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I1l. Finite-time stability : Vxg € R” 3T = T(x) : x(t,x) =0Vt > T;

x(t) = —x13, x(0) = xo
xR, t>0,T(x) = 33/3

IV. Fixed-time stability : 3T, > 0: x(t, x9)=0, Vt > Thax,Vxo € R";

x(t) = —x13 —x3,  x(0) = xo
XER, t>0, Thax = 2.5
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Polynomial Feedbacks

I. Robustness (Pervozvanski 1971)
X=Ax+u

where x € R - state, the number A € R is unknown, u € R - control.
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Polynomial Feedbacks

I. Robustness (Pervozvanski 1971)
X=Ax+u
where x € R - state, the number A € R is unknown, v € R - control. For
u=—ux’? u>0
we have

if A>0 then x— £\/A/past— 4o

if A<0 then x—0ast— +o

Il. Real-life applications for automobile engine control in GMC

(Nikiforov et all, 2011, ACC)

u= —ax — Bsign[x] — x>
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Historical remarks

@ Finite-time stability
(Roxin 1966, Haimo 1986, Bhat & Bernstein 2000);

o Polynomial feedbacks
(Pervozvanskii 1971, Algdwer et al 2006)
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o Homogeneity and finite-time stability
(Bhat & Bernstein 2005, Levant 2005, Orlov 2005);

o Homogeneity in bi-limit
(Andrieu, Praly & Astolfi 2008, Efimov 2011);

e Uniform 2SM-observer
(Cruz, Moreno & Fridman 2010).
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System Description and Basic Assumptions

x = Ax + Bu(x) + f(t, x) (1)

where x € R", A€ R™" B € R™™, u € IR™ the function
f: IRy x R" — IR" describes uncertainties and disturbances.
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System Description and Basic Assumptions

x = Ax + Bu(x) + f(t, x) (1)

where x € R", A€ R™" B € R™™, u € IR™ the function
f: Ry x R" — IR” describes uncertainties and disturbances.

Assumption 1

The pair (A, B) is controllable, i.e.
rank[B, AB, A’B, ..., A""1B] = n

| \

Assumption 2

The uncertain function f(t, x) satisfies the matching condition, i.e.
f(t,x) = By(t, x)
where ¥(t, x)) is an unknown function. The function (¢, x) is assumed
to be bounded by yo(t,x) > 0, i.e.
|7(t, X)[|eo < Yo(t, x) for Vt > 0 and Vx € R"
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Definitions of stability

Definition 1

The equilibrium point x = 0 of the closed-loop system (1) is said to be
globally finite-time stable if it is globally asymptotically stable and any
solution x(t, xp) of (1) achieves the equilibria at some finite time moment
and

x(t,x0) = 0 for Vt > T(xp)

where T : R” — R4 U {0} is the so-called settling-time function.
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Definitions of attractivity

Definition 3

The set M is said to be globally finite-time attractive for the system (1) if

any solution x(t, xp) of (1) reaches M in some finite time moment and
x(t, x0) € M for all t > T(xp)

where T : R” — R, U {0} is the settling-time function.
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Problem Statement

Denote a closed ball of radius r > 0 with the center in the origin by B,,

ie. Bri={x € R": [[x]|eo < r}, [|X||oo := max |xi .
i=1,2,..., n
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i=1,2,..., n

Problem 1

For given Tpax > 0 and r > 0 we need to design a feedback control
u = u(x) for the system (1), which provides a fixed-time attractivity
property of the ball B, with the settling-time estimate Tax.

Problem 2

For given Tpax > 0 we need to design a feedback control u = u(x), which
guarantees fixed-time stability of the origin of the closed-loop system (1)
with the settling-time estimate Tax.
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Block-Controlability Form (Drakunov et all 1990)

y1i = Auy1 + Ay

3G € R™" : y=Gx and yo = Aory1 + Axys + Azys

Vi = Akayr + ... + Areyi + Ak (u + )

Where y:(le’ 'y[Z—)Tr yl S IRni, [0 AZ;(+1]T = GB and Alj c IRnanj
are blocks of the matrix GAG T such that rank(A; 1)=n;
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Block-Controlability Form (Drakunov et all 1990)

y1 = Auy + Ay
3G € R™" : y=Gx and y2 = Aoiy1 + Ay + Anzys

Yk = Akiyi + ... + Awkyk + Akk+1(u + )

where y:(le’ "'1.ykT)T1 Yi S IR”,', [0 A/Z;(—&-I]T = GB and AU c Rni*n;
are blocks of the matrix GAG T such that rank(A; 1)=n;
Algorithm

Initialization. Ay = A, By = B, To = I, k = 0
Recursion. While rank(By) < rown(Ag) do

T = B
Aks1 = B Ak (By) .Bk+1=BkLAkBk,Tk+1:< Bl; >,k:k+1

where B;l = (nuII(BkT))T, Bk := (null (BkL))T rown - number of rows

(T O T..1 O T, 0 '_ :
G—( 0 I, >< 0 " >( 0 IW2>T1' w;=n-rown( T;)
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Fixed-time Attractivity: Coordinate Transformation

Denote plP!=|p|P sign[po] for p € R and z[P]:(zl[p},...,z,[(p])T for z € R
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Fixed-time Attractivity: Coordinate Transformation

Denote plP!=|p|P sign[po] for p € R and z[P]:(zl[p},...,zlgp])T for z € R

5 = —n151 — ,3151[3] + A1252
S = —oSy) — ‘5252[3] + Ax3s3 (2)

Sk =C(Y1r o Yik) + Ak kg1 (u+ )

s=®(y),s=(s{, .5 )T,sseR% y=(y] ...y )T, yi € R"
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Fixed-time Attractivity: Coordinate Transformation

Denote plP!=|p|P sign[po] for p € R and z[P]:(zl[p},...,zlgp])T for z € R

5 = —n151 — ,3151[3] + A1252
S = —oSy) — ‘5252[3] + Ax3s3 (2)

Sk =C(Y1r o Yik) + Ak kg1 (u+ )

s=0(y),s=(s],..s)T.si €RY,y = (v, ..y]) 7T, y; €R™
Qi+1 = A;ri+1 ( ai(yi+@i)+Bi (yl+§’):)[3]+ 2 Ajjyj+ Z B(P Z AnyJ)
i=

where ¢1 =0, a; >0, B; > 0 and A,JFIJrl A/‘Ti+1( iit1A; ,+1)

k
Ear i) = X Awiyi + z Gt 2 Aiyj

= =1
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Fixed-time Attractivity: Feedback Design

u(y,s) = A:k+1 <—“k5k - 5k51[<3] — &, ----Yk)> (3)J
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Fixed-time Attractivity: Feedback Design

u(y,$) = Afin (s = Bisd! = £, ) ()
51 = —K1S1 — 1315?] aF A1252
S5 = —0s — ﬁzsg] + Ax3s3
e — Bus 1 A
Sk = —auSk — PrS, + Ak k1Y
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Fixed-time Attractivity: Feedback Design

u(y,$) = Afin (s = Bisd! = £, ) ()
51 = —K1S1 — ,3155’] aF A1252
S = —0rS) — IBQSE’] T+ A23S3
P
Sk = —0Sk — PiS, + Ak k1Y

Theorem (1)

If u(Gx, ®(Gx)) is the control of the form (3) with parameters
wi=|Aiittlleor i =1, k=1, ax= 20/l Ak ki1l Gll1 G
1 1 [oe}] i I r

GBS 1%
Pi=ar =1Lk

where r > 0 and Tnax > 0 are arbitrary positive numbers, then the ball B,
is the globally fixed-time attractive set of the closed-loop system (1) with
the settling-time function bounded by Tmax-
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Fixed-Time Stability: Sliding Mode Approach

=y, y=u y,y2€R
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Fixed-Time Stability: Sliding Mode Approach

=y y2=u_y.Ly2€R
Nested Second Order Sliding Mode Controller(Levant 1993)

u= —asign[y> +[3y1[1/2]], a>0, p>>2a

172 _ = 0 is the inding surface then y» = _'L%yl[l/z] and

_By! [1/2]

If 51 :=y>+ By;
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Fixed-Time Stability: Sliding Mode Approach

n=y, y=u y.y R
Nested Second Order Sliding Mode Controller(Levant 1993)

u=—asignly2+py"%], a>0, B2>2

172 _ = 0 is the sliding surface then y» = _’[%yl[l/z] and

_By! [1/2]

If 51 :=y>+ By;

Fixed-time sliding surface

(1/ 2]
S2 1= Yo+ (yz[z] + a1y + 012)/1[3]) =

If s, = 0 is the sliding surface then y» = —(0.5a1y7 + 0. Sﬁly )[1/2] and
y1 = —(0.5a1y1 + 0.5[31}’13])[1/2]
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Fixed-Time Stability: Geometrical Interpretation

s,= 0

[1/2]
s1=y»+ ﬁyl[m] and sp = y» + ()/2[2] + a1y + ﬁ1y1[3])
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Fixed-Time Stability: Theorem

{ y1 = Auy + Ay (4)
y2 = Aoyr + Anys + Axs(u +7)
y1 € R™, y, € R™, ny=rank(B),n1=n-ny,rank(A12)=n1 < rank(Aa3)=ny.
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Fixed-Time Stability: Theorem

{ 1 = Anyr + Ay (4)
yo = Ao1y1 + Ay + Axz(u+ )

y1 € R™, y, € R™, ny=rank(B),n1=n-ny,rank(A12)=n1 < rank(Aa3)=ny.
Theorem (2)

The origin of the closed-loop system (4) is globally fixed-time stable with
the settling-time estimate Tmyax > 0 if the control u(yi, y») has the form

u(yr, y2) = —Ag3 {ueg(y1, y2) + ua(y1, y2) + up(y1, y2)} (5)
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Fixed-Time Stability: Theorem

1 = Anyr + Ay
{ @)

yo = Ao1y1 + Ay + Axz(u+ )

y1 € R™, y, € R™ ny=rank(B),n1=n-ny,rank(A12)=n1 < rank(Az3)=ny
Theorem (2)

The origin of the closed-loop system (4) is globally fixed-time stable with
the settling-time estimate Tmyax > 0 if the control u(yi, y») has the form

u(yr, y2) = —Ag3 {ueg(y1, y2) + ua(y1, y2) + up(y1, y2)} (5)

Ueq:Afg((AfltAlezl)h+(A11A12+A12A22))/2)+A +A1l2(A21)/1+A22}’2),
a1+3B1ly1ll% 22\|A12A23Hw70A+ Slgn[Sl]—/-’)’oHA ||ooAL2 sign[sy)],

up, = Al (251 +,3251 )[ I+ AL, (oc252 +,32 5 ) 2, A = null(Ap) T

(3]
si=A11y1 +A12y2+ ((A11Y1+A12)/2)[2] +zx1y1+,31y1[3]) °, 5=Aby2
with 0.50(1:062:0.5‘51:‘32 —64T 2

max-*
A.Polyakov (IPU-RAS) Fixed-time Stabilization 15 /19
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Benchmark Example

1 -3 2 2 0 2
x=1-2 0 3 |x+| -1 1 Ju+]| 0 [sin(t)
0 -1 4 0 -3 -3

0.4286 0.8571 0.2857
y=0Gx, G= -0.8571 0.4857 -0.1714
-0.2857 -0.1714 0.9429
{ 1= Ay + Ay
Vo = Aoiyr + Axyo + A23(U =F (1 1)Tsin(t))

Aip = —0.5918,A1p = ( —0.4449 4.9469 ) Ay — ( 1.2980 0.7184 ),

A ( 30612 -08367)  _ (-2200 1.000
2=\ 05510 25306 /' "7\ -0.400 -3.000
allel:l,{xz:,Bgzo.S = TmaXZS
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16
T|
—a =(1,0.1,0.01
,=(1,0.1,0.01) —x =(1,0.1,0.01)T
T
=(10,1,0.1
(10,1,0.1) ,=(10,1,0.1)"
T
=(100,10,1
(100,10,1) n:(100,10,1)'r
)
< S
)
20 1 2 P 4 5 .
t 4 5
t
4

—z =(1,0.1,0.01)"

-
,=(10,1,0.1)

0:(100,10,1)1’
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IS
S
1=3

—z,=(1,0.1,0.01)"

-z, =(10,1,0.1)"

ez =(100,10,1) "

[Fu@)l
n
2
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Thank you for your attention
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