# Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Plants

### A. Polyakov

Laboratory of Adaptive and Robust Control Systems, Institute of Control Sciences, RAS, Moscow, Russia

Introduction

Introduction

Problem Statement

- Introduction
- Problem Statement
- 3 Nonlinear Feedback Design for a Fixed-Time Stabilization

- Introduction
- 2 Problem Statement
- Nonlinear Feedback Design for a Fixed-Time Stabilization
- 4 Example

**I. Asymptotic stability** :  $x(t, x_0) \rightarrow 0$  as  $t \rightarrow \infty$ ;

**I.** Asymptotic stability :  $x(t, x_0) \rightarrow 0$  as  $t \rightarrow \infty$ ;

$$\dot{x}(t) = -x^3, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

**I.** Asymptotic stability :  $x(t, x_0) \rightarrow 0$  as  $t \rightarrow \infty$ ;

$$\dot{x}(t) = -x^3, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

**II.** Exponential stability :  $||x(t, x_0)|| \le Ce^{-at}$ , C, a > 0;

**I. Asymptotic stability** :  $x(t, x_0) \rightarrow 0$  as  $t \rightarrow \infty$ ;

$$\dot{x}(t) = -x^3, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

**II.** Exponential stability :  $||x(t, x_0)|| \le Ce^{-at}$ , C, a > 0;

$$\dot{x}(t) = -ax, \quad x(0) = x_0$$
  
 $x \in \mathbb{R}, t > 0$ 

**I. Asymptotic stability** :  $x(t, x_0) \rightarrow 0$  as  $t \rightarrow \infty$ ;

$$\dot{x}(t) = -x^3, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

**II.** Exponential stability :  $||x(t,x_0)|| \le Ce^{-at}$ , C, a > 0;

$$\dot{x}(t) = -ax, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

III. Finite-time stability :  $\forall x_0 \in \mathbb{R}^n \ \exists T = T(x_0) : x(t, x_0) = 0, \forall t \geq T;$ 

**I. Asymptotic stability** :  $x(t, x_0) \rightarrow 0$  as  $t \rightarrow \infty$ ;

$$\dot{x}(t) = -x^3, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

**II.** Exponential stability :  $||x(t, x_0)|| \le Ce^{-at}$ , C, a > 0;

$$\dot{x}(t) = -ax, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

**III.** Finite-time stability :  $\forall x_0 \in \mathbb{R}^n \ \exists T = T(x_0) : x(t, x_0) = 0, \forall t \geq T$ ;

$$\dot{x}(t) = -x^{1/3}, \quad x(0) = x_0$$
  
 $x \in \mathbb{R}, t > 0, \ T(x_0) = \frac{3}{2}x_0^{2/3}$ 

**I. Asymptotic stability** :  $x(t, x_0) \rightarrow 0$  as  $t \rightarrow \infty$ ;

$$\dot{x}(t) = -x^3, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

**II.** Exponential stability :  $||x(t,x_0)|| \le Ce^{-at}$ , C, a > 0;

$$\dot{x}(t) = -ax, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

**III.** Finite-time stability :  $\forall x_0 \in \mathbb{R}^n \ \exists T = T(x_0) : x(t, x_0) = 0, \forall t \geq T;$ 

$$\dot{x}(t) = -x^{1/3}, \quad x(0) = x_0$$
  
 $x \in \mathbb{R}, t > 0, \ T(x_0) = \frac{3}{2}x_0^{2/3}$ 

**IV.** Fixed-time stability :  $\exists T_{\mathsf{max}} > 0 : x(t, x_0) = 0, \ \forall t > T_{\mathsf{max}}, \forall x_0 \in \mathbb{R}^n;$ 

**I.** Asymptotic stability :  $x(t, x_0) \rightarrow 0$  as  $t \rightarrow \infty$ ;

$$\dot{x}(t) = -x^3, \quad x(0) = x_0$$
$$x \in \mathbb{R}, t > 0$$

**II.** Exponential stability :  $||x(t,x_0)|| \le Ce^{-at}$ , C, a > 0;

$$\dot{x}(t) = -ax, \quad x(0) = x_0$$
  
 $x \in \mathbb{R}, t > 0$ 

**III.** Finite-time stability :  $\forall x_0 \in \mathbb{R}^n \ \exists T = T(x_0) : x(t, x_0) = 0, \forall t \geq T$ ;

$$\dot{x}(t) = -x^{1/3}, \quad x(0) = x_0$$
  
 $x \in \mathbb{R}, t > 0, \ T(x_0) = \frac{3}{2}x_0^{2/3}$ 

**IV.** Fixed-time stability :  $\exists T_{\mathsf{max}} > 0$  :  $x(t, x_0) = 0$ ,  $\forall t > T_{\mathsf{max}}, \forall x_0 \in \mathbb{R}^n$ ;

$$\dot{x}(t) = -x^{1/3} - x^3, \quad x(0) = x_0$$
  
  $x \in \mathbb{R}, t > 0, T_{\text{max}} = 2.5$ 

### I. Robustness (Pervozvanski 1971)

$$\dot{x} = \lambda x + u$$

where  $x \in \mathbb{R}$  - state, the number  $\lambda \in \mathbb{R}$  is **unknown**,  $u \in \mathbb{R}$  - control.

### I. Robustness (Pervozvanski 1971)

$$\dot{x} = \lambda x + u$$

where  $x \in \mathbb{R}$  - state, the number  $\lambda \in \mathbb{R}$  is **unknown**,  $u \in \mathbb{R}$  - control. For

$$u = -\mu x^3 \qquad \mu > 0$$

### I. Robustness (Pervozvanski 1971)

$$\dot{x} = \lambda x + u$$

where  $x \in \mathbb{R}$  - state, the number  $\lambda \in \mathbb{R}$  is **unknown**,  $u \in \mathbb{R}$  - control. For

$$u = -\mu x^3$$
  $\mu > 0$ 

we have

if 
$$\lambda > 0$$
 then  $x \to \pm \sqrt{\lambda/\mu}$  as  $t \to +\infty$ 

$$\text{if} \quad \lambda \leq 0 \quad \text{ then } \quad x \to 0 \text{ as } t \to +\infty$$

I. Robustness (Pervozvanski 1971)

$$\dot{x} = \lambda x + u$$

where  $x \in \mathbb{R}$  - state, the number  $\lambda \in \mathbb{R}$  is **unknown**,  $u \in \mathbb{R}$  - control. For

$$u = -\mu x^3$$
  $\mu > 0$ 

we have

if 
$$\lambda > 0$$
 then  $x \to \pm \sqrt{\lambda/\mu}$  as  $t \to +\infty$  if  $\lambda \leq 0$  then  $x \to 0$  as  $t \to +\infty$ 

II. Real-life applications for automobile engine control in GMC

(Nikiforov et all, 2011, ACC)

$$u = -\alpha x - \beta \operatorname{sign}[x] - \gamma x^3$$

- Finite-time stability (Roxin 1966, Haimo 1986, Bhat & Bernstein 2000);
- Polynomial feedbacks
   (Pervozvanskii 1971, Algöwer et al 2006)

- Finite-time stability (Roxin 1966, Haimo 1986, Bhat & Bernstein 2000);
- Polynomial feedbacks
   (Pervozvanskii 1971, Algöwer et al 2006)

- Finite-time stability (Roxin 1966, Haimo 1986, Bhat & Bernstein 2000);
- Polynomial feedbacks (Pervozvanskii 1971, Algöwer et al 2006)
- Homogeneity and finite-time stability (Bhat & Bernstein 2005, Levant 2005, Orlov 2005);

- Finite-time stability
   (Roxin 1966, Haimo 1986, Bhat & Bernstein 2000);
- Polynomial feedbacks (Pervozvanskii 1971, Algöwer et al 2006)
- Homogeneity and finite-time stability (Bhat & Bernstein 2005, Levant 2005, Orlov 2005);
- Homogeneity in bi-limit (Andrieu, Praly & Astolfi 2008, Efimov 2011);

- Finite-time stability (Roxin 1966, Haimo 1986, Bhat & Bernstein 2000);
- Polynomial feedbacks (Pervozvanskii 1971, Algöwer et al 2006)
- Homogeneity and finite-time stability (Bhat & Bernstein 2005, Levant 2005, Orlov 2005);
- Homogeneity in bi-limit (Andrieu, Praly & Astolfi 2008, Efimov 2011);
- Uniform 2SM-observer (Cruz, Moreno & Fridman 2010).

# System Description and Basic Assumptions

$$\dot{x} = Ax + Bu(x) + f(t, x) \tag{1}$$

where  $x \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{n \times n}$ ,  $B \in \mathbb{R}^{n \times m}$ ,  $u \in \mathbb{R}^m$ , the function  $f : \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}^n$  describes uncertainties and disturbances.

# System Description and Basic Assumptions

$$\dot{x} = Ax + Bu(x) + f(t, x) \tag{1}$$

6 / 19

where  $x \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{n \times n}$ ,  $B \in \mathbb{R}^{n \times m}$ ,  $u \in \mathbb{R}^m$ , the function  $f: \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}^n$  describes uncertainties and disturbances.

### Assumption 1

The pair (A, B) is controllable, i.e.

$$rank[B, AB, A^2B, ..., A^{n-1}B] = n$$

### Assumption 2

A.Polyakov (IPU-RAS)

The uncertain function f(t,x) satisfies the matching condition, i.e.

$$f(t,x) = B\gamma(t,x)$$

where  $\gamma(t,x)$  is an unknown function. The function  $\gamma(t,x)$  is assumed to be bounded by  $\gamma_0(t,x) > 0$ , i.e.

$$\|\gamma(t,x)\|_{\infty} \leq \gamma_0(t,x)$$
 for  $\forall t > 0$  and  $\forall x \in \mathbb{R}^n$ 

### Definitions of stability

### Definition 1

The equilibrium point x=0 of the closed-loop system (1) is said to be globally **finite-time** stable if it is globally asymptotically stable and any solution  $x(t,x_0)$  of (1) achieves the equilibria at some finite time moment and

$$x(t,x_0)=0$$
 for  $\forall t\geq T(x_0)$ 

where  $T: \mathbb{R}^n \to \mathbb{R}_+ \cup \{0\}$  is the so-called settling-time function.

# Definitions of stability

### Definition 1

The equilibrium point x=0 of the closed-loop system (1) is said to be globally **finite-time** stable if it is globally asymptotically stable and any solution  $x(t,x_0)$  of (1) achieves the equilibria at some finite time moment and

$$x(t,x_0)=0$$
 for  $\forall t\geq T(x_0)$ 

where  $T: \mathbb{R}^n \to \mathbb{R}_+ \cup \{0\}$  is the so-called settling-time function.

### Definition 2

The equilibrium point x=0 of the closed-loop system (1) is said to be globally **fixed-time** stable if it is globally finite-time stable and the settling-time function  $T(x_0)$  is bounded by some positive number  $T_{\text{max}}>0$ , i.e.  $T(x_0)\leq T_{\text{max}}$  for  $\forall x_0\in\mathbb{R}^n$ .

# Definitions of attractivity

#### Definition 3

The set M is said to be globally **finite-time** attractive for the system (1) if any solution  $x(t, x_0)$  of (1) reaches M in some finite time moment and  $x(t, x_0) \in M$  for all  $t \geq T(x_0)$ 

where  $T: \mathbb{R}^n \to \mathbb{R}_+ \cup \{0\}$  is the settling-time function.

# Definitions of attractivity

#### Definition 3

The set M is said to be globally **finite-time** attractive for the system (1) if any solution  $x(t,x_0)$  of (1) reaches M in some finite time moment and  $x(t,x_0) \in M$  for all  $t \geq T(x_0)$ 

where  $T: \mathbb{R}^n \to \mathbb{R}_+ \cup \{0\}$  is the settling-time function.

### Definition 4

The set M is said to be globally **fixed-time** attractive for the system (1) if it is globally *finite-time* attractive and the settling-time function  $T(x_0)$  is bounded by some positive number  $T_{\max} > 0$ , i.e.

$$T(x_0) \leq T_{\mathsf{max}} \text{ for } \forall x_0 \in \mathbb{R}^n$$

### Problem Statement

Denote a closed ball of radius r > 0 with the center in the origin by  $B_r$ , i.e.  $B_r := \{x \in \mathbb{R}^n : \|x\|_{\infty} \le r\}$ ,  $\|x\|_{\infty} := \max_{i=1,2,\dots,n} |x_i|$ .

### Problem Statement

Denote a closed ball of radius r > 0 with the center in the origin by  $B_r$ , i.e.  $B_r := \{x \in \mathbb{R}^n : \|x\|_{\infty} \le r\}$ ,  $\|x\|_{\infty} := \max_{i=1,2,\dots,n} |x_i|$ .

### Problem 1

For given  $T_{max} > 0$  and r > 0 we need to design a feedback control u = u(x) for the system (1), which provides a fixed-time attractivity property of the ball  $B_r$  with the settling-time estimate  $T_{max}$ .

### Problem Statement

Denote a closed ball of radius r > 0 with the center in the origin by  $B_r$ , i.e.  $B_r := \{x \in \mathbb{R}^n : \|x\|_{\infty} \le r\}, \|x\|_{\infty} := \max_{i=1,2,\ldots,n} |x_i|.$ 

### Problem 1

For given  $T_{max} > 0$  and r > 0 we need to design a feedback control u = u(x) for the system (1), which provides a fixed-time attractivity property of the ball  $B_r$  with the settling-time estimate  $T_{max}$ .

### Problem 2

For given  $T_{max} > 0$  we need to design a feedback control u = u(x), which guarantees fixed-time stability of the origin of the closed-loop system (1) with the settling-time estimate  $T_{max}$ .

# Block-Controlability Form (Drakunov et all 1990)

$$\exists G \in \mathbb{R}^{n \times n} : y = Gx \text{ and } \begin{cases} \dot{y}_1 = A_{11}y_1 + A_{12}y_2 \\ \dot{y}_2 = A_{21}y_1 + A_{22}y_2 + A_{23}y_3 \\ \dots \\ \dot{y}_k = A_{k1}y_1 + \dots + A_{kk}y_k + A_{kk+1}(u+\gamma) \end{cases}$$

where  $y=(y_1^T,...,y_k^T)^T$ ,  $y_i\in\mathbb{R}^{n_i}$ ,  $[0\quad A_{kk+1}^T]^T=GB$  and  $A_{ij}\in\mathbb{R}^{n_i\times n_j}$  are blocks of the matrix  $GAG^T$  such that  $\mathrm{rank}(A_{ii+1})=n_i$ 

# Block-Controlability Form (Drakunov et all 1990)

$$\exists G \in \mathbb{R}^{n \times n} : y = Gx \text{ and } \begin{cases} \dot{y}_1 = A_{11}y_1 + A_{12}y_2 \\ \dot{y}_2 = A_{21}y_1 + A_{22}y_2 + A_{23}y_3 \\ \dots \\ \dot{y}_k = A_{k1}y_1 + \dots + A_{kk}y_k + A_{kk+1}(u+\gamma) \end{cases}$$

where  $y = (y_1^T, ..., y_k^T)^T$ ,  $y_i \in \mathbb{R}^{n_i}$ ,  $[0 \quad A_{kk+1}^T]^T = GB$  and  $A_{ij} \in \mathbb{R}^{n_i \times n_j}$  are blocks of the matrix  $GAG^T$  such that  $rank(A_{ii+1}) = n_i$ 

### Algorithm

**Initialization**.  $A_0 = A$ ,  $B_0 = B$ ,  $T_0 = I_n$ , k = 0 **Recursion**. While  $rank(B_k) < rown(A_k)$  do

$$A_{k+1}=B_k^\perp A_k \left(B_k^\perp
ight)^{\mathsf{T}}$$
 ,  $B_{k+1}=B_k^\perp A_k ilde{B}_k$  ,  $T_{k+1}=\left(egin{array}{c} B_k^\perp \ ilde{B}_k \end{array}
ight)$  ,  $k=k+1$ 

where  $B_k^{\perp} := \left( \text{null}(B_k^T) \right)^T$ ,  $\tilde{B}_k := \left( \text{null}(B_k^{\perp}) \right)^T$ , rown - number of rows

$$G = \begin{pmatrix} T_k & 0 \\ 0 & I_{w_k} \end{pmatrix} \begin{pmatrix} T_{r-1} & 0 \\ 0 & I_{w_{k-1}} \end{pmatrix} \dots \begin{pmatrix} T_2 & 0 \\ 0 & I_{w_2} \end{pmatrix} T_1, \quad w_i = n \text{-rown}(T_i)$$

# Fixed-time Attractivity: Coordinate Transformation

Denote  $\rho^{[p]} = |\rho|^p \operatorname{sign}[\rho]$  for  $\rho \in \mathbb{R}$  and  $z^{[p]} = (z_1^{[p]}, ..., z_k^{[p]})^T$  for  $z \in \mathbb{R}^k$ .

# Fixed-time Attractivity: Coordinate Transformation

Denote  $\rho^{[p]} = |\rho|^p \operatorname{sign}[\rho]$  for  $\rho \in \mathbb{R}$  and  $z^{[p]} = (z_1^{[p]}, ..., z_k^{[p]})^T$  for  $z \in \mathbb{R}^k$ .

$$\begin{cases} \dot{s}_{1} = -\alpha_{1}s_{1} - \beta_{1}s_{1}^{[3]} + A_{12}s_{2} \\ \dot{s}_{2} = -\alpha_{2}s_{2} - \beta_{2}s_{2}^{[3]} + A_{23}s_{3} \\ \dots \\ \dot{s}_{k} = \xi(y_{1}, \dots, y_{k}) + A_{k \ k+1}(u+\gamma) \end{cases}$$
(2)

$$s = \Phi(y), s = (s_1^T, ..., s_k^T)^T, s_i \in \mathbb{R}^{n_i}, y = (y_1^T, ..., y_k^T)^T, y_i \in \mathbb{R}^{n_i}$$

### Fixed-time Attractivity: Coordinate Transformation

Denote  $\rho^{[p]} = |\rho|^p \operatorname{sign}[\rho]$  for  $\rho \in \mathbb{R}$  and  $z^{[p]} = (z_1^{[p]}, ..., z_k^{[p]})^T$  for  $z \in \mathbb{R}^k$ .

$$\begin{cases} \dot{s}_{1} = -\alpha_{1}s_{1} - \beta_{1}s_{1}^{[3]} + A_{12}s_{2} \\ \dot{s}_{2} = -\alpha_{2}s_{2} - \beta_{2}s_{2}^{[3]} + A_{23}s_{3} \\ \dots \\ \dot{s}_{k} = \xi(y_{1}, \dots, y_{k}) + A_{k} k_{k+1}(u+\gamma) \end{cases}$$

$$(2)$$

$$s = \Phi(y), s = (s_1^T, ..., s_k^T)^T, s_i \in \mathbb{R}^{n_i}, y = (y_1^T, ..., y_k^T)^T, y_i \in \mathbb{R}^{n_i}$$

$$\begin{split} s_i &= y_i + \varphi_i(y_1,...,y_i), \quad i = 1,2,...,k \\ \varphi_{i+1} &= A_{i\ i+1}^+ \left( \alpha_i(y_i + \varphi_i) + \beta_i(y_i + \varphi_i)^{[3]} + \sum\limits_{j=1}^i A_{ij}y_j + \sum\limits_{r=1}^i \frac{\partial \varphi_i}{\partial y_r} \sum\limits_{j=1}^{r+1} A_{rj}y_j \right) \\ \text{where } \varphi_1 &= 0, \ \alpha_i > 0, \ \beta_i > 0 \ \text{and} \ A_{i\ i+1}^+ = A_{i\ i+1}^T (A_{i\ i+1}A_{i\ i+1}^T)^{-1}. \end{split}$$

$$\xi(y_1, ..., y_k) = \sum_{i=1}^k A_{ki} y_i + \sum_{i=1}^{k-1} \frac{\partial \varphi_{k-1}}{\partial y_i} \sum_{j=1}^{i+1} A_{ij} y_j$$

### Fixed-time Attractivity: Feedback Design

$$u(y,s) = A_{k k+1}^{+} \left( -\alpha_{k} s_{k} - \beta_{k} s_{k}^{[3]} - \xi(y_{1},...,y_{k}) \right)$$
(3)

# Fixed-time Attractivity: Feedback Design

$$u(y,s) = A_{k k+1}^{+} \left( -\alpha_k s_k - \beta_k s_k^{[3]} - \xi(y_1, ..., y_k) \right)$$
 (3)

$$\begin{cases} \dot{s}_1 = -\alpha_1 s_1 - \beta_1 s_1^{[3]} + A_{12} s_2 \\ \dot{s}_2 = -\alpha_2 s_2 - \beta_2 s_2^{[3]} + A_{23} s_3 \\ \dots \\ \dot{s}_k = -\alpha_k s_k - \beta_k s_k^{[3]} + A_{k \ k+1} \gamma \end{cases}$$

## Fixed-time Attractivity: Feedback Design

$$u(y,s) = A_{k k+1}^{+} \left( -\alpha_k s_k - \beta_k s_k^{[3]} - \xi(y_1, ..., y_k) \right)$$
 (3)

$$\begin{cases} \dot{s}_{1} = -\alpha_{1}s_{1} - \beta_{1}s_{1}^{[3]} + A_{12}s_{2} \\ \dot{s}_{2} = -\alpha_{2}s_{2} - \beta_{2}s_{2}^{[3]} + A_{23}s_{3} \\ \dots \\ \dot{s}_{k} = -\alpha_{k}s_{k} - \beta_{k}s_{k}^{[3]} + A_{k} _{k+1}\gamma \end{cases}$$

#### Theorem (1)

If 
$$u(Gx, \Phi(Gx))$$
 is the control of the form (3) with parameters  $\alpha_i = \|A_{i \ i+1}\|_{\infty}, i = \overline{1, k-1}, \quad \alpha_k = \frac{\gamma_0 \|A_{k \ k+1}\|_{\infty} \|G\|_1 C_1}{r}$ 

$$\beta_i = \frac{\|G\|_1^2 C_2}{2T}, i = \overline{1, k}$$

where r > 0 and  $T_{\text{max}} > 0$  are arbitrary positive numbers, then the ball  $B_r$  is the globally fixed-time attractive set of the closed-loop system (1) with the settling-time function bounded by  $T_{\text{max}}$ .

# Fixed-Time Stability: Sliding Mode Approach

$$\dot{y}_1=y_2,\quad \dot{y}_2=u,\quad y_1,y_2\in\mathbb{R}$$

## Fixed-Time Stability: Sliding Mode Approach

$$\dot{y}_1=y_2,\quad \dot{y}_2=u,\quad y_1,y_2\in\mathbb{R}$$

### Nested Second Order Sliding Mode Controller(Levant 1993)

$$u = -\alpha \operatorname{sign}[y_2 + \beta y_1^{[1/2]}], \quad \alpha > 0, \quad \beta^2 \ge 2\alpha$$
  
If  $s_1 := y_2 + \beta y_1^{[1/2]} = 0$  is the sliding surface then  $y_2 = -\beta y_1^{[1/2]}$  and  $\dot{y}_1 = -\beta y_1^{[1/2]}$ 

# Fixed-Time Stability: Sliding Mode Approach

$$\dot{y}_1=y_2,\quad \dot{y}_2=u,\quad y_1,y_2\in\mathbb{R}$$

### Nested Second Order Sliding Mode Controller(Levant 1993)

$$u = -\alpha \operatorname{sign}[y_2 + \beta y_1^{[1/2]}], \quad \alpha > 0, \quad \beta^2 \ge 2\alpha$$
  
If  $s_1 := y_2 + \beta y_1^{[1/2]} = 0$  is the sliding surface then  $y_2 = -\beta y_1^{[1/2]}$  and  $\dot{y}_1 = -\beta y_1^{[1/2]}$ 

#### Fixed-time sliding surface

$$s_2 := y_2 + \left(y_2^{[2]} + \alpha_1 y_1 + \alpha_2 y_1^{[3]}\right)^{[1/2]} = 0$$

If  $s_2=0$  is the sliding surface then  $y_2=-(0.5\alpha_1y_1+0.5\beta_1y_1^{[3]})^{[1/2]}$  and  $\dot{y}_1=-(0.5\alpha_1y_1+0.5\beta_1y_1^{[3]})^{[1/2]}$ 

# Fixed-Time Stability: Geometrical Interpretation



$$s_1 = y_2 + \beta y_1^{[1/2]}$$
 and  $s_2 = y_2 + \left(y_2^{[2]} + \alpha_1 y_1 + \beta_1 y_1^{[3]}\right)^{[1/2]}$ 

### Fixed-Time Stability: Theorem

$$\begin{cases}
\dot{y}_1 = A_{11}y_1 + A_{12}y_2 \\
\dot{y}_2 = A_{21}y_1 + A_{22}y_2 + A_{23}(u+\gamma)
\end{cases}$$
(4)

 $y_1 \in \mathbb{R}^{n_1}$ ,  $y_2 \in \mathbb{R}^{n_2}$ ,  $n_2 = \text{rank}(B)$ ,  $n_1 = n - n_2$ ,  $\text{rank}(A_{12}) = n_1 \le \text{rank}(A_{23}) = n_2$ .

### Fixed-Time Stability: Theorem

$$\begin{cases}
\dot{y}_1 = A_{11}y_1 + A_{12}y_2 \\
\dot{y}_2 = A_{21}y_1 + A_{22}y_2 + A_{23}(u+\gamma)
\end{cases} \tag{4}$$

 $y_1 \in \mathbb{R}^{n_1}$ ,  $y_2 \in \mathbb{R}^{n_2}$ ,  $n_2 = \text{rank}(B)$ ,  $n_1 = n - n_2$ ,  $\text{rank}(A_{12}) = n_1 \le \text{rank}(A_{23}) = n_2$ .

### Theorem (2)

The origin of the closed-loop system (4) is globally fixed-time stable with the settling-time estimate  $T_{\text{max}} > 0$  if the control  $u(y_1, y_2)$  has the form

$$u(y_1, y_2) = -A_{23}^+ \left\{ u_{eq}(y_1, y_2) + u_d(y_1, y_2) + u_p(y_1, y_2) \right\}$$
 (5)

### Fixed-Time Stability: Theorem

$$\begin{cases}
\dot{y}_1 = A_{11}y_1 + A_{12}y_2 \\
\dot{y}_2 = A_{21}y_1 + A_{22}y_2 + A_{23}(u+\gamma)
\end{cases}$$
(4)

 $y_1 \in \mathbb{R}^{n_1}$ ,  $y_2 \in \mathbb{R}^{n_2}$ ,  $n_2 = \text{rank}(B)$ ,  $n_1 = n - n_2$ ,  $\text{rank}(A_{12}) = n_1 \le \text{rank}(A_{23}) = n_2$ .

#### Theorem (2)

The origin of the closed-loop system (4) is globally fixed-time stable with the settling-time estimate  $T_{\text{max}} > 0$  if the control  $u(y_1, y_2)$  has the form

$$u(y_1, y_2) = -A_{23}^+ \left\{ u_{eq}(y_1, y_2) + u_d(y_1, y_2) + u_p(y_1, y_2) \right\}$$
 (5)

$$\begin{split} u_{eq} = & A_{12}^{+}((A_{11}^{2} + A_{12}A_{21})y_{1} + (A_{11}A_{12} + A_{12}A_{22})y_{2}) + A_{12}^{\perp}{}^{+}A_{12}^{\perp}(A_{21}y_{1} + A_{22}y_{2}), \\ u_{d} = & \frac{\alpha_{1} + 3\beta_{1}\|y_{1}\|_{\infty}^{2} + 2\|A_{12}A_{23}\|_{\infty}\gamma_{0}}{2}A_{12}^{+}\operatorname{sign}[s_{1}] + \gamma_{0}\|A_{12}^{\perp}\|_{\infty}A_{12}^{\perp}{}^{+}\operatorname{sign}[s_{2}], \\ u_{p} = & A_{12}^{+}(\alpha_{2}s_{1} + \beta_{2}s_{1}^{[3]})^{[\frac{1}{2}]} + A_{12}^{\perp}{}^{+}(\alpha_{2}s_{2} + \beta_{2}s_{2}^{[3]})^{[\frac{1}{2}]}, \ A_{12}^{\perp} = \operatorname{null}(A_{12})^{T} \\ s_{1} = & A_{11}y_{1} + A_{12}y_{2} + \left((A_{11}y_{1} + A_{12}y_{2})^{[2]} + \alpha_{1}y_{1} + \beta_{1}y_{1}^{[3]}\right)^{[\frac{1}{2}]}, \ s_{2} = & A_{12}^{\perp}y_{2} \\ with \ 0.5\alpha_{1} = & \alpha_{2} = 0.5\beta_{1} = \beta_{2} = 64T_{\max}^{-2}. \end{split}$$

A.Polyakov (IPU-RAS)

### Benchmark Example

$$\dot{x} = \begin{pmatrix} 1 & -3 & 2 \\ -2 & 0 & 3 \\ 0 & -1 & 4 \end{pmatrix} x + \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & -3 \end{pmatrix} u + \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} \sin(t)$$

$$y = Gx$$
,  $G =$ 

$$\begin{pmatrix} 0.4286 & 0.8571 & 0.2857 \\ -0.8571 & 0.4857 & -0.1714 \\ -0.2857 & -0.1714 & 0.9429 \end{pmatrix}$$

$$\begin{cases} \dot{y}_1 = A_{11}y_1 + A_{12}y_2 \\ \dot{y}_2 = A_{21}y_1 + A_{22}y_2 + A_{23}(u + (1\ 1)^T \sin(t)) \end{cases}$$

$$A_{11} = -0.5918, A_{12} = \begin{pmatrix} -0.4449 & 4.9469 \end{pmatrix}, A_{21} = \begin{pmatrix} 1.2980 & 0.7184 \end{pmatrix}^{T},$$

$$A_{22} = \begin{pmatrix} 3.0612 & -0.8367 \\ -0.5510 & 2.5306 \end{pmatrix}, A_{23} = \begin{pmatrix} -2.200 & 1.000 \\ -0.400 & -3.000 \end{pmatrix}$$

$$\alpha_{1} = \beta_{1} = 1, \alpha_{2} = \beta_{2} = 0.5 \implies T_{max} = 8$$

A.Polyakov (IPU-RAS)





Thank you for your attention