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a b s t r a c t

The admissible control problem occupies an important place in control theory. This
problem involves the study of the set of all bounded controls which solve a given control
problem, including the time optimal control. In this work we show with the help of the
Fundamental Matrix Inequality of Potapov that the solution of the admissible control
problem for the canonical linear case can be given in terms of the solution of a classical
Hausdorff moment problem on a finite interval [0, θ].

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

As is customary, we letRn andC denote the n-dimensional Euclidean space (R is the set of real numbers) and the complex
numbers, respectively. We will use C0,L to denote the set of all measurable functions on [0, θ] such that 0 ≤ f (τ ) ≤ L for all
τ ∈ [0, θ]. The symbolM[0, θ] stands for the set of all nonnegative measures on [0, θ]. The complex conjugate of a number
z and of a functionw is denoted by z̄ andw∗, respectively.

1.1. Statement of the problem

Let x ∈ Rn. Let A be an n× nmatrix and b a given constant vector in Rn. Consider the following completely controllable
system

ẋ = Ax+ bũ. (1)

For a given initial condition x0 and θ ≥ θmin, find the setUx0,θ of all controls ũ = ũx0,θ (t)with |ũ| ≤ 1 such that the trajectory
of the closed system ẋ = Ax+ bũx0,θ (t) starting at x0 terminates at the origin at time θ , i.e. x(θ) = 0. Here θmin denotes the
minimal possible time of this transfer, or the optimal time. Such a control problem is said to be admissible.
The time optimal control problem (TOC) is the problem of determining the optimal time θmin and, also, the corresponding

control uoptx0 (t) (it turns out to be unique and is called the optimal control); see [1].
Note that the case without restrictions on the control is relatively simple. Indeed, the control û(t) of steering to null from

the initial position x0 should satisfy the equation−x0 =
∫ θ
0 e
−Aτ b̂u(τ )dτ . Let ǔ(t) be a control transferring x0 to 0 at time θ ,

for example ǔ(t) = −b∗e−A
∗tN−1(θ)x0, whereN(θ) =

∫ θ
0 e
−Atbb∗e−A

∗tdt . Then the set of all nonrestricted controls includes
those û(t) that admit the representation û(t) = u0(t)+ ǔ(t), where

∫ θ
0 e
−Atbu0(t)dt = 0.

In the case of bounded controls, the AC problem becomes complicated considerably and the description of the set Ux0,θ
becomes a difficult task.
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In the present work, we obtain the solution of the AC problem for the canonical system case, i.e.,

A := {δjk+1}nj,k=1, b := (1, 0, . . . , 0)T. (2)

Our solution method is based on some deep results of the moment problem.
Apparently Krasovskii [2] was the first to propose the use of moment problem methods for solving optimal control

problems (OCP). He reduced linear OCP to moment problems by interpreting the cost function as a norm which in fact
was an application of the Krein L-moment problem [3]. An analytical solution of the TOC problem was given by Korobov
and Sklyar [4,5] based on the treatment of an equivalent Markov power moment problem, the so-called Markov moment
min-problem [6].
Certainly, the search for TOC is one of the central goals in optimal control theory. However, in many situations, it is

not so important to find a control on the minimal possible interval, but the desired control has to satisfy some additional
requirements, for example, to be smooth. In these cases it is natural to enlarge the time of steering and to consider smooth
controls only. This leads to the problem of describing all admissible controls realizing transfers from x0 to 0 at a given time
θ (AC problem).
To solve the AC problem, we propose in the present work a new step in the application of moment theory to control

problems. We use the analysis of a classical Hausdorff moment problem with the help of Fundamental Matrix Inequality
(FMI) of Potapov.We show that any solution of theHausdorffmoment problem (HMP) generates a solution of theACproblem
and, conversely, any solution of the AC problem is generated by a solution of the HMP.What is more important, all solutions
of the AC problem are described by means of the FMI of Potapov (Theorem 2.1).
We shall now introduce some notions about moment problems on [0, θ]which are necessary in the present work.

1.2. L-Markov and Hausdorff moment problems

The L-Markov moment problem (MMP) for an interval [0, θ] is stated as follows: Let a sequence of real numbers (cj)kj=0
be given. Find the set of functions f belonging to C0,L such that cj =

∫ θ
0 τ

jf (τ )dτ , j ∈ {0, . . . , k} holds.
The Hausdorff moment problem (HMP) for an interval [0, θ] is stated as follows: Let a finite sequence of real numbers

(sj)kj=0 be given. Find the set of measures σ belonging toM[0, θ] such that sj =
∫ θ
0 τ

jdσ(τ), j ∈ {0, . . . , k} holds. We use
M([0, θ], (sj)kj=0) to denote the set of solutions of the HMP.

1.3. Certain classes of holomorphic functions

We need the integral representation of two special classes of holomorphic functionsR[0, θ] and S[0, θ] defined in [7].
The following result is concerned with the integral representation of functions of these two classes.

Theorem 1.1 ([7, Theorem A6, Theorem A7]). The following statements hold:

w ∈ R[0, θ] iff w(z) =
∫ θ

0
(τ − z)−1dσ(τ), (3)

w ∈ S[0, θ] iff w(z) = (θ − z)
∫ θ

0
(τ − z)−1dσ(τ) (4)

where σ belongs toM[0, θ].

The holomorphic function s(z) =
∫ θ
0 (t− z)

−1dσ(t), defined inC\[0, θ], is called the Stieltjes transform of σ , where σ ∈
M[0, θ]. By (3) s belongs toR[0, θ].
Let us recall the Stieltjes inverse formula. Given s inR[0, θ] one gets a corresponding measure σ satisfying Eq. (3) by

σ(t) =
1
π
lim
ε→0

∫ t

0
Im s(x+ iε)dx, t ∈ [0, θ]. (5)

We can assume σ to be normalized, that is, σ(t) = σ(t+0)−σ(t−0)
2 , σ (0) = 0.

With these notations the HMP can be reformulated: Describe the set R([0, θ], (sj)kj=0) of the Stieltjes transforms of all
nonnegative measures which belong toM([0, θ], (sj)kj=0).

1.4. Relation between the L-Markov moment and the Hausdorff moment problem

By Theorem 1.1 (see also [7]) there is a bijective relation between the set C0,L and measures σ ∈ M[0, θ] satisfying∫ θ
0 dσ(τ) = 1 given by∫ θ

0

dσ(τ)
τ − z

= −
1
z
exp

(
1
L

∫ θ

0

f (τ )dτ
z − τ

)
. (6)
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The formal asymptotic expansions of the left- and right-hand sides of (6) determine a unique and explicit relation between
(cj)k−1j=0 and (sj)

k
j=0 (see [8]): s0 = 1, s1 = c0,

sj =
1
j!Lj

∣∣∣∣∣∣∣∣∣∣∣

c0 −L · · · 0

2c1 c0
. . . 0

...
. . .

. . .
...

(j− 1)cj−2 (j− 2)cj−3 · · · −(j− 1)L
jcj−1 (j− 1)cj−2 · · · c0

∣∣∣∣∣∣∣∣∣∣∣
, j ≥ 2. (7)

For the solvability properties of the MMP and HMP we recall the following result:

Proposition 1.1 ([7, Theorem 2.1]). The L-Markov moment problem with entries cj−1(θ, x0), j ∈ {1, . . . , n}, is solvable iff the
[0, θ]-Hausdorff moment problem with entries sj(θ, x0), j ∈ {0, . . . , n}, is solvable.

Using the bijective relation (7), the L-Markov moment problem can be solved in terms of the [0, θ]-Hausdorff moment
problem. The treatment of the last problem, we carry out with help of Potapov’s FMI approach (cf. [9,10]). Let us remark
that, in [9,10], an explicit solution of the nondegenerate matrix version of the Hausdorff moment problem was given.

1.5. Potapov’s Fundamental Matrix Inequality

V.P. Potapov developed a powerful approach to matricial interpolation problems which we now use in its scalar version.
This approach is based on a generalization of a classical lemma by H.A. Schwarz, and amodification of this result which goes
back to G. Pick. Potapov converted the original problem in an equivalent matricial inequality, FMI. In the case, where the
so-called information block of this inequality is nondegenerate (see the matrices H1 and H2 of Definitions 1.1 and 1.2), he
created an ingenious factorization method which allows the determination of the solution set of the matrix inequality and,
consequently, also of the HMP.
Note that, in the construction of the solution, there is a remarkable difference between the cases of an even and odd

number of data (see Theorem 1.3). Taking this into account, we first introduce the matrices which appear in the FMI in the
even case (scalar version).

Definition 1.1. Let n = 2k+ 1. Using the moments s0, s1, . . . , s2k+1, we construct the following matrices:

H1 := {si+j+1}ki,j=0, H2 := {θsi+j − si+j+1}ki,j=0,
u := (−s0,−s1, . . . ,−sk)T,
u1 := u, u2 = −u+ θTu,

T := {δij+1}ki,j=1, v := (1, 0, . . . , 0)T

RT(z) := (I − zT )−1.

Further, we introduce two auxiliary holomorphic functions

s̃1(z) := zs(z), s̃2(z) := (θ − z)s(z), z ∈ C \ [0, θ], (8)

where s(z) is the Stieltjes transform of a σ ∈M[0, θ].

In a similar way, we introduce the matrices that appear in Potapov’s FMI in the odd case.

Definition 1.2. Let n = 2k. With T defined in Definition 1.1, set T1 := T . Using the moments s0, s1, . . . , s2k, we construct
the following matrices:

H1 := {si+j}ki,j=0, H2 := {θsi+j+1 − si+j+2}k−1i,j=0,
u1 := (0,−s0, . . . ,−sk−1)T, v1 = (1, 0, . . . , 0)T,
T2 := {δij+1}k−1i,j=1, v2 := (1, 0, . . . , 0)T,

RTr (z) := (I − zTr)
−1, r = 1, 2,

ũ1 := (−s0,−s1, . . . ,−sk−1)T,
ũ3 := (−s1,−s2, . . . ,−sk)T,
u2 := θ ũ1 − ũ3.

Here u1, v1 ∈ Rn+1 and u2, v2 ∈ Rn. I represents the unitary matrix of the respective dimension.
Furthermore, we introduce two auxiliary holomorphic functions:

s̃1(z) := s(z), s̃2(z) := (θ − z)zs(z)− s0z, z ∈ C \ [0, θ], (9)

where s(z) is the Stieltjes transform of a σ ∈M[0, θ].
We now define the system of Potapov’s FMI for the even and odd cases [9,10]. If n = 2k + 1, we set in the sequel

T1 = T2 = T and v1 = v2 = v.
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Definition 1.3. A function s is called a solution of the associated system of Potapov’s Fundamental Matrix Inequality (FMI),
if s satisfies the following conditions: (i) s is holomorphic in C \ [0, θ]. (ii) For r ∈ {1, 2}, the inequality[

Hr RTr (z)[vr s̃r(z)− ur ]
(RTr (z)[vr s̃r(z)− ur ])

∗
{s̃r(z)− s̃∗r (z)}/{z − z̄}

]
≥ 0 (10)

holds.

It turns out that the treatment of the matrix moment problem is equivalent to finding all solutions of the corresponding
system of FMI (see [9,10]):

Theorem 1.2. The function s(z) is a Stieltjes transform of a σ ∈M([0, θ], (sj)kj=0) iff s(z) is a solution of the system of Potapov’s
Fundamental Matrix Inequalities (10).

This theorem holds for both the even and odd cases of data. In this way, the problem of finding the Stieltjes transform of
σ reduces to the problem of finding the holomorphic function s(z) of Definition 1.3.
In the casewhenH1 andH2 are positive definite, also called completely indeterminate case, following the Potapov scheme,

we introduce a polynomial 2× 2 matrix function (see [9,10]), the so-called resolvent matrix of the HMP. Let vr , Tr , Hr and ur ,
r = 1, 2, be defined as in Definitions 1.1 and 1.2. In the even case (left column) and odd case (right column), we define

U111(z) := 1− zu
∗

2RT∗(z)H
−1
2 v,

U112(z) := u
∗

1RT∗(z)H
−1
1 u1,

U121(z) := −(θ − z)zv
∗RT∗(z)H−12 v,

U122(z) := 1+ zv
∗RT∗(z)H−11 u1.

(11)

U211(z) := 1− zu
∗

1RT∗1 (z)H
−1
1 v1,

U212(z) := M − zu
∗

1RT∗1 (z)H
−1
1 v1M + zu

∗

1RT∗1 (z)H
−1
1 u1,

U221(z) := −zv
∗

1RT∗1 (z)H
−1
1 v1,

U222(z) := 1− zv
∗

1RT∗1 (z)H
−1
1 v1M + zv

∗

1RT∗1 (z)H
−1
1 u1,

(12)

whereM = (1+ θ [u∗1H
−1
1 v1 − u2H

−1
2 v2])(θv

∗

1H
−1
1 v1)

−1.
The next theorem (see [9, Theorem 6.12] and [10, Theorem 6.14]) describes the solution set of the HMP in terms of classes

of functions (3) and (4).

Theorem 1.3. Let the polynomials U`ij , i, j = 1, 2, ` = 1, 2, be defined by (11) and (12). The fractional linear transformation

s :=
U`11w + U

`
12

U`21w + U
`
22

(13)

yields the following bijections:
(a) in the even case ` = 1, between the parameter set w ∈ R[0, θ]∪{∞} and the Stieltjes transform set s ∈ R([0, θ], (sj)2k+1j=0 );
(b) in the odd case ` = 2, between the parameter set w ∈ S[0, θ] ∪ {∞} and the Stieltjes transform set s ∈ R([0, θ], (sj)2kj=0).

2. Solution of the AC problem

In this section, we give the solution of the AC problem in the case of smooth controls. The optimal case θ = θmin will be
treated in a follow-up paper. The following result holds:

Theorem 2.1. Let θ > θmin. The set Ux0,θ of admissible controls of the system (1) is given by

ũ(t) = −
2
π
lim
ε→+0

arg(−(t + εi)s(t + εi))− 1, t ∈ [0, θ], (14)

where s is the function associated to the solution of the HMP, with moment depending on x0 and θ , corresponding to a functional
parameter w in the completely indeterminate case.

Proof. Because of the complete controllability of (1), there exists θ such that x(θ) = 0. The system (1) with initial condition
x(0) = x0 can be written as x(t) = eAt(x0 +

∫ t
0 e
−Aτbũ(τ )dτ). Then the x(θ) = 0 is equivalent to −x0 =

∫ θ
0 e
−Aτbũ(τ )dτ .

Using the fact that A and b are canonical, the last relation can be written in the form −xj0 =
(−1)j−1

(j−1)!

∫ θ
0 τ

j−1ũ(τ )dτ , j ∈
{1, . . . , n}. Introducing the notation f := (ũ+ 1)/2, we get

θ j + (−1)jj!xj0
2j

=

∫ θ

0
τ j−1f (τ )dτ , j ∈ {1, . . . , n}. (15)
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Denoting the left-hand side of (15) by cj−1(θ, x0), j ∈ {1, . . . , n}, the AC problem reduces to a Markov moment problem, i.e.,
to the problem of finding a set of functions f with 0 ≤ f (τ ) ≤ 1 for τ ∈ [0, θ] such that relation (15) holds. Now, using the
relation (7) for L = 1, we obtain the data moments of the classical [0, θ]-Hausdorff moment problem, which we symbolize
by sj(θ, x0), j ∈ {0, . . . , n}.
Using the sequence (sj(θ, x0))nj=0, we construct Hankel matrices H1 and H2 for an even and odd number of data, and

vectors ur , vr , r = {1, 2}, as described in Definitions 1.1 and 1.2. We assume that H1 and H2 are positive definite this implies
detHr 6= 0, r = {1, 2}.
Using (11) and (12) andTheorem1.3,we get the associated function s(z), whichhas an integral representation equal to the

left-hand side of (6), as a function of classR[0, θ]. Next, we rewrite the relation (6) in the form ln(−zs(z)) =
∫ θ
0
d
(∫ t
0 f (τ )dτ

)
z−t ,

where ln denotes the principal value of complex logarithm. Applying in the last equation the Stieltjes inverse formula (5) to∫ t
0 f (τ )dτ which is a nondecreasing function on [0, θ], we obtain (14). This completes the proof. �

Example 2.1. Consider the system ẋ1 = ũ, ẋ2 = x1, |ũ| ≤ 1, with initial position x01 = 0, x
0
2 = 1. For θ = 3, the matrices

H1 and H2 are positive definite. In this case the solution of the equivalent HMP is given by (13), where U11 = 1 − 12
13 z,

U12 = 23
15 −

4
5 z, U21 =

1
13 z(−31+ 12z), U22 = 1−

41
15 z −

4
5 z
2. Let the parameterw have the formw = (θ − z)

∫ θ
0
dt
t−z . Then

the control is given by ũ(t) = 2f (t)− 1, where

f (t) :=


1
π

(
arctan

g1(t)
h1(t)

−
1+ (−1)k

2
π

)
, tk ≤ t < tk+1, k = 0, . . . , 3,

1
π

(
arctan

g1(t)
h1(t)

− π

)
, t4 ≤ t ≤ 3,

t0 = 0, t1 = 0.019733, t2 = 1.115218, t3 = 2.526024, t4 = 2.9091237,
g1(t) = π t(−3+ t),

h1(t) =
1

152100
(3− t)t(−900π2t(t − 3)(12t − 31)(12t − 13))

−

(
130−312t+15t(−31+12t) ln

[
(−3+ t)2

t2

])(
598−312t+15(39− 49t+12t2) ln

[
(−3+ t)2

t2

])
.

We have the following graphs:
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