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1. Introduction

In the center of this paper stands a certain matrix generalization of the classical 
notion of Hurwitz polynomials. A real polynomial with all its roots in the open left half 
plane C− := {z ∈ C: Re z ∈ (−∞, 0)} of the complex plane is called Hurwitz polynomial. 
Apparently, such polynomials were first studied by J.C. Maxwell [25] in 1868 and later 
considered by E.J. Routh [28] and A. Hurwitz [19] in 1875 and 1895, respectively. Routh 
and Hurwitz gave a necessary and sufficient condition for a real polynomial to be a 
Hurwitz polynomial. Other tools for dealing with such polynomials are provided by 
Sturm’s theorem [30] and Bezoutian approach [14]. The so-called Markov parameters 
(MP) approach was studied in [15]; see also [6,18] and references therein. Recently, 
by using Wall’s continued fractions, a connection between the Schwarz matrices and 
rational functions associated with Hurwitz polynomials was studied in [31]. In [8] the 
description of functions generating infinite totally non-negative Hurwitz matrices via 
Stieltjes meromorphic functions is given. What concerns a detailed treatment of the 
theory of Hurwitz polynomials we refer the reader to the monographs Gantmacher [15, 
Chapter XV], Postnikov [26] and Rahman/Schmeisser [27, Section 11.4].

Starting with the classical work of Grommer [17] the theory of Hurwitz polynomials 
was extended to entire functions (see Chebotarev/Meiman [2], Krein [21], Levin [23, 
Chapter VII], Katsnelson [20]). The direct matricial generalization of the notion should 
be defined as follows: A q × q matrix polynomial P is called Hurwitz polynomial if the 
inclusion {z ∈ C: detP (z) = 0} ⊆ C

− is satisfied. In this paper, we follow another line 
of generalizing the classical notion. We are inspired by the investigations in Gantmacher 
[15, Chapter XV] on Hurwitz polynomials and related mechanical application in Gant-
macher/Krein [16, Appendix II]. One of the central ideas there is to study interrelations 
between the even and odd parts of a polynomial. The membership of a polynomial to the 
class of Hurwitz polynomials is characterized in terms of particular continued fraction 
representations of the rational functions which are formed by the even and odd parts 
of the given polynomial (see Gantmacher [15, Chapter XV, Section 14, Theorem 16]). 
The shape of these continued fractions immediately establishes a bridge to the Stieltjes 
moment problem. These connections are discussed in [15, Chapter XV, Section 16].

This paper is based on the author’s recent investigations [4] on the non-degenerate 
truncated matricial Stieltjes moment problems. In [4] we obtained distinguished matrix 
continued fraction expansions for the two extremal solutions to the above mentioned 
moment problem. Against to this background we introduce the notion “matrix Hurwitz 
type polynomial” which in the scalar case indeed coincides with the classical notion. In 
the matrix case the relation between “matrix Hurwitz type polynomials” and “matrix 
Hurwitz polynomials” is still uncovered.

A closer look at [4, Theorems 3.4 and 4.8] shows that a Stieltjes positive definite 
sequence produces matrix continued fractions which lead in a natural way to matrix 
Hurwitz type polynomials (see Theorem 5.4). Starting from this observation we estab-
lish a principle of constructing matrix Hurwitz type polynomials by using the Stieltjes 
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quadruple of sequences of left orthogonal matrix polynomials associated with a Stielt-
jes positive definite sequence (see Theorem 6.1). Conversely, we show that each matrix 
Hurwitz type polynomial can be generated in this way (see Theorem 7.9). In this way 
a bijective correspondence between matrix Hurwitz type polynomials and finite Stieltjes 
positive definite sequences is established via Markov parameter sequences.

In Section 8, we obtain in the scalar case a criterion of asymptotic stability of a system 
of linear ordinary differential equations with constant coefficients in terms of the main 
results of this paper (see Theorem 8.2).

2. Matrix Hurwitz type polynomials

We introduce in this section a class of q × q matrix polynomials which turns out to 
coincide in the classical case q = 1 with the class of classical Hurwitz polynomials. In our 
further considerations we will often work with the odd and even parts of a polynomial, 
which will be introduced now.

Definition 2.1. Let n ∈ N and let fn be a q × q matrix polynomial of degree n. For z ∈ C

let fn be given by

fn(z) =
n∑

k=0

Akz
n−k. (2.1)

Let m ∈ N be chosen such that n = 2m or n = 2m −1 is satisfied. Then the q × q matrix 
polynomial hn: C → C

q×q defined by

hn(z) :=
{∑m

�=0 A2�z
m−�, if n = 2m∑m

�=1 A2�−1z
m−�, if n = 2m− 1

(2.2)

is called the even part of fn, whereas the q × q matrix polynomial gn: C → C
q×q defined 

by

gn(z) :=
{∑m

�=1 A2�−1z
m−�, if n = 2m∑m

�=1 A2�−2z
m−�, if n = 2m− 1

(2.3)

is called the odd part of fn.

Remark 2.2. Let n ∈ N and let fn be a q × q matrix polynomial of degree n. Denote 
by hn and gn the even and odd part of fn, respectively. Then it is easily checked by 
straightforward computation that the identity

fn(z) = hn(z2) + zgn(z2)

holds for z ∈ C.
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Remark 2.3. Let n ∈ N and let fn be a q × q matrix polynomial of degree n. Denote by 
hn and gn the even and odd part of fn, respectively.

(a) Suppose that n = 2m for some m ∈ N. Then the leading coefficients of fn and hn

coincide. In particular, fn is monic if and only if hn is monic, and furthermore fn has 
non-singular leading coefficient if and only if hn has non-singular leading coefficient.

(b) Suppose that n = 2m −1 for some m ∈ N. Then the leading coefficients of fn and gn

coincide. In particular, fn is monic if and only if gn is monic, and furthermore fn has 
non-singular leading coefficient if and only if gn has non-singular leading coefficient.

Remark 2.4. Let m ∈ N.

(a) Let h be a q × q matrix polynomial of degree m and let g be a q × q matrix poly-
nomial of degree at most m − 1. Let f : C → C be defined by f(z) := h(z2) + zg(z2). 
Then f is a q × q matrix polynomial of degree 2m with even part h and odd part g.

(b) Let h be a q × q matrix polynomial of degree at most m −1 and let g be a q × q matrix 
polynomial of degree m −1. Let f : C → C be defined by f(z) := h(z2) +zg(z2). Then 
f is a q × q matrix polynomial of degree 2m − 1 with even part h and odd part g.

Lemma 2.5. Let n ∈ N and let fn be a q × q matrix polynomial of degree n with non-
singular leading coefficient. Let Nfn := {z ∈ C: det fn(z) = 0}. Then Nfn is a finite 
subset of C.

Proof. For z ∈ C let fn be given by (2.1) and let f∨n : C → C
q×q be defined by

f∨n (z) :=
n∑

k=0

A∗
kz

k.

Then f∨n (0) = A∗
0. Hence, det[f∨n (0)] = detA0 �= 0. Thus, since det f∨n is a polynomial, 

the set Nf∨n := {z ∈ C: det f∨n (z) = 0} is a finite subset of C. For z ∈ C \ {0} the identity

fn(z) = zn
[
f∨n

(
1
z

)]∗
holds (see e.g. [7, Lemma 1.2.2]). Hence,

det [fn(z)] = znqdet
[
f∨n

(
1
z

)]
.

This implies that det fn does not identically vanish in C. Since det fn is a polynomial the 
set Nfn is a finite subset of C. �
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Lemma 2.6. Let n ∈ N and let fn be a q × q matrix polynomial of degree n with 
non-singular leading coefficient. Denote by hn and gn the even and odd parts of fn, re-
spectively. Let m ∈ N be chosen such that n = 2m or n = 2m − 1 is satisfied. If n = 2m
then the set Nhn

:= {z ∈ C: dethn(z) = 0} is finite whereas in the case n = 2m − 1 the 
set Ngn

:= {z ∈ C: detgn(z) = 0} is finite.

Proof. In the case n = 2m (resp. n = 2m − 1) the application of Lemma 2.5 in combi-
nation with (2.2) (resp. (2.3)) yields the assertion. �

Now we introduce the central objects of this paper. What concerns the case of an 
even n we are inspired by a classical result due to Stieltjes [29] and its connections with 
classical Hurwitz polynomials (see Gantmacher [15, Chapter XV, Section 16, Proposi-
tions 15 and 16]). In the case of an odd number n our construction differs from that one 
which is suggested by the scalar result. The reason for this will be seen later.

In view of Lemma 2.6 the following definition is correct. For A, B ∈ C
q×q with B

invertible, set AB := AB−1.

Definition 2.7. Let n ∈ {2, 3, . . .} and let fn be a monic q × q matrix polynomial of 
degree n. Denote by hn and gn the even and odd parts of fn, respectively.

(a) Suppose n = 2m for some m ∈ N. Then fn is called a matrix Hurwitz type poly-
nomial (short MHTP) of degree n if there exists an ordered pair of sequences 
[(ck)m−1

k=0 , (dk)m−1
k=0 ] from Cq×q

> such that the identity

gn(z)
hn(z) =

Iq

zc0 +
Iq

d0 +
Iq

dm−2 +
.. .

zcm−1 + d−1
m−1

(2.4)

holds for all z ∈ C \Nhn
. In this case the pair [(ck)m−1

k=0 , (dk)m−1
k=0 ] is called a Hurwitz 

parametrization of fn.
(b) Suppose n = 2m + 1 for some m ∈ N. Then fn is called a matrix Hurwitz type 

polynomial (short MHTP) of degree n if there exists an ordered pair of sequences 
[(ck)mk=0, (dk)m−1

k=0 ] from Cq×q
> such that the identity

hn(z)
zgn(z) =

Iq

zc0 +
Iq

d0 +
Iq

zcm−1 +
.. .

−1 −1

(2.5)
dm−1 + z cm
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holds for all z ∈ C \ [{0} ∪ Ngn
]. In this case the pair [(ck)mk=0, (dk)m−1

k=0 ] is called a 
Hurwitz parametrization of fn.

Remark 2.8. Let m ∈ N and let n := 2m + 1. Let fn be a MHTP of degree n and let 
[(ck)mk=0, (dk)m−1

k=0 ] be a Hurwitz parametrization of fn. By multiplying (2.5) by z and 
taking the inverse of hn(z)

gn(z) , we see that

gn(z)
hn(z) = c0 +

Iq

zd0 +
Iq

c1 +
Iq

cm−1 +
.. .

zdm−1 + c−1
m

(2.6)

holds for all z ∈ C \ Nhn
.

In the scalar case, i.e. for q = 1, the polynomials of Definition 2.7 coincide, in view 
of (2.4), (2.6) and [15, Chapter XV, Section 14, Theorem 16], with the classical Hurwitz 
polynomials.

In our subsequent considerations we will use a matricial generalization of the con-
struction of Markov parameters of a polynomial (see Gantmacher [15, Chapter XV, 
Section 15]). Our approach is based on the following observation.

Lemma 2.9. Let n ∈ N and let fn be a q × q matrix polynomial of degree n with invertible 
leading coefficient. Denote by hn and gn the even and odd parts of fn, respectively.

(a) Suppose n = 2m for some m ∈ N. Let ηn := max{|z|: z ∈ Nhn
}. Then there exists a 

unique sequence (s̃j)∞j=0 from Cq×q such that

gn(z)
hn(z) =

∞∑
j=0

(−1)jz−(j+1)s̃j

for all z ∈ C with |z| > ηn.
(b) Suppose n = 2m + 1 for some m ∈ N. Let ρn := max{|z|: z ∈ Ngn

}. Then there 
exists a unique sequence (s̃j)∞j=0 from Cq×q such that

hn(z)
zgn(z) =

∞∑
j=0

(−1)jz−(j+1)s̃j

for all z ∈ C with |z| > ρn.
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Proof. This follows by observing that in view of (2.2) and (2.3) we have deghn = m

and deg gn = m − 1 in the case n = 2m, and furthermore deghn = m and deg gn = m

in the case n = 2m + 1. �
Lemma 2.9 leads us to the following notion which will be important for our subsequent 

considerations. What concerns the following definition we meet the same situation as in 
Definition 2.7. Namely, in the case of even n we have a direct generalization of the 
classical notion of Markov parameters whereas in the odd case we prefer a different 
construction.

Definition 2.10. Let n ∈ N and let fn be a q × q matrix polynomial of degree n with 
invertible leading coefficient. Denote by (s̃j)∞j=0 the sequence from Lemma 2.9. Then 
(s̃j)nj=0 is called the sequence of Markov parameters of fn. Furthermore, (s̃j)∞j=0 is called 
the extended sequence of Markov parameters of fn

3. On matricial power moment problems and several classes of sequences of matrices

Our subsequent considerations will be closely related to matricial power moment prob-
lems. In order to give precise formulations of the moment problems under consideration 
we introduce some terminology. Let Ω be a Borelian subset of the real axis R. Further, 
let q ∈ N, let BΩ be the σ-algebra of all Borelian subsets of Ω, and let Mq

≥(Ω) be the 
set of all non-negative Hermitian q × q measures on (Ω, BΩ). Let κ ∈ N0 ∪ {∞} and let 
Mq

≥,κ(Ω) be the set of all σ ∈ Mq
≥(Ω) such that the integral

s
(σ)
j :=

∫
Ω

tjσ(dt)

exists for all non-negative integers j ≤ κ. Initiated in the scalar case q = 1 by 
M.G. Krein [22] the following truncated matrix moment problem is studied:

M[Ω; (sj)mj=0,≤] Let m ∈ N0 and let (sj)mj=0 be a sequence of complex q × q matrices. 
Describe the set Mq

≥[Ω; (sj)mj=0,≤] of all σ ∈ Mq
≥,m(Ω) for which sm − s

(σ)
m is 

non-negative Hermitian and, in the case m > 0, moreover s(σ)
j = sj is fulfilled 

for all j ∈ Z0,m−1.

There are many interesting interrelations between moment problems on [0, ∞) on 
the one side and on R on the other side. Obviously each σ ∈ Mq

≥[[0,∞); (sj)mj=0,≤]
determines by a natural zero continuation a measure σ̄ ∈ Mq

≥[R; (sj)mj=0,≤]. So the case 
Ω = R stands always in the background.

To discuss the solvability of the above mentioned moment problems, we introduce some 
classes of sequences of matrices. Let n ∈ N0 and let (sj)2nj=0 be a sequence from C

q×q. 
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Then (sj)2nj=0 is called Hankel non-negative definite (resp. Hankel positive definite) if the 
block Hankel matrix

Hn := (sj+k)nj,k=0

is non-negative Hermitian (resp. positive Hermitian). Denote by H≥
q,2n (resp. H>

q,2n) the 
set of all Hankel non-negative definite (resp. Hankel positive definite) sequences (sj)2nj=0
from Cq×q.

Remark 3.1. Let n ∈ N and let (sj)2nj=0 ∈ H≥
q,2n (resp. (sj)2nj=0 ∈ H>

q,2n). Then for k ∈
Z0,n−1 it is obvious that (sj)2kj=0 ∈ H≥

q,2k (resp. (sj)2kj=0 ∈ H>
q,2k).

Remark 3.1 leads us to the following notion. A sequence (sj)∞j=0 from Cq×q is called 
Hankel non-negative definite (resp. Hankel positive definite) if for all n ∈ N0 the sequence 
(sj)2nj=0 is Hankel non-negative definite (resp. Hankel positive definite). We denote be 
H≥

q,∞ (resp. H>
q,∞) the set of all Hankel non-negative definite (resp. Hankel positive 

definite) sequences from Cq×q. The following result shows the importance of the set H≥
q,2n.

Theorem 3.2. (See [3, Theorem 3.2].) Let n ∈ N0 and let (sj)2nj=0 be a sequence of complex 

q × q matrices. Then Mq
≥[R; (sj)2nj=0,≤] �= ∅ if and only if (sj)2nj=0 ∈ H≥

q,2n.

The present work is closely related to the non-degenerate situation of Prob-
lem M[[0,∞); (sj)mj=0,≤]. To describe the solvability of this problem we introduce further 
classes of sequences of complex matrices. Let n ∈ N and let (sj)2nj=0 be a sequence 
from Cq×q. Then (sj)2nj=0 is called Stieltjes non-negative definite (resp. Stieltjes posi-
tive definite) if (sj)2nj=0 ∈ H≥

q,2n and (sj+1)2(n−1)
j=0 ∈ H≥

q,2(n−1) (resp. (sj)2nj=0 ∈ H>
q,2n and 

(sj+1)2(n−1)
j=0 ∈ H>

q,2(n−1)). Let (sj)2n+1
j=0 be a sequence from Cq×q. Then (sj)2n+1

j=0 is called 
Stieltjes non-negative definite (resp. Stieltjes positive definite) if {(sj)2nj=0, (sj+1)2nj=0} ⊆
H≥

q,2n (resp. {(sj)2nj=0, (sj+1)2nj=0} ⊆ H>
q,2n). For m ∈ N the symbol K≥

q,m (resp. K>
q,m) 

stands for the set of all Stieltjes non-negative definite (resp. Stieltjes positive definite) 
sequences (sj)mj=0 from Cq×q.

Remark 3.3. Let m ∈ N and let (sj)mj=0 ∈ K≥
q,m (resp. (sj)mj=0 ∈ K>

q,m). Then for � ∈ Z0,m

it is obvious that (sj)�j=0 ∈ K≥
q,� (resp. (sj)�j=0 ∈ K>

q,�).

Remark 3.3 leads us to the following notion. A sequence (sj)∞j=0 from Cq×q is 
called Stieltjes non-negative definite (resp. Stieltjes positive definite) if for all m ∈ N0
the sequence (sj)mj=0 is Stieltjes non-negative definite (resp. Stieltjes positive defi-
nite). We denote be K≥

q,∞ (resp. K>
q,∞) the set of all Stieltjes non-negative definite 

(resp. Stieltjes positive definite) sequences from Cq×q. Concerning a detailed treat-
ment of the theory of Stieltjes non-negative definite sequences we refer the reader to 
Dyukarev/Fritzsche/Kirstein/Mädler [10], Fritzsche/Kirstein/Mädler [11,12].
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The following result provides the reasoning why we will work at many places in this 
paper with infinite Stieltjes positive definite sequences instead of finite ones.

Proposition 3.4. (See [11, Propositions 4.13 and 4.14].) Let m ∈ N0 and let (sj)mj=0 ∈
K>

q,m. Then there exists a sequence (s̃j)∞j=0 ∈ K>
q,∞ such that (s̃j)mj=0 = (sj)mj=0.

The following result shows the importance of the set K≥
q,m.

Theorem 3.5. (Cf. [10, Theorem 1.4].) Let m ∈ N and let (sj)mj=0 be a sequence of complex 
q × q matrices. Then Mq

≥[[0,∞); (sj)mj=0,≤] �= ∅ if and only if (sj)mj=0 ∈ K≥
q,m.

Remark 3.6. Let m ∈ N and let (sj)mj=0 ∈ K>
q,m. Then Theorem 3.5 shows that 

Mq
≥[[0,∞); (sj)mj=0,≤] �= ∅.

For a detailed description of the work on matrix versions of the Stieltjes moment 
problem we refer the reader to [12] and the references therein. This paper is inti-
mately related to several aspects of the author’s recent investigations [4] on Prob-
lem M[[0,∞); (sj)mj=0,≤] in the case (sj)mj=0 ∈ K>

q,m. First we explain that, following 
the classical line, we did not study the original moment problem but an equivalent prob-
lem for holomorphic q × q matrix-valued functions in C \ [0, ∞).

Definition 3.7. Let σ ∈ Mq
≥([0,∞)). Then the function Gσ: C \ [0, ∞) → C

q×q defined 
by

Gσ(z) :=
∫

[0,∞)

1
t− z

σ(dt)

is called Stieltjes transform of σ.

In view of a matrix version of the Stieltjes–Perron inversion formula (see [5, Theo-
rem 8.2]) a measure σ ∈ Mq

≥([0,∞)) is uniquely determined by its Stieltjes transform. 
For this reason the solution set of the Stieltjes moment problem can be described in 
terms of Stieltjes transform s. In this way, Stieltjes [29] already handled the classical 
case.

In the case (sj)mj=0 ∈ K>
q,m the set of all Stieltjes transforms of the measures 

belonging to the solution set of Problem M[[0,∞); (sj)mj=0,≤] was parametrized by 
Yu.M. Dyukarev [9] with the aid of a linear fractional transformation (see also [4, The-
orem 3.2]). Of particular importance for our subsequent considerations is the fact that 
the generating matrix-valued polynomial of this linear fractional transformation was ex-
pressed in [4, Theorem 4.6] in terms of a quadruple of q × q matrix polynomials with 
particular orthogonality properties.

In our subsequent considerations we will sometimes meet compactly supported matrix 
measures on R. In this case the Stieltjes transform has a particularly simple shape.
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Lemma 3.8. Let a, b ∈ R with a < b and let σ ∈ Mq
≥([a, b]). Then σ ∈ Mq

≥,∞([a, b]) and 
the function Sσ: C \ [a, b] → C

q×q given by

Sσ(z) :=
∫

[a,b]

1
t− z

σ(dt)

admits for all z ∈ C with |z| > max{|a|, |b|} the representation

Sσ(z) = −
∞∑
j=0

z−(j+1)s
(σ)
j .

Proof. If z ∈ C satisfies |z| > max{|a|, |b|} then

1
t− z

= − 1
z(1 − t/z) = −1

z

∞∑
k=0

(
t

z

)k

= −
∞∑
k=0

tkz−(k+1)

for all t ∈ [a, b]. Now changing integration and summation yields the assertion. �
4. The Dyukarev–Stieltjes parametrization of Stieltjes positive definite sequences

In this section we recall the Dyukarev–Stieltjes parametrization of sequences (sj)∞j=0 ∈
K>

q,∞ which was introduced in Fritzsche/Kirstein/Mädler [12, Section 8] inspired by 
Yu.M. Dyukarev’s paper [9]. For a complex p× q matrix A, let A∗ be the conjugate 
transpose of A and let A† be the Moore–Penrose inverse of A, i.e., the unique matrix 
X ∈ C

q×p which satisfies the four equations AXA = A, XAX = X, (AX)∗ = AX, 
and (XA)∗ = XA. If A ∈ C

q×q, then let detA be the determinant of A. For a complex 
q × q matrix A with detA �= 0 let A−1 be the inverse of A. In this case, A† = A−1.

Let (sj)∞j=0 be a sequence from Cp×q. First we introduce some sequences of matrices 
associated with (sj)∞j=0. Let

H1,j :=

⎛⎜⎜⎜⎝
s0 s1 . . . sj
s1 s2 . . . sj+1
...

...
...

sj sj+1 . . . s2j

⎞⎟⎟⎟⎠ , j ∈ N0, (4.1)

H2,j :=

⎛⎜⎜⎜⎝
s1 s2 . . . sj+1
s2 s3 . . . sj+2
...

...
...

sj+1 sj+2 . . . s2j+1

⎞⎟⎟⎟⎠ , j ∈ N0, (4.2)

Y1,j :=

⎛⎜⎜⎜⎝
sj

sj+1
...

⎞⎟⎟⎟⎠ , Z1,j := (sj , sj+1, . . . , s2j−1), j ∈ N, (4.3)
s2j−1
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Y2,j :=

⎛⎜⎜⎜⎝
sj+1
sj+2

...
s2j

⎞⎟⎟⎟⎠ , Z2,j := (sj+1, sj+2, . . . , s2j), j ∈ N. (4.4)

Furthermore, for j ∈ N0 we set

Ĥ1,j :=
{
s0, if j = 0
s2j − Z1,jH

†
1,j−1Y1,j , if j ≥ 1 , (4.5)

Ĥ2,j :=
{
s1, if j = 0
s2j+1 − Z2,jH

†
2,j−1Y2,j , if j ≥ 1 . (4.6)

In other words, if j ∈ N then Ĥ1,j (resp. Ĥ2,j) is the Schur complement of s2j (resp. 
s2j+1) in H1,j (resp. H2,j). Now we summarize some basic properties of Hankel positive 
definite sequences which are mostly taken from [13, Section 3].

Remark 4.1. Let (sj)∞j=0 ∈ H>
q,∞. Then:

(a) If j ∈ N0, then s2j ∈ C
q×q
> and s2j+1 ∈ C

q×q
H .

(b) If j ∈ N0, then H1,j ∈ C
(j+1)q×(j+1)q
> (and in particular detH1,j ∈ (0, +∞)).

(c) If j ∈ N0, then Ĥ1,j ∈ C
q×q
> (and in particular det Ĥ1,j ∈ (0, +∞)).

From Remark 4.1 and the definition of the set K>
q,∞ we immediately obtain the fol-

lowing observations.

Remark 4.2. Let (sj)∞j=0 ∈ K>
q,∞. Then:

(a) If j ∈ N0, then sj ∈ C
q×q
> .

(b) If k ∈ {1, 2} and j ∈ N0, then Hk,j ∈ C
(j+1)q×(j+1)q
> (and in particular detHk,j ∈

(0, +∞)).
(c) If k ∈ {1, 2} and j ∈ N0, then Ĥk,j ∈ C

q×q
> (and in particular det Ĥk,j ∈ (0, +∞)).

Let

v0 := Iq, vk :=
(

Iq
0kq×q

)
, k ∈ N. (4.7)

Let (sj)∞j=0 be a sequence from Cp×q. Let j, k ∈ N0. Then, we set

y[j,k] :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0q×q, if j > k⎛⎝ sj

sj+1

...

⎞⎠ , if j ≤ k
(4.8)
sk
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and

z[j,k] :=
{

0q×q, if j > k

(sj , sj+1, . . . , sk), if j ≤ k
. (4.9)

The following construction goes back to Yu.M. Dyukarev [9, p. 77].

Definition 4.3. (See [12, Definition 8.2].) Let (sj)∞j=0 ∈ K>
q,∞ and let

Mk :=
{
s−1
0 , if k = 0
v∗kH

−1
1,kvk − v∗k−1H

−1
1,k−1vk−1, if k ≥ 1

and

Lk :=
{
s0s

−1
1 s0, if k = 0

y∗[0,k]H
−1
2,ky[0,k] − y∗[0,k−1]H

−1
2,k−1y[0,k−1], if k ≥ 1

for all k ∈ N0. Then the ordered pair [(Lk)∞k=0, (Mk)∞k=0] is called the Dyukarev–Stieltjes 
parametrization (shortly DS-parametrization) of (sj)∞j=0.

Remark 4.4. (See [12, Remark 8.23].) Let (sj)∞j=0 ∈ K>
q,∞ with DS-parametrization 

[(Lk)∞k=0, (Mk)∞k=0]. Then, in view of [9, Theorem 7], the matrices Lk and Mk are positive 
Hermitian and, in particular, invertible for all k ∈ N0.

Remark 4.5. (See [12, Remark 8.3].) Let (sj)∞j=0 ∈ K>
q,∞ with DS-parametrization 

[(Lk)∞k=0, (Mk)∞k=0]. In view of Definition 4.3, (4.7), (4.1), (4.8), and (4.2), we can easily 
see then, that, for all k ∈ N0, the matrix Mk only depends on the matrices s0, . . . , s2k
and that the matrix Lk only depends on the matrices s0, s1, . . . , s2k+1.

Against to the background of Remark 4.5 we see that the notion “DS-parametrization” 
could also be analogously introduced for finite Stieltjes positive definite sequences. Re-
mark 4.5 leads us to the following notion.

Definition 4.6. Let n ∈ N and let (sj)nj=0 ∈ K>
q,n. Let (s̃j)∞j=0 ∈ K>

q,∞ be chosen such that 
(s̃j)nj=0 = (sj)nj=0 is satisfied and let [(Lk)∞k=0, (Mk)∞k=0] be the DS-parametrization 
of (s̃j)∞j=0. Let m ∈ N be chosen such that n = 2m or n = 2m − 1 is satisfied. 
Then the ordered pairs [(Lk)m−1

k=0 , (Mk)mk=0] and [(Lk)m−1
k=0 , (Mk)m−1

k=0 ] are called the DS-
parametrization of (sj)2mj=0 and (sj)2m−1

j=0 , respectively.

Remark 4.7. Let n ∈ N and let (sj)nj=0 ∈ K>
q,n. Let m ∈ N be chosen such that n = 2m

or n = 2m − 1 is satisfied. Denote by [(Lk)m−1
k=0 , (Mk)mk=0] (resp. [(Lk)m−1

k=0 , (Mk)m−1
k=0 ]) 

the DS-parametrization of (sj)nj=0. Then, in view of Definition 4.6 and Remark 4.4, 
the matrices Lk and M� are positive Hermitian and, in particular, invertible for all 
k ∈ Z0,m−1 and all � ∈ Z0,m (resp. � ∈ Z0,m−1).
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The following proposition plays a key role in the proof of Theorem 7.9 which is the 
second main result of present work. This proposition is a slightly modified version of the 
Fritzsche/Kirstein/Mädler’s Proposition 8.27 in [12], which considers an infinite sequence 
of pairs [(Lk)∞k=0, (Mk)∞k=0] instead of an analogue finite sequence. Our proof differs from 
the one in [12] since it is based on part d) of Theorem 4.12 in [11] which in turn uses the 
rank of the matrices H1,j and H2,j . Let us first recall the following well-known result 
(see e.g. [7, Lemma 1.1.9] or [1, Proposition 8.2.4]).

Lemma 4.8. Let A :=
(A11 A12
A∗

12 A22

)
be a Hermitian (n + m) × (n + m) matrix with 

n× n block A11. Then the following statements are equivalent:

(i) A ∈ C
(n+m)×(n+m)
> .

(ii) A11 ∈ C
n×n
> and A22 −A∗

12A
−1
11 A12 ∈ C

m×m
> .

(iii) A22 ∈ C
m×m
> and A11 −A12A

−1
22 A

∗
12 ∈ C

n×n
> .

Proposition 4.9. Let m ∈ N and let (Lj)m−1
j=0 and (Mj)mj=0 (resp. (Lj)mj=0 and (Mj)mj=0) 

be two sequences of positive Hermitian complex q × q matrices. Let the sequence (sj)2mj=0
(resp. (sj)2m+1

j=0 ) be recursively defined by

s2j :=
{

M−1
0 , if j = 0

Y ∗
1,jH

−1
1,j−1Y1,j + (

→∏j−1

k=0 MkLk)−∗M−1
j (

→∏j−1

k=0 MkLk)−1, if j ≥ 1
(4.10)

and

s2j+1 :=
{

(M0L0)−∗L0(M0L0)−1, if j = 0

Y ∗
2,jH

−1
2,j−1Y2,j + (

→∏j

k=0 MkLk)−∗Lj(
→∏j

k=0 MkLk)−1, if j ≥ 1
(4.11)

for j = 0, . . . , 2m (resp. j = 0, . . . , 2m + 1). Then (sj)2mj=0 (resp. (sj)2m+1
j=0 ) is a Stieltjes 

positive definite sequence.

Proof. From (4.10) and (4.5), we obtain

Ĥ1,0 = M−1
0 , Ĥ1,j =

⎛⎜⎝
j−1
→∏
k=0

MkLk

⎞⎟⎠
−∗

M−1
j

⎛⎜⎝
j−1
→∏
k=0

MkLk

⎞⎟⎠
−1

. (4.12)

Respectively from (4.11) and (4.6) we get

Ĥ2,0 = M−1
0 L−1

0 M−1
0 , Ĥ2,j =

⎛⎜⎝
j
→∏
k=0

MkLk

⎞⎟⎠
−∗

Lj

⎛⎜⎝
j
→∏
k=0

MkLk

⎞⎟⎠
−1

. (4.13)
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Since Lj ∈ C
q×q
> and Mj ∈ C

q×q
> for all j, then

M−1
0 ∈ C

q×q
> ,

⎛⎜⎝
j−1
→∏
k=0

MkLk

⎞⎟⎠
−∗

M−1
j

⎛⎜⎝
j−1
→∏
k=0

MkLk

⎞⎟⎠
−1

∈ C
q×q
> , (4.14)

M−1
0 L−1

0 M−1
0 ∈ C

q×q
> ,

⎛⎜⎝
j
→∏
k=0

MkLk

⎞⎟⎠
−∗

Lj

⎛⎜⎝
j
→∏
k=0

MkLk

⎞⎟⎠
−1

∈ C
q×q
> . (4.15)

By (4.12), (4.14) (resp. (4.13), (4.15)), we have

Ĥ1,j ∈ C
q×q
> , for all j ∈ N0, (4.16)

Ĥ2,j ∈ C
q×q
> , for all j ∈ N0. (4.17)

Let

H1,j =
(
H1,j−1 Y1,j
Y ∗

1,j s2j

)
, H2,j−1 =

(
H2,j−2 Y2,j−1
Y ∗

2,j−1 s2j−1

)
. (4.18)

By using (4.16), (4.18) (resp. (4.17), (4.18)) and Lemma 4.8, we obtain H1,m which 
is positive Hermitian; (resp. H2,m is positive Hermitian). Consequently, the sequence 
(sj)2mj=0 is a Stieltjes positive definite sequence. �

Note that equalities (4.12) and (4.13) were first proved in a different way in [4, Corol-
lary 4.10] under the condition that (sj)mj=0 for m = 2n and m = 2n + 1 is Stieltjes 
positive definite. This result, proved using a different approach, later appears in part (a) 
of Proposition 8.28 in [12].

5. On the Stieltjes quadruple of sequences of left orthogonal matrix polynomials 
associated with a sequence (sj)∞j=0 ∈ K>

q,∞

Let (sj)∞j=0 ∈ K>
q,∞. Then we will recall the Stieltjes quadruple of sequences of left or-

thogonal matrix polynomials (or short SQSLOMP) associated with (sj)∞j=0. This notion 
originates in [4, Definition 4.1]. For this reason, first we introduce some notations. Let

T0 := 0q×q, Tj :=
(

0q×jq 0q×q

Ijq 0jq×q

)
, j ∈ N. (5.1)

From (5.1) it follows immediately that for z ∈ C we have det(I(j+1)q − zTj) = 1. Thus, 
the function Rj : C → C

(j+1)q×(j+1)q given by

Rj(z) := (I(j+1)q − zTj)−1 (5.2)
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is well-defined. Observe, that the matrix-valued function Rj is given for z ∈ C via

Rj(z) =

⎛⎜⎜⎜⎜⎜⎝
Iq 0q×q 0q×q . . . 0q×q 0q×q

zIq Iq 0q×q . . . 0q×q 0q×q

z2Iq zIq Iq . . . 0q×q 0q×q

...
...

...
. . .

...
...

zjIq zj−1Iq zj−2Iq . . . zIq Iq

⎞⎟⎟⎟⎟⎟⎠ . (5.3)

Let (sj)∞j=0 be a sequence from Cq×q. Using (4.8) we set

u1,0 := 0q×q, u1,j :=
(

0q×q

−y[0,j−1]

)
, j ∈ N, (5.4)

and

u2,j := −y[0,j], j ∈ N. (5.5)

Definition 5.1. Let (sj)∞j=0 ∈ K>
q,∞. Let z ∈ C. Let

P1,0(z) := Iq, Q1,0(z) := 0q×q, P2,0(z) := Iq, Q2,0(z) := s0. (5.6)

For j ∈ N, let

P1,j(z) := (−Y ∗
1,jH

−1
1,j−1, Iq)Rj(z)vj , (5.7)

Q1,j(z) := −(−Y ∗
1,jH

−1
1,j−1, Iq)Rj(z)u1,j , (5.8)

P2,j(z) := (−Y ∗
2,jH

−1
2,j−1, Iq)Rj(z)vj , (5.9)

Q2,j(z) := −(−Y ∗
2,jH

−1
2,j−1, Iq)Rj(z)u2,j . (5.10)

Then [(P1,j)∞j=0, (Q1,j)∞j=0, (P2,j)∞j=0, (Q2,j)∞j=0] is called the Stieltjes quadruple of se-
quences of left orthogonal matrix polynomials (or short SQSLOMP) associated with 
(sj)∞j=0.

The reasoning for the terminology chosen in Definition 5.1 was given in [4, Proposi-
tion 4.2]. From Definition 5.1 we immediately see the following observation.

Remark 5.2. Let (sj)∞j=0 ∈ K>
q,∞ and let [(P1,j)∞j=0, (Q1,j)∞j=0, (P2,j)∞j=0, (Q2,j)∞j=0] be the 

associated SQSLOMP.

(a) For all j ∈ N0, the matrix polynomials P1,j and P2,j are monic of degree j.
(b) For all j ∈ N0, the matrix polynomials Q1,j+1 and Q2,j are of degree j.
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Remark 5.3. Let (sj)∞j=0 ∈ K>
1,∞ and let [(P1,j)∞j=0, (Q1,j)∞j=0, (P2,j)∞j=0, (Q2,j)∞j=0] be the 

associated SQSLOMP. Then using part (a) of Remark 4.2 it is immediately seen that 
for k ∈ {1, 2} and j ∈ N0 the polynomials Pk,j and Qk,j have real coefficients.

The role of the SQSLOMP associated with a sequence (sj)∞j=0 ∈ K>
q,∞ was detailed 

studied in [4]. These polynomials have particular orthogonality properties (see [4, Propo-
sition 4.2]) and can be used to describe the Stieltjes transforms of the measures of the 
solution sets Mq

≥[[0,∞); (sj)mj=0,≤] for all m ∈ N (see [4, Theorem 4.7]).
In the case (sj)mj=0 ∈ K>

q,m the set Mq
≥[[0,∞); (sj)mj=0,≤] contains two distinguished 

elements σm,min and σm,max (see [4, formulas (3.12) and (3.13)] for the Stieltjes trans-
forms of these measures). These Stieltjes transforms admit particular matrix continued 
fraction expansions, which will be recalled now. The following result establishes the 
bridge between [4] and the present paper.

Theorem 5.4. (Cf. [4, Theorems 3.4 and 4.8].) Let (sj)∞j=0 ∈ K>
q,∞ with DS-para-

metrization [(Lk)∞k=0, (Mk)∞k=0]. Denote by [(P1,j)∞j=0, (Q1,j)∞j=0, (P2,j)∞j=0, (Q2,j)∞j=0] the 
SQSLOMP associated with (sj)∞j=0. Further let n ∈ N0. For z ∈ C \ [0, ∞), then

Gσ2n,min(z) = − [Q2,n(z)]∗

z[P2,n(z)]∗ =
Iq

−zM0 +
Iq

L0 +
Iq

+
. . .

−zMn−1 +
Iq

Ln−1 − z−1M−1
n

and

Gσ2n,max(z) = − [Q1,n(z)]∗

[P1,n(z)]∗ =
Iq

−zM0 +
Iq

L0 +
Iq

+
. . .

Ln−2 +
Iq

−zMn−1 + L−1
n−1

.

A closer look at Theorem 5.4 shows now that a Stieltjes positive definite sequence 
produces matrix continued fractions of the type occurring in the construction of matrix 
Hurwitz type polynomials (see Definition 2.7). Furthermore, Theorem 5.4 indicates why 
we have chosen in the definitions of matrix Hurwitz type polynomials (see Definition 2.7) 
and of Markov parameters (see Definition 2.10) a version which slightly differs from the 
classical version. This is caused by the structure of the Stieltjes transform of the extremal 
solution σn,min of the non-degenerate truncated matricial Stieltjes moment problem.
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6. Construction of matrix Hurwitz type polynomials on the basis of Stieltjes positive 
definite sequences

The direction of the investigations of this section is determined by Theorem 5.4 which 
provides us a principle of constructing matrix Hurwitz type polynomials with the aid of 
a Stieltjes positive definite sequence.

Theorem 6.1. Let (sj)∞j=0 ∈ K>
q,∞ with DS-parametrization [(Lk)∞k=0, (Mk)∞k=0]. Denote 

by [(P1,j)∞j=0, (Q1,j)∞j=0, (P2,j)∞j=0, (Q2,j)∞j=0] the SQSLOMP associated with (sj)∞j=0. Let 
m ∈ N.

(a) Let f2m: C → C
q×q be defined by

f2m(z) := (−1)m
[
P1,m(−z2)

]∗ + z(−1)m+1 [Q1,m(−z2)
]∗

.

(a1) f2m is a MHTP of degree 2m.
(a2) [(Mk)m−1

k=0 , (Lk)m−1
k=0 ] is a Hurwitz parametrization of f2m.

(a3) Denote by (sj)∞j=0 the extended sequence of Markov parameters of f2m. Then 
sj = s̃j for all j ∈ Z0,2m−1.

(b) Let f2m+1: C → C
q×q be defined by

f2m+1(z) := (−1)m
[
Q2,m(−z2)

]∗ + z(−1)m
[
P2,m(−z2)

]∗
.

(b1) f2m+1 is a MHTP of degree 2m + 1.
(b2) [(Mk)mk=0, (Lk)m−1

k=0 ] is a Hurwitz parametrization of f2m+1.
(b3) Denote by (s̃j)∞j=0 the extended sequence of Markov parameters of f2m+1. Then 

sj = s̃j for all j ∈ Z0,2m.

Proof. (a) From Remark 5.2 we can conclude that f2m is a monic q × q matrix poly-
nomial of degree 2m. Furthermore, in view of Remark 5.2 and part (a) of Remark 2.4, 
the even and odd parts h2m and g2m of f2m fulfill h2m(z) = (−1)m[P1,m(−z)]∗ and 
g2m(z) = (−1)m+1[Q1,m(−z)]∗ for all z ∈ C. Taking additionally into account Theo-
rem 5.4, we see that f2m is a MHTP of degree 2m and that [(Mk)m−1

k=0 , (Lk)m−1
k=0 ] is a 

Hurwitz parametrization of f2m. In view of Theorem 5.4 and Definitions 2.7 and 2.10, 
we can conclude

Gσ2m,max(z) = − [Q1,m(z)]∗

[P1,m(z)]∗ = g2m(−z)
h2m(−z) = −

∞∑
j=0

z−(j+1)s̃j

for all z ∈ C \ [0, ∞) with |z| > η2m, where ηn := max{|z|: z ∈ Nhn
}. Since σ2m,max

belongs to Mq
≥[[0,∞); (sj)2mj=0,≤] and is concentrated on a finite set of points and hence 

compactly supported, we can via Lemma 3.8 conclude sj = s̃j for all j ∈ Z0,2m−1.
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(b) From Remark 5.2 we can conclude that f2m+1 is a monic q × q matrix polynomial 
of degree 2m + 1. Furthermore, in view of Remark 5.2 and part (b) of Remark 2.4, the 
even and odd part s h2m+1 and g2m+1 of f2m+1 fulfill h2m+1(z) = (−1)m[Q2,m(−z)]∗

and g2m+1(z) = (−1)m[P2,m(−z)]∗ for all z ∈ C. Taking additionally into account Theo-
rem 5.4, we see that f2m+1 is a MHTP of degree 2m +1 and that [(Mk)mk=0, (Lk)m−1

k=0 ] is a 
Hurwitz parametrization of f2m+1. In view of Theorem 5.4 and Definitions 2.7 and 2.10, 
we can conclude

Gσ2m,min(z) = − [Q2,m(z)]∗

z[P2,m(z)]∗ = h2m+1(−z)
(−z)g2m+1(−z) = −

∞∑
j=0

z−(j+1)s̃j

for all z ∈ C \ [0, ∞) with |z| > ρ2m+1, where ρ2m+1 := max{|z|: z ∈ Ng2m+1}. 
Since σ2m,min belongs to Mq

≥[[0,∞); (sj)2m+1
j=0 ,≤] and is concentrated on a finite set 

of points and hence compactly supported, we can via Lemma 3.8 conclude sj = s̃j for 
all j ∈ Z0,2m. �

Theorem 6.1 leads us to the following notion.

Definition 6.2. Let (sj)∞j=0 ∈ K>
q,∞, let n ∈ {2, 3, . . .}, and let fn be defined as in Theo-

rem 6.1. Then fn is called the MHTP of degree n associated with (sj)∞j=0.

Remark 6.3. Let (sj)∞j=0 ∈ K>
q,∞, let n ∈ {2, 3, . . .}, and let fn be the MHTP of degree n

associated with (sj)∞j=0. In view of (5.7)–(5.10), then fn only depends on (sj)n−1
j=0 .

Remark 6.3 leads us to the following notion.

Definition 6.4. Let n ∈ {2, 3, . . .} and let (sj)n−1
j=0 ∈ K>

q,n−1. Let (s̃j)∞j=0 ∈ K>
q,∞ be chosen 

such that (s̃j)n−1
j=0 = (sj)n−1

j=0 . Then by the MHTP of degree n associated with (sj)n−1
j=0 we 

mean the MHTP of degree n associated with (s̃j)∞j=0.

7. On associating a Stieltjes positive definite sequence (sj)n−1
j=0 with a matrix Hurwitz 

type polynomial of degree n

Definition 6.4 leads us to the following inverse problem. Let n ∈ {2, 3, . . .} and let fn
be a matrix Hurwitz type polynomial of degree n. Then we want to show that there exists 
a unique sequence (sj)n−1

j=0 ∈ K>
q,n−1 such that fn coincides with the matrix Hurwitz type 

polynomial of degree n associated with (sj)n−1
j=0 . We will show that the sequence (sj)n−1

j=0
is given by the sequence of Markov parameters of fn.
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First we introduce some notations. Let κ ∈ N0 ∪ {∞} and let (sj)κj=0 and (Ak)κk=0 be 
sequences of complex q × q matrices. For all j ∈ Z0,κ, let

S[0,j] :=

⎛⎜⎜⎜⎜⎜⎝
s0 s1 . . . sj−1 sj

0q×q s0 . . . sj−2 sj−1
...

. . .
...

...
0q×q 0q×q s0 s1
0q×q 0q×q . . . 0q×q s0

⎞⎟⎟⎟⎟⎟⎠ . (7.1)

Furthermore, let

A[j,k] :=

⎛⎜⎜⎜⎜⎜⎝
A2j

A2j−2
...

A2(k+1)
A2k

⎞⎟⎟⎟⎟⎟⎠ (7.2)

for all j, k ∈ N0 with k ≤ j and 2j ≤ κ, and let

A[j,k] :=

⎛⎜⎜⎜⎜⎜⎝
A2j+1
A2j−1

...
A2k+3
A2k+1

⎞⎟⎟⎟⎟⎟⎠ (7.3)

for all j, k ∈ N0 with k ≤ j and 2j + 1 ≤ κ. For all m ∈ N let

Jm := diag
(
(−1)m−1Iq, (−1)m−2Iq, . . . , (−1)2Iq, (−1)1Iq, (−1)0Iq

)
. (7.4)

Observe that

Jm =
(

−Jm−1 0(m−1)q×q

0q×(m−1)q Iq

)
=

(
(−1)m−1Iq 0q×(m−1)q
0(m−1)q×q Jm−1

)
(7.5)

for all m ∈ {2, 3, . . .}.

Lemma 7.1. Let n ∈ {2, 3, . . .} and let fn be a monic q × q matrix polynomial of degree 
n given for all z ∈ C by (2.1) with extended sequence of Markov parameters (sj)∞j=0. Let 
m ∈ N be chosen such that n = 2m or n = 2m + 1 is satisfied. Then

A[m−1,0] = JmS[0,m−1]JmA[m−1,0], (7.6)

Y1,m = H1,m−1JmA[m,1] (7.7)
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if n = 2m, and

A[m,0] = Jm+1S[0,m]Jm+1A[m,0], (7.8)

Y2,m = H2,m−1JmA[m,1] (7.9)

if n = 2m + 1.

Proof. Denote by hn and gn the even and odd parts of fn, respectively. Suppose n = 2m
and let ηn := max{|z|: z ∈ Nhn

}. In view of Definition 2.10 and part (a) of Lemma 2.9, 
then gn(z)

hn(z) =
∑∞

j=0(−1)jz−(j+1)s̃j for all z ∈ C with |z| > ηn. Multiplying both sides by 
hn(z) results in

gn(z) =
(s0

z
− s1

z2 + · · · + s2m

z2m+1 − · · ·
)
hn(z)

for all z ∈ C with |z| > ηn. By equating coefficients of equal powers of z on both sides 
of this identity, we get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A1 = s0A0,

A3 = s0A2 − s1A0,

...
A2m−1 = s0A2m−2 − s1A2m−4 + · · · + (−1)m−1sm−1A0,

(7.10)

and

0q×q = skA2m − sk+1A2m−2 + · · · + (−1)msk+mA0, for all k ∈ N0. (7.11)

By rewriting (7.10) and (7.11) in matrix form, where k runs from 0 to m − 1, yields⎛⎜⎜⎜⎝
A2m−1
A2m−3

...
A1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
s0 −s1 . . . (−1)m−1sm−1
...

. . .
...

0q×q
. . . −s1

0q×q 0q×q . . . s0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

A2m−2
A2m−4

...
A0

⎞⎟⎟⎟⎠ (7.12)

and ⎛⎜⎜⎝
smA0

sm+1A0
. . .

s2m−1A0

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
s0 s1 . . . sm−1
s1 s0 . . . sm−2
...

...
...

sm−1 sm . . . s2m−2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

(−1)m−1A2m
(−1)m−2A2m−2

...
A2

⎞⎟⎟⎟⎠ . (7.13)

From (7.3), (7.12), (7.4), (7.1), and (7.2), we obtain (7.6). Taking into account A0 = Iq
we can conclude (7.7) from (4.3), (7.13), (4.1), (7.4), and (7.2). In the case n = 2m + 1
one proves (7.8) and (7.9) in a similar way. �
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Remark 7.2. Let n ∈ {2, 3, . . .} and let (Ak)nk=0 be a sequence of complex q × q matrices. 
In view of (7.5), (7.2), and (7.3), then

Jm+1A[m,0] =
(
−JmA[m,1]

A0

)
=

(
(−1)mA2m
JmA[m−1,0]

)
(7.14)

for all m ∈ N with 2m ≤ n, and

Jm+1A
[m,0] =

(
−JmA[m,1]

A1

)
=

(
(−1)mA2m+1
JmA[m−1,0]

)
(7.15)

for all m ∈ N with 2m + 1 ≤ n.

Remark 7.3. Let m ∈ N. According to (7.5) and (5.1), then

T ∗
mJm+1 = −Jm+1T

∗
m, (7.16)

which, in view of (5.2), implies

R∗
m(z)Jm+1 = Jm+1R

∗
m(−z) (7.17)

for all z ∈ C.

Remark 7.4. Let m ∈ N and let (sj)mj=0 be a sequence of complex q × q matrices. Using 
(5.4), (5.5), (5.3), (4.7), (5.1), and (7.1), one can prove by direct calculations that

u∗
1,mR∗

m(z) = −v∗mR∗
m(z)T ∗

mS[0,m] (7.18)

and

u∗
2,mR∗

m(z) = −v∗mR∗
m(z)S[0,m] (7.19)

for all z ∈ C.

Lemma 7.5. Let m ∈ N, and let (sj)mj=0 and (Ak)2mk=0 be sequences of complex q × q ma-
trices. For all z ∈ C, then

v∗mT ∗
mR∗

m(z)Jm+1S[0,m]Jm+1A[m,0] = v∗m−1R
∗
m−1(z)JmS[0,m−1]JmA[m−1,0]. (7.20)

Proof. This is proved by using (4.8), the second equality of (7.5), (7.14) and S[0,m] =( s0 y∗
[1,m]

0qm×q S[0,m−1]

)
. �
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Lemma 7.6. Let n ∈ {2, 3, . . .} and let fn be a monic q × q matrix polynomial of degree 
n given for all z ∈ C by (2.1) with extended sequence of Markov parameters (sj)∞j=0. Let 
m ∈ N be chosen such that n = 2m or n = 2m + 1 is satisfied. Then

Jm+1A[m,0] =
(
−H−1

1,m−1Y1,m
Iq

)
(7.21)

if n = 2m, and

Jm+1A[m,0] =
(
−H−1

2,m−1Y2,m
Iq

)
(7.22)

if n = 2m + 1.

Proof. In view of A0 = Iq, Eqs. (7.21) and (7.22) follow from (7.5), (7.2), (7.7) and (7.5), 
(7.2), (7.9), respectively. �
Lemma 7.7. Let (sj)∞j=0 ∈ K>

q,∞ and let [(P1,j)∞j=0, (Q1,j)∞j=0, (P2,j)∞j=0, (Q2,j)∞j=0] be the 
associated SQSLOMP. For all j ∈ N0 and all z ∈ C, then

Q∗
1,j(z) = v∗jR

∗
j (z)T ∗

j S[0,j]

(
−H−1

1,j−1Y1,j
Iq

)
(7.23)

and

Q∗
2,j(z) = v∗jR

∗
j (z)S[0,j]

(
−H−1

2,j−1Y2,j
Iq

)
. (7.24)

Proof. The identities (7.23) and (7.24) are proved by employing (5.8), (7.18) and (5.10), 
(7.19), respectively. �
Proposition 7.8. Let n ∈ {2, 3, . . .} and let fn be a monic q × q matrix polynomial of 
degree n with sequence of Markov parameters (s̃j)nj=0 such that (s̃j)n−1

j=0 ∈ K>
q,n−1. Then 

fn is the MHTP of degree n associated with (s̃j)n−1
j=0 .

Proof. For z ∈ C let fn be given by (2.1). Denote by hn and gn the even and odd part 
of fn, respectively. In view of Proposition 3.4, there exists a sequence (sj)∞j=0 ∈ K>

q,∞
with

sj = s̃j for all j ∈ Z0,n−1. (7.25)

Denote by [(P1,j)∞j=0, (Q1,j)∞j=0, (P2,j)∞j=0, (Q2,j)∞j=0] the SQSLOMP associated with 
(sj)∞j=0. Let m ∈ N be chosen such that n = 2m or n = 2m − 1 is satisfied. Then the 
matrices H1,m−1 and H2,m−1 are both invertible, according to part (b) of Remark 4.2. 
Let z ∈ C.
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Suppose n = 2m. We show that

hn(z) = (−1)mP ∗
1,m(−z) and gn(z) = (−1)m+1Q∗

1,m(−z).

To this end,

hn(z) = (Iq, zIq, . . . , zmIq)

⎛⎜⎜⎜⎝
A2m

A2m−2
...
A0

⎞⎟⎟⎟⎠ = v∗mR∗
m(z)A[m,0] = v∗mR∗

m(z)Jm+1Jm+1A[m,0]

= v∗mJm+1R
∗
m(−z)

(
−JmA[m,1]

A0

)
= (−1)mv∗mR∗

m(−z)
(
−H−1

1,m−1Y1,m
Iq

)
= (−1)mP ∗

1,m(−z),

where the 1st equality is due to (2.2), the 2nd equality is due to (4.7), (5.3) and (7.2), the 
3rd equality is due to (7.4), the 4th equality is due to (7.17) and (7.14), the 5th equality 
is due to (4.7), (7.5), (7.25), (7.7) and A0 = Iq, and the last equality is due to (5.7). 
Analogously,

gn(z) = (Iq, zIq, . . . , zm−1Iq)

⎛⎜⎜⎜⎝
A2m−1
A2m−3

...
A1

⎞⎟⎟⎟⎠ = v∗m−1R
∗
m−1(z)A[m−1,0]

= v∗m−1R
∗
m−1(z)JmS[0,m−1]JmA[m−1,0] = v∗mT ∗

mR∗
m(z)Jm+1S[0,m]Jm+1A[m,0]

= v∗mT ∗
mJm+1R

∗
m(−z)S[0,m]Jm+1A[m,0] = −v∗mJm+1T

∗
mR∗

m(−z)S[0,m]Jm+1A[m,0]

= −(−1)mv∗mT ∗
mR∗

m(−z)S[0,m]

(
−H−1

1,m−1Y1,m
Iq

)
= (−1)m+1v∗mR∗

m(−z)T ∗
mS[0,m]

(
−H−1

1,m−1Y1,m
Iq

)
= (−1)m+1Q∗

1,m(−z),

where the 1st equality is due to (2.3), the 2nd equality is due to (4.7), (5.3) and (7.3), the 
3rd equality is due to (7.25) and (7.6), the 4th equality is due to (7.20), the 5th equality 
is due to (7.17), the 6th equality is due to (7.16), the 7th equality is due to (4.7), (7.5), 
(7.25) and (7.21), the 8th equality is due to (5.2), and the last equality is due to (7.23). 
Hence,

fn(z) = (−1)mP ∗
1,m(−z2) + z(−1)m+1Q∗

1,m(−z2).

Since, in view of (5.7) and (5.8), the matrix polynomials P1,m and Q1,m only de-
pend on the matrices s0, s1, . . . , s2m−1, which by (7.25) coincide with the matrices 
s̃0, ̃s1, . . . , ̃s2m−1, this shows that fn is the MHTP of degree n associated with (s̃j)n−1

j=0 .
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Suppose n = 2m + 1. We show that

hn(z) = (−1)mQ∗
2,m(−z) and gn(z) = (−1)mP ∗

2,m(−z).

To this end,

hn(z) = (Iq, zIq, . . . , zmIq)

⎛⎜⎜⎜⎝
A2m+1
A2m−1

...
A1

⎞⎟⎟⎟⎠ = v∗mR∗
m(z)A[m,0]

= v∗mR∗
m(z)Jm+1S[0,m]Jm+1A[m,0] = v∗mJm+1R

∗
m(−z)S[0,m]Jm+1A[m,0]

= (−1)mv∗mR∗
m(−z)S[0,m]

(
−H−1

2,m−1Y2,m
Iq

)
= (−1)mQ∗

2,m(−z),

where the 1st equality is due to (2.2), the 2nd equality is due to (4.7), (5.3) and (7.3), the 
3rd equality is due to (7.25) and (7.8), the 4th equality is due to (7.17), the 5th equality is 
due to (4.7), (7.5), (7.25) and (7.22), and the last equality is due to (7.24). Analogously,

gn(z) = (Iq, zIq, . . . , zmIq)

⎛⎜⎜⎜⎝
A2m

A2m−2
...
A0

⎞⎟⎟⎟⎠ = v∗mR∗
m(z)A[m,0] = v∗mR∗

m(z)Jm+1Jm+1A[m,0]

= v∗mJm+1R
∗
m(−z)

(
−JmA[m,1]

A0

)
= (−1)mv∗mR∗

m(−z)
(
−H−1

2,m−1Y2,m
Iq

)
= (−1)mP ∗

2,m(−z),

where the 1st equality is due to (2.3), the 2nd equality is due to (4.7), (5.3) and (7.2), the 
3rd equality is due to (7.4), the 4th equality is due to (7.17) and (7.14), the 5th equality 
is due to (4.7), (7.5), (7.25), (7.9) and A0 = Iq, and the last equality is due to (5.9). 
Hence,

fn(z) = (−1)mQ∗
2,m(−z2) + z(−1)mP ∗

2,m(−z2).

Since, in view of (5.10) and (5.9), the matrix polynomials Q2,m and P2,m only depend on 
the matrices s0, s1, . . . , s2m, which by (7.25) coincide with the matrices s̃0, ̃s1, . . . , ̃s2m, 
this shows that fn is the MHTP of degree n associated with (s̃j)n−1

j=0 . �
Now we state the main result of this section.

Theorem 7.9. Let n ∈ {2, 3, . . .} and let fn be a MHTP of degree n with sequence of 
Markov parameters (s̃j)nj=0. Let m ∈ N be chosen such that n = 2m or n = 2m + 1 is 
satisfied.
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(a) Suppose n = 2m and let [(ck)m−1
k=0 , (dk)m−1

k=0 ] be a Hurwitz parametrization of fn. 
Then (s̃j)n−1

j=0 ∈ K>
q,n−1 with DS-parametrization [(dk)m−1

k=0 , (ck)m−1
k=0 ] and fn is the 

MHTP of degree n associated with (s̃j)n−1
j=0 .

(b) Suppose n = 2m + 1 and let [(ck)mk=0, (dk)m−1
k=0 ] be a Hurwitz parametrization of fn. 

Then (s̃j)n−1
j=0 ∈ K>

q,n−1 with DS-parametrization [(dk)m−1
k=0 , (ck)mk=0] and fn is the 

MHTP of degree n associated with (s̃j)n−1
j=0 .

Proof. Denote by hn and gn the even and odd parts of fn, respectively.
(a) Let ck := Iq and dk := Iq for all k ∈ {m, m + 1, . . .}. Then (ck)∞k=0 and (dk)∞k=0

are sequences from Cq×q
> . According to [12, Proposition 8.27] there exists a sequence 

(sj)∞j=0 ∈ K>
q,∞ with DS-parametrization [(dk)∞k=0, (ck)∞k=0]. Using Theorem 5.4 and 

Definitions 2.7 and 2.10, we obtain

Gσ2m,max(z) = g2m(−z)
h2m(−z) = −

∞∑
j=0

z−(j+1)s̃j

for all z ∈ C \ [0, ∞) with |z| > η2m, where ηn := max{|z|: z ∈ Nhn
}. Since σ2m,max

belongs to Mq
≥[[0,∞); (sj)2mj=0,≤] and is concentrated on a finite set of points and hence 

compactly supported, we can via Lemma 3.8 conclude sj = s̃j for all j ∈ Z0,2m−1. In par-
ticular, (s̃j)n−1

j=0 ∈ K>
q,n−1 with DS-parametrization [(dk)m−1

k=0 , (ck)m−1
k=0 ]. Proposition 7.8

yields then that fn is the MHTP of degree n associated with (s̃j)n−1
j=0 .

(b) Let ck := Iq for all k ∈ {m +1, m +2, . . .} and let dk := Iq for all k ∈ {m, m +1, . . .}. 
Then (ck)∞k=0 and (dk)∞k=0 are sequences from Cq×q

> . According to [12, Proposition 8.27]
there exists a sequence (sj)∞j=0 ∈ K>

q,∞ with DS-parametrization [(dk)∞k=0, (ck)∞k=0]. Us-
ing Theorem 5.4 and Definitions 2.7 and 2.10, we obtain

Gσ2m,min(z) = h2m+1(−z)
(−z)g2m+1(−z) = −

∞∑
j=0

z−(j+1)s̃j

for all z ∈ C \ [0, ∞) with |z| > ρ2m+1, where ρ2m+1 := max{|z|: z ∈ Ng2m+1}. Since 
σ2m,min belongs to Mq

≥[[0,∞); (sj)2m+1
j=0 ,≤] and is concentrated on a finite set of points 

and hence compactly supported, we can via Lemma 3.8 conclude sj = s̃j for all j ∈ Z0,2m. 
In particular, (s̃j)n−1

j=0 ∈ K>
q,n−1 with DS-parametrization [(dk)m−1

k=0 , (ck)mk=0]. Proposi-
tion 7.8 yields then that fn is the MHTP of degree n associated with (s̃j)n−1

j=0 . �
Now we are able to state a useful characterization of th Hurwitz type property of 

monic q × q matrix polynomials in terms of the sequence of Markov parameters.

Theorem 7.10. Let n ∈ {2, 3, . . .} and let fn be a monic q × q matrix polynomial of 
degree n with sequence of Markov parameters (s̃j)nj=0. Then the following statements are 
equivalent:

(i) fn is a MHTP of degree n.
(ii) (s̃j)n−1

j=0 ∈ K>
q,n−1.
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Proof. “(i)⇒ (ii)”: This follows from Theorem 7.9.
“(ii)⇒ (i)”: This follows from Proposition 7.8. �
Now we show that the correspondence between matrix Hurwitz type polynomials and 

finite Stieltjes positive definite sequences is bijective.

Theorem 7.11. Let n ∈ {2, 3, . . .} and let fn be a MHTP of degree n with sequence of 
Markov parameters (s̃j)nj=0. Then there is a unique sequence (sj)n−1

j=0 ∈ K>
q,n−1 such that 

fn is the MHTP of degree n associated with (sj)n−1
j=0 namely (sj)n−1

j=0 = (s̃j)n−1
j=0 .

Proof. From Theorem 7.9 we obtain (s̃j)n−1
j=0 ∈ K>

q,n−1 and that fn is the MHTP of degree 
n associated with (s̃j)n−1

j=0 . If (sj)n−1
j=0 is an arbitrary sequence from K>

q,n−1 such that fn
is the MHTP of degree n associated with (sj)n−1

j=0 , then Definition 6.4 and Theorem 6.1
yield (sj)n−1

j=0 = (s̃j)n−1
j=0 . �

Now we demonstrate that a matrix Hurwitz type polynomial admits a unique Hurwitz 
parametrization.

Theorem 7.12. Let n ∈ {2, 3, . . .} and let fn be a MHTP of degree n with sequence of 
Markov parameters (s̃j)nj=0. Let m ∈ N be chosen such that n = 2m or n = 2m + 1 is 
satisfied.

(a) Suppose n = 2m and let [(Lk)m−1
k=0 , (Mk)m−1

k=0 ] be the DS-parametrization of (s̃j)n−1
j=0 . 

Then there is a unique Hurwitz parametrization [(ck)m−1
k=0 , (dk)m−1

k=0 ] of fn, namely 
[(ck)m−1

k=0 , (dk)m−1
k=0 ] = [(Mk)m−1

k=0 , (Lk)m−1
k=0 ].

(b) Suppose n = 2m + 1 and let [(Lk)m−1
k=0 , (Mk)mk=0] be the DS-parametrization of 

(s̃j)n−1
j=0 . Then there is a unique Hurwitz parametrization [(ck)mk=0, (dk)m−1

k=0 ] of fn, 
namely [(ck)mk=0, (dk)m−1

k=0 ] = [(Mk)mk=0, (Lk)m−1
k=0 ].

Proof. From Theorem 7.9 we obtain (s̃j)n−1
j=0 ∈ K>

q,n−1 and that fn is the MHTP of 
degree n associated with (s̃j)n−1

j=0 .
(a) In view of Definitions 6.4 and 4.6, we can conclude from part (a) of Theorem 6.1

that [(Mk)m−1
k=0 , (Lk)m−1

k=0 ] is a Hurwitz parametrization of fn. If [(ck)m−1
k=0 , (dk)m−1

k=0 ] is 
an arbitrary Hurwitz parametrization of fn, then part (a) of Theorem 7.9 shows that 
[(dk)m−1

k=0 , (ck)m−1
k=0 ] is the DS-parametrization of (s̃j)n−1

j=0 and hence [(ck)m−1
k=0 , (dk)m−1

k=0 ] =
[(Mk)m−1

k=0 , (Lk)m−1
k=0 ].

(b) In view of Definitions 6.4 and 4.6, we can conclude from part (b) of Theorem 6.1
that [(Mk)mk=0, (Lk)m−1

k=0 ] is a Hurwitz parametrization of fn. If [(ck)mk=0, (dk)m−1
k=0 ] is 

an arbitrary Hurwitz parametrization of fn, then part (b) of Theorem 7.9 shows that 
[(dk)m−1

k=0 , (ck)mk=0] is the DS-parametrization of (s̃j)n−1
j=0 and hence [(ck)mk=0, (dk)m−1

k=0 ] =
[(Mk)mk=0, (Lk)m−1

k=0 ]. �
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8. On asymptotic stability of ODEs

As an application of the obtained results, we consider in this section the well-known 
Lyapunov’s stability criterion [24] for ordinary differential equations with constant coef-
ficients in terms of orthogonal polynomials on [0, ∞) and their second kind polynomials.

Let n ∈ {2, 3, . . .} and consider the differential equation

ẋ = Ax, (8.1)

where x is an n × 1 vector, and A is an n × n matrix whose entries are real constants.

Remark 8.1. Let RA: C → C defined by RA(z) := det(zIn − A) be the characteristic 
polynomial of the matrix A, which is a monic polynomial of degree n. Recall that the 
system (8.1) is asymptotically stable in the sense of Lyapunov if and only if all the zeros 
of the characteristic polynomial RA have a negative real part, i.e., if and only if RA is a 
Hurwitz polynomial.

Theorem 8.2. Let n ∈ {2, 3, . . .} and let A be a real n × n matrix with characteristic 
polynomial RA. Denote by (s̃j)nj=0 the sequence of Markov parameters of RA. Then, the 
system (8.1) is asymptotically stable if and only if (s̃j)n−1

j=0 is Stieltjes positive definite. 
In this case, the set M1

≥[[0,∞); (s̃j)n−1
j=0 ,≤] is non-empty and RA is the matrix Hurwitz 

type polynomial of degree n associated with (s̃j)n−1
j=0 .

Proof. This follows, in view of Remark 8.1, from Theorem 7.10, Remark 3.6, and Propo-
sition 7.8. �

Suppose the system (8.1) is asymptotically stable. Then, (s̃j)n−1
j=0 is Stieltjes positive 

definite by Theorem 8.2. In view of Proposition 3.4, there exists a sequence (sj)∞j=0 ∈
K>

1,∞ such that (s̃j)n−1
j=0 = (sj)n−1

j=0 . Denote by [(p1,j)∞j=0, (q1,j)∞j=0, (p2,j)∞j=0, (q2,j)∞j=0] the 
SQSLOMP associated with (sj)∞j=0 (see Definition 5.1) and let m ∈ N be chosen such 
that n = 2m or n = 2m + 1 is satisfied. From Theorem 8.2 and Definition 6.4 we then 
can conclude that

RA(z) =
{

(−1)mp1,m(−z2) − z(−1)mq1,m(−z2), if n = 2m
(−1)mq2,m(−z2) + z(−1)mp2,m(−z2), if n = 2m + 1

(8.2)

holds for all z ∈ C. Observe that the SQSLOMP [(p1,j)∞j=0, (q1,j)∞j=0, (p2,j)∞j=0, (q2,j)∞j=0]
associated with (sj)∞j=0 can be interpreted in terms of orthogonal polynomials with re-
spect to (sj)∞j=0 and other related polynomials (see [4, Proposition 4.2]). Note that these 
polynomials then also have the corresponding orthogonality properties with respect to 
each σ ∈ Mq

≥[[0,∞); (sj)∞j=0,=]. We refer to [4, Section 4, Appendices D and E] for a 
detailed treatment of this topic.
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9. An example

In this section we consider the scalar case q = 1. For j ∈ N0 let sj := j!. Then 
(sj)∞j=0 is the sequence of power moments of the exponential distribution with pa-
rameter 1. This is the measure on B[0,∞) which is given via the density h: [0, ∞) →
[0, ∞) defined by h(u) := exp{−u}. Thus, we have (sj)∞j=0 ∈ K>

1,∞. Denote by 
[(P1,j)∞j=0, (Q1,j)∞j=0, (P2,j)∞j=0, (Q2,j)∞j=0] the SQSLOMP associated with (sj)∞j=0. (Ob-
serve that (P1,j)∞j=0 is the sequence of classical Laguerre polynomials.) Then the first 
polynomials of the sequence are given by

P1,0(z) = 1, P2,0(z) = 1,
P1,1(z) = z − 1, P2,1(z) = z − 2,
P1,2(z) = z2 − 4z + 2, P2,2(z) = z2 − 6z + 6,
P1,3(z) = z3 − 9z2 + 18z − 6, P2,3(z) = z3 − 12z2 + 36z − 24,
Q1,0(z) = 0, Q2,0(z) = 1,
Q1,1(z) = 1, Q2,1(z) = z − 1,
Q1,2(z) = z − 3, Q2,2(z) = z2 − 5z + 2,
Q1,3(z) = z2 − 8z2 + 11, Q2,3(z) = z3 − 11z2 + 26z − 6.

For n ∈ {2, 3, . . .} we denote by fn the Hurwitz type polynomial of degree n associated 
with (sj)∞j=0. Then the first seven polynomials are given by

f1(z) = z + 1,
f2(z) = z2 + z + 1, f5(z) = z5 + z4 + 6z3 + 5z2 + 6z + 2,
f3(z) = z3 + z2 + 2z + 1, f6(z) = z6 + z5 + 9z4 + 8z3 + 18z2 + 11z + 6,
f4(z) = z4 + z3 + 4z2 + 3z + 2, f7(z) = z7 + z6 + 12z5 + 11z4 + 36z3 + 26z2

+ 24z + 6.
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