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Disturbance rejection problem

, X = AX+ Bu+ Nw .
Plant (controlled object) l y
y:CX’ Ym:MX # *=Ax+ Bu+Mw [ *
Disturbance weQ, ={w ||w|/<c,} | B N
Control law u=F(~yy,) “=F0m) e——

Control process  Q,, — Q,, performance index v(Q,)
Find control u e Q, so that v(Q2,) > min, ueQ,

and closed-loop system X = Ax+ BF(Y,;) + Nw will be stable.

v(€2y) =0 absolute invariance
V(Qy) <g¢ ¢ -invariance under the stability and robustness requirements

Attainable level of disturbance rejection

limv(Q,) =v(Q,) <y(Q,,Qs), weQ,, {ABC}leQ;s



Control structures for disturbance rejection
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Control system with disturbance observer structure
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Output control problem

Consider a linear multivariable system described by the state-space model

X(t)= Ax(t)+Bu(t)+ Nf(x(t),t),
Ye(t)=Cx(t), yu(t)=Mx(t), (1)

where X(t)e R"-state vector, u(t)e R™ - control, f(X(t),t)e R%- unknown distur-
bance from certain class f(x(t).t)eN= f || f[l<c¢ [|x]l+cy, ,

Yo(t)eR", y,(1)eR?, - output controlled and measured variables respectively.

We will assume that fankB=m_ rankC=r, rankN =g, rankM = p.

-1 -
Matrices Scp(q)=CA“ B, S, (a,)=MA“"N are known as Markov
parameters of system (1). The integers &, &, are relative orders of control and distur-

bance transfer functions i.e. the minimal integers so that SCB(% ) * 0, SMN (052 ) #0,



Output control problem
Let the following assumptions take place:

(a) rank B =rank Scg(¢q )=,

(b) rank N <rank Sy (an )= p. (2)

Without loss of generality for simplicity reason we will assume that &g =a» =1 and

use the notation SCB(l) — SCB y SMN(l) — SMN .
The control problem is to find the control U(t), depending from the measured

variables, which ensure the reference signal y*(t) tracking, which formed by the given

reference model ¥ (t)= A"y (t)+ Yo (1) and disturbance T (( X),t) decoupling for all
disturbances from certain class N.

Formally the control goal is
lim|le(t)<e, t—o,

where ec(t):y*(t)—yc(t) - control error, £ - pre-established sufficiently small
constant.



Inverse model based disturbance observer design

The first step of the DDC design procedure is the state and disturbance observer
design using UIO approach. Let Z(t)=Rx(t)e R"™P be an aggregated auxiliary

. . . . T i T
variables, where R is the appropriate aggregate matrixsuchas rank M'  R' =n,

Then the state vector estimation may be obtained as follows

1
(ym]{“"j.x, ('V'j —(P Q) K(t)=Pyu(t)+QX(1) 3)
Z R R

where matrices P R™P Qe R™M P are defined as

MP=1,, RQ=1I,_p, PM+QR=1,

MQ =0 RP =0 4

p.N—p’ n—-p,p-



Unknown input observer. Structural synthesis

The aggregated vector estimation 7(1: ) is given by minimal-order UIO
X(1)=FX(t)+Grym(t)+ Hym(t) +Gou(t). (5)
The UIO parameters are determined from “invariance conditions”

R-HM A-F R—-HM =GM,

— — - = == 6
RN -HMN =0,G5-RB=0,G,=G-FH. ©)

If assumption (2b) takes place, a solution of (5) may be obtained as

F=RII\yAQ, Gy=RB, G, =RII\ AP,

— 7
H=RNSy, Iy =1,-BSynM, )

10
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Inverse model-based disturbance observer

Taking the unknown disturbance estimation in the form
f(t)=N" x(t)- AX(t)-Bu(t) . (8)
The minimal-order state and disturbance observer (SDO) equation:
X(t)=RIT\yAQX(t )+ RITy APyu(t )+ RNSyy i (1) + RITy Bu(t),
f(t)=Cn(¥m(t)— MAQX(t)—MAPY(t)—Sygu(t)),
Cn =Syn + NTPQy.
The estimation errors €x(t)=X(t)—X(t), 7 (t)= f(x,t)— f(t)

8 (t)=F R (t), e,(t)=Qg(t),
8¢ (1) =-CyMAQE,(1). 10)

(9)



Unknown input observer. Parametric synthesis
R Ql]

P, Q)

with F?]_:Ip1Q]_:Op,n_p1than R:Qz_l —P2 In—p and P]_,Q2

Concretely define the matrices P Q Z(

are arbitrary matrices with det Qg #0.
For system representation

(A1 A B (N P
A_[AZI Azzj’ M=o On-po ’N_(sz

n-p
the observer dynamics matrix has the form:

_ - _
F R =Q" Ap-PRAs Q,

Ao =Qn A Agp = A — NN A
QN =1Iq— NNy

(11)

(12)

12
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Unknown input observer. Parametric synthesis

Thus the matrix Qo defines the similarity transformation and doesn’t change the

spectrum of F; Ry , which completely determined by arbitrary matrix P, € R"PP The
last may be choused by pole placement method if pair (5\22,5&2) is observable. Such a
condition is equivalent to the well-known UIO design solvability condition, namely

observable of matrix pair (HN,M). The aggregate matrix R is determined up to an
arbitrary nonsingular matrix Q.

P2
Tuning
parameters

F(R) =Q(Ax —PA;)Q

UIO pole placement Solvability conditions

MFE(R)) o (Mg Xn_p) (Ayp, Ayy) is observable
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Regularized disturbance observer design

The observability condition is violated in the case when P =(.
At that ‘QNl =0 and F(R) doesn’t depend from P5.

In such singular case for the tuning properties guarantee it is possible to use the so-
called ,regularized” UIO , which ensure the appriximately invariance with respect the the
unknown disturbance

RN - N[ +v| " - min (13)

where v > 0 -regularization parameter.

Then
_ T T -1
H v =RNS qu +S|\/|NS|\/|N ’HN Vv Zln—H v M (14)
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Regularized SDO design problem solution

Fv=RAp v —PQy v dp Ay v =dp-N¥y, v 4,

T T
-1 -1

Qu, v =Ig— NNy vIg+ NN, =v v+ NNy

Estimation error equations for the regularized state and disturbance observer are
the following:
, _ -1
§X(t): F v @X(t)+VRN qu +S|\/|NTS|\/|N f(X,t),

es(t)=—N" PQy v +Hy v MAQe,(t)+ (16)

1
+N¥ 1, -PM  vIg+Syy ' Sun F(xit)

and for small value of V may be done sufficiently small.
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Disturbance compensator design

The disturbance compensative control is a function of reference signal and distur-
bance estimation in the form of TDF controller. In the usual case of “square plant”

(' = M) under the assumption (2a)
U (1) =Saa(Yrer (1)+CaX(t)~Scy f(1)), Cp=A'C-CA. (17)

If system structure non-singularity condition take place

_ _ | SciS
rank S=m+q, S = " cBCh (18)

+
SMNSMB lg

then disturbance estimation may be eliminated from the controller equation and DDC
has the form of two-degree-of-freedom controller.
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Disturbance decoupling controller design
o detS(C,B,N,M)#0, S\ =0

DDC equations are:
-~ O— 0
X(t)=F"X(t)+RINA"(PQN + HN )ym(t)+ TINHBYret (1), (19)

U (1) =ScB( Yret (1)+CaQX(1))+ScBCA( P2 + Hy Jym(1),
FO=Rmy4°0, 4°=4+HgC,, Hp=BScg, Hy=NSyn.

e detS(C,B,N,M)=0
The realizable controller may be obtained using the disturbance estimations
dynamically transformed by the internal dynamic filter:

u*(t): SE%( y (1) +CaX(t)—Sen f(t)) O<e<<], O<p<<l
. ~ ) - small filter parameters (20)
ef(t)=—1(t)+(1-u)f(1),

DDC equations are:
gli(t) = —p(t) +(1— ) (@1(t) + SCBSeNP2(1)), U () =0(t) +ey(t),

21
o1(t) = SE5 (Vret (£)+ CAX(1)02(1) = Cny (Y () — MAQK(t) — MAPYp(t)).



Disturbance decoupling controller with fast filter structure
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Closed-loop system with disturbance decoupling controller analysis

If system structural matrix S is nonsingular, the closed-loop system equation is:

X(1) = AOX(1) + ITgNf () + Hgyret (1) + Ley(1),

) X (22)
A :A+HBCA:HBA+HBA C,
The control goal is achieved with & =0, if closed-loop system (22) is stable,

because ex(t ) tends to zero due to properties of UIO.

For nonminimum-phase systems, matrix AO is unstable. The problem of closed-
loop system stabilizing arises, moreover simple additional state feedback

U(t ) = U*(t ) — K)A((t) doesn’t change closed-loop matrix spectrum because
Ig(A+BK)=0.

In such a case the local optimal control method may be applied.



20

Local optimal control for disturbance rejection

2 2
Vret (1) +CaAX(t) ~Scau(t) —Sen f(1)] + AJu()" > min (33,

The corresponding control law is given by

Ug(t)=Dy B Yrer (1) +CaAAR(t)—Scy F(t) =

X T -1 1 (24)
=D p SCBU (t); D1 g = :Blm +SCBSCB SCB’

From (23) the equation of closed-loop system follows

X(t)=A°(BIX(t)+BD B et (t)+ g B Nf(x,t)+Lgey(t),
A (B)=A+BD B Cy=1Ilg B A+BD B AC,
Ilg B =1,-BD B C.

(25)
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Closed-loop system properties
Using the “combined” control U(t)=U (t)—KX(t) find that

-1
Ao(B.K)=A(B)-BsK,Bg=pB Bl +SlgSce .

Closed-loop system with combined control may be stabilized, if matrix pair

AO( IB)’ Bﬂ is controllable.

The control error is given by

* 1 *
6(1)=Aec(t)~fScg Blm+SCeScs U (1) 26)

and control goal is achieved with € ().

Attainable
accuracy of
control
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Closed-loop two-time-scale system

For the structural singular plant closed-loop system with DDC includes internal filter
X(t)= APX(t)+ NF(X(t),t) - HgScn F(t)+Hpyrer (1) +Ley(t),
perturbation _
ef(t)=—1()+(1—p)f(x(t)t)-(1-u)es(t) (27)

The closed-loop system (27) is two-time scale system, in which slow motion under
¢ =0 coincides with the process in the system with “ideal” DDC and the fast one satisfied
the dynamic equation:

E(&)x(t)=A%%(t)+B°f(X(1)). (28)

0
E(e)= l, O j’AO: A" —HpgScn B0 _ N |
0 el Og n -1, (1-w)ly
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Robust decoupling controller design

Fast motion stability problem reduced to the “absolute” stability problem of system
(28) with nonlinearities from certain class.

For the particular case of linear state-dependent uncertain disturbance
f(X(t),t):AAX(t), where AA,”AA”SCA is the system (1) dynamic matrix
perturbation

0
A"—-NA,  —HpgSep

et 1-p)Ay -7, (29)

and fast motion stability analysis reduced to the robust stability problem

AJ(Ap)=

Re A(A2(Ap)) <-17, ||Apll<Ca. (30)



Disturbance decoupling controller existence conditions

Invertability conditions @) rank B = rank Scg(aq)="r

(b) rank N <rank Syn (a2 ) = p.

Structural nonsingularity conditions

_ _ | ~1
rank S =m+q, S = m  SCBSCN
CnoSwmB g
det @ #0,® = I, —Cy SysScaScn

Input (strong) observability conditions

IINA, M is observable (detectable)

J

24



IF

IF

IF

IF

IF

DD existence conditions extension
CB=0, C4%7'Bx0

THAN 3V (t)+ 4, v ()t AV (1) = yep(1)

MN =0, MA'N#0 o, >1

THAN

- (oq) _(oq—1)
IHI ( [ ) = ( ;I.Hal , };I.Hal ( t ))

det S(C,B,N,M )=0

THAN

1 (1)=Soh( v (1)+C 5%(1)=Sen (1)),
sf(t)==F(t)+(1=p)f (1)

(IIyA, M ) is non-observable (p = g)
THAN observer regularization applied:  (ITy (v )A4,M)

I15A 1s unstable and » = m

THAN

u(t)=u (t)-Ki(t)up(t)=D(B)Scpti (1),

D(p)= (ﬂfm +StpSen )_1

25
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Example. Magnetic suspension disturbance rejection control

Linearized mathematical model of the system

(1)) (0 1 0 0)x(t)) (0 0
Xz(t) _ 0 0 1 h Xz(t) . 0 u(t)+ 0 f(t)
%a(t)| | -8y -a -a, O x(t)| |b 1|
f(t)) Lo 0 0 vjif(t)) |0 0

Vo(t)=x(t), Ym(t)=2(t), Ym(t)=q(t)
where input f1() =@(t) and state-dependent disturbances T2 (1) = T (x(t),u(t))

characterized the external forces and system's non-stationary parameters variations.

1 2
Control problem: using the measurements Ym (1) = X1 () , Ym (t) =X3(t) find the

control function u(t) so that the controlled output ye(t)=X(t) (deviation from the
desired  position) tracks the signal, generated by reference model

V(1) +a¥ (t)+ony (t)+apy (t)=0.



SYSTEM DESCRIPTION

Plant model
Xo(t)=Apxo(t)+Byu(t)+Dyp(t)+Nyf(t)

System parameters

0 1 0 0) 0)
(T e e e
Wt L b, 0)

_—0 O



(0
0

. 0

STATE AND DISTURBANCE OBSERVER DESIGN

A. Disturbances model (1-st order)

Z(t)=vz(t),

)= Ag('r)x(r) +Ap(tu(t),

Q(t)=hz(t),

Ag (t),Ag(t)areunknown.

Augmented system model

X(t)= Ax(t)+ Bu(t)+ Nf(t), x(r):(

V(1) =Mx(t)

1 0 0)
0 | S

el s ¢ o) 0

0 O V/

(0)
0
b

\0)

(0)
0

1 b

\0)

v <0,

xO(f)]

z(1)

o

0,050

0 0

1

0

|
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Minimal-order UIO
X(t)=—mX(t)+hXs(t)+(7yh ——7[12 ))-',1,,(1‘) +(1-mm, }_1---',2,,(1)—%2_1'-‘3,(1),
Xy (1) = =Ty% (1) 4V (1) +( T3V — Mty )V (1) — Taya(t),
2 =vile):

S (1)=X(t )+ T (1) + T valt),
23(1)=ya(t),
Y1) =% (1) + Ty ().
Equivalent form of UIO
X(1)= =1 % (1)+I% (1) ¥ (mh -2 )yl (£)+ 2,
Xo(1)=~T2%(1 )+ V% (1) +( T3V — Ty 70> )V (1),
X(t)=y (1),
B =T (1) +myL(t),
x3(t)= _1—*3,(1),

X(1) =y (1)+ Ty (1).

29
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Disturbances estimators
D(t)=34(1)=To(1)+ 7127 (1),

P(t) = —T5X, (1) + Vo (1) +( T3V — T )V, (£) + (1),
ft)=fo(t)=bu(t), folt)=aX(t)+(ag+a,)yy +asym+in(t)
Observer pole-placement
det( s/, —F)=s" + (7 —v)s+7r2/7—7r1v=52 + A s+ A,

* 4 e
=V, Mh—-myv=»4y, n=X44+v, my=h 1(1(’)’:+}°1*V+V2)°

PI+Ul observer & _ _ 5 ., 5
(hzl V:O) A‘l(f)=—72'1,\.‘1(f)+,\"2(7_}+(72'2—72'1_ )J"m”)_*—y;z’

i - 1 |
Xo(1)==TX%(1) =5, (1)

”lzj'l*’ 7[2=ﬂ/:.




Disturbance compensative control law

u(t)=—b"(C Z(t)+@(t)+ f(1)),
B(t)=a(t)+¢(1),

C, = ayCo+ qCoAy+arCody + Cods =

= —CIO +a0 —al +a1 -—02 + az

“Realizable” form of control law
u(t)==b*(C 2(t)+@(t)+ f(t)),
ef(t)=—f(t)+(1=p)f(t)

O<e<sl, O<p<xld
- small parameters

System structural matrix

x|
S'= 1 B , detS=0
-b |

Equivalent form of control law
81’7(r)=——,uﬁ/r)-b"lll~,L1)(;~1(r_)+;‘_,(‘r)),
u(t)=1i(t)—b""n(t),
n(t)=C 3t)+@(t), n(t)=fot)

31



Disturbance decoupling compensator (DD — controller)

( 1-st order disturbance model, h=1, v=0)

Xi(1) =X (1) + % (1) + (7, = B2y (1) + y2,
.1;‘2(’,)= _7[2;'1(:’)—71'17[2}"’,1,,(’.),
817("1‘)=—,uﬁ(r)—b’l(l—,u)[(al — T )X(t )+ ax5(t) +

1) 2 -1 .2
+ (Tt + 0T — T Ty + 0y )V, (L) + O Y (L) =705y, () + (1+ 75 )y, ()],

m

+ (0= a3 )y ()= T3 ()]

32



Equivalent form of DD - controller

(t)=—mx(t)+%(t)+(7, —7[12 ),1’,1,,,(1‘) +.v,f,,
Xy(1)=—T%(1) = 7> Vsl 1),
gi(t)=—pii(t)=b" (1= p)[( o — 15 )%, (1) + ar%s(1) +
+ (T + Oy =TTy = Qg = T3 )Y (1) (0 = f)y(1)],
u(t)=a(t)-b " [(a—a,— 7, )%(1)+ %, (1) +
+ (oGt + O, — T T, — Qg — Qg — A7ty — B )Ty )_1.-',1,,( t)+

Wl —a, =g b1 —,tl))."’,i,(f/ + 73 ()]

Equivalent measurements

PL(t)=%(t)=x,(1),

P - AR | 1 :
Ym(E)=X(1)=X(1) +my, (1)

33



NUMERICAL EXAMPLE FOR SIMULATION

System parameters Tuning parameters

An =l b ianE 2o i =
9 : e 7[1=1, 7[2=2

a,=6, =11, a,=6 , _
€=0.1, u=0.0l

b=1, h=1 v=0

Disturbances model

@o(t)=fi(t) — step function

f(t)=f(t)=0(t)(oyx(t)+0oyx(t)+
+0,%,(t)+03x3(1)+oqu(t),

O(t)= Asin(owt), A=l @o©=0.5

34
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Disturbance decoupling controller

The designed DD controller has
the structure of multivariable
X,(t)==2%(t)=2y (1), Pl-controller with small

0.1if(1 ) =—0.01di(1 ) — 0.99(9%;(t ) + 6%, (1) + parameters

5.«‘_1('1‘):—:\71(7)'*'3_‘2”) +J"rln(vf)+y;:”

31ys (1)+ 6y (t)= 230 (t)+332(1)),
u(t)=u(t)—(Txy(t)+6x,(t)+ 28y,,,(’f)+4y,;,('r_) +23T’,1,,(r))

Pl - DD controller
e=0L =0

X,(t)==%,(t)+ % (1) + V. (1) + >

m?

X (1)==2%(t)=2v. (1),

u/r)z—10£(9?1/r)+6?2(r)+311,,,(r)+61m/r/)a’r—

— (9% (t )+ 6x5(t)—32; ()—1,,,(1))




Pl — controller

Simulation results

36



Disturbance estimation by Pl and Ul observers

Pl observer

4 M, est

5 5lo] Al | @
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UIO — based disturbance compensative controller

38



Disturbance decoupling controller

4'Ym1.Ym2

B £

EEEE
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Example. Chaotic oscillator synchronisation

Controlled Rosseler attractor

1(t)=—x5(t) - x3(t),

Chaotic system model | X2(7)=x1(1)+axy(1)+uy(1)+ fi(1),
x3(t)=—cx3(t)+us(t)+ fi(t)+ fo(x1,%3,t).

Controlled output Velt)=x(1)

Measurements N(t)=x(t), y(t)=x3(t)

Disturbances [(1)=8¢, [fo(x,X3,0) = 6x3(1) + (14 8, )xy(1)x3(1),
Uncertain parameters  §,,6,,0, \ e
Reference model V() vy (1) +agy (t)= Vier (1) gf:i::g::cce

\J’

40



Dynamics of Rosseler attractor

41
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Ul state and disturbance observer

Xi(1)=piX(1) + X5 (1) +(1+mpy + 703 )3y + T y2(1),
?2(1‘) =Xy ( 1)+ MV + T Vs (1),
X(1)=n(1), x(1)=X(1)+mn(t), X3(1)=y,(1),

pr=(m+a-k) ¢
Silt)=%X(t)+m(t),

fz('f)zyi-’z(f)+qf2(f)—fz('f,)—ﬂ'z}’l(f)—11_7(1‘)
Control law: state feedback and DDC
Z.-Il(.fv) = —]\:{'2(1‘),
81_1(7) = Vlu?l(f)-fz(f)"l‘(:l —7{2,))"1 —0(1}’2(1),

§1=0q+1/172'1—1, V1=k—a’1—a



/

Disturbance estimation

43
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Conclusion

e Disturbance decoupling compensator (DDC) design method for
multivariable systems measurements is proposed using the UIO
technique.

e The design procedure includes state and disturbance observer design and
disturbance compensator design.

e |f system structure non-singularity conditions take place, the disturbance
estimation may be eliminated from the control law and DDC equations
are obtained in the explicit form.

e For the case when such a conditions are violated the realizable form of
the DDC should be included additional internal dynamic filter with small
time constant.

e For two-time-scale closed-loop system if the fast motion is stable the
slow one coincides with the processes in the system with ideal
compensator.



Thank you for your attention!
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