying now (3.20) we infer that forj = 2 one of the quadratic forms
(
H1(0, x̃2 j−1)y j+1,y j+1

)
or

(
H2(0, x̃2 j−1)ŷ j , ŷ j

)

has the negative value− (2 j−1)!
2 |x0,2 j | if x0,2 j 6= 0. If x0,2 j = 0, then (3.21) implies that one of the quadratic forms(

H1(0, x̃2 j−1)ỹ j , ỹ j
)

or
(
H2(0, x̃2 j−1)y̆ j−1, y̆ j−1

)
has the negative value−(2 j − 2)! |x0,2 j−1| if x0,2 j 6= 0. Thus, now it

is sufficient to considerx0 = x̃2 j−1 for all j ≥ 3. Then we again use (3.20), and then (3.21), and so on. Finally, we
conclude that in the casen = 2p similarly to n = 2p+1 for every nonzero vectorx0 ∈ Rn at least one of the quadratic
forms

(
Hr(0,x0)y,y

)
for r = 1,2 is negative for somey∈ Rp+1 if r = 1 andy∈ Rp if r = 2.

Since both functions
(
Hr(θ,x0)y,y

)
(r = 1,2), for even or odd cases ofn, are continuous inθ andy for any fixed

x0 6= 0, we infer that for everyn there exists the maximal valueθn(x0) such that
(
Hr(θn(x0),x0)y,y

)
= 0 for somer = 1,2

and somey 6= 0. Hence eitherdetH1(θn(x0),x0) = 0, or detH2(θn(x0),x0) = 0, which means in view of Theorem 3.3
that both matricesHr(θn(x0),x0) are positive semidefinite and at least one of the determinantsdetHr(θn(x0),x0) equals
0 for r = 1,2.

Taking into account the existence ofθn(x0) for everyn∈ N and every nonzero vectorx0 ∈ Rn due to Theorem 3.6,
we will call θn(x0) the optimal timeθmin(x0) of the system (1.1).

The conditiondetH1 = 0 or detH2 = 0 says that the considered Hausdorff moment problem for an interval[0,θ] is
degenerate. Consequently, due to Theorem 2.9, this HMP has a unique solution.

By virtue of the proved equivalence between the HMP and TOC problems (see Lemma 3.1) and Proposition 2.9,
there is a unique solution of the TOC problem. In each case (even and odd) we have two rational functions (2.10) and
(2.11), respectively, which give the same solution of the TOC problem.

Now we find the optimal control̃u(t) related to the optimal timeθ = θmin(x0).

Theorem 3.7. The time optimal control of system(1.1) is given by

ũ(t) =−sign
P(t)
Q(t)

, t ∈ [0,θmin(x0)], (3.22)

whereP andQ are the polynomials of the rational functions= P/Q associated to the degenerate HMP.
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Proof. Let for definitenessn = 2p+ 1, and assume thatdetH1(θmin(x0),x0) = 0. By Theorem 2.10, the holomorphic
functions(z) associated to the solution of the corresponding HMP is a rational function. Let, for example,s(z) = P1(z)

Q1(z)
.

Due to (2.3) and the properties of this solution (see [9, page 244]), we have

−z
P1(z)
Q1(z)

=
(z−ξ1) · · ·(z−ξm)
(z−η1) · · ·(z−ηm)

= exp

(
m

∑
j=1

∫ η j

ξ j

dt
z− t

)
, (3.23)

where0 = ξ1 < η1 < ξ2 < η2 < .. . < ξm < ηm(≤ θmin(x0)).
By (3.23), the solutionf has the following form:

f (t) =

{
1 if t ∈ (ξ j ,η j),
0 if t ∈ (η j ,ξ j+1),

or, equivalently, f (t) =
1
2

(
1−sign

P1(t)
Q1(t)

)
,

which completes the proof.

Remark3.8. The switching points of (3.22) are given by the roots ofP(t)Q(t). From (2.10)–(2.11) and Definitions 2.3–
2.4 it follows that control (3.22) does not have more than(n−1) points of switching. By virtue of [5, Lemma 9], this
control is optimal.

One of the advantages of using the Potapov Method for solving the TOC problems is precisely the determination of
switching points of the optimal control without recursive operations.
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