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Abstract. The time optimal control problem occupies a central place in the control theory. In this paper we show with the help of the Potapov
Fundamental Matrix Inequality that the solution of the time optimal control problem in the canonical linear system case can be given in terms of
the solution of an interpolation problem in a certain class of holomorphic functions.

1 Introduction

Let A be a reah x n matrix andb a given constant vector iR". Consider the following completely controllable system
X = Ax+ bl (1.1)

for vector functionsx € R": For a given initial vectokg # 0 find the minimal possible timén,, of the transfer (or the
optimal time) and the optimal contrdl= 0y, (t) with |G| < 1 such that the trajectory of the closed system Ax+ by,
starting atxp terminates at the origin at tim@yn, i.e., X(6min) = 0. Such control problem is called the time optimal
control (TOC), see [10].

Apparently N.N. Krasovskii [7] was first who proposed the use of moment problem methods for solving optimal
control problems (OCP). He reduced linear OCP to moment problems by interpreting the cost function as a norm, which
in fact was an application of the Krela-moment problem [8]. An analytical solution of the TOC problem was given
by V.I. Korobov and G.M. Sklyar [5], [6] on the basis of a treatment of an equivalent Markov power moment problem,
the so-called Markov moment min-problem.

In the present paper we obtain the solution of the TOC problem in the canonical system case, that is, for

A= {6juk+1}rj1,k:17 b= (17 07"'70)T7 (1.2)

whereJ; k is the Kronecker symbol. Our solution method is based on some deep results for classical moment and
interpolation problems.

First we reduce the TOC problem to a Hausdorff moment problem. In its turn, the Hausdorff moment problem is
translated into a Nevanlinna—Pick interpolation problem in the class of Nevanlinna functions, i.e., the class of holomor-
phic functions in the upper half—plane that have a nonnegative imaginary part. The interpolation problem is handled by
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using the Fundamental Matrix Inequality (FMI) of Potapov. This method is based on transforming the original problem
into equivalent matrix inequalities.

In contrast to [5] and [6], the solution we give to the TOC problem is explicit and not recursive. Here we do not use
in advance the facts that the optimal control takes the extremal valies 1 and that the number of switches does not
exceedh — 1, wheren is the dimension of the system.

To apply our approach and give a complete solution of the mentioned problem, technically one needs to find a) a
root of a polynomial to determine the minimal time, b) a veatg# O such thatH;v = 0 and/orH,v = 0 where the
matricesH; andH, are given in Definitions 2.3 and 2.4.

We find the optimal tim@min(Xo) by Theorem 3.6 below as the maximal solution of the equatiettd; (8,%y) =0
anddetH; (8, xp) = 0. Then we find the vectors+# 0 such that; (Bmin(Xo0),Xo)V = 0 or H2(Bmin(Xo), Xo)v = 0. Knowing
Bmin(Xo) and vectors), we can construct rational functios§&) for all z€ C\ [0, Bmin(Xo)] by Theorem 2.10. On the
other hand, knowing(z) we can find the optimal contr@it) for t € [0, 8min(Xo)] making use of Theorem 3.7. It remains
to substitute the optimal tim@min(Xo) and the optimal contral(t) into (3.1).

Moreover, Lemma 3.1 allows us to claim that every TOC problem for the canonical system is equivalent to a
degenerate Hausdorff moment problem and, conversely, every degenerate Hausdorff moment problem corresponds to a
TOC problem.

The FMI approach allowed in [4] to solve the Admissible Control problem, i.e., the problem of finding the set of
all bounded controlsy, ¢(t) that drive a starting poing to the origin at timed > Bin, wherebmi, denotes the minimal
possible time of this transfer.

2 Preliminaries

We start with some necessary notions related to moment problef@sthn

2.1 L-Markov and Hausdorff moment problems

Let (L denote the set of all measurable functidng0, 6] — R such thad < f(1) < L for all T € [0, 6], and letM [0, 6]
stand for the set of all nonnegative measuref0o| identifying with nondecreasing functioms: [0,6] — R.
The L-Markov moment problem (MMP) for an intervid, 6] is stated as follows: Let a finite sequence of real

]
numbers{c; 'j‘:0 be given. Find the set of functiorfse (p such that; = /Tj f(t)dtforall j € {O,--- ,k}.

0
The Hausdorff moment problem (HMP) for an intery@J6] is stated as follows: Let a finite sequence of real
]

numbers{sj}'j‘:0 be given. Find the set of measures 2 [0,0] such thats; = /rj do(1) forall j € {0,--- ,k}. We
0
denote by ([0,6], {sj}*_,) the set of solutions of this HMP.

2.2 The classR [0, 6] of holomorphic functions

The TOC problem can be restated in the language of functions in the®l@s8]. This class consists of functions
s:C\ [0,08] — C that satisfy the following conditions: (§is holomorphic inC\ [0, 8], (ii) Ims(z) > 0 for Imz> O,
(iii) s(t) > Ofor eacht € (—,0), (iv) —s(t) > O for eacht € (6, +).

Functions inR |0, 6] admit the following integral representation (see [9, Theorem A6]).

Theorem 2.1. A functions belongs taR [0, 6] if and only if there exists a measuvec /[0, 0] such that

s(z) = /0 "(t— 2 Tdo(r) forall ze C\ [0.8]. 2.1)



The time optimal control as an Interpolation Problem 3

The holomorphic functiorz — s(z) defined by (2.1) is called the Stieltjes transform of the measure) |0, 6].
Thus, by Theorem 2.1, the Stieltjes transform of a meagswrel |0, 6] belongs to the clasg [0, 6).
2.3 The Stieltjes inverse formula

Givense R [0,6], the measure satisfying the equation

s(2) = /:(‘[ —2)"Ydo(1)
and normalized by the conditions
o(t) = (o(t+0)—o(t—0))/2, a(0)=0,
is uniguely determined by the following Stieltjes inverse formula:

t
oft) = %g_% ; Ims(x+ig)dx, te€[0,0)]. (2.2)

With this notation the HMP can be reformulated in the form: Describe the}$éd, 6], {s; Ij(:o) of the Stieltjes
transforms of all nonnegative measuresHf([0, 6], {s; }_).

2.4 Relation between thd.—Markov moment problem and the finite Hausdorff moment problem

8
There is a bijection (see [9]) between the gt and the measurese M [0, 6] satisfying/ do(t) =1, which is given
0

by
Pdo(t) 1 (1 ff@dt
/ -2 zeXp<L/ z—1 ) (2:3)
0 0
The formal asymptotic expansions of the left- and right-hand sides of (2.3) determine an explicit relation between
{cj}]=5 and{s;}}_o (see [1]):

Co L 0 0 0
2c, o 2L 0 0
1 3c, 2c Co -0 0
STIO| : : @4
(i-Dcj-2 (j-2)cj-s (i-3)¢-4 " o —(j-1L
jcj—1 (j—=Dcj2 (j—2)cj—3 - 2¢1 Co
_ b1 bj2 bj,j L
_TJrﬁﬁu...JrF for j=12,...,
and
=1 andcj=0,s;=0 for j<O, (2.5)
where o .
2 CmCi_2-m+C2 /2 if j=2k, c!
bj’1:Cj_1, bj‘g: Zrknzlo MM 1/ ) J cee bj7j :,—?.
S 6 CmCj—2-m if j=2k+1, )

If the sequencqs;}>o satisfies (2.4)—(2.5), then, applying Laplace’s expansion with respect to the last row of
determinant (2.4) and mathematical induction, we obtain the following identity:

Ljsj = Sj—1Co+2Sj_2C1 +3Sj_3C2+ ...+ jSoCj—1, | > 1. (2.6)
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Theorem 2.2.[9, Theorem 2.1]The L-Markov moment problem for the interyal6] with data{c;j_1(6,%)}!_; is
solvable if and only if the Hausdorff moment problem for the intej@d] with data{s;(6,%0)}]_ is solvable.

Due to bijective relation (2.4), the—Markov moment problem foj0, 6] can be solved in terms of the Hausdorff
moment problem fof0,8]. We carry out the treatment of the latter problem making use of Potapov’s FMI approach
(cf. [2], [3]). Note that in [2] and [3] an explicit solution of the nondegenerate matrix version of the Hausdorff moment
problem was given.

2.5 Potapov’s Fundamental Matrix Inequality

V.P. Potapov developed a powerful approach to matrix interpolation problems, which we now use in its scalar version.
This approach is based on a generalization of a classical lemma by H.A. Schwarz and a modification of this result which
goes back to G. Pick. Potapov converted the original problem into an equivalent matrix inequality, FMI. In the case,
where the so-called information block of this inequality is nondegenerate (see the nmdiranedH, in Definitions 2.3
and 2.4), he created an ingenious factorization method which allows one to determine the solution set for the matrix
inequality and, consequently, for the original HMP.

Note that, in the construction of the solution, there is a remarkable difference between the cases of even and odd
number of data (see Theorem 2.10 below). Taking this into account, we first introduce the matrices which appear in the
FMI in the even case (scalar version).

Definition 2.3. Letn = 2p+ 1. Using the momentsy, sy, . .., Sp+1, We construct the following matrices:

Ha 1= [Sj k1] ?,k:oa Ha := [0Sk — Sj*"*l]?-rkzo’

T = [8j k+1] Jpﬂil, Rr(z):=(1-2zT)71,
= (=0, ~S1,...,—Sp)", V:=(1,0,...,0)7,
Ui:=u, Up=—u+08Tu,

whereu,u € RP*! andl is the identity matrix of corresponding dimension. Further, we introduce two auxiliary holo-
morphic functions

§(2) ==292), %(2):=(6-2s(2, z€C\[0,8], 2.7)
wheres(z) is the Stieltjes transform of a measure M0, 6].
In a similar way, we introduce the matrices that appear in Potapov’s FMI in the odd case.

Definition 2.4. Letn = 2p. Using the momentsy, s, ..., Spp, We construct the following matrices:

Hy = [Sj"!‘k]jpﬂ(zo’ Hz := [0Sj k1 — Sjrk+2] F,Eiov

Ty =) ity T2= 8] iy
Rr(2):=(1-zK)t k=12

up = (0,—So,...,—Sp-1)", V1=(1,0,...,0)7,

1= )
Ul = (—&)7—517 .. 7—Sp_l) 5 03 = <_Sl7 _&7' . 7_SD>T7

whereu,u; € RPHL u,, 0, € RP. We also introduce two auxiliary holomorphic functions

81(2) :=9(2), %(z2):=(0—2)z92) — %z, z<C\]|0,0], (2.8)

wheres(z) is the Stieltjes transform of a measure 4]0, 0].
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The following result gives a solvability criterion for the Hausdorff moment problem (see [9]).

Proposition 2.5. The Hausdorff moment problem is solvable if and only,if> 0 andH» > 0, i.e., the matrice$; for
r = 1,2 are positive semidefinite.

We now define the systems of Potapov’s FMI for the even and odd cases (see [2],[3]). In what follaws 2fo#- 1,
we sefl; = T, =T andu; = U, = U. The complex conjugate of a numtes C and the Hermitian conjugate of a matrix
functionw € C™" is denoted by andw*, respectively.

Definition 2.6. A functionsis called a solution of the associated system of Potapov's Fundamental Matrix Inequality,
if ssatisfies the following conditions: $§)is holomorphic inC \ [0, 8], ii) for everyr = 1,2 the inequality

He | Ri(2)[ur§(2) —ur]
Rr@ 5@ -uw) | (52 -52)/(z-2 >0 (2.9)

holds.

It turns out that the treatment of the matrix moment problem is equivalent to finding all solutions of the correspond-
ing system of FMI (see [2],[3]):

Theorem 2.7. The functions(z) is a Stieltjes transform of a measuwec 9/ ([0, 6],{sj}'j‘:0) if and only ifs(z) is a
solution of the system of Potapov’s Fundamental Matrix Inequaljie).

This theorem holds for both the even and odd cases of data. In this way, the problem of finding the Stieltjes transform
of o is reduced to the problem of finding the holomorphic funcg@z) in Definition 2.6.

Definition 2.8. The Hausdorff moment problem is called degenerate if one of the determiehisr = 1,2, is equal
to zero.

Below we use the following important result (see [9, Theorem 4.1]).
Theorem 2.9. The degenerate Hausdorff moment problem has a unique solution.
Following the Potapov scheme, the solution of the degenerate HMP is given by the following result.

Theorem 2.10. The holomorphic functios(z), z€ C\ [0, 6], associated to the positive measaref the degenerate
HMP has the following rational representation:

1) if n=2p+1, thens(z) is equal to
Pi(2) L V*Rr(z2)ug P2(2) V*Rr(2)up

= , = : 2.10
Qi(z2  2v*Rr(2)u Q2(z) (0—2)v*Rr(2)v (2.10)
2) if n=2p, thens(z) is equal to
P3(2) ._ VRh(Qui - Pu(2) . V'R, (2) (U2 +S202) (2.11)
Q3(2)° V*Rp(2uy’ Qi(20 " (8—22v*Rp(2)u2 '
Proof. Denote byH the matrixH; (even or odd case) such thdgtH, = O forr =1 orr = 2. PutM := [\6 (1)} , Where

v e RP*1orv e RP is such thatlv = 0. HenceM e R(P+2*2 or M € R(P*D*2, Taking into account Proposition 2.2
and Theorem 2.7, we consider the FMI (2.9). Write the inequality (2.9) in the equivalent form

" H | Rr.(2)[ur&(2) —ur]
v [ Rr.(@)[u&@) -u]) | (5(2-52)/(z-7 ]M

(2.12)
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Sincev*Hv = 0 and since all the eigenvalues of the (Hermite) positive semidefinite matrix are nonnegative, we infer
from (2.12) that-|v*Rr. (2) [u;& (2) — u ]| > 0. Consequentlyw*Rr. (2) [Ur§ (2) — ur ] = 0, and therefore

_ V'Rp(9u

= R (2.13)

§(2)

Hence, for the even case £ 2p+ 1), taking into account (2.7) and (2.13), we obtain (2.10). Similarly, for the odd case
(n=2p), from (2.8) and (2.13) it follows (2.11). O

P(t)

Note that all function$} andQy for k = 1,2,3,4 are polynomials. Let—< denote one of the rational fractions

Q(t)
g(((tt)) (k= 1,2,3,4) corresponding to the conditiatetH = 0.
k

3 Solution of the TOC problem

In this section we give a solution of the TOC problem. In what followd let 1 and letx, ; denote thej-entry of any
vectorxg € R™. Thus,x = {xk,j}’j“:l.

Lemma 3.1. The TOC problem for the canonical system is equivalent to a degenerate Hausdorff moment problem.

Proof. Because of the complete controllability of (1.1), there exifisach thak(8) = 0. The system (1.1) with initial
conditionx(0) = Xg has the unique solution

X(t) = e <x0+ /O t eATba(r)dr> forall t € [0,0). (3.1)

Then conditiorx(8) = 0 is equivalent to
8

xo— / & A"bii(t)dr. (32)
0

Using the fact thafA andb are canonical, and henéé€ = 0 due to (1.2), we conclude that the equality (3.2) can be
rewritten in the equivalent form

_(pt
AT

U=li(t)ydt, j=1,2...,n, (3.3)
0

wherexg j is the j-entry of the vectoky € R". Settingf := ((i+1)/2, we get

6+ (—1)jIxo
2j

]
:/Tj_lf(T)dT, i=1,2....n
0

Denoting ‘ ‘

6 +(-1)'j'x0,
2j ’

the TOC problem is reduced to a Markov moment problem, i.e., to the problem of finding a set of furfictioristhat

0< f(1) <1forte|[0,6] and

i=12....n, (3.4)

Cj—l(97 XO) =

0
c,-,l(e,xo):/ri—lfu)dr forall j=1,2,....n. (3.5)
0
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Applying now the relation (2.4) with. = 1, we obtain the data momen$s(6,%) (j = 1,2,...,n) of the classical
Hausdorff moment problem for the interjal 6],

6
sj(e,xo):/o tida(t), j=0,...,n, (3.6)

with additional condition thafd should be the minimal possible value such that (3.6) has a solution. This condition takes
place wherdetH, (6, %) = 0 (the existence of such in the canonical case (1.2) follows from Theorems 3.6 and 3.7),
i.e., in the case of degenerate Hausdorff moment problem.

As to the sufficiency part of the proof, we use the Theorems 2.3 and 2.4 in [9, page 62], which say that the Hausdorff
moment problem with even or odd number of given mom¢sitsd, xo) lj(:o is solvable if and only if their corresponding
matrix functionsH1 (0, xp) andH3(8,Xp) are nonnegative. If the Hausdorff moment problem is degenerate, we can find
the optimal timeBmin(Xo). Taking ® = Bmin(Xo), We can get the optimal contréi(t) for t € [0,Bmin(Xo)] from the
equations (3.3) or (3.2). To obtain the solution of the TOC problem, it remains to sub&titute (3.1). O

Corollary 3.2. If X; = (0,...,0,X0j,-..,%n) € R" wherexg ; # 0, then

(—1)1(12—1)!x0,,-7 i>1 3.7)

Proof. Itis sufficient to apply (2.6) with. = 1, and then (3.4). O

Sj (07ij) - Cj_l(O,Xo) -

Theorem 3.3. Letxy € R" be a fixed state and €, > 0 be sulfficiently large. Then for afl > 8, and for both even
and odd casedi1(0,x0) > 0andHz(8,Xp) > 0, i.e., the matricesl, (8,Xp) for r = 1,2 are positive definite.

Proof. Applying (2.4) in the casé = 1 with ¢;_1(8, Xp) given by (3.4), we obtain

g _ XO,l _1
2772
g+ 5 g1 0
1 .
5j(6,%0) = M - L
Prleit, (D -Dixj1 -2, (1) 2(j-2)!xj —(j—1)
2 2 2 2 ]
o (=1))j'xo,j oI~ | (=1 (j-)ixoj1 0 X1
2 2 2 2 272
0 -2 0 O
1 8> o .
:2171' | +Pj-1(6,%0)
pi-t 62 ... 8 —2(j-1
2] gi-1 ... 92 9
1
= ZTJ-!Aj(e) +Pj-1(6,%0), (3.8)

whereP;j_1(8,Xo) is a polynomial of degre¢— 1in 6. To calculate the determinaf{(6) we use the recursive formula
Aj(6) = (2] —1)BA;-1(6), which is obtained by applying Laplace’s expansion with respect to the last column. As a
result, we gef\;(8) = (2j —1)!! 8!, whence (3.8) implies that

(2i-1)

o
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Now we consider the case=2p+1andr = 1. Lety € RP*1, Takings; = sj(8,%p), we deduce from Definition 2.3
and (2.4) that

p+1 k—1
(HL(8,x0)y.y) = ([Sj+ks1lfo¥sY) = Y (2 Zs<+i1yayk+52k1y§>, (3.10)
k=1 i=

By (3.9), each summand in (3.10) is of the form

s (4k—3)N!

2 lemrifl)’iyk + S 1Y = | 02 1y2 + Rox_2(8,%0, Y)Yk,
Z [

22-1(2k — 1)

whereRx_2(8,Xo,Y) is a polynomial of degregk — 2 in 8. Thus, we infer from (3.10) that

Pl (ak—3)N
(Hi(8,%0)yy) = kzl <22|51(2k11). 6%z + Rok—2(6, Xod)yk) :

Hence there is 8; > 0 such that for alB > 6; and ally # 0, we have(Hl(e,xo)y, y) > 0, which means thaltl1 (6, xo)
is positive definite. In a similar waQHz(e,xo)y, y) > 0 for all sufficiently larged and ally # 0. The same arguments
are valid for the odd case of given moments. O

Lemma 3.4.1fn=2p+1,thenfor =0andall j=1,2,..., pwe have the following:

1
(H1(030)y1,y1) = = (H2(0,30)¥1,y1) = =5 %01, (3.11)
~ - 2j)!
(H1(07X2j)Yj+1an+1) = —(H2(07X2j)Yj+1>Yj+l) = —(21) X0,2j+1; (3.12)
o N~ o N~ o~ . 2j)!
(H1(0,%2))¥,¥;) = — (H2(0,%))¥;,¥;) = (2] — 1)! o2 — ( 21 X0.2j+1, (3.13)

wherey; = (0,...,0,1,0,...,0)T e RP*1withy; j =1for j=1,2,...,p+1, andy; = (0,...,0,1,1,0,...,0)T € RP*1
withyj j =Vjj+1=1for j=1,2,...,p.
Proof. By Definition 2.3 and Corollary 3.2, we obtain
X1
2 Y
which gives (3.11). Further, for ajl=1,2,..., p, Definition 2.3 and (2.6) imply that

(H1(0,%0)y1,¥1) = —(H2(0,%0)y1,y1) = s1(0,%0) = —

(H1(0,%2))Yj+1,Yj+1) = — (H2(0,%2))Yj+1,Yj+1) = S2j+1(0,%2;)

2j - . o
= msl(o,xzj)CZj(O,ij)—l—Czj(O,ij). (3.14)

Sinces; (0,%;) = —%)?21-71 = 0in view of the first equality in (3.8) and sinog; (0,%;;) = —(2—2”! Xo0.2j+1, We infer (3.12)
from (3.14).
On the other hand, from Definition 2.3 it follows that

(H1(0,%2))¥;,¥j) = — (H2(0, %), i)
= 9j-1(0,%)) +2j(0,%) ) + S2j+1(0,%; ). (3.15)
By Corollary 3.2 and (2.6), we conclude that

$j-1(0,%j) =0, 2%j(0,%;) = (2] —1)! Xo2j, (3.16)
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and
21:1(0.%)) = 577 51(0.%))02j-1(0. 7)) + €21 (0.5
- 2j)! Xg.2i

= C2j(0,%j) = _EDXazin 5 =i (3.17)
Combining (3.15)—(3.17), we get (3.13). O

Lemma 3.5. If n= 2p, then for@ = 0 the following relations hold:
(H1(0,%0)Y2,Y2) = — (H2(0,%0)¥1,%1) = (X(%71+4X0,2)7 (3.18)

1
(H1(0,%0)Y0,Y0) = 1—Xo1Yo2+ = 3 (1 +4%02)Y5 2, (3.19)
(2j—1)!
(H1(0,%2j—1)Yj+1,Yj+1) = — (H2(0,%j-1)¥;,Yj) = 5 Xo2j; (3.20)
. 2j—1)!

(H1(0,%2j-1)¥;,¥;) = — (H2(0,%j_1)¥j-1,¥j-1) = —(2] — 2)! Xo2j—1 + (2] 3 ) X0.2j, (3.21)

whereyo = (1,¥02,0,...,0)T € RP*L, §; = (0,...,0,1,0,...,0)T € RP with §; ; =1 for j =2,3,...,p, andyj_1 =
(0,...,0,1,1,0,...,0)T e RPwithyj_1j_1=Yj-1j=1for j=2,3,...,p.

Proof. Applying Definition 2.4, (2.6) and the first equality in (3.8), we deduce that
(H1(0.50)2.Y2) = ~ (Ha(0.50)51.91) = 2(0.50) = £ (1 + 402).
which gives (3.18). Analogously,
(H1(0,%0)Y0,Y0) = 1+ 251(0, xO)yoz+Sz(0 X0)Yg.2
=1-Xo1yo2+ ¢ (x01+4><oz Y62

which proves (3.19).
Further, we infer from Definition 2.4, (2.6) and Corollary 3.2 that forja# 2,3,...,p,

(H1(0,%2j-1)Yj+1,Yj+1) = — (H2(0,%2j-1)¥;,¥j) = $2j(0,%2j—1)

2 1 - ~
1= $1(0,%2j—1)C2j—2(0,%2j—1) + C2j—1(0,%2j-1)
(21— D)lxoz
2 )

which gives (3.20). On the other hand, by analogy with (3.13), from Definition 2.4, Corollary 3.2 and (2.6) it follows
thatforallj=23...,p,
(H1(0,%2j-1)¥;,¥;) = — (H2(0,%2j-1)¥j -1, ¥j1)
= Sj-2(0,%2)-1) +282)-1(0,%2j-1) + S2j(0,%2j-1)

. 2j—1)! i
—(2j _2)!X072j1+(12)X0721’

which proves (3.21). O



10 Abdon E. Choque Rivero and Yu. |. Karlovich

Theorem 3.6. For everyn € N and every nonzero vectsg € R" there exists a maximal positive solution (ro6)xo)
of detH1(0,x%p) = 0 or/fanddetH;(6,%p) = 0.

Proof. It follows from Theorem 3.3 thatH, (6,%0)y,y) > 0 for all sufficiently larged > 0 and ally # 0. On the other
hand, by Lemma 3.4, fan = 2p+ 1 we have the following. Relations (3.11) imply that one of the quadratic forms
(Hr (0,%0)y1,y1) for r = 1,2 has the negative value|xo1|/2 at the pointxo, if Xo1 # 0. If o1 = 0, then applying the
same arguments we infer from (3.12) for= 1 that one of the quadratic forn{#i; (0,%o)y2,Y2) = (Hr(0,%2)y2,Y2) for

r = 1,2 has a negative value|xg 3| in casexgz # 0. If xg1 = Xo3 = 0, then from (3.13) it follows that again one of the
quadratic formgH; (0,%0)¥1, 1) = (Hr(0,%2)y2,Y2) for r = 1,2 has a negative value|xo 2| wheneveixg # 0. Thus,

we may substitut&y by X4 and repeat our arguments, by applying first (3.12)jfer2 and then (3.13) fof = 2, and so

on. Hence, foxg1 = 0 and everyj = 1,2, ..., p we successively obtain

2]
|( r (O, XO)yJ+1>yJ+1)‘ = ‘( (0 X2]>yj+17yj+1)’ = —u [X0.2j+1
‘(Hr 0X0y17y1)‘—‘( (0,%; yhyl)‘__ -’XO-,ZJ‘v

which implies that in the case = 2p+ 1 for every nonzero vectoxp € R" at least one of the quadratic forms
(Hr (0,%)y,y) for r = 1,2is negative for somg € RP*1.

In the caser = 2p we use Lemma 3.5. bf%,2+4x071 =0, then by (3.18) one of the quadratic forr@sl(o,xo)yz,yz)
or (H2(0,%0)y1,¥1) has the negative value\xaz + 402 If X, +4%01 = 0, then from (3.19) it follows that

(H1(0,%0)Y0,Yo0) = 1—Xo1Yo0,2,

which is negative foxg1 # 0 andygo = 2/Xg 1. If xé’z +4x01 =0 andxp; = 0, thenxgo = 0 as well. Letj = 2.
Applying now (3.20) we inferthat fof = 2 one of the quadratic form@H1(0,%j-1)Yj+1,Yj+1) or (Hz2(0,%2j-1)¥;,V;)

has the negative value 2! |xo 2j| if xozJ # 0. If Xo2j =0, then (3.21) implies that one of the quadratic forms
(H1(0,%-1)¥;j,¥;) or (H2(0 %2i-1)¥j-1,¥j—1) has the negative value(2j — 2)! |xo2j—1| if Xo2j # 0. Thus, now it
is sufficient to considexy = Xj—1 for all j > 3. Then we again use (3.20), and then (3.21), and so on. Finally, we
conclude that in the case= 2p similarly ton = 2p+ 1 for every nonzero vectoy € R" at least one of the quadratic
forms (H, (0,%o)y,y) for r = 1,2 is negative for somg € RP™if r = 1andy € RP if r = 2.

Since both function:{Hr(e,xo)y,y) (r = 1,2), for even or odd cases of are continuous i andy for any fixed
Xo # 0, we infer that for everyr there exists the maximal valig(xo) such tha{H; (8,(X0), Xo)y,y) = 0 for somer = 1,2
and somey # 0. Hence eithedetH1(6,(x0),%0) = 0, or detH2(B8,(X0),%0) = 0, which means in view of Theorem 3.3
that both matricesl, (Bn(Xo), X0) are positive semidefinite and at least one of the determiraizith (6,(X0), %o) equals
Oforr=12 O

Taking into account the existence@&f(xo) for everyn € N and every nonzero vectag € R" due to Theorem 3.6,
we will call 8,,(xg) the optimal timeBmin(Xo) of the system (1.1).

The conditiondetH; = 0 or detH, = O says that the considered Hausdorff moment problem for an intgn@lis
degenerateConsequently, due to Theorem 2.9, this HMP has a unique solution.

By virtue of the proved equivalence between the HMP and TOC problems (see Lemma 3.1) and Proposition 2.9,
there is a unigue solution of the TOC problem. In each case (even and odd) we have two rational functions (2.10) and
(2.11), respectively, which give the same solution of the TOC problem.

Now we find the optimal contral(t) related to the optimal tim@ = Bmin(Xo).

Theorem 3.7. The time optimal control of systefh.1)is given by

o P() _
u(t)——5|gn®, t € [0, Bmin(X0)], (3.22)

whereP andQ are the polynomials of the rational functiers= P/Q associated to the degenerate HMP.
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Proof. Let for definiteness = 2p+ 1, and assume thatetH; (6min(Xo0), %) = 0. By Theorem 2.10, the holomorphic

functions(z) associated to the solution of the corresponding HMP is a rational function. Let, for exa;(rzpke,gll((zz)).
Due to (2.3) and the properties of this solution (see [9, page 244]), we have

Pu(z)  (z—&) - (2—&m) mo it
LP@ 1) : :exp(Z/ ) (3.23)

[=T43 z—t

where0=¢&; <nN1 <& <nN2<...<&m<Nm(< Onmin(X0)).
By (3.23), the solutiorf has the following form:

1 if te(&,n)), . _1( o Pl(t))
{O i te (N8 .a) or, equalently,f(t)_2 1 S|gan(t) ;

f(t) =

which completes the proof. O

Remark3.8. The switching points of (3.22) are given by the root®@f)Q(t). From (2.10)—(2.11) and Definitions 2.3—
2.4 it follows that control (3.22) does not have more tliar- 1) points of switching. By virtue of [5, Lemma 9], this
control is optimal.

One of the advantages of using the Potapov Method for solving the TOC problems is precisely the determination of
switching points of the optimal control without recursive operations.
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