
nCENTRO DE INVESTIGACIÓN Y DE ESTUDIOS

AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

Unidad Zacatenco

Departamento de Control Automático

Máquinas restringidas de Boltzmann para el modelado

de sistemas no lineales

Tesis que presenta

M. en C. Erick Dasaev de la Rosa Montero

Para obtener el título de

Doctor en Ciencias

En la especialidad de

Control Automático

Director de tesis

Dr. Wen Yu Liu

Ciudad de México Abril, 2018

Agradecimientos

Agradezco al cosmos y la casualidad el haberme jugado vertido las aleatoriedades que me

permitieron llegar a este punto.

En inteligencia artificial hay un concepto que se titula “aprendizaje por demostración”, ese

paradigma es aplicable no solo en un contexto técnico, sino que tiene su fundamentación en la

forma con la cual los seres humanos aprenden. Gracias papás por ser esa guía, por demostrarme la

manera de conducirme en este complejo mundo, porque su presencia creo un objetivo invisible que

siempre quise alcanzar sin saberlo dado que su ejemplo paso a paso me ha conducido a este

momento.

También quiero dedicarle unas palabras a mi hermano Iván que simplemente ha sido mi compañero

en un sinfín de experiencias y que sin su presencia y motivación este logro habría sido imposible.

Me gustaría especialmente agradecer al Dr. Wen Yu liu. Como mi profesor y mentor, él me ha

enseñado mas de lo que le podría dar crédito utilizando estas líneas. Él me ha mostrado, con su

ejemplo, lo que un buen investigador (y ser humano) debería ser.

Le doy las gracias al Centro de Investigación y Estudios Avanzados por abrirme las puertas al

mundo de la investigación y proporcionarme los medios materiales e intelectuales que me han

permitido forjarme como investigador, así como por otorgarme el ambiente ideal en dónde pude

forjar relaciones profesionales y personales que durarán toda la vida.

Finalmente agradezco al Consejo Nacional de Ciencia y Tecnología que por medio de su Programa

de Posgrados de Calidad y la beca de manutención de doctorado que me fue otorgada me

permitieron enfocarme enteramente en mi trabajo de tesis haciendo posible la realización de un

proyecto de investigación de calidad.

Restricted Boltzmann machines for nonlinear modeling

by

Erick Dasaev de la Rosa Montero

Submitted to the Automatic Control Department
on April 2018, in partial ful�llment of the

requirements for the degree of
Doctor in Philosophy in Automatic Control

Abstract

Deep learning techniques have been state of the art methods during the last decade achiev-
ing remarkable results in tasks such as hand written digits classi�cation, speech recognition
and behaviour identi�cation introducing new methods to train "deep" architectures making
possible to learn high dimensional datasets. Nevertheless, despite of the fact that they have
had great success in classi�cation problems, their usage in system identi�cation has not been
deeply explored by the arti�cial intelligence community. In this thesis, there are explored some
approaches to solve the regression problem using deep learning algorithms and it is also ex-
plained the modi�cations that have to be done in order to handle the analog nature of the data
provided by the sampling process applied on a nonlinear system. The study is focused on the
restricted Boltzmann machines (RBMs) as they constitute the building blocks in many deep
learning variants. The main problem that an RBM presents in the identi�cation context is that
it cannot handle continuous entries as it is designed to learn a probability distribution over a
binary dataset where the allowed values for the input are only f0; 1g, this problem is handled
considering a continuous range in the input domain which changes the way the probability dis-
tribution associated with the learning process is presented changing the parameter�s learning
rule.
The modi�ed RBMs are tested along with other algorithms such as randomized learning

using the weights provided by an RBM in the hidden layer of an one-hidden-layer neural net-
work and a pseudoinverse computing for the output weights. Furthermore, a probability based
clustering method is proposed to partition the hidden features extracted from the RBM, and
then fuzzy rules are set with the introduction of a probability measurement for each fuzzy set
which gives an extra degree of freedom to the model, making it more accurate.
Finally, it is also argued that even when RBMs have traditionally been used as a pretraining

procedure in the machine learning literature they can also be used as models which directly
learn the nonlinear system behaviour. In this case, the parameters of the RBM are trained
considering the conditional distribution of the provided dataset. Moreover, it is proved the
universal approximation capability of the RBMs over any binary conditional distribution. The
nonlinear modeling is discussed considering two cases: binary encoding for the input for binary
RBMs and continuous conditional probability transformation during the learning process.

Research Head: Wen Yu Liu
Title: Chair, Department of Automatic Control

i

Restricted Boltzmann machines for nonlinear modeling

by

Erick Dasaev de la Rosa Montero

Submitted to the Automatic Control Department
on April 2018, in partial ful�llment of the

requirements for the degree of
Doctor in Philosophy in Automatic Control

Abstract

El aprendizaje profundo es un conjunto de métodos que durante la última década han tenido
buenos resultados en tareas tales como clasi�cación de caracteres a mano alzada, reconocimiento
del habla y formación de grupos de conducta sospechosa. Estos métodos incluyen técnicas para
entrenar arquitecturas "profundas" haciendo factible aprender conjuntos de entrenamiento con
alta dimensionalidad. Sin embargo, a pesar de haber tenido un notable éxito en tareas de
clasi�cación, su uso en la identi�cación de sistemas no ha sido explorado por la comunidad
cientí�ca. En esta tesis, se analizan algunas soluciones para resolver el problema de regresión
utilizando algoritmos de aprendizaje profundo, además, se explican las modi�caciones que deben
ser efectuadas para manejar los datos analógicos obtenidos por el proceso de muestreo aplicado
en un sistema no lineal. El estudio se enfoca en las máquinas restringidas de Boltzmann (RBMs
por sus siglas en inglés) debido a que son el bloque constructor de la mayoría de las variantes
del aprendizaje profundo. El principal problema que presenta una RBM en el contexto de
identi�cación es que es incapaz de manejar datos en el dominio continuo debido a que ha
sido diseñada para interactuar con entradas de naturaleza binaria, este problema es resuelto
considerando un rango continuo en el dominio de la entrada cambiando la distribución de
probabilidad de la RBM.
Las RBMs modi�cadas son probadas en conjunto con un aprendizaje aleatorio utilizando

los pesos obtenidos de la RBM en la capa oculta de una red neuronal mientras que se calcula
la solución por pseudoinversa para los pesos de la capa de salida. Además, un método de
agrupamiento probabilístico se propone para obtener las características ocultas extraídas de la
RBM y después se crean las reglas difusas con la introducción de una medición de probabilidad
para cada conjunto difuso lo que le otorga un grado de libertad adicional al modelo haciéndolo
mas preciso.
Finalmente, se argumenta que a pesar de que las RBMs han sido solo utilizadas como

procesos de preentrenamiento también pueden ser utilizadas como modelos que directamente
aprendan el comportamiento de los sistemas. En este caso, los parametros de una RBM son
entrenados considerando la distribución condicional de los datos muestreados del sistema. Tam-
bién se ha probado la capacidad de aproximación universal que poseen las RBMs sobre cualquier
distribución condicional binaria. El modelado es expuesto considerando dos casos: codi�cado
binario sobre la entrada de una RBM binaria y una transformación al dominio continuo de la
probabilidad condicional.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Antecedents . 2

1.3 Contributions . 4

1.4 Structure . 5

1.5 Publications . 6

1.5.1 International Journals . 6

1.5.2 International Conferences . 6

2 Deep learning and data-driven identi�cation algorithms 8

2.1 Deep architectures . 8

2.1.1 Biological background . 8

2.1.2 Unsupervised learning . 11

2.1.3 Deep learning contributions . 13

2.2 Probabilistic models . 14

2.2.1 Statistical learning . 14

2.2.2 Supervised Learning and function approximation 15

2.3 Data-driven identi�cation algorithms . 16

2.3.1 Gradient descent algorithm . 16

2.3.2 Feed Forward Neural Networks . 20

2.3.3 Randomized algorithms . 22

2.3.4 An historical view of the perceptron and randomized algorithms 23

2.4 Fuzzy logic . 25

iii

2.4.1 Mandani model . 25

2.4.2 Takagi-Sugeno model . 26

2.4.3 Fuzzy logic operators . 28

2.5 Previous work . 29

2.5.1 Randomized modeling, local minima and deep learning 29

2.5.2 Fuzzy logic and probability theory for system identi�cation 31

2.5.3 Deep conditional RBMs . 33

3 Nonlinear system modeling and randomized algorithms 35

3.1 A simple deep learning scheme for nonlinear system identi�cation 35

3.2 Nonlinear system identi�cation framework . 39

3.3 . 41

3.4 Restricted Boltzmann for system identi�cation 41

3.4.1 Standard RBMs and their training procedure 41

3.4.2 Conditional probability transformation for non-binary values 44

3.4.3 Deep identi�cation model . 47

3.5 Randomized algorithms for nonlinear system identi�cation 49

3.6 Simulations and comparisons . 52

3.6.1 Gas furnace data . 52

3.6.2 First order nonlinear system . 54

3.6.3 Wiener-Hammerstein benchmark . 57

3.6.4 Computational complexity . 59

4 Nonlinear system modeling with deep learning and probabilistic fuzzy rules 63

4.1 Data-driven deep fuzzy identi�cation . 64

4.2 Hidden feature learning with restricted Boltzmann machines 65

4.3 Probability based clustering . 67

4.4 Fuzzy rules extraction with probability theory 70

4.5 Data-Driven Fuzzy Modeling . 72

4.6 Randomized algorithms for membership functions training 73

4.7 Probability functions training . 74

4.8 Comparisons with other fuzzy modeling methods 76

iv

4.8.1 Gas furnace fuzzy modeling . 76

4.8.2 Wiener-Hammerstein benchmark fuzzy modeling 80

5 Nonlinear system modeling with conditional continuous restricted Boltzmann

machines 83

5.1 Nonlinear system modeling with deep Boltzmann machines 84

5.2 Input features extraction . 86

5.3 DBM training with binary representation of input and output 87

5.3.1 Joint distribution for DBM training . 87

5.3.2 Conditional distribution for DBM training 89

5.4 DBM training with continuous values of input and output 91

5.4.1 Probability of x given h . 92

5.4.2 Probability of y given h . 93

5.4.3 Probability of h given x and y . 93

5.4.4 Probability of y given x . 94

5.4.5 Probability of (y; h) given x . 94

5.4.6 Probability of x given (y;h) . 96

5.5 Simulations . 96

5.5.1 Gas furnace data set . 96

5.5.2 Wiener-Hammerstein benchmark . 99

6 Final remarks 104

6.1 Conclusions . 104

6.1.1 About deep learning and randomized algorithms 104

6.1.2 About fuzzy modeling with deep learning and probability theory 105

6.1.3 About conditional continuous RBMs . 105

6.2 Future work . 106

7 Appendixes 108

7.1 Appendix A. Kullback-Leibler divergence . 108

7.1.1 De�nition . 108

7.1.2 Motivation . 109

v

7.1.3 Properties . 110

7.2 Appendix B. RBMs universal approximation theory 111

7.3 Appendix C. Contrastive divergence . 117

vi

List of Figures

2-1 Information �ow through the brain. The information existing in an image is

detected using the retina. The shades, forms and shapes are interpreted using

areas V1, V2 and V3 . 10

2-2 The deep learning approach consists of two stages: a pretraining procedure where

the parameters are initialized and a �netuning method which uses a supervised

criteria to �nd the best parameters . 12

2-3 The e¤ect of the pretraining stage. If the initial parameters are chosen randomly

they most likely will settle down in a local minima. The pretraining stage helps

to avoid this. 14

2-4 Gradient descent algorithm . 18

2-5 Model of a perceptron . 20

2-6 Multilayer Perceptron . 22

2-7 Membership funtions for the Mamdani model 26

2-8 A Takagi-Sugeno fuzzy model as a piece-wise linear approximation of a nonlinear

system . 27

3-1 Deep identi�cation structure . 36

3-2 Flow of data of a deep training model . 37

3-3 Randomized algorithms with deep learning for nonlinear system identi�cation . 40

3-4 Markov sampling in a restricted Boltzmann machine 44

3-5 Deep RBM Model . 48

3-6 Testing errors vs hidden neuron number (gas furnace) 54

3-7 Testing squared errors vs training data number (gas furnace) 55

3-8 Testing errors vs hidden neuron number (�rst-order system) 56

3-9 Squared errors vs training examples (�rst-order system) 57

vii

3-10 Binary encode (DN_BI) deep learning modi�cation and the normal randomized

algorithm. (W-H) . 59

3-11 Squared modeling errors vs training examples (W-H) 60

3-12 Training times for the gas furnace dataset with number of training examples

q = 150 . 61

3-13 Training times for the �rst order system with number of training examples q = 180 61

3-14 Training times for the W-H dataset with number of training examples q = 50; 000 62

4-1 Data-driven fuzzy modeling . 64

4-2 Fuzzy rules extraction with the on-line culstering and the probability based clus-

tering . 71

4-3 Testing results of the gas furnace modeling. 77

4-4 Testing errors with RBMs and without RBMs 79

4-5 GAS testing error using probabilistic parameters 79

4-6 Data-driven fuzzy modeling method for the W-H data 81

4-7 Testing errors using RBM and without RBM . 81

4-8 Testing errors using probabilistic parameters and standard fuzzy rules 82

5-1 Input features extraction with deep Boltzmann machines for nonlinear system

modeling . 84

5-2 Gibbs sampling for p(yjx) calculation . 90

5-3 DBM modeling using 8 bits and 4 bits encoding for the gas furnace data. 98

5-4 DBM modeling using continuous values for the gas furnace data. 100

5-5 Training errors with batch size of 1000 (�10�3) 101

5-6 Training errors with batch size of 500 (�10�3) 102

5-7 Training errors with batch size of 5000 (�10�3) 102

5-8 Testing error within the interval [0; 1] and batch size of 1000. 103

viii

List of Tables

2.1 Analogies between an ANN and the human brain 10

2.2 Commonly used functions for fuzzy logic operators 28

3.1 Testing results of deep learning with pseudoinverse (gas furnace) 53

3.2 Testing results of deep learning with pseudoinverse (�rst order nonlinear system) 55

3.3 Testing results of deep learning with pseudoinverse (Wiener-Hammerstein bench-

mark) . 58

3.4 Comparison of MSE error with di¤erent learning techniques over theW-H benchmark(�10�3)

59

4.1 Testing results of the deep fuzzy modeling (gas furnace) (�10�3) 78

4.2 Testing results of the deep fuzzy modeling (Wiener-Hammerstein benchmark)

(�10�3) . 82

5.1 Probability expressions for p(xjh) . 92

5.2 Probability expressions for p(yjh) . 93

5.3 MSEs of di¤erent identi�cation models (�10�3) 98

5.4 MSEs of di¤erent hidden layers (�10�3) . 99

5.5 MSEs of di¤erent hidden layers for WH(�10�3) 101

5.6 MSE over the WH benchmark (�10�3) . 102

ix

Acronyms

ANN Arti�cial Neural Network

BM Boltzmann Machine

BP Back Propagation

DA Denoising Autoencoders

DBN Deep Belief Network

DNN Deep Neural Network

ICA Independent Component Analysis

KL Kullback-Liebler

MLP Multilayer Perceptron

MSE Mean Square Error

PCA Principal Component Analysis

RBM Restricted Boltzmann Machine

RSE Root Square Error

SBN Sigmoid Belief Network

SDA Stacked Denoising Autoencoders

TK Takagi-Sugeno

VC Vapnik-Chervonenkis

x

Chapter 1

Introduction

The �rst precedent of the succesful usage of deep learning techniques can be found in [27],

Hinton introduced deep belief networks (DBN) utilizing in each layer an RBM for the initial

weights selection.

The general principle of a deep architecture behavior is to guide the training of each rep-

resentation layer using unsupervised learning with a greedy-layer wise algorithm. In order to

achieve this goal, each layer is trained using an unsupervised method such as autoencoders [5]

and RBMs [27]. Although these techniques are generative models by themselves, they have

been utilized to set the initial weights of feed forward neural networks which are discriminative

models.

In the present work, there is explored the application of deep learning algorithms on the

system identi�cation task and how this application can be combined with supervised algorithms

such as gradient descent, fuzzy modeling and randomized methods.

1.1 Motivation

Neural networks use a family of statistical learning algorithms to estimate or approximate

functions or nonlinear systems. The most used neural model is the multilayer perceptron (MLP).

From universal approximation theory [20], a single hidden layer neural network can approximate

any nonlinear function to any prescribed accuracy if su¢ cient hidden neurons are provided.

However, despite of the fact that the previous statement has been proved, a formal procedure

to �nd the optimal parameters of a neural network does not exist. Many algorithms have

1

been developed to train a neural model but the gradient descent and its variants are the most

widely used methods which obtained good results in the early 1980�s. Nevertheless, when more

layers were added to the model, it was necessary to develop a method which could cope with

the new problem, this was the origin of the backpropagation algorithm which is nothing more

than the application of the chain rule over each layer of neurons. After its initial success, the

backpropagation algorithm faced the problem of gradient vanishing which yielded into poor

results in generalization performance by deep neural networks. This was a wall that could not

be overcome until Geo¤rey Hinton came up with the deep learning idea [27].

In general, deep learning has two goals: a) it guides the weights to regions of minimal norm

and, b) it sets the weights in zones of the parameter space where the likelihood of a global

minimum is maximum [4]. The results of [23] show that the unsupervised training can drive the

neural model away from the local minima for classi�cation problems. However, deep learning

methods cannot be applied to system identi�cation directly, because the input/output values are

non-binary as in classi�cation problems. Most of deep learning techniques also use binary data,

for example the conditional probability transformation in the restricted Boltzmann machines

needs binary values [28].

Deep learning techniques for system identi�cation can be regarded as a pre-training stage.

Only input data are used for this unsupervised learning stage [22]. The objective of this stage

is to learn the probability distribution of input data P (x): This helps to decide the conditional

probability distribution P (yjx); which is the objective of system identi�cation [23]. Since the

unsupervised deep learning minimizes the variance and introduces bias into the input space

X, the supervised learning for X and Y can be improved. This is explained by [4]: in the

unsupervised learning stage, the input information is sent to hidden layers to construct useful

statistical features. This mechanism improves the corresponding input/output representation.

The input distribution P (x) appears in the hidden units via the deep learning method.

1.2 Antecedents

Nonlinear systems identi�cation is a problem that has not been widely addressed by the deep

learning community, this is because of the di¤erences that this problem has respecting to classi-

�cation where the number of classes is well de�ned. In an identi�cation framework the number

2

of possible outputs that the system can output is in�nite as its domain is continuous within a

range of possible values. This contrasts with the standard deep learning methods which makes

harder to design a transition between both tasks.

Although the di¢ culties explained previously are troublesome, the regression problem has

been tackled by deep learning methods in recent years. [9] uses deep denoising autoencoders

to create a model capable of representing the data, however, it is concluded that the encoding

stage did not help in the identi�cation task and the procedure has the problem of not dealing

with the continuous nature of the variables that describe a physical phenomenon. The problem

of handling continuous values by an RBM has been addressed by [5] who de�nes Gaussian

hidden units showing good results for image classi�cation, the Gaussian units assume a gaussian

probability distribution over the input data which can be a extremely di¢ cult prior to be

ful�lled.

There have been also direct approximations to the problem, In [22] the normalization factor

and conditional probabilities between the hidden and visible units are changed de�ning some

domain intervals in<. After the RBM is trained using continuous values, it is used for setting the

initial weights of a gradient descent optimization obtaining good results in three identi�cation

tasks. Finally, [40], argue that an RBM can be used successfully as a stand-alone classi�er and

not only as a feature extractor. To achieve this, a conditional distribution which models the

class-data relationship is learned instead of the usual marginal distribution.

Other techniques that have addressed the nonlinear system identi�cation problem are the

randomized algorithms and fuzzy modeling. Randomized algorithms were initially proposed

in [63] and deeply studied in [33] for single hidden layer neural networks, where the hidden

weights are chosen randomly and the pseudoinverse approach (or least square method) is ap-

plied to calculate the output weights. The advantages of using the pseudoinverse are: it gives

an optimal solution in the sense of least square and �nds the optimal weights with minimal

norm. [33] extended the above algorithms to random sampling: the hidden weights are sampled

from a continuous distribution. It shows that for the single hidden layer neural network, the

optimization for the hidden layer parameters does not improve the generalization behavior sig-

ni�cantly, while updating the output weights is more e¤ective. Randomized algorithms have

been successfully applied to nonlinear system identi�cation in [70].

On the other hand both fuzzy models and probability theory can represent and process

3

uncertain systems e¤ectively [14]. Including probability theory in fuzzy modeling can improve

the stochastic modeling capability [30]. In [49], the probabilistic is added into the fuzzy relation

between the input space and the output space to handle the e¤ect of random noise and stochastic

uncertainties. [73] introduces probability distribution in the consequent part of the fuzzy rules

improving the fuzzy modeling.

1.3 Contributions

The contributions of this thesis are explained in detail in Chapters 3, 4 and 5, it has to be

pointed out that the contributions are divided in three approaches that were taken, a brief

summary of these contributions is presented next:

1. In this thesis, the advantages of both deep learning and randomized algorithms are applied

on nonlinear system identi�cation. The neural model has deep structure, which increases

the quantity of hidden layers and decreases the number of hidden neurons. The complex-

ity of the neural model does not change, while the modeling capacity is improved. The

restricted Boltzmann machines are modi�ed to train the hidden weights with input data.

Then, the randomized algorithm is used to train the output weights. Three benchmark

examples are applied to show that the randomized algorithm with deep learning modi-

�cation can improve the identi�cation accuracy for nonlinear system identi�cation. This

constituted the �rst approach to deep learning in the system identi�cation context.

2. Another approach that was taken in this thesis was to include probability theory in fuzzy

modeling due to the fact that it can improve the stochastic modeling capability [30].

The third contribution of this thesis is to apply probability parameters to classical fuzzy

models. Deep learning is introduced in this context using an RBM as a pretraining stage

for the training samples. For the consequent part of the fuzzy rules (the output weights),

we use a randomized algorithm to train them. Finally, we use an optimization method to

reach maximum probability measures in each fuzzy rule.

With this work, the advantages of deep learning, probability theory, fuzzy modeling, and

randomized algorithms are exposed. We use the restricted Boltzmann machine (RBM) and

probability theory to overcome some common problems in data based modeling methods.

4

The RBM is modi�ed such that it can be trained with continuous values. A probability

based clustering method is proposed to partition the hidden features computed by the

RBM, and fuzzy rules are extracted adding probability measurement. Moroever, an ex-

treme learning machine and an optimization method are applied to train the consequent

part of the fuzzy rules and the probability parameters. The proposed method is validated

with two benchmark problems.

3. In Chapter 5, we �rst prove the universal approximation property of an RBM over binary

conditional distributions, then, we address two approaches that use an RBM for system

identi�cation. First, we perform an encoding procedure over the system dataset in order to

get a binary representation of the input and output vectors, with this new binary dataset

we train an RBM directly maximizing the log-likelihood of the conditional probability

(between input and output datasets) turning the RBM into a discriminative model. The

second strategy is to modify the input domain that the RBM can handle, we just consider

continuous input and output while the hidden variables remain binary. To accomplish this

task, the probability distributions of the data are changed using integrals evaluated in the

new domain. Finally, we calculate the new conditional probability distribution and train

the model to increase it. Two numerical simulations are tested to verify our method.

1.4 Structure

The thesis is divided as follows:

� In Chapter 2, a brief introduction to deep learning is presented. It is explained which is

the new paradigm that has been taken by the machine learning community and how

it can be related with nonlinear systems identi�cation theory.

� Randomized algorithms are described in Chapter 3. Their advantages over other

methods are discussed and it is also explained how RBMs can be introduced and

modi�ed to �t within this framework.

� Chapter 4 describes in detail a fuzzy modeling approach where the data has been

transformed using an RBM, the defuzzi�cation process is performed adding a prob-

ability measure to each fuzzy set.

5

� The conditional RBM�s universal approximation capability is proved in Chapter 5

along with the implementation of its training algorithm.

� Conclusions, insights and opportunities of improvement are discussed in Chapter 6.

1.5 Publications

1.5.1 International Journals

1. Erick de la Rosa andWen Yu, Randomized Algorithms for Nonlinear System Identi�cation

with Deep Learning Modi�cation, Information Sciences, Vol. 364, 197-212, 2016. (Impact

Factor: 3.364)

2. Erick de la Rosa and Wen Yu, Data-Driven Fuzzy Modeling Using Restricted Boltzmann

Machines and Probability Theory, IEEE Transaction on Systems, Man, and Cybernetics:

Systems, In Review (Impact factor: 1.598)

3. Deep Boltzmann machine for dynamic system identi�cation using conditional distribu-

tion, IEEE Transactions on Neural Networks and Learning Systems, In Review (Impact

factor: 4.854)

1.5.2 International Conferences

1. E. de la Rosa and W.Yu, Restricted Boltzmann machine for nonlinear system modeling,

14th IEEE International Conference on Machine Learning and Applications (ICMLA15),

Miami, USA, 2015

2. E.de la Rosa, W.Yu, X.Li , Nonlinear system modeling with deep neural networks and

autoencoders algorithm, 2016 IEEE International Conference on Systems, Man, and Cy-

bernetics (SMC16), Budapest, Hungary, 2157-2162, 2016

3. E.de la Rosa, W.Yu, Nonlinear system identi�cation using deep learning and randomized

algorithms, 2015 IEEE International Conference on Information and Automation (ICIA

2015), Lijing, China, 274-279, 2015

6

4. E. de La Rosa, W. Yu and H. Sossa, Fuzzy Modeling from Black-Box Data with Deep

Learning Techniques, 14th International Symposium on Neural Networks (ISNN 2017),

Sapporo, Japan

7

Chapter 2

Deep learning and data-driven

identi�cation algorithms

In this chapter we present a brief introduction to the deep learning framework and some of

the identi�cation techniques that are addressed in this thesis are presented. First, we explain

which were the reasons that motivated the resurgence of deep architectures in the arti�cial

intelligence (AI) community and how they have impacted the addressing of some problems,

like face recognition, natural language processing or sentiment analysis. Some parallelisms in

processes that the human brain performs in a daily basis are explained and how they can be

interpreted with computer science tools.

2.1 Deep architectures

In the arti�cial intelligence framework, researchers usually look for algorithms, methods and

techniques capable of solving problems that are easily answered by a human mind. This means

that scientists and engineers try to mimic the process that our brains perform in order to come

up with a solution in di¤erent kinds of environments where the quantity of variables is not

measurable.

2.1.1 Biological background

One of the most famous mimetizations that has been carried out by the machine learning

scientists is the arti�cial neural network. Arti�cial neural networks (ANN) were originally

8

designed to model in some small way the functionality of the biological neural networks which

are a part of the human brain. Our brains contain about 1011 neurons. Each biological neuron

consists of a cell body, a collection of dendrites which bring electrochemical information into

the cell and an axon which transmits electrochemical information out of the cell.

A neuron produces an output along its axon, it �res when the collective e¤ect of its inputs

reaches a certain threshold. The axon from one neuron can in�uence the dendrites of another

neuron across junctions called synapses. Some synapses will generate a positive e¤ect in the

dendrite which encourages its neuron to �re, and others will produce a negative e¤ect which

discourages the neuron from �ring. A single neuron receives inputs from perhaps 105 synapses

and the total number of synapses in our brains may be of the order of 1015. It is still not

clear exactly how our brains learn and remember but it appears to be associated with the

interconnections between the neurons (at the synapses).

Arti�cial neural nets try to model this low level functionality of the brain. This contrasts

with the high level symbolic reasoning in arti�cial intelligence which tries to model the high level

reasoning processes of the brain. When we think, we are conscious of manipulating concepts to

which we attach names (or symbols) but we are not conscious of the low level electrochemical

processes which are going on underneath. The argument for the neural net approach to AI

is that, if we can model the low level activities correctly, the high level functionality may be

produced as an emergent property.

A single arti�cial neuron consists of a processing element which has a number of input

connections, each with an associated weight, a transfer function which determines the output,

given the weighted sum of the inputs, and the output connection itself. An arti�cial neural

network is a network of interconnected neurons, the network may be trained by adjusting the

weights associated with the connections in the net to try and obtain the required outputs for

given inputs from a training set. It can be seen from the above that there is an analogy between

biological (human) and arti�cial neural nets. The analogy is summarized in Table 2.1.

As is known, ANNs have had a huge impact achieving good results in many di¤erent areas

of application [56]. However, most of the implemented ANNs are shallow (one or two layers

of representation) which not entirely relates with how a brain works. Recent studies [5] show

that the brain cannot be studied using a shallow architecture, the conclusions of that work are

summarized in 5 points.

9

Table 2.1: Analogies between an ANN and the human brain
Brain ANN
Neuron AN
Dendrites Combining function
Cell body Activation function
Axons Output
Synapses Weights

Retina

Area V1

Area V2

Area V3
Higher level visual

abstractions

Primitive shape
detectors

Edge detectors

pixels

Figure 2-1: Information �ow through the brain. The information existing in an image is detected
using the retina. The shades, forms and shapes are interpreted using areas V1, V2 and V3

1. Brains have a deep architecture.

2. Humans organize their ideas hierarchically through the composition of simpler ideas.

3. Insu¢ ciently deep architectures can be exponentially ine¢ cient.

4. Distributed or sparse representations are necessary to achieve true learning

5. Intermediate representations allow sharing statistical strength

One example of the deep processes that take place in our minds is shown in Figure 2-1.

There is seen how the data stored in an image travels through di¤erent representation layers

until it is �nally understood as an abstraction or idea.

Automatically, learning features of a system at multiple levels of abstraction allows a system

to learn complex functions from the sensory input. This ability is very important when the

amount of data and range of machine learning applications methods is growing.

According to [23], depth of architecture refers to the number of levels of composition of non-

linear operations represented by a given function. The brain appears to process information

10

using di¤erent stages of abstraction and representation. For example, in our visual system the

brain re�nes the shapes that are seen through several steps: edge detection, primitive shapes,

known shapes, ..., recognized object or scene.

Under this background, neural network researchers had wanted (from 1980 and onwards) to

train deep multi layer networks [6][72]. As has been explained, the backpropagation algorithm

o¤ers a solution to train multi layer models, however, it presents some problems which could

not be overcome until the year 2006, these problems are summarized in three points.

1. Vanishing e¤ect: the backpropagation signal vanishes as it moves backwards through the

net, as consequence, the bottom layers remain almost untrained.

2. Local minima problem. The gradient descent algorithm cannot overcome the local minima

regions of the cost function.

3. Shadowing e¤ect. Having too many model parameters can produce a continuous updating

through the training epochs which does not converge to any solution

Because of these di¢ culties, the study of deep architectures was abandoned and researchers

focused in only two or three layers of representation. Nevertheless, Hinton introduced in 2006

the concept of Deep Belief Networks (DBNs) [27] which is an algorithm that greedily trains

each layer at a time utilizing a restricted Boltzmann machine (RBM). In the next section we

explain how deep learning helps to overcome the historical issues that deep architectures have

had achieving state of the art performance in various tasks.

2.1.2 Unsupervised learning

Deep learning has achieved general success despite of the serious challenge of training models

with many layers of adaptive parameters. In virtually all deep learning instances, the goal is to

minimize an objective function which is a highly non-convex function of the model parameters

with the potential of many distinct local minima in the parameter space. It has been shown that

for deep architectures, the classic training schemes which rely on random parameter initialization

tend to place the parameters in regions that settle down in regions of the hyperdimensional

parameter space that give poor generalization performance as has been frequently observed.

11

As has been said, the breakthrough to e¤ective training strategies for deep architectures

came with the algorithms for training DBNs and stacked denoising autoencoders [5] which

are all based on a similar approach: greedy layer-wise unsupervised pre-training followed by

supervised �ne-tuning.

Pretraining
(unsupervised)

Finetuning
(supervised)

Figure 2-2: The deep learning approach consists of two stages: a pretraining procedure where
the parameters are initialized and a �netuning method which uses a supervised criteria to �nd
the best parameters

Each layer is pretrained with an unsupervised learning algorithm learning, i. e., an encoding

procedure that captures the main variations of the layer�s input. This unsupervised pre-training

sets the stage for a �nal training phase where the deep architecture is �ne-tuned with respect

to a supervised training criterion with gradient-based optimization. It is important to mentione

that despite of the fact that the pretraining impact has been measured with impressive results,

the mechanisms underlying its success are not understood. There have been some claims that

try to explain why the pretraining stage works, the most important among them are:

� Unsupervised pretraining initializes the model to a point that somehow renders the optim-

ization process more e¤ective achieving a lower minimum of the empirical cost function.

� Pretraining is an unusual form of regularization which minimizes variance and introduce

bias towards a con�guration of the parameter space that is useful for supervised learning.

The second perspective places unsupervised pretraining among semisupervised algorithms,

however, it is unique because it acts by de�ning a particular initialization point for stand-

ard supervised training rather than modifying the supervised objective function or imposing

constraints on the parameters throughout training. It has been suggested [9] that in highly

non-convex situations as training a deep structure, de�ning a particular initialization point im-

poses constraints on the parameters because it speci�es which minima of the cost function are

allowed.

12

2.1.3 Deep learning contributions

Standard training of deep models using gradient descent is di¢ cult. It has to be stated why

it is di¢ cult and which are the tasks that a successful algorithm has to accomplish. The main

problem is that the model parameters have strong dependencies between them which carry

several di¢ culties during training. This dependency is stronger between parameters across

layers as parameters which belong to the same layer are independent in the sense that in a direct

calculation their impact in the �nal result is independent. This problem has to be addressed

considering the next two aspects for every new algorithm that we want to use:

� Modify the lower layers in order to provide good data to the upper layers .

� Modify the upper layers to take advantage of the data delivered by the lower layers.

The second problem is easily solved using any supervised learning approach. However, it is

not well understood how the �rst problem can be addressed, moreover, a particular di¢ culty

arises when both sets of layers must be learned at the same time as the gradient of the objective

function is limited to a local measure. Furthermore, the training error cannot show the e¤ect-

iveness of the lower layers training because the upper layers can over�t the training set if they

are large enough.

Now, what happens with the online gradient descent implementation? This procedure de�nes

a trajectory in the parameter space that eventually converges (i. e., it reaches a point where

the error does not improve anymore); it has been argued [23] that small perturbations on such

trajectory have a bigger e¤ect if they are applied early on.

Once the training is initialized it rapidly settles into a basin which de�nes the local minimum

that the algorithm reaches. Early on, small perturbations allow the model parameters to switch

from a basin to a nearby one, whereas later on, it is unlikely to escape from the basin attraction.

In this sense, unsupervised pretraining interacts with the optimization process and when the

number of training examples becomes large, its positive e¤ect is seen not only on generalization

error but also on training error. An scheme of this general idea is seen in Figure 2-3.

13

Figure 2-3: The e¤ect of the pretraining stage. If the initial parameters are chosen randomly
they most likely will settle down in a local minima. The pretraining stage helps to avoid this.

2.2 Probabilistic models

In any system identi�cation framework, the goal is to �nd an useful approximation bf(x) of the
function f(x) that underlies the predictive relationship between inputs and outputs. In the

theoretical setting of probability, it has been shown that optimizing a squared error loss leads

to the regression function f(x) = E(Y jX = x). In this case, the modeling object is to �nd the

proper probability distribution that can predict the associated system observations.

2.2.1 Statistical learning

Suppose that in fact, we have a dataset that arose from a statistical model:

Y = f(X) + " (2.1)

where the random error " has E(") = 0 and is independent of X. Note that for this model,

f(x) = E(Y jX = x), and in fact the conditional distribution P (Y jX) depends on X only

through the conditional mean f(x).

The additive error model is a useful approximation to the real behaviour of nature. For

most systems the input�output pairs (X; Y) will not have a deterministic relationship Y =

f(X). Generally, there will be other unmeasured variables that also contribute to Y , including

measurement error. The additive model assumes that we can capture all these departures from

14

a deterministic relationship via the error ". For some problems a deterministic relationship does

not hold. Many of the classi�cation problems studied in machine learning are of this form,

where the learning comes from the training data that consists of examples fx(k); g(k)g. Here

the function is deterministic, and the randomness enters through the x location of the training

points.

We will see that this problem can be handled by techniques appropriate for error-based

models. The assumption in (2.1) that the errors are independent and identically distributed is

not strictly necessary, but with such a model it becomes natural to use least squares as a data

criterion for model estimation. Simple modi�cations can be made to avoid the independence

assumption; for example, we can have Var(Y jX = x) = �(x), and now both the mean and

variance depend on X. In general, the conditional distribution P (Y jX) can depend on X in

complicated ways, but the additive error model precludes these.

Additive error models are typically not used for qualitative outputs G; in this case the target

function p(X) is the conditional density P (GjX), and this is modeled directly. For example,

for two-class data, it is often reasonable to assume that the data arise from independent binary

trials, with the probability of one particular outcome being p(X), and the other 1�p(X). Thus

if Y is the 0� 1 coded version of G, then E(Y jX = x) = p(x), but the variance depends on x

as well: Var(Y jX = x) = p(x)[1� p(x)].

2.2.2 Supervised Learning and function approximation

Suppose for simplicity that the errors are additive and that the model Y = f(X) + " is a

reasonable assumption. Supervised learning attempts to learn f by example through a teacher.

One observes the system under study, both the inputs and outputs, and assembles a training set

of observations T = (x(k); y(k)), i = 1; :::; N . The observed input values of the system x(k) are

also fed into an arti�cial system, known as a learning algorithm, which also produces outputsbf(x(k)) in response to the inputs.
The learning algorithm has the property that it can modify its input/output relationshipbf in response to di¤erences y(k)� bf(x(k)) between the original and generated outputs. This

process is known as learning by example. Upon completion of the learning process the hope is

that the arti�cial and real outputs will be close enough to be useful for all sets of inputs likely

to be encountered in practice.

15

The learning paradigm of the previous section has been the motivation for research into

the supervised learning problem in the �elds of machine learning (with analogies to human

reasoning) and neural networks (with biological analogies to the brain). The approach taken

in applied mathematics and statistics has been from the perspective of function approximation

and estimation. Here the data pairs fx(k); y(k)g are viewed as points in a (p+ 1)-dimensional

Euclidean space. The function f(x) has domain equal to the p-dimensional input subspace, and

is related to the data via a model such as y(k) = f(x(k)) + "(k).

2.3 Data-driven identi�cation algorithms

In this section we explain some of the algorithms that have been used along deep learning

to identify nonlinear systems. We begin giving a brief description of the gradient descent

algorithm which is the most known algorithm that minimizes cost functions, then, we introduce

the multilayer perceptron which is the most famous feed forward neural network. Finally, the

reader is introduced to the fuzzy logic framework where a heuristic paradigm commands.

2.3.1 Gradient descent algorithm

A very common problem that arises in the vast majority of machine learning problems is the

minimization of a cost function which is subject to some parameters to be tuned by a training

algorithm. The most used method to minimize the cost function is the gradient descent algorithm

or steepest descent method which is explained in this section.

The problem we are interested in solving is:

minimize f(x)

subject to x 2 <n;

where f(x) is di¤erentiable. If x = x is a given point, f(x) can be approximated by its linear

expansion

f(x+ d) � f(x) +
@f(x)T

@x
d

if d is small. Now notice that if the approximation in the above expression is good, then we

want to choose d so that the inner product @f(x)T

@x
d is as small as possible. Let us normalize d

16

so that kdk = 1. Then among all directions d with norm kdk = 1; the direction

ed = �@f(x)
@x

@f(x)@x

makes the smallest inner product with the gradient @f(x)

@x
: This fact follows from the following

inequalities:

@f(x)

@x

T

d � �

@f(x)@x

 kdk = @f(x)

@x

T

0@ �@f(x)
@x

@f(x)@x

1A = �@f(x)

@x

T ed
For this reason the un-normalized direction:

d = �@f(x)
@x

is called the direction of steepest descent at the point x:

Note that d = �@f(x)
@x

is a descent direction as long as @f(x)
@x
6= 0: To see this, simple observe

that d
T @f(x)

@x
= �

�
@f(x)
@x

�T
@f(x)
@x

< 0 as long as @f(x)
@x
6= 0:

Observing this behavior, we have as consequence Algorithm 1, called the steepest descent

algorithm

Algorithm 1

1. Given x(0), set k := 0

2. d(k) := �@f(x(k))
@x

: If d(k) = 0; then stop.

3. Solve min� f(x(k) + �d(k)) for the stepsize �(k); perhaps chosen by an exact or inexact

linesearch.

4. Update with x(k + 1) = x(k) + �(k)d(k); k = k + 1. Return to Step 2.

Note from Step 3 and the fact that d(k) = �@f(x(k))
@x

is a descent direction, it follows that

f(x(k + 1)) < f(x(k)): A graphical representation of this process is shown in Figure 2-4, it is

shown how the values of x are changing towards a local minimum where eventually the updating

process will cease to work.

The original error back-propagation algorithm implements a steepest descent method. In

each iteration, the weights of the multilayer perceptron are updated by a �xed percentage in the

17

Figure 2-4: Gradient descent algorithm

negative direction. In literature, the gradient descent techniques can be summarized in three

main variants of the classic algorithm, these variants are explained next.

Batch gradient descent

Consider a training setD = fx(k)gnk=1; both statistical estimation and machine learning consider

the problem of minimizing an objective function that has the form of a sum:

J(�) =
1

n

nX
k=1

J(k;�) (2.2)

where the parameter � which minimizes J(�) is to be estimated. Each summand function

J(k;�) is typically associated with the k-th observation in the dataset (used for training).

When used to minimize the above function, a standard (or batch) gradient descent method

would perform the following iterations:

� = �� �@J(�)
@�

= �� � 1
n

nX
k=1

@J(k;�)

@�
(2.3)

where � is the learning rate. The most important feature of this variant is that the updating

process is only done once the summation of the contributions of each training example has been

calculated. In many cases, evaluating the sum-gradient may require expensive evaluations of

18

the gradients from all summand functions. When the training set is enormous and no simple

formulas exist, evaluating the sums of gradients becomes very expensive, because evaluating

the gradient requires evaluating all the summand functions�gradients. To economize on the

computational cost at every iteration, stochastic gradient descent samples a subset of summand

functions at every step. This is very e¤ective in the case of large-scale machine learning problems.

Stochastic gradient descent

In stochastic (or "on-line") gradient descent, the true gradient of J(�) is approximated by a

gradient at a single example:

� = �� �@J(k;�)
@�

for k = 1; ::; n (2.4)

As the algorithm sweeps through the training set, it performs the above update for each

training example. Several passes can be made over the training set until the algorithm converges.

If this is done, the data can be shu­ ed for each pass to prevent cycles. Typical implementations

may use an adaptive learning rate so that the algorithm converges.

Minibatch gradient descent

A compromise between computing the true gradient and the gradient at a single example, is

to compute the gradient against more than one training example (called a mini-batch) at each

step. This can perform signi�cantly better than true stochastic gradient descent because the

code can make use of vectorization libraries rather than computing each step separately. It may

also result in smoother convergence, as the gradient computed at each step uses more training

examples.

Consider then that the training set D is divided in q disjoint subsets fH1; H2; :::; Hqg: Each

of this subsets is a minibatch, the learning rule is formulated as:

� = �� � 1
nj

X
kjx(k)2Hj

@J(k;�)

@�
for j = 1; :::; q (2.5)

where nj is the number of elements in the minibatch Hj.

19

activation
function output

Figure 2-5: Model of a perceptron

2.3.2 Feed Forward Neural Networks

The most common learning mechanism associated with all arti�cial neural networks is, by far,

the supervised paradigm. Multilayer perceptrons (MLP) are the most widely known type of

ANNs. It has been shown that they constitute universal approximators [20], both with one

hidden layer and with two hidden layers. Before describing MLPs let us describe the single

perceptron.

The Perceptron

Perceptrons were �rst introduced by Frank Rosenblatt, working at Cornell Aeronautical Labs,

intended to be computational models of the retina. The basic model is shown in Figure 2-5.

The typical application of Rosenblat was to activate an appropriate response unit for a

given input pattern or a class of patterns. For this reason, the activation function is a threshold

function. The inputs, outputs and training patterns were binary values (0 or 1). The basic rule

is to alter the value of the weights when an error exists between the network output and the

desired output. The heuristic learning rule is as follows:

Algorithm 2

1. If the input is 1 and should be 1, or if the output is 0 and should be 0, do nothing;

2. If the output is 0 and should be 1, increment all the weights in all active lines;

3. If the output is 1 and should be 0, decrement the weights in all active lines.

Considering a perceptron with just 1 output, the weight vector, W , is updated as:

20

W (k + 1) = W (k) + �W (2.6)

where �W is the change made to the weight vector, as:

�wi = �(by(k)� y(k))xi(k) (2.7)

In (2.7), � is the learning rate, by(k) and y(k) are the desired and actual output, respectively,
at time k; xi(k) is the i�th element of the input vector. Some variations have been made to

this simple perceptron model: First, some models do not employ a bias; the inputs to the net

may be real valued, bipolar (+1;�1), as well as binary and the outputs may be bipolar.

Multilayer perceptrons

The error back-propagation (BP) algorithm is the best known learning algorithm for performing

the tuning of the MLP parameters. In fact, MLPs and the BP algorithm are so intimately related

that it is usual to �nd in the literature that this type of arti�cial neural network is referred to

as back-propagation neural network.

The MLP can be explained as the composition of nonlinear functions applied to inner

products. Its mathematical model is given by (2.8).

by (k) = ��p
�
Wp�p�1 [: : :W3�2 fW2�1 [W1x (k) + b1] + b2g+ b3 : : :+ bp�1] + bp

	
(2.8)

where by (k) 2 <m is the output of the neural model,W1 2 <l1�n; b1 2 <l1 ; W2 2 <l2�l1 ; b2 2 <l2 ;

Wp 2 <lp�lp�1 ; bp 2 <lp ; p is the number of hidden layers, li (i = 1 � � � p) are the node numbers

in each layer, �i 2 <li (i = 1 � � � p) are active vector functions, � =
h
�1 � � � �lp

i
; � 2 <m�lp is

the weight matrix of the output layer. The active functions are in sigmoid form,

�i (!j) = ai=
�
1 + e�b

T
i !j
�
� ci

where i = 1 � � � p; j = 1 � � � li; ai; bi; and ci are prior de�ned positive constants, !j are the input

variables to the sigmoid functions. A �ow chart of the MLP is seen in Figure 2-6.

Let � represents any of the parameters that de�ne the MLP, the learning procedure follows

the same rules of gradient descent. The learning rule can be given by (2.3), (2.4) or (2.5)

21

Figure 2-6: Multilayer Perceptron

depending on the type of approach we are taking. It is important to note that the very famous

backpropagation algorithm is just an application of the chain rule that allows to calculate the

term @J(k;�)
@�

when � is a parameter that does not belong to the output layer. In this thesis

we compute the gradient using a numerical package which enables us to skip the usage of the

backpropagation method.

2.3.3 Randomized algorithms

Randomized algorithms are feedforward neural networks for classi�cation or regression with a

single layer of hidden nodes, where the weights connecting inputs to hidden nodes are randomly

assigned and never updated. The weights between hidden nodes and outputs are learned in a

single step, which essentially amounts to learning a linear model.

According to their creators, these models are able to produce good generalization perform-

ance and learn thousands of times faster than networks trained using backpropagation [32].

The simplest randomized training algorithm learns a model of the form

by = ��(Wx) (2.9)

whereW is the matrix of input-to-hidden-layer weights, � is some activation function, and �

is the matrix of hidden-to-output-layer weights. Algorithm 3 explains how the training is done:

Algorithm 3

1. Fill W with Gaussian random noise;

2. Estimate � by least-squares �t to a matrix of response variables Y , computed using the

pseudoinverse (�)++ given a design matrix X:

22

W = �(WX)+Y

It is seen the incredible simplicity of the model which is the main reason that has made this

model so popular in recent years. It is important to point out that this model has received

numerous critics that emphasize the lack of proper training in the hidden layer as a weakness

that decreases the generalization capabilities of the net. However, it has been shown that the

generalization is not compromised if the random selection of the hidden weights is performed

over certain classes of probability distributions [31]. In Chapter 3 it is proposed a method

that initializes the hidden weights using a deep learning technique: the restricted Boltzmann

machine.

2.3.4 An historical view of the perceptron and randomized algorithms

Rosenblat [60] stated that a MLP can enable arti�cial systems to perform human-like activities

such as speaking, walking, writing and even being aware of its own existence. However, it was

shown [53] that a perceptron without hidden layers could not even handle the modeling of the

simple XOR function, this fact made researchers give up in the �eld of machine learning but

as it is going be explained in this thesis, the failure exposed in [53] can be avoided if a new

architecture is introduced.

The XOR counterexample given in [53] used a feedforward network with input and output

layers but without hidden layers, this model can be empirically understood as brain which has

input layers or sensors (eyes, nose, ears,...) and output layers or actuators (muscles, bones, ...)

but it lacks of neurons. It is easily seen that this brain is an empty shell and has no learning or

cognition capabilities at all. Then, it is clear that a hidden layer is necessary to provide a true

learning system, this realization had as consequence that thousands of researches started to look

for learning algorithms capable of tuning a new set of hidden layers. Such human e¤ort did not

have good results despite of the huge number of scientists that got involved, eventually it reached

a point where some researchers began to think about ways to avoid the hidden layer training

by assuming that it was not necessary. Finally, such beliefs and philosophy in both machine

learning and biological learning resulted in techniques referred as randomized algorithms, in

this approach the problem of training a MLP is addressed by considering that the existence of

23

hidden layers is necessary to achieve good results but their tuning is not.

Randomized algorithms represent a suite of machine learning techniques (including single

hidden feedforward networks and multilayer feedforward networks) in which hidden neurons

do not need to be tuned with the consideration of neural networks generalization theory. It

has been argued that randomized algorithms re�ect the true nature of some biological learning

mechanisms as it has been found that the stimulus propagation in some areas of the brain cortex

occurs randomly. Their universal approximation capabilities (proved for a network in which a

hidden node may be a subnetwork of several nodes with almost nonlinear piecewise continuous

neurons) was shown in [31]. Their concrete biological evidence subsequently appears in [66].

The target of randomized algorithms is not only the single layer feedforward neural net-

works but also the generalized multilayer feedforward neural networks in which a node may

be a subnetwork consisting of other hidden nodes. The randomized algorithms framework also

covers wide types of neural networks including but not limited to sigmoid networks and radial

basis functions, it also aims to implement the �ve fundamental operations of learning in an

homogenous architecture, these operations are:

1. Compression

2. Feature learning

3. Clustering

4. Regression (modeling)

5. Classi�cation

Thus, from this point of view, the coexistence of globally structured architectures and loc-

ally random hidden neurons happens to have fundamental learning capabilities in the �ve tasks

exposed above. This may have addressed John von Neumann�s puzzle. Biological learning mech-

anisms are sophisticated, and it is believed in [31] that learning without tuning hidden neurons

is one of the fundamental biological learning mechanisms in many modules of learning systems.

Furthermore, random hidden neurons and random wiring are only two speci�c implementations

of such learning without tuning hidden neurons learning mechanisms.

24

2.4 Fuzzy logic

Th idea of a fuzzy logic was introduced by L. A. Zadeh in 1965. This concept allows imprecise and

qualitative information to be expressed and used in an exact way. It also implied a generalization

of the concept of set which was included in the more general term of fuzzy set. This new concept

o¤ered the �exibility to be able to contain with uncertainty objects and ideas. A mathematical

model which in some ways uses fuzzy sets is called a fuzzy model. In system identi�cation, rule-

based fuzzy models are usually applied. In these models, the relationships between variables

are represented by means of if-then rules with imprecise predicates, such as:

IF heating is fast THEN temperature increase is fast

This rule de�nes in a rather qualitative way the relationship between the heating an the

temperature in a room, for instance. To make such a model operational, the meaning of the

terms high and fast must be de�ned more precisely. This is done by using fuzzy sets, i. e.,

sets where the membership is changing gradually rather than in an abrupt way. Fuzzy sets are

de�ned through their membership functions which map the elements of the considered universe

to the unit interval [0,1]. The extreme values 0 and 1 denote complete membership and non-

membership, respectively, while a degree between 0 and 1 means partial membership in the

fuzzy set. Depending on the structure of the if-then rules, two main types of fuzzy models can

be distinguished: the Mandami (or linguistic) and the Takagi-Sugeno model.

2.4.1 Mandani model

In this model, the antecedent (if-part of the rule) and the consequent (then-part of the rule)

are fuzzy propositions:

Rj: IF x is Aj THEN y is Bj; j = 1; 2; ::; K (2.10)

Here Aj and Bj are the antecedent and consequent linguistic terms (such as small, large,

etc.), represented by fuzzy sets, and K is the number of rules that exist in the model. The

linguistic fuzzy model is useful for representing qualitative knowledge, this is illustrated in the

following example.

25

Figure 2-7: Membership funtions for the Mamdani model

Consider a qualitative description of the relationship between the oxygen supply to a gas

burner x and its heating power y:

R1: IF O2 �ow rate is Low THEN heating power is Low

R2: IF O2 �ow rate is OK THEN heating power is OK

R3: IF O2 �ow rate is High THEN heating power is Low

The meaning of the linguistic terms {Low, OK, High} and {Low, High} is de�ned by mem-

bership functions such as the ones depicted in Figure 2-7. Membership functions can be de�ned

by the model developer based on prior knowledge or by using data (in this example, the mem-

bership functions and their domains are selected arbitrarily).

The meaning of the linguistic terms is, of course, not universally given. In this example,

the de�nition of the fuzzy set OK, for instance, may depend on the �ow-rate of the fuel gas,

the type of burner, etc. When input-output data of the system under study are available, the

membership functions can be constructed or adjusted automatically, as discussed later on. Note,

however, that the qualitative relationship given by the rules is usually expected to be valid for

a range of conditions.

2.4.2 Takagi-Sugeno model

The Mamdani model is typically used in knowledge-based (expert) systems. In data-driven

identi�cation, the model due to Takagi and Sugeno has become popular. In this model, the

antecedent is de�ned in the same way as above, while the consequent is an a¢ ne linear function

of the input variables:

26

Rj: IF x is Aj THEN yj = aTj x+ bj; j = 1; 2; ::; K (2.11)

where aj is the consequent parameter vector and bj is a scalar o¤set. This model combines a

linguistic description with standard functional regression: the antecedents describe fuzzy regions

in the input space in which the consequent functions are valid- The output y is computed by

taking the weighted average of the individual rules�contributions:

y =

PK
j=1 �

j(x)yjPK
j=1 �

j(x)
=

PK
j=1 �

j(x)(aTj x+ bj)PK
j=1 �

j(x)

where �j(x) is the degree of ful�llment of the j-th rule. For the rule (2.11), �j(x) = �Aj(x),

but it can also be a more complicated expression, as shown later on. The antecedent fuzzy

sets are usually de�ned to describe distinct, partly overlapping regions in the input space. The

parameters aj(x) are then (approximate) local linear models of the considered nonlinear system.

The TS model can thus be regarded as a smooth piece-wise linear approximation of a nonlinear

function or a parameter-scheduling model. Note that the antecedent and consequent variables

may be di¤erent. This is illustrated by the next example:

Consider a static characteristic of an actuator with a dead-zone and a non-symmetrical

response for positive and negative inputs. Such a system can conveniently be represented

by a TS model with three rules each covering a subset of the operating domain that can be

approximated by a local linear model, see Figure 2-8.

Figure 2-8: A Takagi-Sugeno fuzzy model as a piece-wise linear approximation of a nonlinear
system

The corresponding rules are given next:

27

R1: IF u is Negative THEN y1 = a1x� b1

R2: IF u is Zero THEN y2 = a2x� b2

R3: IF u is Positive THEN y3 = a3x� b3

As the consequent parameters are �rst-order polynomials in the input variables, the model

(2.11) is in the literature also called the �rst-order TS model. This is in order to distinguish it

from the zero-order TS model whose consequents are simply constants.

Rj: IF x is Aj THEN yj = bj; j = 1; 2; ::; K (2.12)

2.4.3 Fuzzy logic operators

In fuzzy systems with multiple inputs, the antecedent proposition is usually represented as

a combination of terms with univariate membership functions, by using logic operators and

(conjuction), or (disjunction) and not (complement). In fuzzy set theory, several families of

operators have been introduced for these logical connectives. Table 2.2 shows the two most

common ones.

Table 2.2: Commonly used functions for fuzzy logic operators
A and B A or B not A

Zadeh min(�A; �B) max(�A; �B) 1� �A
probabilistic �A � �B �A + �B � �A � �B 1� �A

As an example, consider the commonly used conjunctive form of the antecedent, which is

given by:

Rj: IF x1 is A
j
1 and x2 is A

j
2 and � � � xm (k) is Ajm THEN yj = aTj x+ bj

with the degree of ful�llment

�j(x) = min
�
�Aj1

(x1); �Aj2
(x2); :::; �Ajm (xm)

�
or

28

�j(x) = �Aj1
(x1) � �Aj2 (x2); :::; �Ajm (xm)

for the minimum and product conjunction operators, respectively. The complete set of rules

divides the input domain into a lattice of overlapping axis-parallel hyperboxes. Each of these

hyperboxes is a Cartesian product intersection of the corresponding univariate fuzzy set.

2.5 Previous work

Several works have been done regarding deep learning, randomized algorithms and probabilistic

methods, a brief summary is presented in the following.

2.5.1 Randomized modeling, local minima and deep learning

As has been said, randomized algorithms have been initially proposed in [63] and deeply studied

in [33] for single hidden layer neural networks, where the hidden weights are chosen randomly

and the pseudoinverse approach (or least square method) is applied to calculate the output

weights. The advantages of using the pseudoinverse are: it gives an optimal solution in the

sense of least square and �nds the optimal weights with minimal norm. [33] extended the above

algorithms to random sampling: the hidden weights are sampled from a continuous distribution.

It shows that for the single hidden layer neural network, the optimization for the hidden layer

parameters does not improve the generalization behavior signi�cantly, while updating the output

weights is more e¤ective. Randomized algorithms have been successfully applied to nonlinear

system identi�cation in [70].

The parameter identi�cation of neural models is usually addressed by some gradient descent

variants, e.g., the least squares algorithm, back-propagation, and Levenberg-Marquardt method.

Even though these methods have been widely used, they may converge very slowly and have the

local minima problem [34]. Since the identi�cation error space is unknown, the neural model

can be settled down in a local minimum easily if the initial weights of the neural model are

not suitable [26]. There are some techniques to overcome the local minima in the error space

and to force the neural model near the global minimum, such as noise-shaping modi�cation

for the gradient descent algorithm [12], adding momentum term [52], and combining nonlinear

clustering [49]. These algorithms modify the gradient descent algorithms to avoid the local

29

minima problem, but they do not solve the key problem of the local minima: wrong initial

weights.

The pseudoinverse approach of the randomized algorithm can solve the local minima problem

without considering the hidden weights [2]. By the sensitivity ratio analysis, [65] gives a method

to calculate the initial weights of a recurrent neural network. In [76], the initial weights are

obtained by �nding the support vectors of the input data. However, the above papers do not

consider one important issue: the initial hidden weights depend on the statistical features of

the input data [33].

In general, a deep neural network has the same structure as a MLP where the depth of the

neural network is de�ned as the number of hidden layers [4]. In order to be considered deep,

a structure has to have at least two hidden layers [4], this depth usually gives the network the

advantage of needing fewer neurons (or weights) than a shallow MLP [28]. However, increasing

the number of hidden layers causes exponentially increasing model complexity and requires more

training examples [23]. On the other hand, restricted Boltzmann machines [28] use energy-based

learning models whose training process is unsupervised, i.e., it uses input information.

Deep learning has two goals: a) it guides the weights to regions of minimal norm, and b)

it sets the weights in zones of the parameter space where the likelihood of a global minimum

is maximum [4]. The results of [23] show that the unsupervised training can drive the neural

model away from the local minima for classi�cation problems. However, deep learning methods

cannot be applied to system identi�cation directly, because the input/output values are non-

binary as in classi�cation problems. Most of deep learning techniques also use binary data, for

example the conditional probability transformation in the restricted Boltzmann machines needs

binary values [28].

Deep learning techniques for system identi�cation can be regarded as a pre-training stage

where only input data are used. The objective of this stage is to learn the probability distribu-

tion of the input data P (x): This helps to decide the conditional probability distribution P (yjx);

which is the objective of system identi�cation [23]. Since the unsupervised deep learning min-

imizes the variance and introduces bias into the input space X, the supervised learning for X

and Y can be improved. This is explained by [4]: in the unsupervised learning stage, the input

information is sent to hidden layers to construct useful statistical features. This mechanism

improves the corresponding input/output representation. The input distribution P (x) appears

30

in the hidden units via the deep learning method.

In this thesis, we take both advantages of the deep learning and the randomized algorithm

for nonlinear system identi�cation. We modify the learning rule of a special kind of restricted

Boltzmann machine to train the hidden weights with input data. Then we use the randomized

algorithm to train the output weights. Three benchmark examples are applied to show that the

randomized algorithm with deep learning modi�cation can improve the identi�cation accuracy

for nonlinear system identi�cation.

2.5.2 Fuzzy logic and probability theory for system identi�cation

A fuzzy model can approximate a large class of nonlinear systems, while keeping linguistic

propositions of human thinking [79]. Moreover, a fuzzy model can be regarded as an universal

estimator as it can approximate any nonlinear function to any prescribed accuracy, provided that

su¢ cient fuzzy rules are available [11][48]. It is often claimed that fuzzy models are more robust

than nonfuzzy methods against the sensitivity of variations of the data, or varying dynamics of

nonlinear systems [38].

Data-driven fuzzy modeling uses observed data to construct a fuzzy model automatically.

It needs two processes: 1) extracting suitable fuzzy rules from the data and deriving a fuzzy

model; 2) updating the parameters of the fuzzy model with the data. The �rst process is called

structure identi�cation while the second process is called parameter identi�cation. The key

problem of the structure identi�cation is the extraction of the fuzzy rules. The fuzzy rules can

be obtained from mechanistic prior knowledge of nonlinear systems [45], from the knowledge of

experts [11], or from data [48][80]. However, it is di¢ cult to obtain mechanistic prior knowledge

for many nonlinear processes, and the expert method needs the un-bias criterion and the trial-

and-error technique [58], which can only be applied o¤-line. The data-driven fuzzy modeling is

very e¤ective to identify a wide class of complex nonlinear systems when we have no complete

model information, or even when we consider the nonlinear system as a black box [57].

Extraction of fuzzy rules from the input/output data usually uses the partition method,

which is also called fuzzy grid [41]. Many data clustering methods are applied for structure

identi�cation, such as fuzzy C-means clustering [54], mountain clustering [54], and subtractive

clustering [16]. These approaches require that the data is ready before the modeling. On-

line clustering with a recursively calculated spatial proximity measure is given in [3]. The

31

combination of on-line clustering and genetic algorithms for fuzzy systems is proposed in [36].

In [77] the input space is automatically partitioned into fuzzy subsets by adaptive resonance

theory. Besides these clustering approaches, fuzzy rule extraction can also be realized by neural

networks [76], genetic algorithms [58], singular-value decomposition [15] and support vector

machines [19]. These data based clustering methods do not use the probability distribution

information of the data.

In the sense of probability theory, the object of system modeling is to obtain a conditional

probability distribution P (yjx) [23], where x is the input and y is the output. Recent results

show that deep learning techniques can learn the probability distribution P (x) of the input

space with an unsupervised learning method. [4] shows that in the unsupervised learning stage,

the input information is sent to hidden layers to construct useful statistical features. This

mechanism improves the corresponding input/output representation while the input distribution

P (x) appears in the hidden units via the deep learning method.

As seen in Chapter 3, RBMs [28] are main deep learning methods that use energy-based

learning models. It has been shown that they can be used as nonlinear transformations which

extract useful features from the input data that are more suitable for classi�cation or regression

tasks than the raw data themselves. Moreover, fuzzy modeling can be improved if the input

data is transformed �rst (using RBMs) instead of being presented directly to the regression

model. In this thesis, we �rst measure the bene�ts of using an unsupervised stage as an entry

process for fuzzy modeling.

Both fuzzy models and probability theory can represent and process uncertain data e¤ect-

ively [14]. The dynamics and uncertainty of the data set in many cases have probabilistic nature

[25]. The clustering methods discussed above partition the data directly by calculating Euc-

lidean distances. These clusters do not include the distribution properties of the input/output

data. They also do not scale well with large datasets due to the quadratic computational

complexity of calculating all the pair-wise distances [47]. The clustering methods based on

probability theory and statistical models are more powerful for big and uncertain data [24]. On

the other hand, we use a restricted Boltzmann machine (RBM) to obtain the hidden features of

the joint vectorial space of the input/output pairs. The data obtained from the RBM used for

clustering are in the form of probability distributions. The second contribution of this thesis is

that a probability based clustering method is proposed to extract fuzzy rules.

32

Including probability theory in fuzzy modeling can improve the stochastic modeling capab-

ility [30]. In [49], the probabilistic nature is added into the fuzzy relation between the input

space and the output space to handle the e¤ect of random noise and stochastic uncertainties.

[73] introduces a probability distribution in the consequent part of the fuzzy rules improving

the fuzzy classi�ers. In this thesis, we introduce a probability parameter in each fuzzy rule.

This idea comes from the Z-number [78], where a probability measure is included into the fuzzy

number to make the decision fruitful based on human knowledge. The third modi�cation pro-

posed in this work is that we apply probability parameters to classical fuzzy model and train

these parameters.

2.5.3 Deep conditional RBMs

The most popular deep learning models are the well known deep belief networks (DBN) [27],

convolutional neural networks (CNN) [43], and deep Boltzmann machines (DBM) [62]. By

using a deep structure, feature extraction, unsupervised learning, and probabilistic analysis,

these models successfully solve many problems in machine learning. Unlike a DBN whose top

two layers are restricted Boltzmann machines, a DBM uses a restricted Boltzmann machine in

its whole net, so the inference and training of a DBM are in both directions. These allow the

DBM to extract features from the ambiguous and complex input better than DBNs and CNNs.

However, the training of DBMs is more di¢ cult and slow than the one used by DBNs and CNNs

[61]

DBMs are generative energy based models. They learn the probability distribution of the

input data through the usage of latent or hidden variables. The latent variables capture features

of the data, which helps DBMs to obtain better representations of the empirical distribution.

A DBM can be used as a stand-alone classi�er, not only as feature extractor [40]. [44] shows

that with su¢ cient hidden nodes a DBM can approximate any marginal distribution with any

desired accuracy. A DBM is a very successful method for feature extractions from image and

text data. It is also an excellent pre-training tool to set the initial parameters for discriminative

models [23]. These two properties of DBMs have been widely used for solving classi�cation

problems in the past years [28].

DBMs as predictive models, are also applied for data regression and time series modeling [80].

The time series are the input to the DBM and the output of the DBM is the predicted values of

33

the time series. Since the hidden and visible units of the DBM are binary, the prediction results

for continuous values are not satis�ed [39]. [59] uses denoising autoencoders to pre-train the

model. The prediction results are better than no pre-training learning methods. However, [9]

points out that the denoising autoencoder may not improve prediction results if the time series

is not su¢ ciently large.

There are two correlation time series in system identi�cation, named input x and output

y: In the sense of probability theory, the objective of system identi�cation is to �nd the best

conditional probability distribution P (yjx) [51]. As shown in [27][5], a DBM can learn the

probability distribution among the input data, and obtain their hidden features. The time

series modeling only for output y does not give the dynamic properties between the input

x and the output y: Recent results show that deep learning techniques can be applied for

nonlinear system modeling by learning the probability distribution of the input space [22]. The

unsupervised learning is used to obtain the input features and send them to hidden layers. This

mechanism improves the corresponding input/output representation, i.e., the modeling accuracy

can be improved.

34

Chapter 3

Nonlinear system modeling and

randomized algorithms

Restricted Boltzmann machines are the main building block of deep architectures, they are

used as a pretraining stage of each hidden layer during the training of a MLP, however, they are

modeling architectures by themselves which encourage their usage along with other techniques

like randomized algorithms, fuzzy modeling or as stand alone structures. In this chapter, we

�rst introduce the reader to the randomized algorithms framework presenting the history behind

their emergence and the advantages they o¤er, then a formal de�nition of system identi�cation

and restricted Boltzmann machines is given. Finally, both algorithms are used together to create

a modeling environment that takes the best from the two paradigms.

3.1 A simple deep learning scheme for nonlinear system

identi�cation

As explained in previous sections, deep learning has many advantages over the algorithms that

perform on shallow architectures. In this section we present a simple approach that takes ad-

vantages of the pretraining stage in order to get a good model for nonlinear system identi�cation.

We use the ideas presented in [22] which serve as a starting point to understand how deep learn-

ing can be used. Consider the scheme shown in Figure 3-1, it represents the classical approach

to model a nonlinear system. The input is presented to both: the proposed model and the real

system in order to get their respective outputs. Once the outputs are calculated, the error is

35

Figure 3-1: Deep identi�cation structure

measured substracting both quantities; an estimate of the system performance is obtained using

the error information over several training examples. With the gathered information the model

parameters are updated to �t better on the data.

The approach presented in Figure 3-1 is not exclusive of deep architectures, it constitutes the

general approach that is used for almost every nonlinear systemmodel (support vector machines,

neural networks, state space models, ...). However, what makes deep learning di¤erent is the

presence of a pretraining stage, usually, the regression process consists on a supervised learning

method where the model parameters are chosen randomly at �rst, then the parameters are

updated following a learning rule that tries to minimize a cost function which depends on the

error obtained by the model. The approach taken in [22] di¤ers in the sense that it incorporates

two new stages as shown in Figure 3-2.

The system identi�cation algorithm is split into four stages: random hyperparameter se-

lection, pretraining stage, supervised stage and testing. A brief description of each stage is

given next, it is not given a formal de�nition as the purpose of this text is only to present the

framework in where this thesis was developed.

1. Hyperparameter selection: When a certain regression model is chosen to learn the behavior

of a system, a number of priors have to be assumed. In the case of a deep neural net-

work these priors are gathered in what is called the hyperparameter set, this set includes

parameters as:

(a) Number of layers.

(b) Number of neurons in each layer.

(c) Activation functions in each layer.

36

Figure 3-2: Flow of data of a deep training model

(d) Output function .

(e) Learning rates for pretraining and �ne tuning procedures.

(f) Number of epochs.

(g) Batch size (if stochastic gradient descent is applied).

(h) Early stopping threshold.

These parameters are usually chosen using the developer criteria as there are not analytical

methods to select the best ones. One simple approach is to prove all possible combinations

of hyperparameters using a grid search, this kind of approximation is an exhaustive one

because it takes into account every plausible value for each hyperparameter until it �nally

�nds the optimal hyperparameter set. Although the grid search �nds out the best solution,

it is intractable when the number of hyperparameters to choose is high as the addition of a

new hyperparameter increases exponentially the number of alternatives. To overcome this

bottle neck, [7] has shown that a random search can achieve the same performance while

37

only using some samples of the whole sampling space. Once a set of hyperparameters is

selected, the pretraining stage is implemented.

2. Pretraining stage. As it has been discussed, it consists on an unsupervised learning al-

gorithm that is greedily applied to each layer of the net. The goal of the pretraining

is to guide the weights to regions of the parameter space where they are more likely to

achieve a better local minimum during the supervised training. Usually the unsuper-

vised algorithm tries to train the layers as associative memories or encoders. The most

important algorithms are restricted Boltzmann machines and denoising autoencoders.

(a) Restricted Boltzmann machines: They are energy models that have an associated

energy measure that has to be decreased by the training process. Their structure is

divided in two: hidden units and visible units. Their architecture and functioning is

explained later in this thesis.

(b) Denoising autoencoders: They basically are one-layer neural networks whose output

is their input. They are trained to reconstruct a noisy input, historically they have

been used due to their simpler structure that constrasts with the probability scheme

presented by the RBMs, a simple utilization of this algorithm for system identi�cation

can be found in [22].

3. Supervised stage: After the pretraining stage is �nished and the initial weights are chosen,

a supervised criteria is applied over the training set. The stochastic gradient descent and

its variants are the most common methods to train deep neural models, in particular,

backpropagation is used to train them because it allows to transmit the gradient e¤ect

through the network layers. In addition, early stopping criteria is sometimes used to avoid

over�tting.

4. Testing: The �nal model is tested using a test dataset. The �nal performance of the model

is usually measured utilizing the average squared error.

The above four points constitute a traditional deep learning modeling structure which is

deeply analyzed in [22]. In this thesis we explore alternatives in the usage of deep learning

combining it with other algorithms taking the best from each one. In the next chapters, deep

38

learning has been used along randomized algorithms, fuzzy modeling and as a stand alone

procedure to identify nonlinear behaviors.

3.2 Nonlinear system identi�cation framework

Consider the following unknown discrete-time nonlinear system

�x(k + 1) = f [�x (k) ; u (k)] ; y(k) = g [�x (k)] (3.1)

where u (k) 2 <u is the input vector, �x (k) 2 <x is an internal state vector, and y (k) 2 <m is

the output vector. f and g are general nonlinear smooth functions f; g 2 C1. Denoting Y (k) =�
yT (k) ; yT (k + 1) ; � � � yT (k + n� 1)

�T
; U(k) =

�
uT (k) ; uT (k + 1) ; � � �uT (k + n� 2)

�T
; if @Y

@�x

is non-singular at �x = 0; U = 0; this leads to the following NARMA model

y(k) = � [x (k)] (3.2)

where

x (k) = [yT (k � 1) ; yT (k � 2) ; � � �uT (k) ; uT (k � 1) ; � � �]T

� (�) is an unknown nonlinear di¤erence equation representing the plant dynamics, u (k) and

y (k) are measurable scalar input and output. The nonlinear system (3.2) is a NARMA model.

We can also regard the input of the nonlinear system as x (k) = [x1 � � �xn]T 2 <n; and the

output as y(k) 2 <m

Now we use the MLP given by (2.8) to identify the unknown nonlinear system (3.2)

>From the Stone-Weierstrass theorem, if the number of nodes of a one hidden layer neural

network is large enough, the neural model can approximate the nonlinear function � to any

degree of accuracy for all x (k) : In this chapter, instead of increasing the number of nodes li of

the single hidden layer, we increase the layer number p. We use a deep structure, i.e., p � 2 (at

least 2 hidden layers); for the multilayer neural model (2.8), such that we can use some existing

deep learning techniques for system identi�cation.

The object of the neural identi�cation is to �nd a suitable structure (number of layers p;

number of nodes in each layer li), the weights W1 � � �Wp, and �; such that the neural identi�c-

39

Figure 3-3: Randomized algorithms with deep learning for nonlinear system identi�cation

ation error

e (k) = by (k)� y (k) (3.3)

is minimized.

The randomized algorithms [33] use random weights in the single hidden layer (they use

p = 1) to avoid the problems of many supervised learning procedures, such as gradient descent

and Hessian methods. In this chapter, we use the input data and an RBM as a unsupervised

learning method, i.e., deep learning, to solve the same problems of the neural modeling. We

will show that the randomized algorithm with a deep learning modi�cation can improve the

modeling accuracy e¤ectively. The neural modeling structure using randomized algorithms and

deep learning techniques is shown in Figure 3-3, where ' denotes the parameters of each layer

W and b. In the following sections, we will show how to use the restricted Boltzmann machines

to �nd the structure and the initial weights W1 � � �Wp with input data.

3.3

40

3.4 Restricted Boltzmann for system identi�cation

Having random weights in the hidden layers of a MLP can be useful because in this way, the

learning procedure can be focused in tuning the output layer. Nevertheless, random selection

may not be the best con�guration as shown in this chapter, we use the input x (k) in (2.8) to

construct better hidden weights.

The restricted Boltzmann machine (RBM) is a deep learning method [28], which trains the

weights under a probability distribution by using only the input dataset. The goal of an RBM

is to create a stochastic machine capable of reconstructing the input x from a distribution P (x),

which denotes the reconstruction probability of x. The RBM training process tries to maximize

P (x) along all training examples, this reconstruction algorithm can be applied to all hidden

layers of (2.8) in order to set good initial weights for the supervised training stage [28].

In this section, we present a formal de�nition for a restricted Boltzmann machine as an

energy based model. The training procedure which is an application of the stochastic gradient

descent algorithm is developed along with a modi�cation for the handling of non-binary inputs.

3.4.1 Standard RBMs and their training procedure

An RBM is an energy-based model, which is de�ned by a probability distribution. This prob-

ability distribution depends on the current con�guration (or energy) of the model. Consider

a training example x(k) (for simplicity denoted as x), the training goal is to maximize the

following probability function of the model,

P (x) =
X
h

P (x; h) =
X
h

e�E(x;h)

Z
(3.4)

where x is the input to the model, h is the hidden representation, Z is a partition function

de�ned as Z =
P

h

P
x e

�E(x;h); and P (x) is the probability distribution of x: E(x; h) is the

energy function which is de�ned by

E (x; h) = �cTx� bTh� hTWx (3.5)

In (3.4),
P

h and
P

x denote the sums of over all possible values of h and x . They are

tractable when the input and hidden spaces are discrete (or binary). In continuous spaces, the

41

summations become integrals that have to be evaluated. For identi�cation purposes, W and

b can be regarded as the weights and bias of some layer i in (2.8), and c is a bias vector of

appropriate dimension. In this way, x represents the input of layer i with size li�1; and h 2 <li

is the hidden representation. W is called the hidden layer weigths, b and c are called visible

and hidden bias respectively.

In order to maximize P (x) with respect to the weights, we have to rede�ne P (x): The

probability distribution of such a model is given by the following concept of free energy

z(x) = � log
X
h

e�E(x;h) (3.6)

With this de�nition, (3.4) becomes

P (x) =
e�z(x)

Z
; Z =

X
x

e�z(x) (3.7)

Let expand x as x = [x1 � � �xt � � �xli�1]T with t = 1; 2; :::; li�1 and h = [h1 � � �hs � � �hli]T with

s = 1; 2; :::; li. Substituting (3.5) into (3.6), the free energy becomes

z(x) = �cTx�
liX
s=1

log
X
hs

ehs(bs+Wsx) (3.8)

In (3.8), W has been divided as W =
�
WT
1 � � �WT

s � � �WT
li

�T
; s = 1; :::; li; where Ws are row

vectors of size li�1: In some simple cases, such as classi�cation and dimensionality reduction,

xt takes binary values, i.e., xt 2 f0; 1g ; and the binary hidden units are hs 2 f0; 1g : The

probabilistic version of the neural model becomes

P (hs = 1jx)s=1���li = � [Wsx+ bs]

P (xt = 1jh)t=1���li�1 = �
�
W T
t h+ ct

� (3.9)

where Wt is the t-th column of W and � is the sigmoid function �(x) = 1=(1 + e�x). Here the

hidden units and the visible units are conditionally independent. So the conditional probabilities

of them are
P (hjx) =

Q
s=1���li

P (hsjx)

P (xjh) =
Q

t=1���li�1
P (xtjh)

42

The free energy for binary visible and hidden units becomes

z(x) = �cTx�
liX
s=1

log
�
1 + e(bs+Wsx)

�
(3.10)

We introduce the learning rate �1 > 0: The weights and biases of RBM are updated using

the gradient descent algorithm which will minimize the function � logP (x),

� (k + 1) = � (k)� �1
@ � logP (x)

@� (k)
(3.11)

where � denotes the updated parameters, which can be Ws;t, bs or ct, t = 1; :::; li�1, s = 1; :::; li.

If we denote z as the reconstruction of x; z is sampled from the RBM,
P

z indicates a sum along

the entire sampling space of z. The log-likelihood gradient with respect to � is

@ logP (x)

@� (k)
=
X
z

P (z)
@z(z)
@� (k)

� @z(x)
@� (k)

In this section, we estimate
P

z P (z)
@z(z)
@�(k)

with a set S which includes s �nite samples [28]

among the probability distribution. Considering each sample with equal probability 1=s; we get

X
z

P (z)
@z(z)
@� (k)

t
1

s

X
z2S

@z(z)
@� (k)

Here the samples S are obtained with a Monte Carlo algorithm with contrastive divergence

[1]. The approximation capability is improved when the number of hidden units increases [23].

Figure 3-4 shows the �rst layer of a deep RBM based model. The transformation (3.9) is

repeated s times, which generates s samples for the learning process, see Figure 3-4.

A sample z from a training example x using a k�steps sampling process of the Monte Carlo

chain is obtained using Algorithm 4:

Algorithm 4

1. Calculate P (hjx) using the current W and b.

2. Sample h using the conditional distribution P (hjx):

3. Calculate P (xjh) using the current W and c.

43

1x

11 ,cW T

Model 1

2x

nx

1h

2h

1l
h

11,bW

Visible unit Hidden unit

Figure 3-4: Markov sampling in a restricted Boltzmann machine

4. Sample z using the conditional distribution P (xjh):

5. Repeat steps 1-4 k times using the new sample z obtained in step 4, and the the new x

in step 1. After k times, we get a sample z for the set S.

After s sampling processes, the samples S and the input x(k) are used to update the para-

meters W; b and c: Then a new training example x(k + 1) is presented to the model. One

training epoch consists of q examples:

For an RBM model we can calculate the hidden representation h(k) associated with the

input x(k). It is convenient to compute it as the conditional probabilities of the distribution

z(k). Similarly with a MLP model, the hidden representation of the Model 1 in Figure 3-4,

which is directly associated with the input x(k), is calculated by

h1 (k) = �1 [W1x (k) + b1]

This is the input of Model 2 in Figure 3-5.

3.4.2 Conditional probability transformation for non-binary values

For nonlinear system identi�cation, the visible units cannot be binary values, thus, the condi-

tional probability transformation cannot always be the form of (3.9). We consider three domains

for the input x (k): 1) interval [0;1); for unbounded positive inputs; 2) [0; 1]; for normalized

inputs; and 3)[��; �]; for bounded inputs.

1) The visible and hidden units are in the interval [0;1):

44

The conditional probability for the energy function of the model (3.4) is

P (xijh) =
e(W

T
t h+ct)xtR

xt
e(W

T
t h+ct)xtdxt

(3.12)

If xt (k) 2 (�1;1), the integral term has an algebraic form that does not converge. Let denote

at(h) =WT
t h+ ct (3.13)

where at is the term applied to the visible units, see Figure 3-4. If the terms xt (k) are non-

negative, xt (k) 2 [0;1); (3.12) becomes

P (xtjh) =
eatxtR1

0
eatxtdxt

=
eatxt

1
at
eatxtj10

(3.14)

(3.14) has �nite value if at (h) < 0; 8h. The conditional probability distribution is

P (xtjh) = �at (h) eat(h)xt > 0 (3.15)

The visible units which have a probability distribution as (3.15) are called exponential units.

In order to perform the sampling process, we need to calculate the cumulative probability

distribution PC(xtjh):

PC(xtjh) =
Z xt

0

P (xtjh)dxi =
Z xt

0

� ateatxtdxt = 1� eatxt (3.16)

So PC(xtjh) always increases. The sampling process is possible by using the inverse function of

cumulative probability P�1C ,

zt (k) =
ln (1� PC)

ai
(3.17)

If o (k) is a value from a sampling process on a uniform distribution, then we can associate

it with the cumulative density value PC . The value of the corresponding visible unit is

zt (k) =
ln (1� o (k))

at
(3.18)

45

The expected value according to the distribution P (xtjh) is

E[xt] =

Z 1

0

P (xtjh)xtdxt = �at
Z 1

0

eatxtxtdxt = �
1

at(h)
(3.19)

2) The visible and hidden units are in the interval [0; 1]

The positive range [0;1) is not needed most of the time as physical systems are always

constrained in some sense. We use a normalization method to force the input to �t in [0; 1]:

The probability distribution is also bounded. (3.12) is

P (xtjh) =
eatxtR 1

0
eatxtdxt

=
eatxt

1
at
eatxtj10

=
ate

atxt

eat � 1 (3.20)

To use the Gibbs sampling process, the conditional probability PC(xtjh) is computed

PC(xtjh) =
Z xt

0

P (xtjh)dxt =
at

eat � 1

Z xt

0

eatxtdxt =
eatxt � 1
eat � 1 (3.21)

This leads to

zt (k) =
log [1 + PC(e

at � 1)]
at

With a sample unit from the uniform distribution o (k), the new value zt (k) with respect to PC

is

zt (k) =
log [1 + o (k) (eat � 1)]

at
(3.22)

Finally the expected value of the distribution is calculated as

E[xt] =

Z 1

0

P (xtjh)xtdxt =
at

eat � 1

Z 1

0

eatxtxtdxt =
1

1� e�at �
1

at
(3.23)

3) The visible and hidden units are in the interval [��; �]

If the input set x (k) can be positive and negative, we de�ne the operating interval as [��; �]

for each visible unit. In this case the conditional probability is truncated exponential. (3.12)

transforms into

P (xtjh) =
eatxtR �

�� e
atxtdxt

=
eatxt

1
at
eatxtj���

=
ate

atxt

eat� � e�at� (3.24)

46

The cumulative probability distribution is

PC(xtjh) =
Z xt

��
P (xtjh)dxt =

at
eat� � e�at�

Z xt

��
eatxtdxt =

eatxt � e�at�
eat� � e�at� (3.25)

The sampling process that uses the inverse function of PC and o (k) in the uniform distribution

is

zt (k) =
log
�
e�at� + o (k)

�
eat� � e�at�

��
at

(3.26)

The expected value of this distribution is

E[xt] =

Z �

��
P (xtjh)xtdxt =

at
eat� � e�at�

Z �

��
eatxtxtdxt = �

eat� + e�at�

eat� � e�at� �
1

at
(3.27)

3.4.3 Deep identi�cation model

The unsupervised training for the deep RBM model is described in Algorithm 5:

Algorithm 5

1. The input and the hidden representation of the �rst model are x (k) 2 <n and h1 (k) 2 <l1 :

We use q data to train the weights of the �rst model W1 2 <l1�n; b1 2 <l1 ; and c1 2 <n:

2. After the �rst model is trained, their weights are �xed. The code or hidden representation

of the �rst model is computed with �xed weights to generate q examples, which are the

input of the second model.

3. The second model is trained using as input h1 (k) 2 <l1 and it generates the hidden

representation h2 (k) 2 <l2 ; which is the input of the third model:

4. Then we train the third model, we keep repeating the procedure until all p models are

trained. This training process is shown in Figure 3-5.

The RBM model in Figure 3-5 has a structure similar to that of the neural identi�cation

model (2.8). It uses input the x (k) to update the model, while the identi�cation model (2.8)

uses the output y (k) to train its weights.

Now, there are two options: 1) Consider the weightsW1 � � �Wp obtained from the pretraining

process as initial values, and use the supervised learning to train both hidden weightsW1 � � �Wp

47

11,bW
)(1 kh)(kx

)(1 kz11 ,cW T

() ()qbqW 11 ,
)(1 kh

22 ,bW
)(2 kh)(1 kh

)(2 kz

() ()qbqW 22 ,
)(2 kh

Model 1

Model 2

Model p

)(),(11 qcqW T

)(),(22 qcqW T

22 ,cW T

Figure 3-5: Deep RBM Model

and the output weight �; or 2) Use randomized algorithms to keep W1 � � �Wp unchanged, and

only train the output weight �:

For the �rst choice, we use the following square error

 (k) = ky (k)� ŷ (k)k2 (3.28)

where y (k) is the output of the unknown plant (3.2), ŷ (k) is the output of the neural model

(2.8). The weights Wi and � are updated by

Wi (k + 1) = Wi (k)� �2
@
 (k)

@Wi (k)
; i = 1 � � � p (3.29)

where �2 > 0 is the learning rate of the supervised learning, k = 1; 2 � � � q; q is the number

of training examples, Wi(0) = Wi (q) ; Wi (q) are the �nal trained weights of the unsupervised

stage model.

By the studies of [33] and [63], if the Moore-Penrose inverse is applied into the output layer,

a training procedure in the hidden layers may worsen the modeling results by some supervised

learning problems. Problems as over�tting and shadowing may also appear.

48

Noise (or disturbance) is an important issue in the system identi�cation context, an external

disturbance can be regarded as measurement noise or/and input noise. Within the deep learning

environment, the input noises are included feedforward through each layer while the output noise

(measurement noise) is enlarged due to the backpropagation of the identi�cation error. This

also a¤ects the modeling accuracy.

In this chapter, we use the second choice, the weights of the hidden layers W1 � � �Wp are not

changed after they have been pretrained. Only the weights � in the output layer are trained by

the randomized algorithm as in [33].

3.5 Randomized algorithms for nonlinear system identi-

�cation

We rewrite the neural model (2.8) as the following form

by (k) = �� (k) (3.30)

where � (k) = �p
�
Wp�p�1 [: : :W3�2 fW2�1 [W1x (k) + b1] + b2g+ b3 : : :+ bp�1] + bp

	
: � (k) has

been determined by RBMs. (3.30) is a linear-in-parameters system in the form of y = Ax: Here

A may be singular and/or be not square, the solution x can be solved by the Moore-Penrose

generalized inverse, which is de�ned as follows.

De�nition 6 The matrix A+ 2 <n�m is the Moore-Penrose generalized inverse of A 2 <m�n if

AA+A = A; A+AA+ = A+;
�
AA+

�T
= AA+;

�
A+A

�T
= A+A (3.31)

In particular, when A has full column rank,

A+ =
�
ATA

��1
AT (3.32)

When A has full row rank

A+ = AT
�
AAT

��1
(3.33)

49

De�nition 7 x0 2 <n is said to be a minimum norm least-squares solution of the linear system

y = Ax if

kx0k � kxk ; 8x 2 fx : kAx� yk � kAz � yk ;8z 2 <ng (3.34)

where y 2 <m:

For a linear system y = Ax, x0 is a least-squares solution if

kAx0 � yk = min
x
kAx� yk (3.35)

where k�k is a norm in Euclidean space. If By is a minimum norm least-squares solution of

the linear system y = Ax; then it is necessary and su¢ cient that B = A+. Here A+ is the

Moore-Penrose generalized inverse of matrix A, which is de�ned in (3.31).

For our identi�cation model, Wi and bi in � (k) are �xed. The goal of the training algorithm

is to �nd � such that the following cost function is minimized

J =
X
k

ky (k)� by (k)k2 (3.36)

The training data are y (k) and � (k), k = 1; 2 � � � q, q is the total training data number. In the

best case, J = 0, then by (k) = y (k) = �� (k) for all k: Considering the entire training set,

Ŷ =
h
ŷ (1) ŷ (2) � � � ŷ (q)

i
=
h
�� (1) �� (2) � � � �� (q)

i
= �	 (3.37)

where 	 = [� (1) ;� (2) ; � � � ;� (q)] : Or in another form:

Y =
h
y (1) y (2) � � � y (q)

i
=
h
�� (1) + e(1) �� (2) + e(2) � � � �� (q) + e(q)

i
Y = �	+ E (3.38)

where e (k) is the modeling error e(k) = y (k)�by (k), and E = [e (1) ; e (2) ; � � � ; e (q)] : To obtain
min
�
J; we need @J

@�
= 0: From (3.33)

�� = Y	T
�
		T

��1
= Y	+ (3.39)

So �� can minimize the index J in (3.36).

50

Since �� is one of the least-squares solutions of the system Y = �	 + E, it reaches the

smallest approximation error on the training dataset, and it is unique. The solution �� has

the smallest norm for a least-squares solution of Y = �	: [63] shows that for feedforward

networks, small norm of the weights is more important than the number of nodes to obtain

small generalization error. Since the norms of the hidden weights which are generated by deep

learning are small [4], the combination of deep learning and least-squares can provide good

generalization performance.

The �nal training procedure follow Algorithm 8:

Algorithm 8

1. Construct a deep neural model (2.8) with p � 2:

2. Use the input data and the deep learning algorithm to train the hidden weights W1 � � �Wp

3. Calculate the output weight �� in (3.39) with 	 in (3.37)

In order to obtain good approximation capability, the distributions of the random hidden

weights and biases should be de�ned in advance [33]. Arbitrary assignment of the hidden

weights may lead to poor performances. The deep learning technique discussed in this thesis

can be regarded as an alternative method to �nd the distributions of the hidden weights of the

randomized algorithm. The restricted Boltzmann machines (RBM) for random hidden weights

works as Algorithm 9:

Algorithm 9

1. The hidden weights are randomly assigned in [�1; 1] :

2. An RBM is applied to learn the probability distribution of the input P (x) : This inform-

ation is sent to the hidden layers.

3. The visible units of RBM are encoded into three types: [0; 1] ; [0;1); and [�d; d] ; d 6= 1:

4. The conditional distribution of the hidden weights and biases are updated by Monte Carlos

algorithm.

51

The deep learning technique provides a possible selection manner of hidden weights for

randomized algorithms with the distribution of the input data. After the RBM pre-training,

the hidden weights are not longer in [�1; 1] : The examples in the next section show how the

hidden weights are expanded from [�1; 1] by di¤erent input distributions, and the identi�cation

errors are in�uenced by these areas.

3.6 Simulations and comparisons

In this section, we use three benchmark examples to show the e¤ectiveness of the combination

of deep learning techniques and randomized algorithms for nonlinear system identi�cation.

3.6.1 Gas furnace data

The gas furnace dataset is a commonly used benchmark [10]. The input u (k) is the �ow rate of

the methane gas, while the output y (k) is the concentration of CO2 in the gas mixture under

a steady air supply. The dataset has 296 samples at a �xed interval of 9 seconds. [10] used a

time-series based approach to develop a linear model while [67] and [75] used this dataset to

evaluate their fuzzy modeling methods.

In this example, we use the same data structure as [67][75], the recursive input data for

the model is X(k) = [y(k � 1); � � � y(k � 4); u(k); � � �u(k � 5)]T ; the model output is ŷ(k): 200

samples are applied for training. In order to use a restricted Boltzmann machine, the training

values of X(k) and y are normalized to match the conditions of (3.40). The gas furnace dataset

has the form of (3.2) with n = 10; m = 1:

We use three types of restricted Boltzmann machine. The input x (k) data are encoded

into: 1) binary input (DN_BI); 2) in the interval [0; 1] (DN_NO); 3) in the interval [�1; 1]

(DN_NE). For the interval [0; 1]; x(k) is normalized as

x (k) =
X (k)�mink fX (k)g

max fX (k)g �mink fX (k)g
(3.40)

We use 200 data to train the deep learning model. The structure parameters of the neural

model, layer number p and node number of each layer li (i = 1 � � � p), are obtained by the

random search method [7]. The results have shown that choosing 2 hidden layers (p = 2) and

52

li = 20 (i = 1; 2), the model has an optimal con�guration. The training rate for the restricted

Boltzmann machine in (3.11) is �1 = 0:1: The initial hidden weights of the restricted Boltzmann

machine are selected in [�1;+1] randomly. Table 3.1 shows how the restricted Boltzmann

machines change the distributions of the hidden weights from [�1; 1] to the other zones.

We de�ne the squared error as

E =
1

N
�Nk=1e

2(k); N = 1 � � � 96 (3.41)

The testing squared errors and the hidden weight distributions of the four models are shown in

Table 3.1. 200 samples are used for training; li = 20; and N = 96 in (3.41).

Table 3.1: Testing results of deep learning with pseudoinverse (gas furnace)
DN_BI DN_NO DN_NE Random

Testing squared errors (�10�4) 3:217 16:573 0:778 133:318
Hidden weight distributions [�0:493; 0:951] [�1:21; 0:61] [�0:316; 2:279] [�1; 1]

For this particular model, the deep learning modi�cation decreases the modeling error almost

100 times by changing the hidden weight distributions from [�1; 1] to [�0:316; 2:279], here the

input data are encoded in the interval [�1; 1] (DN_NE).

The next experiment is to �nd general performance with respect to the change of the number

of hidden neurons li in (2.8). The training data size is 200; the testing data size is 96: The testing

results are shown in Figure 3-6. Both, randomized algorithm with deep learning modi�cation

and normal randomized algorithm improve the identi�cation accuracy when the hidden node

number is less than 25: Figure 3-6 shows that the randomized algorithm has a worst performance

when the hidden node number is between 25 and 30; while the three deep learning methods have

better performances when the hidden node number increases. When the input data are in the

interval [0; 1] (DN_NO), the deep leaning technique cannot improve the randomized algorithm

e¤ectively with a small hidden node number (less than 10). So the [0; 1] encode method is

not suitable for nonlinear system identi�cation. However, when the input data are encoded as

binary (DN_BI) or in the interval [�1; 1] (DN_NE), deep learning can improve the randomized

algorithm dramatically. As [28] states, RBM increases the likelihood of the output weights by

using the input data.

The last experiment shows the relation of the training data number and the modeling error.

53

15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10
x 10­3

Hidden layer number

S
qu

ar
ed

 e
rro

r

DN_BI
DN_NO
DN_NE
Random

Figure 3-6: Testing errors vs hidden neuron number (gas furnace)

The hidden node number is �xed as li = 20: The training data size is changed from 50 to

250: The simulation results are shown Figure 3-7. The deep learning modi�cations have better

testing results, while the best one is DN_NE. This experiment shows the feature extraction

capability of deep learning.

This improvement is more clear when the hidden node number li is increased. Even the

[0; 1] code (DN_NO) is better than the normal randomized algorithm. We can conclude that

the pre-training stage is very e¤ective for nonlinear system identi�cation.

3.6.2 First order nonlinear system

This benchmark example was proposed in [56]. It is a simple nonlinear system,

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (3.42)

where u(k) is a periodic input, which has di¤erent form in the training and the testing processes

u(k) = A sin

�
�k

50

�
+B sin

�
�k

20

�
(3.43)

In the training stage, A = B = 1: In the testing stage, A = 0:9; B = 1:1:

54

60 80 100 120 140 160 180 200 220 240
0

0.005

0.01

0.015

0.02

0.025

Number of training examples

S
qu

ar
ed

 e
rro

r

DN_BI
DN_NO
DN_NE
Random

Figure 3-7: Testing squared errors vs training data number (gas furnace)

The unknown nonlinear system (3.42) has the form of (3.2). �x (k) = [y(k); u (k)]T ; n = 2;

m = 1: The values of x and y are normalized to match the conditions of the restricted Boltzmann

machine (3.40). The deep learning model is shown in Figure 3-5 and (2.8). Here we use two

hidden layers p = 2: Similar with the gas furnace, we also use three types of encode methods

for input data: DN_BI, DN_NO and DN_NE.

Similar with the above example, the initial hidden weights of the restricted Boltzmann

machine are selected in [�1;+1] randomly. Table 3.2 shows the testing squared errors and the

hidden weight distributions of these models. Here the training data are 120 examples and the

hidden node number is li = 15:

Table 3.2: Testing results of deep learning with pseudoinverse (�rst order nonlinear system)
DN_BI DN_NO DN_NE Random

Testing squared errors (�10�3) 8:9 10:5 9:7 12:4
Hidden weight distributions [�0:369; 0:453] [�1:387; 2:295] [�0:137; 1:354] [�1; 1]

For this example we have the same conclusion as the gas furnace dataset. However, the

binary encode method (DN_BI) for the input data is the best.

Then, we show the e¤ectiveness of the hidden neuron number. They are drawn from the

55

10 12 14 16 18 20 22 24 26 28 30
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Hidden layer number

S
qu

ar
ed

 e
rro

r

DN_BI
DN_NO
DN_NE
Random

Figure 3-8: Testing errors vs hidden neuron number (�rst-order system)

interval 10 � li � 30: We use 80 data (q = 80) for training, and 100 samples (N = 100)

for testing. The squared errors de�ned as (3.41) are shown in Figure 3-8. When the hidden

nodes increase, the modeling errors become smaller, because the deep learning needs su¢ cient

parameters to learn the probability distribution of the input. We can see that all encode methods

of the deep learning modi�cation are better than normal randomized algorithm (Random) for

this example. This can be explained that the deep learning can guide the weights of the hidden

layers into better regions of the parameter space with input data.

Finally, we use experiments to show the in�uence of the number of training examples. The

number of training data is drawn from 80 to 200: The hidden node numbers are �xed in li = 15;

i = 1; 2: Figure 3-9 shows the squared modelling error. We see that when the training data

number is near 160; the normal randomized algorithm (Random) is better than the deep learning

modi�cation, because the self nature of the random selection can obtain good initial weights in

some cases. Otherwise, the deep learning modi�cation improves identi�cation accuracy because

it forces the neural model to a better parameter space region, and extracts enough features from

the input.

56

80 90 100 110 120 130 140 150 160 170 180

0.005

0.01

0.015

0.02

Number of training examples

S
qu

ar
ed

 e
rro

r

DN_BI
DN_NO
DN_NE
Random

Figure 3-9: Squared errors vs training examples (�rst-order system)

3.6.3 Wiener-Hammerstein benchmark

A Wiener-Hammerstein system is a series connection of three parts: a linear system, a static

nonlinearity and another linear system. The data of the Wiener-Hammerstein benchmark is

generated from an electrical circuit which consists on three cascade blocks [64]. There is not

direct measurement of the static nonlinearity, because it is located between two unknown linear

dynamic systems.

The benchmark dataset consists of 188; 000 input/output pairs. This dataset is divided in

two parts [29]: 100; 000 sample pairs are for the training stage and 88; 000 samples are for

testing. Let u(k) be the input and y (k) be the output. We de�ne the recursive input vector

to the model as X(k) = [y(k � 1) � � � y(k � 4) u(k) � � �u(k � 5)]T : So the Wiener-Hammerstein

benchmark is

y (k) = f [y(k � 1) � � � y(k � 4) u(k) � � �u(k � 5)] (3.44)

Similar to the above two examples, X(k) and y (k) are also normalized as (3.40).

In this example, the deep learning modi�cation has the same structure as normal randomized

algorithms, i.e., both of them have one hidden layer. We �rst test how the hidden node number

a¤ects the modeling error. The hidden node number l1 is chosen from 100 to 500:

57

In this example, the input x (k) data are coded into: 1) binary input (DN_BI); 2) in the

interval [0; 1] (DN_NO). The interval [�1; 1] (DN_NE) for input data does not work well and is

not reported. Table 3.3 shows the testing squared errors and the hidden weight distributions of

these three models. Here, the training data are 50; 000 and the hidden node number is li = 500:

Table 3.3: Testing results of deep learning with pseudoinverse (Wiener-Hammerstein bench-
mark)

DN_BI DN_NO Random
Testing squared errors (�10�3) 2:639 2:819 2:724
Hidden weight distributions [�0:639; 0:621] [�0:071; 0:003] [�1; 1]

We can see that the normal randomized algorithm (Random) is better in generalization

results than the input encode method (DN_NO). For this example, the deep learning does not

improve modeling accuracy with a good margin. It seems that the hidden weight distribution

[�1; 1] is suitable for the Wiener-Hammerstein benchmark problem.

The binary encode (DN_BI) has good modeling performance for this benchmark. Figure 3-

10 gives the comparison results of the binary encoding (DN_BI) and the randomized algorithm.

When the hidden nodes are chosen from 100 to 200; both models perform well for the Wiener-

Hammerstein benchmark. After that, the deep learning modi�cation is better because it needs

more parameters to learn the probability distribution of the input. When the hidden nodes are

400; the deep learning modi�cation becomes worse, this indicates that an over�tting problem

of the neural model is happening.

Then we show how the number of training samples in�uences the modeling errors. The

training examples are chosen between 10; 000 and 100; 000: The hidden nodes are �xed in 500:

The squared modeling errors with respect to di¤erent training examples are shown in Figure

3-11. We can see that the errors decrease when the number of training examples increases for

both methods. In the most cases, the deep learning modi�cation is better.

Finally we compare these methods with a support vector machine (SVM) [21] and multilayer

perceptrons with gradient learning algorithm (MLP) [56]. We use three types of kernels for

SVMs: linear kernel (SVM-L), polynomial kernel (SVM-P), and radial basis function (SVM-R).

In order to work well, the input recursive vector is modi�ed as X(k) = [y(k � 1) � � � y(k � 10)

u(k) � � �u(k � 5)]T : The squared modeling errors are shown in Table 3.4.

58

Table 3.4: Comparison of MSE error with di¤erent learning techniques over the W-H
benchmark(�10�3)

MLP SVM-L SVM-P SVM-R DN_BI Random
56:03 43:01 6:01 4:71 2:65 2:82

100 150 200 250 300 350 400 450 500
2.58

2.6

2.62

2.64

2.66

2.68

2.7

2.72

2.74
x 10­3

Hidden layer number

Sq
ua

red
 er

ror
DN_BI
Random

Figure 3-10: Binary encode (DN_BI) deep learning modi�cation and the normal randomized
algorithm. (W-H)

Compared with MLPs and SVMs, the normal randomized algorithm (Random) is much

better for this benchmark, and deep learning can improve the modeling accuracy further.

3.6.4 Computational complexity

The above three examples show that the identi�cation accuracy increases with more hidden

nodes and training examples. However, these also increases the training time of the neural

models. Obviously, the computational complexity increases with the deep learning modi�ca-

tions, especially for online applications.

Both, random algorithms and deep learning techniques are batch processes. They cannot

be applied for online updating for every input/output. Figure 3-12 shows the training time of

the gas furnace for di¤erent hidden nodes. Here DNN is the total training time, DNN=RBM

pretraining+Pseudoinverse. The training time of the deep learning modi�cation (RBM pre-

training) is signi�cantly higher than the randomized algorithm (Pseudoinverse). One reason is

59

1 2 3 4 5 6 7 8 9 10

x 104

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4
x 10­3

Number of training examples

Sq
ua

red
 er

ror

DN_BI
Random

Figure 3-11: Squared modeling errors vs training examples (W-H)

that the input data are have higher dimensionality than the output, and RBM pretraining only

uses input data. The training time is also a¤ected by the other pre-training parameters, such

as the number of epochs, learning rate, and stopping criterion.

For the second example, we obtain similar results, see Figure 3-13. Here the hidden layer

number is p = 2. The pre-training time is similar as the one used in the Example 1, because

the training number is similar. The computational time of DNN does not increase, because the

size of the weight matrix � is the same.

For Example 3, the deep model just has one hidden layer p = 1: So the structure of the deep

learning modi�cation is the same as the randomized algorithm. The training time is shown

in Figure 3-14. We need more training time for this Wiener-Hammerstein model, because

the training dataset has 50; 000 examples. When there are not many hidden nodes (less than

400), the training time of the deep learning modi�cation does not increase, while the modeling

accuracy is improved signi�cantly.

>From the above three experiments, we see that the training time of the deep learning

modi�cation does not increase drastically for the randomized algorithm. Although adding the

pre-training stage in the randomized algorithm increases computational complexity, the identi-

�cation accuracy is improved, and the testing time for all methods is almost the same.

60

10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

Hidden nodes per layer

Ti
m

e
(s

ec
on

ds
)

RBM Pretraining
Pseudoinverse
DNN

Figure 3-12: Training times for the gas furnace dataset with number of training examples
q = 150

12 14 16 18 20 22 24 26
0

0.005

0.01

0.015

0.02

0.025

0.03

Hidden nodes per layer

Ti
m

e
(s

ec
on

ds
)

RBM Pretraining
Pseudoinverse
DNN

Figure 3-13: Training times for the �rst order system with number of training examples q = 180

61

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

Hidden nodes per layer

Ti
m

e
(s

ec
on

ds
)

RBM Pretraining
Pseudoinverse
DNN

Figure 3-14: Training times for the W-H dataset with number of training examples q = 50; 000

62

Chapter 4

Nonlinear system modeling with deep

learning and probabilistic fuzzy rules

In chapter 3, we have shown the e¤ectiveness of deep learning when used with other methods

for nonlinear system identi�cation. The improvements can be explained analyzing the e¤ects

that the pretraining stage has over the identi�cation model. These e¤ects can be surveyed as:

1. RBMs guide the model parameters to regions of the con�guration space where the model

is more likely to reach a good local minimum.

2. The pretraining stage takes advantage of the statistical information that is hidden in the

training data, it modi�es the weights of the model to learn this variational features.

3. Unsupervised learning acts as a preprocessing stage where the training data is transformed

into an encoded representation (in the case of an RBM this code corresponds to the hidden

units). This code can be used by the output layer in the sense that it contains features of

the input data that can be easily interpreted by a learning system.

The third e¤ect is specially observed if we think about 	 in (3.38) as a vector that contains

features that the hidden layers have extracted from the input data. In this sense, deep learning

helps to get meaningful features from the training dataset that can be used during the �ne

tuning stage. The success of the deep learning algorithms has been reported in Chapter 3 where

the pretrained models surpassed the non-pretrained ones when both of them used as �nal layer

a linear model which was solved �nding the least square solution.

63

After RBMs have proved to be helpful in the identi�cation framework, we explore, in this

chapter, the consequences of having the data pretraining stage when using other identi�cation

algorithms such as fuzzy logic.

In order to use RBMs along with fuzzy rules we need to calculate the consequent part of the

fuzzy model (the output weights). We simply apply the pseudoinverse calculation exposed in

Section 3.5. In order to accomplish that, we consider the probability distributions computed by

the RBMs as the hidden weights of a randomized model (the premise part of the fuzzy rules).

In this sense, we interpret the fuzzy modeling as a randomized algorithm where the techniques

used to train the second can also be implemented. Finally, we use an optimization method

to reach maximum probability measures in each fuzzy rule. The proposed data-driven fuzzy

modeling process is shown in Figure 4-1.

Nonlinear System

System structure
Structure
identification

Parameters
identification

Restricted Boltzmann machines

()ku ()ky

1++= yu nnn

() () () ()yu nkykynkuku −−− ,...1,...,...

() ()khkh m,...1

Probability based clustering

Fuzzy rules with probability (A,B,P)

Randomized algorithmProbability function training

()ky()kŷ()kΦ

Fuzzy model

()kΦ

P j
iA

µ jB
µ

K

Figure 4-1: Data-driven fuzzy modeling

4.1 Data-driven deep fuzzy identi�cation

In this chapter we aim again to identify a similar plant than the one described in (3.2). This

plant can describe a wide family of discrete nonlinear systems whose behavior depends on

previous states of their output. In this case we explicitly indicate the form of the input vector

64

in (4.1).

x (k) = [y (k � 1) ; y (k � 2) ; � � � y (k � ny) ; u (k) ; u (k � 1) ; � � �u (k � nu)]T (4.1)

where u (k) and y (k) are the measurable scalar input and output of the nonlinear plant, ny and

nu correspond to the system order (or delays), x (k) 2 <n can be regarded as a new input to

the nonlinear function f (�) ; with n = ny + nu + 1:

The objective of the fuzzy modeling is to use the input and output data set [y (k) ;x (k)] (or

[y (k) ; u (k)]) of the nonlinear system (3.2), and construct a fuzzy model

ŷ(k) = Ffuzz [x (k) ; k]

such that ŷ(k)! y(k); here ŷ(k) is the output of the fuzzy model Ffuzz [�] :

This data-driven modeling scheme needs two basic processes: structure identi�cation and

parameter identi�cation. The structure identi�cation consists in partitioning the input and

output data of the nonlinear system and extract fuzzy rules.

As shown in Chapter 3, an RBM can learn the probability distribution among the input data,

and obtain their hidden features which dramatically improves the performance of a regression

model.

In this chapter of the thesis, we �rst use an RBM to transfer the input data to their feature

space, and obtain the hidden features of the input. The RBM transformation allows us to model

the system in the probability theory frame, such that the model is not sensitive to the noises

and disturbances.

4.2 Hidden feature learning with restricted Boltzmann

machines

Consider an RBM as presented in Section 3.4. The input data of the RBM is x (k) = [x1 � � �xn]

and the hidden output of the RBM is �h =
�
�h1 � � � �hm

�
: In this chapter we consider a stand-alone

RBM instead of a cascade (as proposed previously) where n is the dimension of the input and

m is the dimension of the hidden layer. If t = 1; :::;m and s = 1; :::; n; the t � th hidden node

and the s� th visible node are sampled using the conditional distribution given by (3.9).

65

It is observed that we have changed the variable h into �h: This modi�cation was made

in order to allow us to use h to represent another aspect of the RBM. Then, we de�ne the

probability vector h as

h =
�
p
�
�h1 = 1 j x

�
� � � p

�
�hm = 1 j x

��
= [h1 � � �hm]

In this sense, we are considering the probability measures as the new output of the model, this

is done because the sampling process takes away meaningful data from the probability vector,

thus, instead of taking an already decided vector, we use the vector from where it was drawn

from. The standard RBM model requires that both �hs and xt to be binary values but, for

nonlinear system identi�cation, the visible units x cannot be binary values. The solution that

we used to overcome this problem is presented as follows:

Consider the RBM parameters gathered as � = [V; b; c] where V is the weight matrix between

the input and hidden layers, b is the bias that interacts with the raw input and c is the hidden

bias that works to sample new visible vectors from the learned distribution.

We have said that nonlinear system identi�cation demands that the RBM is capable of

dealing with continuous valued input. Following that thinking, we use the modi�ed RBM

whose conditional probability distribution PC(xtjh) is given by (3.20) which makes the strong

assumption that x is normalized.

When xt 2 [0; 1]; from (3.21), the probability distribution with at = V T
t h+ ct is,

P (xtj�h) =
ate

atxt

eat � 1 (4.2)

And from (3.21) the cumulative conditional probability from where a sampling process can be

made is computed by

PC(xtj�h) =
eatxt � 1
eat � 1 (4.3)

We use the data set, x (k) 2 D1 (training set); k = 1 � � �M; to train the RBM. The training

procedure obeys the same steps given by Algorithm 4 and the gradient descent minimization in

(3.11).

After the RBM is trained, the parameters � are �xed. Then we use another data set,

x (k) 2 D2, k = 1 � � � q; to compute the data-driven fuzzy modeling where q is the number of

training examples. Now the RBM transforms the input data into their hidden feature space.

66

It is a common practice that the dataset D1 and D2 are the same as they share the same

statistical properties, this is done in order to take full advantage of the deep learning encoding

that the RBM is performing. Nevertheless, this practice (although it seems to be convenient)

have some �aws because of the lack of representativeness that the datasets present when they

try to provide the model with su¢ cient statistical information.

Once the RBM has been trained we perform a probabilistic clustering method Because the

features of the input data are in the form of probability distributions, we use the following

probability based clustering method to obtain the fuzzy rules.

4.3 Probability based clustering

The input data x (k) 2 D2 are mapped to the hidden features H = fh(k)gqk=1 by the trained

RBM. We assume that each sample h(k) belongs to a speci�c cluster whose labels are given

by L = fl(k)gqk=1, l(k) 2 f1; :::; Kg; where K is the number of clusters. The object of the

probability based clustering is to �nd the correlation between the input instances and their

respective cluster parameters. The higher correlation between an instance and a cluster, the

more possible it will be assigned to that cluster. We use the following objective function, which

is similar as [24],

P (L; f�jgKj=1jH) _ p(L)

"
NY
k=1

p(h(k)j�l(k))
#

KY
j=1

p(�j) (4.4)

where p(L) is the marginal clustering distribution probability, �j are the clustering model para-

meters, p(h(k)j�l(k)) is the likelihood of the hidden code h(k); �l(k) is the cluster parameter;

p(�j) is the Gaussian prior for all �j with j = 1:::K:

The parameters f�jgKj=1 are estimated by the following Gibbs sampling with respect to the

label l(k) and hidden feature h(k): Given the set of codes H = fh(k)gqk=1 and its cluster labels

L; the Gibbs sampling allow us to obtain samples from the conditional probability distribution

while keeping other variables �xed. So for each label l(k), the conditional posterior is

p
�
l(k) = jjl(�k);h(k); f�jgKj=1; �; ; �

�
_ p [l(k) = jjl(�k); �;] p [h(k)j�j] (4.5)

where l(�k) denotes all other indices but k:

p [l(k) = jjl(�k); �] is determined by a Chinese restaurant process with concentration para-

67

meter � and discount parameter . The probability of each cluster given by the Chinese

restaurant process is calculated as follows: suppose that we have K di¤erent clusters at time

k + 1, then h(k) would be assigned at an empty new cluster GK+1 with probability
 +K�
k+

. For

an existing cluster Gj with nj existing elements, the probability is
nj��
k+

:

p(h(k)j�j) is the likelihood of the current instance k and h(k) in its cluster. It is directly

proportional to the correlation between h(k) and �j. It can be calculated as h(k)T �j: Taking

into account a weight penalization � k�jk2, it can also be calculated as

p(h(k)j�j) _ exp(h(k)T �j � � k�jk2) (4.6)

where � is a penalization constant to control the weights size, � k�jk2 represents the maximum

margin to separate clusters [24].

(4.6) is regarded as a set of exponential functions, which have similar statistical properties.

Substituting the assumption (4.5) into (4.6),

p
�
l(k) = jjl(�k);h(k); f�jgKj=1; �; �

�
_ p [l(k) = jjl(�k); �] exp(h(k)T �j � � k�jk2) (4.7)

A larger correlation between h(k) and �j indicates a higher probability that h(k) belongs to

cluster Gj. If the probability is less than a probability threshold, a new virtual cluster GK+1

with random parameters �K+1 is generated, K = K + 1:

h(k) is assigned into this new cluster. The probability of a new cluster is calculated by

the Chinese restaurant process. The correlation is calculated by (4.7): �K+1 is drawn from a

multi-variate t-distribution. So the clustering object is to maximize (4.4) as

max

(
p(L)

"
NY
k=1

p(h(k)j�l(k))
#

KY
j=1

p(�j)

)
(4.8)

The probabilities p(�j) are calculated by the following maximum margin learning rule. The

maximum margin learning rule uses the passive aggressive algorithm (PA) to update the cluster

parameters [18]. At time k; the label l(k) is determined by the Gibbs sampling process described

in (4.7).

We concatenate the cluster parameters f�jgKj=1 as a vector � = [�1; :::; �K]; or �l(k) = �l(k).

If we de�ne the concatenating vector � [h(k); l(k)] where the l(k)� th element is set to be h(k);

68

while the others are set to be vectors 0 we calculate at time k the margin vector �(k) as:

M [�(k); (h(k); l(k))] = �(t) � � [h(k); l(k)]��(k) � �
h
h(k);bl(k)i (4.9)

where bl(k) is the prediction label from the model and h(k),

bl(k) = argmax
j
h(k)T �j (4.10)

The updating process is designed to optimize the following objective function

�(k + 1) = argmin�
1
2
k���(k)k2 + C�

Subject to: l2 [�; (h(k); l(k))] � �
(4.11)

where C > 0 is a penalty constant, � is the threshold of the hinge-loss function, l2 [�] is the

hinge-loss function de�ned by

l2 [�(k); (h(k); l(k))] =

8<: 0 if M [�(k); (h(k); l(k))] � 1

1�M [�(k); (h(k); l(k))] otherwise
(4.12)

where M [�] is the margin function (4.9):

Using the passive aggressive algorithm [18], the parameters are updated as

�l(k)(k + 1) = �l(k)(k) + �(k)h(k)

�
bl(k)(k + 1) = �bl(k)(k)� �(k)h(k) (4.13)

where �(k) = minfC; hl[�(k);(h(k);l(k))]kh(k)k2 g.

For each iteration k, �k is estimated by (4.13), (4.12), and (4.9), such that the maximum

margin increases. This probability based clustering is similar to the nonparametric maximum

margin clustering [24]. However, the goal in this thesis is to identify a nonlinear system which

leads to a time series clustering algorithm that can be applied on-line.

69

4.4 Fuzzy rules extraction with probability theory

After the training set D2 has been divided, we have K di¤erent clusters Gj; j = 1 � � �K: We

assign one fuzzy rule for each cluster Gj as

Rj: IF h1 (k) is A
j
1 and h2 (k) is A

j
2 and � � � hm (k) is Ajm THEN y (k) is Bj (4.14)

where Aj1 ; � � �Ajm and Bj are standard fuzzy sets, they are represented by the following Gaussian

membership functions

�Ajs [hs (k)] = exp

� [hs (k)� cjs]

2

�2js

!
(4.15)

where k = 1 � � � q; s = 1 � � �m; j = 1 � � �K:

By using product inference, center-average and singleton fuzzi�er, the output of the fuzzy

system is expressed as [74]

ŷ (k) =

KX
j=1

wj

"
mY
s=1

�Ajs

#!
=

KX
j=1

"
mY
s=1

�Ajs

#!
(4.16)

where wj is the point at which �Bj = 1. If we de�ne �j =
mQ
s=1

�Aji
=

KP
j=1

mQ
s=1

�Ajs ; (4.16) can be

expressed in matrix form

ŷ (k) =W (k) � [h (k)] (4.17)

with parametersW (k) = [w1 � � �wK] and data vector � [h (k)] = [�1 � � ��K]
T :

From the restricted Boltzmann machine, we obtain the hidden features hs (k) and their

dimension m: From the probability based clustering, we obtain the fuzzy rule number K and

the data distributions. So the structure of the fuzzy model is ready. The fuzzy rules extraction

with the on-line clustering and the probability based clustering is shown in Figure 4-2.

The probability based clustering not only gives the distribution of the data hs (k), but also

provides the relations of the data in probability forms. The fuzzy rule (4.14) only represents

the data distribution. In order to include the �exibility of this probability relation in the data,

70

Time(k)

Time(k)

Nonlinear
System()ku

1−z

()unku −

()1−ky

()ynky −

()ky

()ky

()kx1

cV T ,

()kx2

()kxn

()kh1

()kh2

()khm

bV ,

Visible
unit

Hidden
unit

()kh1

()kh2

1p

2p

3p()1
2

1
1 ,cc

()3
2

3
1 ,cc

()2
2

2
1 ,cc

Fuzzy rule 1 Fuzzy rule 3

Fuzzy rule 2

()ky

()ku

k1−k

k1−k

Restricted Boltzmann machines
Probability based clustering

On­line clustering

Figure 4-2: Fuzzy rules extraction with the on-line culstering and the probability based clus-
tering

we assign probability factors pj;i into each rule (4.14) as

Rj: IF h1 (k) is A
j
1 and h2 (k) is A

j
2 and � � � hm (k) is Ajn THEN

y (k) is B1 with prob. pj;1 and

y (k) is B2 with prob. pj;2 and

:::

y (k) is BK with prob. pj;K

(4.18)

where pj;i � 0,
PK

i=1 pj;i = 1 with i; j = 1; :::; K. This means the consequent y (k) is established

in the probability given by pj;i: So the fuzzy set of the consequent, Bj; must satisfy

p(Bjjh(k)) =
KX
i=1

�i [h (k)] pi;j (4.19)

71

4.5 Data-Driven Fuzzy Modeling

The fuzzy model of the probability based fuzzy rules is not longer (4.17). We use the following

process to extract the fuzzy model from the feature space h(k): �j [h (k)] in (4.19), it can be re-

garded as a normalized vectorial membership function of h (k) to the fuzzy sets Aj1; A
j
2; � � � ; Ajm,

p(yjh(k)) is calculated by

p(yjh(k)) =
KX
j=1

p(yjBj)p(Bjjh(k)) (4.20)

where p(yjBj) is estimated as

p(yjBj) =
�Bj(y)R
�Bj(y)dy

(4.21)

This is a probability measurement of the membership function �Bj : The output of the probability

based fuzzy model is

by (k) = E(yjh(k)) = Z yp(yjh(k))dy =
KX
j=1

p(Bjjh(k))E(yjBj) (4.22)

where E(yjBj) =
R
y�

Bj
(y)dyR

�Bj(y)dy
: The last term is just the centroid of the fuzzy set Bj:

Compared with the standard fuzzy model (4.17), where wj is the point at which �Bj = 1,

(4.22) can be formed as

by (k) = KX
j=1

wjp(B
jjh(k)) =

KX
j=1

KX
i=1

�i [h (k)] pi;jwj (4.23)

or

ŷ (k) =W (k) � [h (k)] (4.24)

where the parameterW (k) = [w1 � � �wK] and the data vector is given by

� [h (k)] =

"
KX
i=1

�i [h (k)] pi;1j � � � j
KX
i=1

�i [h (k)] pi;K

#T

72

4.6 Randomized algorithms for membership functions train-

ing

For the probability based fuzzy model (4.24), � [h (k)] is determined by a restricted Boltzmann

machine and probability based clustering as we presented above. (4.24) is a linear-in-parameter

system, the parameterW (k)may be singular and/or be not square, the solution can be solved by

the Moore-Penrose generalized inverse as explained in Section 3.5. The pseudoinverse calculation

is performed as follows:

For a linear system ŷ (k) =W�,W0 is a least-squares solution if

kW0�� y (k)k = min
W
kW�� y (k)k (4.25)

where k�k is a norm in Euclidean space. If By is a minimum norm least-squares solution of

the linear system ŷ = W�; then it is necessary and su¢ cient that B = �+. Here �+ is the

Moore-Penrose generalized inverse of matrix �, which is de�ned in (3.31).

For our fuzzy model, the goal of the training algorithm is to �nd the parameterW (k) such

that the following cost function is minimized

J =
X
k

ky (k)� by (k)k2 (4.26)

where 	 = [� (1) ;� (2) ; � � � ;� (q)] : Or in another form:

Y =
h
y (1) y (2) � � � y (N)

i
=
h
W� (1) + e(1) W� (2) + e(2) � � � W� (N) + e(N)

i
(4.27)

Y =W	+ E (4.28)

where e (k) is the modeling error e(k) = y (k)� by (k), and E = [e (1) ; e (2) ; � � � ; e (N)] : To
obtain min

�
J; we need @J

@W
= 0: From (3.33)

W� = Y	T
�
		T

��1
= Y	+ (4.29)

SoW� can minimize the index J in (4.26).

73

Since W� is one of the least-squares solutions of the system Y =W	 + E, it reaches the

smallest approximation error on the training dataset, and it is unique. The solution W� has

the smallest norm for a least-squares solution of Y = W	: [63] shows that for feedforward

networks, small norm of the weights is more important than the number of nodes to obtain a

small generalization error.

Although random weights in the hidden layers are better than backpropagation training in

many cases, sometimes random weights may lead to poor performances [33]. The restricted

Boltzmann machine and the probability based clustering provide possible selection manners of

hidden weights with the distribution of the input data. The distributions of the random hidden

weights are de�ned in advance to improve the modeling accuracy.

For the fuzzy model, the premise membership functions Aj1 ; � � �Ajm are given by the prob-

ability based clustering. Ajs is in the form of a Gaussian function (4.15). Its two parameters

cjs and �js are determined as:

� The terms cjs are selected as equal as the center of each cluster

� The parameters �js are assigned randomly in(0; 1)

As we do not have the values of pj;i we cannot calculate W . We set the parameters pj;i = 1

for i = j and pj;i = 0 for i 6= j which reduces the probabilistic model (4.18) into the model

(4.14). With this consideration we can computeW: The next section shows how to estimate the

probability parameters pj;i.

4.7 Probability functions training

The purpose of training the probabilities pj;i of each fuzzy rule (4.18) is to maximize the like-

lihood of the desired output with respect to its input. From (4.19) and (4.20), the parameters

pi;j satisfy

p(yjh (k)) =
KX
j=1

p(yjBj)

KX
i=1

�i [h (k)] pi;j (4.30)

Because pi;K = 1�
PK�1

j=1 pi;j;

p(yjh (k)) =
K�1X
j=1

p(yjBj)

KX
i=1

�i [h (k)] pi;j + p(yjBK)

KX
i=1

�i [h (k)]

1�

K�1X
j=1

pi;j

!
(4.31)

74

Then the global log-likelihood function of the training set D such that fh (k) ; y(k)g 2 D is

L(D;P) = log
�QN

k=1 p(y(k)jh (k))
�
=
PN

k=1 log p(y(k)jh (k))

=
PN

k=1 log

24 PK�1
j=1 p(yjBj)

PK
i=1 �i [h (k)] pi;j+

p(yjBK)
PK

i=1 �i [h (k)]
�
1�

PK�1
j=1 pi;j

�
35

where P is a K �K dimension matrix which contains the probability parameters pj;i;

P =

26664
p1;1 � � � p1;K
...

. . .
...

pK;1 � � � pK;K

37775 (4.32)

The fuzzy set Bj has the form of a Gaussian function (4.15) with cj = wj,

�Bj (y(k)) = exp

�(y(k)� cj)

2

�2
Bj

!

By using
R
�Bj(y)dy =

p
��Bj , we can evaluate p(y(k)jBi):

In order to obtain P; we need to solve the following minimization problem8<: minP f�L(D;P)g

Subject to pi;j > 08 i; j and
PK�1

j=1 pi;j � 1
(4.33)

Here we do not use the last column pi;K of P; because it is calculated as a consequence of the

rest of the values of P:

The minimization (4.33) can be formed into the following linear programming program as8<: minPv �L(D;Pv)

Subject APv � b and lb � Pv
(4.34)

where
Pv = [p1; � � � ; pK�1j � � � jpK ; � � � ; pK;K�1]T

A =

26666664

�!
1
�!
0 � � � �!0

�!
0
�!
1 � � � �!0

...
...

. . .
...

�!
0
�!
0 � � � �!1

37777775
75

�!
0 ,
�!
1 2 RK�1 are row vectors with

�!
0 = [0:::0] and

�!
1 = [1:::1], lb; b 2 RK�1 such that

b = [1:::1]T and lb = [0:::0]T : The minimization problem of (4.33) is solved by a standard linear

programming toolbox of Matlab.

4.8 Comparisons with other fuzzy modeling methods

In this section, we use two benchmark examples to show the e¤ectiveness of our data-driven fuzzy

modeling method which combines restricted Boltzmann machines, probability based clustering,

and probability fuzzy rules.

4.8.1 Gas furnace fuzzy modeling

We use the same dataset as in Section 3.6. Here we aim to identify the next general model:

y(k) = f [y(k � 1); : : : ; y(k � ny); u(k); : : : ; u(k � nu)] = f [x (k)]

where ny and nu are the regression delays for input and output.

Here, we also use the random search method [7][17] to decide the best ny and nu: The

regression delays are assumed in the interval [1; 10]; the training data are 200 examples while

the rest are used for validation. Finally, we have ny = 4; nu = 5:

The dataset is �rst normalized using (3.40) for comparison purposes. In this example, the

data-driven fuzzy modeling has the following four steps:

1. Features extraction. The normalized input data are sent to an RBM: The contrastive

divergence uses 1-step Gibbs sampling and 10 training epochs, the learning rate is � = 0:2.

After the training, the parameters of the RBM V and b are then used to compute the

hidden representation of the model (h). The number of hidden units is chosen as ny+nu+1;

such that the hidden and the visible unit numbers are the same.

2. Clustering. After the features are extracted by the RBM, we used the probability based

clustering. The hyper parameters are chosen as � = 0:8, = 10; � = 5 and C = 0:001:

Here � and determine the probabilities which are obtained by the Chinese restaurant

process. � is close to 1: When increases, the number of clusters K also grows. The

penalization parameter � decreases the probability of the cluster, while keeps k�jk2 low

76

0 10 20 30 40 50 60 70 80 90
0.2

0.4

0.6

0.8

1

1.2
Testing output

Instances

O
ut

pu
t

System output
Estimated output

Figure 4-3: Testing results of the gas furnace modeling.

. In our experiments, the probability based clustering divided the dataset h(k) into 10

clusters. Without the RBM, the same clustering method extracts 12 clusters from the

original data x(k).

3. Membership functions training. In order to improve modeling accuracy, the membership

functions of the fuzzy model are updated with the input and output data. The centers

of the membership function are the cluster centers which are obtained in Step 2. The

parameters W are computed using the ELM approach (we calculate the pseudoinverse

using a vector which contains the parameters �).

4. Probability training. Once the minimization problem is set, The probability parameters

pi;j are estimated by the standard linear programming toolbox, "fmincon" and "sqp". The

initial value of the matrix P is the identity matrix IK ; i. e., we start from a standard

fuzzy rule and the probability parameters are introduced to minimize the possibility of

the modeling error procedure.

In order to test the generalization capabilities of our model, we use the remaining 96 data

for testing after the training phase is �nished. The �nal testing results are shown in Figure 4-3.

We compared our method with the following three fuzzy modeling algorithms:

77

1. Adaptive fuzzy modeling approach (ANFIS) [74]. It may be the most popular fuzzy

modeling method. In this experiment, we also use 8 fuzzy rules. The Gaussian membership

functions are selected randomly at �rst.

2. Fuzzy modeling via online clustering [36][71][3]. Here we do not consider the temporal

interval problem [77] and use all data to train each group. All thresholds for the output

and the input are 1:5. Finally ,we obtain �ve fuzzy rules.

3. Fuzzy logic with data clustering [54][16]. It is another popular fuzzy modeling method. In

this comparison, only the input is partitioned. With the threshold 1:0, we have 15 groups

in the input space. So 15 fuzzy rules are constructed.

The root mean square (RMS) testing error for each method is RMS1 = 0:019 (our fuzzy

modeling with RBMs), RMS2 = 0:031 (fuzzy modeling with clustering) and RMS3 = 0:09

(ANFIS).

In order to show the e¤ectiveness of the hidden feature extraction with RBMs, we compare

the testing error of the h(k) clustering after RBMs and the x(k) clustering without RBMs.

Figure 4-4 gives these testing errors.

It is observed that the clustering procedure using the features from the RBM gives better

representation for the input data. Once the fuzzy rules are trained, the hidden features can be

observed by the RBM, and the probabilistic fuzzy model improves the modeling accuracy.

Now, we discuss how the probability parameters work in the consequences of the fuzzy rules

(4.18). Figure 4-5 shows the training errors with standard fuzzy rules and probabilistic fuzzy

rules. We see that the probabilistic parameters give more freedom and robustness to adjust the

model with the data, the testing errors decrease most of time.

The mean square errors (MSE) while using RBMs for the clustering and probability para-

meters of the fuzzy rules are given in Table 4.1. We see how the use of each stage clearly helps

with the decreasing of the testing error.

Table 4.1: Testing results of the deep fuzzy modeling (gas furnace) (�10�3)
Training Testing
No RBM RBM No RBM RBM

Standard fuzzy rule 5:10 3:35 26:2 23:7
Probabilistic fuzzy rule 3:25 3:11 22:5 19:3

78

0 10 20 30 40 50 60 70 80 90 100
­0.1

­0.05

0

0.05

0.1

0.15

0.2

0.25
Testing error

Instances

Er
ror

h(k) clustering
x(k) clustering

Figure 4-4: Testing errors with RBMs and without RBMs

0 10 20 30 40 50 60 70 80 90 100
­0.1

­0.05

0

0.05

0.1

0.15

0.2

0.25
Testing error

Instances

Er
ror

Fuzzy modeling with probability
Standard fuzzy modeling

Figure 4-5: GAS testing error using probabilistic parameters

79

4.8.2 Wiener-Hammerstein benchmark fuzzy modeling

We use the same benchmark that was used in Section 3.6. Let u(k) be the input and y (k) be the

output. We de�ne the recursive input vector of the model as x(k) = [y(k � 1) � � � y(k � ny) u(k) � � �u(k � nu)]T :

So the Wiener-Hammerstein benchmark is

y (k) = f [y(k � 1) � � � y(k � ny) u(k) � � �u(k � nu)] (4.35)

Similar as the previous example, u(k) and y (k) are also normalized. The delays ny and nu are

drawn again from a uniform interval [1; 10]: The fuzzy modeling process also has the following

four steps:

1. Features extraction. We also train the RBM with contrastive divergence with 1-step Gibbs

sampling and 10 training epochs. The learning rate is � = 0:1. Due to the quantity of

data, we utilize a smaller learning rate. The number of hidden units is also chosen as

ny + nu + 1.

2. Clustering. We set � = 0:95, = 100; � = 5 and C = 0:001. � and determine the

probability given by the Chinese restaurant process, � is chosen close to 1 to ensure that a

big number of clusters are created, also increases to accomplish the same objective. The

hidden feature h(k) is divided into 13 clusters, while the original data x(k) is partitioned

into 11 clusters.

3. Membership functions training. The parameters W are again computed using the pseu-

doinverse approach.

4. Probability training. We used Matlab functions: fmincon and sqp, to compute the para-

meters pi;j. P is initialized as IK :

Our data-driven fuzzy modeling method for the W-H data is shown in Figure 4-6. To see

how the RBM helps to decrease the modeling error, Figure 4-7 shows the testing errors for

x(k) and h(k) clustering. We can see that clustering directly over x(k) gives a good testing

performance but its MSE is greater.

80

1500 1550 1600 1650 1700 1750 1800
0.4

0.45

0.5

0.55

0.6

0.65
Testing output

Instances

O
ut

pu
t

System output
Estimated output

Figure 4-6: Data-driven fuzzy modeling method for the W-H data

1500 1550 1600 1650 1700 1750 1800
0

0.005

0.01

0.015

0.02

0.025

0.03
Testing error

Instances

Er
ror

h(k) clustering
x(k) clustering

Figure 4-7: Testing errors using RBM and without RBM

81

1500 1550 1600 1650 1700 1750 1800
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
Testing error

Instances

Er
ror

Fuzzy modeling with probability
Standard fuzzy modeling

Figure 4-8: Testing errors using probabilistic parameters and standard fuzzy rules

Figure 4-8 shows the e¤ect of the fuzzy probability parameters pi;j. We see that as the

number of clusters K increased the computational time of the model decreased, this is due

to the linear programming method for calculation of P . The MSE decreases when we use

probabilistic fuzzy rules.

By combining restricted Boltzmann machines and probability theory, our data-driven fuzzy

modeling method has outstanding properties, see Table 4.2.

Table 4.2: Testing results of the deep fuzzy modeling (Wiener-Hammerstein benchmark)
(�10�3)

Training Testing
No RBM RBM No RBM RBM

Standard fuzzy rule 18:9 17:7 26:4 22:8
Probabilistic fuzzy rule 16:2 14:1 23:6 19:3

We �nd that the modeling accuracy of the W-H benchmark does not improve so much as

the gas furnace by using the probabilistic tuning. While the RBM gives better results when

more data are available.

82

Chapter 5

Nonlinear system modeling with

conditional continuous restricted

Boltzmann machines

In this chapter, the conditional probability distributions that exist between the system input

and output are modeled using an RBM based framework, we extent the RBM modeling to

capabilities beyond the reach of the simple hidden-visible units relationship. We prove that

DBMs have the desired universal approximation property with binary conditional distributions

of the input and output data. In order to identify dynamic systems with DBMs, we modify

the DBM on two ways. First, we perform an encoding procedure over the continuous input

and output to get a binary representation of the input and output vectors. Then, we design

a probability gradient algorithm to train the weights of the DBM in order to maximize the

log-likelihood of the conditional probability between the input and output. The second method

consists in modifying the variable domain such that input and output data are continuous, while

the hidden variables remain binary. The probability distributions are changed by using integral

evaluation in the new variable domain. The comparisons on these two methods and with the

other normal nonlinear modeling methods are carried out with two benchmark problems.

83

()kx1

11 ,cW T

()kx2

()kxn

()kh1

()kh2

()khm

11,bW

l
T

l cW ,

()kh1

()kh2

()khm

ll bW ,()ku

1−z

()ky

()kx

()kx1

()kx2

()kxn

Figure 5-1: Input features extraction with deep Boltzmann machines for nonlinear system mod-
eling

5.1 Nonlinear systemmodeling with deep Boltzmannma-

chines

For an known discrete-time nonlinear system, we use the representation described by (3.1) and

(4.1) where we described the general form of the following three models introduced in [56]

y(k) =

nyX
i=1

aiy (k � i) + [u (k) ; � � �u (k � nu)]

y(k) = ' [y (k � 1) ; � � � y (k � ny)] +
nuX
i=1

biu (k � i)

y(k) = ' [y (k � 1) ; � � � y (k � ny)] + [u (k) ; � � �u (k � nu)]

where ' (�) and (�) are unknown nonlinear functions, ai and bi are unknown coe¢ cients.

At time k; there are two time series: the input series fu (1) ; � � � ; u (k)g ; and the output

series fy (1) ; � � � ; y (k)g : The objective of system modeling is to use these input and output

series, to construct a model ŷ(k) = F [x (k) ; k] ; such that ŷ(k) ! y(k); where ŷ(k) is the

output of the model F [�] :

A DBM can be regarded as a stochastic arti�cial neural network, which is made of several

restricted Boltzmann machines (RBMs), see Fig.5-1. We will �rst use DBMs to extract the

features from the input data x (k) which are combined by some output y (k) and control u (k)

as in (4.1). The DBMs allow us to identify the nonlinear system (??) within the probability

theory frame, such that the models are not sensitive to noise and disturbances. Then, we will

model the system by using the conditional distribution p [y (k) jx (k)] :

84

The modeling capability with RBMs is the basic issue for nonlinear system identi�cation.

The following theorem states the universal approximation capability of a DBM, i.e., if the num-

ber of hidden units of a DBM is enough, that DBM can model any discriminative distribution

p [y (k) jx (k)].

In order to prove the universal approximation of DBMs for dynamic system identi�cation, we

need to encode the input variable x. The binary assumption , x 2 f0; 1g ; makes the probability

calculation of a DBM simple. Almost all classi�cation tasks with DBMs use binary values.

However, the visible units x in nonlinear systems do not have binary values in general. In [22],

we change the DBM�s structure, such that we can calculate the probability of the control u (k)

and the output y (k). In this chapter, we use a simpler method, we use a binary encoding

method to transform the continuous values into binary ones f0; 1g :

We �rst encode y (k) into a binary representation with a resolution of m bits. This means

that y (k) is encoded into 2m di¤erent levels. These levels represent the range from 0 to 1 (binary

0 to 2m � 1) with a step of 1=(2m � 1): Similarly, the control u (k) is encoded into 2m di¤erent

levels. So
x 2 <n �! x 2 f0; 1gr

y 2 < �! y 2 f0; 1gm
(5.1)

where r = n � m: The hidden variables are assumed to be binary. With this encoding stage

�nished we are ready to claim the next Theorem.

Theorem 10 Any conditional distribution p [y (k) jx (k)] over f0; 1gm � f0; 1gr can be approx-

imated arbitrarily well in the sense of the Kullback-Leibler divergence by an DBM with r0�m0+1

hidden units, where r0 and m0 are the number of di¤erent inputs and outputs respectively, such

that the pair (x; y) has a probability p(x; y) greater than 0.

Proof. For each RBM, the training object is

minKL (p; q)! max
X

log p (x) (5.2)

where KL (p; q) is the the Kullback-Liebler divergence, which is the distance from the RBM

probability distribution p(x) to the probability distribution q (x). It is

KL (p; q) =
X
x

q (x) log
q (x)

p (x)
(5.3)

85

Any marginal probability distribution p(x) over f0; 1gr can be approximated arbitrarily well

in the sense of the Kullback-Leibler divergence (5.3) by an RBM with k + 1 hidden units,

where k is the number of input vectors whose probability is not 0; the proof can be found [44].

So an RBM with enough hidden units can model any given marginal probability distribution

p(x). Consider a well known nonlinear system which can be represented by a binary conditional

distribution p(yjx); the vectors x and y take values from the �nite sets fx1; :::;xk;:::;xr0g and

fy1; :::; yl;:::; ym0g respectively. The distribution has probability measures p(yljxk); for each pair

(xk, yl), with k = 1; :::; r0 and l = 1; :::m0. It is also known that the conditional probability of

each pair is

p(yljxk) =
p(xk; yl)

p(xk)
=

p(xk; yl)P
j p(xk; yj)

(5.4)

From (5.4) we have

p(yljxk)
X
j 6=l

p(xk; yj) + [p(yljxk)� 1] p(xk; yl) = 0 (5.5)

Since we know the value of every term p(yljxk); we can form r0�m0 equations with the same form

of (5.5) with di¤erent indexes k and l. These linear equations can be solved, and the solutions

are p(xk; yl): That leads to the desired conditional distribution p(yjx). With each p(xk; yl); we

have created a distribution that contains the original conditional distribution p(yjx). Finally we

consider the pair (xk; yl) as a single random variable zkl; such that p(zkl) = p(xk; yl): As stated

in [44], we can construct an DBM with r0�m0+1 hidden units, which models the distribution

given by p(zkl).

Thus, a DBM can model any marginal distribution p(x) with x 2 f0; 1gr being a binary

vector. It is similar to the universal approximation theory of neural networks [20][32].

5.2 Input features extraction

The training process of the DBMs is as follows: 1) The training data and the hidden repres-

entation of the �rst RBM are x (k) 2 <n and h1 (k) 2 <l1 : We use q data to train the weights

of the �rst model W1 2 <l1�n; b1 2 <l1 ; and c1 2 <n: 2) After the �rst model is trained, their

weights are �xed. The code or hidden representation of the �rst model is computed with �xed

weights to generate q examples, which are the input to the second model. 3) The second model

86

is trained using as input h1 (k) 2 <l1 and it generates the hidden representation h2 (k) 2 <l2 ;

which is the input of the third model. 4) Then we train the third model, until all l models are

trained. This training process is shown in Fig.3-5.

For each RBM, the training object is (5.2). The Kullback-Liebler divergence (5.3) is [1]

KL (p; q) =
X
x

q (x) log q (x)�
X
x

q (x) log p (x)

The training process for each RBM is carried out utilizing the procedure shown in section

3.4.

5.3 DBM training with binary representation of input

and output

The DBM training method discussed in the previous section can generate the probability distri-

bution and extract the features of x (k) for system identi�cation. This method is widely applied

in classi�cation and regression tasks [27][28]. Although x (k) includes the input u (k) and the

output y (k) ; the probability distribution of x (k) does not lead directly to the conditional

probability distribution p [y (k) jx (k)]) which is the system modeling goal.

In this session we use the inherent conditional distribution p [y (k) jx (k)] of the data to train

the DBMs for nonlinear system modeling. The conditional distribution will be calculated from

the joint distribution of the inputs x (k) and associated output y (k). This idea has been applied

in classi�cation task in [40].

5.3.1 Joint distribution for DBM training

Consider a training set denoted as D = fx(k); y(k)g; here x(k) and y(k) are the k-th training

input vector and output respectively. In this session, we encode x(k) and y(k) into binary

representations with resolutions of r bits and m bits respectively, see (5.1). After the encoding

we have x(k) 2 <r, y(k) 2 <m. The loss function of the DBM training is de�ned as

Jc(D) = �
DX
k

logp [x(k); y(k)] (5.6)

87

The training object is as (5.2): minD Jc(D).

The DBMmodel gives the joint probability distribution between the observed variables fx;yg

and the hidden features h 2 <s; see Fig.5-1. The joint probability is also an energy function

p(x; y; h) _ e�E(x;y;h)

E(x; y; h) = �hTWx� bTx� cTh�DTy � hTV y
(5.7)

We de�ne the model parameters as � = fW; b; c;D; V g. By the binary encoding (5.1), the

conditional distributions of x are

p(xjh) =
Y
i

p(xijh)

p(xi = 1jh) = sign
�
bi +

P
jWjihj

� (5.8)

where sign(�) is the sign function. The conditional distributions of y are

p(yjh) =
Y
�

p(y�jh)

p(y� = 1jh) = sign
�
D� +

P
j Vj�hj

� (5.9)

Clearly, h is the key variable that captures the relationship between x and y. The inverse

relationship is

p(hjx; y) =
Y
j

p(hjjx; y)

p(hj = 1jx; y) = sign (cj +
P

� Vj�y� +
P

iWji�xi)

(5.10)

In order to minimize the loss function (5.6), the gradient of Jc(D) with respect to the parameters

� is
@logp[x(k);y(k)]

@�
= �Ehjx(k);y(k)

h
@E(x(k);y(k);h)

@�

i
+Ex;y;h

h
@E(x;y;h)

@�

i (5.11)

where � 2 � = fW; b; c;D; V g : Each parameter, W; b; c;D; and V; should be applied to (5.11).

To calculate the gradient (5.11), the standard stochastic gradient descent approach can be

implemented [4]. The computation of the exact value of (5.11) is not tractable and we use the

contrastive divergence (CD) method in order to infer it. This estimation replaces the expectation

with a sample from a kG- steps Gibbs sampling process. This process is initiated by considering

the training examples fx(k); y(k)g as the initial state of the visible variables. Then, we can

88

choose kG = 1 to improve the training speed with a small bias during the whole learning process.

5.3.2 Conditional distribution for DBM training

The joint distribution p(x; y) of the DBM can be used to predict the system output by giving

speci�ed input data, such as time series regression. However, for dynamic system identi�cation,

the conditional distribution p(yjx) is needed. As shown in Theorem 1, there always exists a

DBM which can represent the conditional distribution over a given training set fx(k);y(k)g in

binary units.

The loss function of the conditional distribution p(yjx) is de�ned as

Jo(D) = �
DX
k

logp (y(k)jx(k)) (5.12)

The object of the dynamic system identi�cation with DBMs is

argmax
�

"
DX
k

logp (y(k)jx(k))
#

or argmin
�
Jo(D) (5.13)

Since Jo uses the conditional distribution, the training algorithm is di¤erent than Jc in (5.6)

that uses the joint distribution.

The conditional probability p(yjx) is also an energy function. From (5.7), it is calculated by

p(yjx) = p(x;y)

p(x)
=

X
h

e�E(x;y;h)X
y;h

e�E(x;y;h)
(5.14)

So we can directly increase the conditional probability along the data distribution by increasing

the value of p(yjx) for each instance. To accomplish this, the negative log-likelihood should be

minimized by a stochastic gradient descent variant. Because

� log p(yjx) = log p(x)� log p(x;y) (5.15)

89

),|(yxhP

)|,(hyxP

)|,(xhyP

),|(hyxP

)(),(kykx)(kx

))(),(|(kykxhE))(|,(kxhyE

Figure 5-2: Gibbs sampling for p(yjx) calculation

Considering the instance k; for [x(k); y(k)] we have

� log p [x(k); y(k)] = log
P

y;h e
�E[x(k);y(k);h]

� log
P

h e
�E[x(k);y(k);h]

(5.16)

Then, the gradient of the negative log-likelihood with respect to the parameter � is

�@ log p[y(k)jx(k)]
@�

=
P
h e

�E[x(k);y(k);h] @E[x(k);y(k);h]
@�P

h e
�E(x(k);y(k);h)

�
P
y;h e

�E[x(k);y(k);h] @E[x(k);y(k);h]
@�P

y;h e
�E[x(k);y(k);h]

(5.17)

In the form of mathematical expectation,

�@logp[y(k)jx(k)]
@�

= Ehj(x(k);y(k))

h
@E(x(k);y(k);h)

@�

i
�E(y;h)jx(k))

h
@E(x(k);y;h)

@�

i (5.18)

Both probability expectations of (5.18) can be computed using Gibbs sampling and the con-

trastive divergence (CD). The CD algorithm can be done for the �rst term using alternation

sampling processes over the distributions (5.10), (5.8) and (5.9) respectively.

However, there are not compact expressions for p [hj(x(k); y(k)] and p [(y;h)jx(k)] : Both of

them are needed for the second term of (5.18). The big number of output elements makes the

gradient computation intractable. We use CD algorithm to approximate the gradient with only

one iteration (kG = 1):The sampling process is explained in Fig. 5-2. The estimation results

are satis�ed by the conditional distribution calculations.

In order to implement the CD algorithm for E(y;h)jx(k))
h
@E(x(k);y;h)

@�

i
; we need to calculate

90

p [(y;h)jx(k)] as follows:
p [(y;h)jx(k)] = e�E(x(k);y;h)P

y;h e
�E(x(k);y;h)

= eh
TWx(k)+bT x(k)+cT h+dy+hT V yP

y;h e
hTWx(k)+bT x(k)+cT h+dy+hT V ydy

(5.19)

The calculation of (5.19) is expensive, because it requires to calculate more than 2m+l possible

values. However, it is tractable for system identi�cation. After this distribution is obtained, we

just should sample all possible values for y and h.

Once p [(y;h)jx(k)] is calculated, we need to �nd an expression for p [xj(y;h)] to complete

the Gibbs sampling,

p [xj(y;h)] = p(x;y;h)

p(y;h)
=
Y
i

p(�xijh) (5.20)

(5.20) is calculated with (5.8).

The training algorithm for the conditional distribution is

� (k + 1) = � (k)� �@logp (yjx)
@�

(5.21)

where � > 0 is the training factor, � 2 � = fW; b; c; d; V g ; @logp(yjx)
@�

is calculated by (5.18).

5.4 DBM training with continuous values of input and

output

In order to model nonlinear systems with continuous values, we use the binary encoding method

to calculate the conditional distribution p (yjx) for the DBM model. However, the training data

are enlarged dramatically, for example the dimension of x(k) increases from n to 2n�r. In this

session, we modify the learning algorithm of RBMs, such that nonlinear system can be modeled

by DBM with continuous values.

In order to train the parameters in (5.21), we need to calculate the following six conditional

probabilities

91

5.4.1 Probability of x given h

The conditional probability of x (k) 2 <n given h (k) 2 <s does not have explicit expression

from the input and output domains,

p(xjh) = p(x;h)
p(h)

=
R
�y p(x;h;�y)d�yR

�y

R
�x p(�x;h;�y)d�xd�y

=
R
�y e

hTWx+bT x+cT h+DT �y+hT V �yd�yR
�y

R
�x e

hTW�x+bT �x+cT h+DT �y+hT V �yd�xd�y

= eh
TWx+bT xR

�x e
hTW�x+bT �xd�x

=
Q

i p(�xijh)

where �h, �y and �x denote the silent variables h, y and x; which will be used for integral evaluations

along the domain of the hidden, output and input vectors respectively.

p(xijh) =
exi(bi+

P
j wjihj)R

�xi
e�xi(bi+

P
j wjihj)d�xi

(5.22)

Now we explore di¤erent cases for the domain of xi, we study three intervals: [0;1) ; [0; 1] and

[��; �] where � 2 <+:

For the case of xi 2 [0;1) ; if we de�ne �i(h) = bi+
P

j wjihj; then we can directly evaluate

the integral taking into account that �i(h) < 0; 8h:

In order to ensure that the integral converges, the evaluations of the three cases are presented

in Table 5.1.

Table 5.1: Probability expressions for p(xjh)
Indicator/Interval [0;1) [0; 1] [��; �]

p(xijh) ��ie�ixi �ie
�ixi

e�i�1
�ie

�ixi

e��i�e���i
Pc(xijh) 1� e�ixi e�ixi�1

e�i�1
e�ixi�e���i
e��i�e���i

E [xijh] � 1
�i

1
1�e��i �

1
�i

� e
��i+e���i
e��i�e���i �

1
�i

92

5.4.2 Probability of y given h

After we have p(xjh); we need an expression for p(yjh):We follow a similar procedure using the

general formula of p(yjh); and evaluate the integral for di¤erent intervals as follows

p(yjh) = p(y;h)
p(h)

=

R
�xi
p(x;h;�y)d�xR

�y

R
�x p(�x;h;�y)d�xd�y

=

R
�xi
eh
TWx+bT x+cT h+DT �y+hT V �yd�yR

�y

R
�x e

hTW�x+bT �x+cT h+DT �y+hT V �yd�xd�y

= eh
T V y+DT yR

�y e
hT V �y+dT �yd�y

=
Q

� p(y�jh)

(5.23)

where

p(yjh) = e(h
TV+D)yR

�y
e(hTV 0+D)�yd�y

(5.24)

If we de�ne
(h) = hTV +D; the evaluations of p(yjh) are presented in Table 5.2:

Table 5.2: Probability expressions for p(yjh)
Indicator/Interval [0;1) [0; 1] [��; �]

p(yjh) �
e
y
e
y

e
�1

e
y

e�
�e��

Pc(yjh) 1� e
y e
y�1
e
�1

e
y�e��

e�
�e��

E [yjh] � 1

1
1�e�
 �

1

� e
�
+e��

e�
�e��
 �
1

In this chapter, we only deal with the case where the entries of x and y belong to the same

domain.

5.4.3 Probability of h given x and y

We let the hidden units have binary values, while x and y have continuous values. So p(hjx; y)

is

p(hjx; y) = p(x;y;h)

p(x;y)
=
Y
j

p(hjjx;y)

and

p(hj = 1jx;y) = sign
 X

i

wji�xi + vjy + cj

!
where vj denotes the j-th element of the vector V . Obviously, no any modi�cation is needed

for this conditional probability for the continuous visible units.

93

5.4.4 Probability of y given x

When we consider the scalar case for y;the bias variable D becomes a real number, and the

weight matrix V is a real valued vector. We do the same procedure as in the previous steps,

p(yjx) = p(x;y)
p(x)

=
P

�h p(x;y;
�h)R

�y

P
�h p(x;�y;

�h)d�y

=
P

�h e
�hTWx+bT x+cT �h+dy+�hT V yR

�y

P
�h e

hTWx+bT x+cT �h+d�y+�hT V �yd�y

(5.25)

Using Fubini�s Theorem, the integral and the sum are interchangeable. We then evaluate the

sums on the numerator and denominator de�ning the term:

� j(x; y) =
X
i

wji�xi + vjy + cj (5.26)

and substituting it in (5.25),

p(yjx) =
edy
Q

j

�
1 + e�j(x;y)

�R
�y
ed�y
Q

j

�
1 + e�j(x;�y)

�
d�y

(5.27)

5.4.5 Probability of (y; h) given x

The second term of the negative log-likelihood can be computed as

p [(y;h)jx(k)] = e�E(x(k);�y;
�h)P

�y;�h e
�E(x(k);�y;�h)

= eh
TWx(k)+bT x(k)+cT h+dy+hT V yR

�y

P
�h e

h0TWx(k)+bT x(k)+cT �h+d�y+h0T V �yd�y

(5.28)

The numerator can be easily computed but the integral in the denominator needs to be expanded

in the following. First, we use the de�nition (5.26) of � j(x(k); �y),Z
�y

ed�y
Y
j

�
1 + e�j(x(k);�y)

�
d�y (5.29)

In order to �nd a closed form of the solution of the integral, we de�ne z = f� 1;� 2; :::; �ng which

yields to the incomplete power set P (z): It is incomplete, because the empty set is not included

in P (z). If P (z) = fPz1; Pz2; :::g, the elements Pzi contain all possible combinations of any

94

length of elements � j. The �nite product
Q

j

�
1 + e�j(x(k);�y)

�
can be expressed as

Y
j

(1 + e�j) = 1 +
X
Pzi

e
P
�
 (5.30)

where
 is an index for � ; which takes values such that �
 2 Pzi. The integral then becomes

R
�y
ed�y
�
1 +

P
Pzi

e
P
�
(x(k);�y)

�
d�yR

�y

�
ed�y +

P
Pzi

ed�y+
P
�
(x(k);�y)

�
d�y

(5.31)

Because � j =
P

iwji�xi+vjy+cj; we can de�ne the vector wj = [wj1:::wjl] : So � j = wjx+vjy+cj.

Considering this expression for � j; the value of the integral is

Z
�y

0@ed�y +X
Pzi

e
P
w
x(k)+c
e(d+

P
v
)�y

1A d�y (5.32)

The same intervals, as in the previous sections (5.33), (5.34) and (5.35), are studied for y;

� Interval [0;1)

� 1
D
�
X
Pzi

1

D +
P
v

e
P
w
x(k)+c
 (5.33)

� Interval [0; 1]
1

d

�
eD � 1

�
+
X
Pzi

e
P
w
x(k)+c

F +
P
v

�
eD+

P
v
 � 1

�
(5.34)

� Interval [��; �]
1
d

�
eD� � e�D�

�
+
P

Pzi
e
P
w
x(k)+c

D+
P
v

�
e(D+

P
v
)� � e�(D+

P
v
)�
� (5.35)

The sum
P

Pzi
is performed along the elements of the power set which is computational

expensive. The number of elements is 2n; which represents all possible combinations. For

system identi�cation, the number of visible and hidden units is no so big, so the procedure

becomes tractable.

95

5.4.6 Probability of x given (y;h)

We have shown that p [xj(y;h)] =
Q

i p(xijh): In the intervals [0;1) ; [0; 1] and [��; �] ; we get the

same expressions presented in Table 1 for p(xjh). We use the following algorithm to calculate

p [xj(y;h)] :

The complete algorithm is shown as follows:

Algorithm 11 1.- For each training pair (x(k); y(k)) and with learning rate �

2. We enter into a Gibbs sampling step.

Positive phase

3.- Assign the �rst values y0a = y(k) and x0a x(k)

4.- Sample h0a from p(hjx0a; y0a)

5.- Assign x0b = x(k)

6.- Sample y0b; h0b from p(y; hjx0b)

Negative phase

7.- Sample y1a from p(yjh0a) and x1a and p(xjh0a)

8.- Sample h1a from p(hjx1a; y1a)

9.- Sample x1b from p(xjy0b; h0b) and y1b; h1b from p(y; hjx1b)

Update

10 .- Apply the learning rule

� = �� �
�
@

@�
E
�
x0a; y0a; h0a

�
� @

@�
E
�
x0b; y0b; h0b

��

5.5 Simulations

5.5.1 Gas furnace data set

One of the most utilized benchmark examples in system identi�cation is the famous gas furnace

data from the Box-Jenkins textbook [10]. In this example, the air and methane are mixed to

create gas mixture which contains carbon dioxide. The control u(k) of the system is methane

gas, while the output y(k) is CO2 concentration. The gas furnace are sampled continuously

in 9 second intervals. The data set is composed by 296 successive pairs of [u(k); y(k)], where

u(k) = 0:6� 0:4z(k):

96

The model of the gas furnace is

y(k) = f [y(k � 1); : : : ; y(k � ny); u(k); : : : ; u(k � nu)]

= f [x(k)]
(5.36)

where the regression steps ny and nu are 5 and 1: 200 samples are used as training data, the rest

96 samples are the testing. The stopping criteria is not used to train the RBMs. The random

search method [7] is applied to determine the structure parameters of the DBM. and each layer

size li (i = 1 � � � p), is obtained by the random search method [7]. The search range of the layer

number l is 10 � l � 3; the node number p is 40 � p � 5: We choose l = 3 and p = 20:

The following steps are applied in dynamic system identi�cation using RBMs and conditional

distribution:

A) Normalization: the data are normalized into the interval [0; 1] using

x (k) =
x (k)�mink fx (k)g

max fx (k)g �mink fx (k)g
; y =

y � ymax
ymin � ymax

(5.37)

the formula (5.37)

B) Coding: after the data has been normalized, we code them into a binary representation.

In our experiments we used two resolutions, 4 bits and 8 bits, for x and y. The input number

is ny + nu = 6. The resolutions of the input are 24 and 48; x 2 <24 or <48; and y2 <4 or <8.

This new training dataset is used to train the discriminative DBM to obtain the conditional

probability p(yjx).

C) Training: the conditional DBM is trained using the coded dataset, the step number of

the Gibbs sampling is kG = 1; the learning rate is � = 0:001. Stochastic gradient descent (5.21)

is applied over the dataset. The algorithm has 100 training epochs.

D) Decoding: in the testing phase, the output of the neural model is taken from the prob-

ability distribution p(yjx); which is learned from the DBM conditional probability. The output

data are sampled from p(yjx) and decoded to continuous equivalent values.

The testing results are displayed in Fig. 5-3. For 4 bits and 8 bits encoding, the mean

squared errors (MSE) are 11:3� 10�3 and 8:2� 10�3. For this example the binary encoding has

good approximation results. The high precise encoding helps to improve the model accuracy.

However, adding one bit in the encoding procedure immediately doubles the computation time.

97

Figure 5-3: DBM modeling using 8 bits and 4 bits encoding for the gas furnace data.

In order to show the advantages of using Boltzmann machines and conditional distributions,

we added noises to the raw dataset, to show the robust and the noise resistance of our models

compared with standard neural network models,

x(k) = x(k) + 0:2z(k) (5.38)

where z(k) 2 N(0; 0:01); N(0; 0:01) is a normal distribution with 0 average and 0:01 standard

deviation. The comparison results are shown in Table 5.3.

Table 5.3: MSEs of di¤erent identi�cation models (�10�3)
MLP SVM-L SVM-P SVM-R 4 bits 8 bits
30:03 41:01 11:7 14:70 9:54 8:05

Here MLP is the multilayer perceptrons which have the same structure as our DBM, the

learning algorithm is the usual backpropagation. SVM-L is the support vector machine (SVM)

with linear kernel. SVM-P is the SVM with polynomial kernel. SVM-R is the SVM radial basis

function kernel.

It can be seen that our models, 4 bits and 8 bits encoding DBMs, have distinctive advantages

over the noises and disturbances in dynamic system identi�cation. The main reason is that we

model the probability distributions of the input and output, the noises and outliers in the data

98

do not a¤ect the conditional distributions signi�cantly.

Another advantage of our models is the feature extraction by the unsupervised learning,

which is applied in most deep learning methods. The following experiments show the impact of

the feature extraction in the DBM and conditional distribution. We use the same noisy input

(5.38) and output data as before. The l RBMs are trained in sequence as presented in Fig. 3-5.

Here we try l = 1; 2; 3; 4; to show the impact of each layer. The results are given in Table 5.4.

Table 5.4: MSEs of di¤erent hidden layers (�10�3)
MSE 1 layer 2 layers 3 layers 4 layers
4 bits 11:62 10:36 9:54 15:67
8 bits 8:61 8:21 8:05 9:75

By adding the new feature extraction layer, the MSE drops signi�cantly. If the hidden layer

number is more than 3; the MSE becomes worse. This means that it is no longer necessary to

add a new layer to extract more system information.

Now we use the continuous valued algorithm for the gas dataset. The training data are the

same noisy input (5.38). We use a three layered DBM, l = 3; see Fig. 3-5. For the two hidden

layers, the training parameters are kG = 1; �1 = 0:001; and 200 training epochs for each layer.

For the output layer, we use the coded features h3 with kG = 1 and � = 0:001; and 100 training

epochs.

The testing MSE is 8:05 � 10�3; which is better than the error obtained with the binary

encoding method, this happened because it provides more information on real axis than the

encoding procedure. The modeling results are shown in Fig. 5-4. There are fewer nodes

because the size of the input vector is dramatically decreased without the encoding.

5.5.2 Wiener-Hammerstein benchmark

Wiener-Hammerstein systems [64] have a static nonlinearity surrounded by two unknown dy-

namic systems. Instead of a direct measurement, the samples are taken from the output of

the three systems as a whole. The signal-to-noise ratio in the benchmark has big nonlinear

behavior. It is a good case of study to test nonlinear system modeling techniques.

The benchmark dataset consists in 188; 000 input/output pairs. This dataset is divided in

two parts: 100; 000 sample pairs are for training and 88; 000 samples are for testing. Let u(k)

99

Figure 5-4: DBM modeling using continuous values for the gas furnace data.

be the control and y (k) be the output. We de�ne the recursive input vector to the model as

x(k) = [y(k � 1) � � � y(k � ny) u(k) � � �u(k � nu)]T ; ny = 10 and nu = 5.

Similar as the previous example, the random search method is used to obtain the DBM

structure, here the layer number 20 � l � 2; the node number 70 � p � 10: This intervals

are wider than the previous example, because we have more data to work. We have l = 5 and

p = 50: We normalize the data to �t into the [0; 1] interval. The DBM is trained using the real

valued data set, the step number of the Gibbs sampling is kG = 1 while the the learning rate

is � = 0:001. Stochastic batch gradient descent is applied over the dataset following Algorithm

1. It has 10 training epochs. The 100; 000 sample pairs are divided into batch packages, all

packages have the same size. We compare the following four types calculation methods of the

probability distributions: binary, in the interval [0;1); in the interval [0; 1); and in the interval

[��; �] with 1 � � > 0:

We �rst show how the batch size a¤ects the training. Fig. 5-5 shows the training performance

with a batch size of 1000. The training error is high for the �rst 60 batches, then it decreases

as more training samples are presented. The DBM cannot model the probability distribution

properly with a few samples. Fig. 5-6 shows a batch size of 500: No remarkable changes appear,

but there are small error increases during the training. When the batch size is increased to 5000,

the �uctuations on the training error vanish, the interval [��; �] becomes unstable, see Fig. 5-7.

Large batch size can a¤ect the distribution learning in the sense that some particular training

samples mislead the results. The binary DBM can work, but the MSE is high as 15:2 � 10�3:

100

Figure 5-5: Training errors with batch size of 1000 (�10�3)

The interval [��; �] also works, but its performance o¤ers almost twice the error. The interval

[0;1) shows instability in all the experiments, which has the same problems as in our previous

observations [?]. The problem may come from the integral convergence. The interval [0; 1] is

the best. For this example, we use the continuous valued method within the interval [0; 1]; the

batch size is 1000.

The testing result is shown in Fig.5-8 and the testing error MSE is 5:6� 10�3.

Table 5.5. shows how the hidden features extraction a¤ect and improve the identi�cation

accuracy for this benchmark problem. To see the noise in�uence, we also add noise as (5.38).

Here l = 4 and p = 50; kG = 1; �1 = 0:001, 200 training epochs per each hidden layer, 10

training epochs for the output layer, the interval is [0; 1), the batch size is 1000.

Table 5.5: MSEs of di¤erent hidden layers for WH(�10�3)
MSE 1 layer 2 layers 3 layers 4 layers
Without noise 5:6 4:8 4:5 6:2
With noise 6:1 5:3 4:7 6:3

As the gas furnace dataset, adding new layers to the feature extractor improves the model

accuracy by eliminating the noise in�uence of the data. We can see that even for the best result

obtained by the SVM-R, our DBM is more tolerant than others with respect to big uncertainties.

101

Figure 5-6: Training errors with batch size of 500 (�10�3)

Figure 5-7: Training errors with batch size of 5000 (�10�3)

Table 5.6: MSE over the WH benchmark (�10�3)
MLP SVM-L SVM-P SVM-R DBM
56:03 43:01 8:01 5:71 4:70

102

Figure 5-8: Testing error within the interval [0; 1] and batch size of 1000.

103

Chapter 6

Final remarks

Deep learning has solved many of the problems that deep architectures had in the past The

main advantage that deep architectures possess is the ability to represent complex models using

fewer parameters, this feature is possible because having many layers of representation allows

the model to represent high nonlinear functions compactly. It is not then surprisingly that deep

architectures have become the state of the art techniques in many machine learning disciplines.

In this thesis, we have increased the reach that deep learning has by addressing the nonlinear

system identi�cation problem. We have not only shown how to use RBMs and pretraining stages

to achieve better testing results but we have also used deep learning along with other famous

identi�cation techniques such as fuzzy logic and randomized algorithms. In this chapter, it is

presented the �nal remarks about the work that has been carried out.

6.1 Conclusions

6.1.1 About deep learning and randomized algorithms

Randomized algorithms usually rely on the usage of random selection of parameters in the hidden

layer, it has also been argued that this random assignment does not decrease the generaliza-

tion capabilities of the model, however, we have shown that the performance of an arbitrarily

selection can be easily surpassed if an RBM is chosen as a pretraining stage that �nds suitable

hidden weights. This is not an unexpected result because (as has been discussed before) ran-

dom initialization of parameters usually leads to poor generalization performance due to the

presence of local minima, therefore, using an RBM helps to move the minimization problem to

104

a region where reaching a good local minimum is feasible for the supervised training algorithm

(in this case the pseudoinverse calculation). Moreover, we have shown that RBMs can be easily

modi�ed when the nature of the system input is continuous, this is achieved by considering a

new domain in the input space that was calculated through its probability measure. With this

modi�cation an RBM is then capable of handling continuous values such as the ones that a

nonlinear system produces.

A point that should be unlighted is that not all available domains of the system input worked.

The solution of the normalization integral is not guaranteed for every possible domain which

helps to explain why some of them failed to decrease the identi�cation error. In conclusion, the

right domain have to be chosen according to the system nature with the only restriction that it

should be restricted and bounded.

6.1.2 About fuzzy modeling with deep learning and probability the-

ory

It has been shown that standard fuzzy modeling can be easily improved if the input is condi-

tionated before entering to the model. This conditioning was performed using an RBM, as has

been said, it can extract useful features from the dataset that give meaningful information of

the probability space from where the training examples where sampled. Then, it was proved

that a probabilistic clustering method outperforms classic k-means and c-means, it seems that

the features delivered by the RBM can be fully utilized by the probabilistic clustering method

which come up with clusters that entirely represent the information extracted from the dataset.

These clusters are more useful that the ones delivered by other clustering methods as their

accuracy error suggest. Finally, it was also viewed that giving another degree of freedom to a

fuzzy model can improve its e¢ ciency, introducing a new set of probabilistic parameters allowed

the model to overcome di¢ culties such as the multiple selection of fuzzy sets and the modeling

of high variant datasets.

6.1.3 About conditional continuous RBMs

RBMs were proven to be conditional universal approximators that can model any conditional

probability distribution if su¢ cient units are providen. It was also shown that binary RBMs

105

can also deal with the identi�cation problem if the data are encoded into binary representations

(with any desire accuracy) before enter the model, this is done utilizing conditional RBMs that

maximizes directly the conditional probability p(xjy) which transforms the RBMs into self-

contained identi�cation models. Moreover, conditional RBMs were also changed to deal with

continuous entries which was solved by evaluating the normalization integral, this transformation

achieved good testing results but with a high computational cost that grows exponentially when

the number inputs increases.

6.2 Future work

Several opportunity areas were found while writing this thesis, as deep learning continues being

the state of the art techniques in the machine learning community the next problems should be

solved:

� There has not been done any research about the Vapnik-Chervonenkis (VC) dimensions

of the deep learning algorithms. This research could help to understand the underlying

mechanisms that are behind the generalization improvement caused by a pretraining stage.

VC-dimensions would also give precise measurements of the deep learning boundaries as

it would o¤er a theoretical framework where deep learning could be studied and analyzed.

� An universal approximation property for RBMs is provided in this thesis, however, it

only works for binary conditional distributions. A more general universal approximation

conjecture should be proved, this property would give certainty to researchers when RBMs

are used to model data distributions.

� The RBMs used in this text made use of what is called a Boltzmann distribution, other

distributions should be explored. It is possible that the election of the right distribution

is one of the main factors to achieve a low testing error.

� In this thesis we only used simple stochastic gradient descent to train the RBMs, how-

ever there exist other methods that should be tested. These methods include Hessian

techniques, regularization, early stopping and cross-validation criteria.

� A nonlinear system is of course a dynamic one that can be represented using a di¤erential

equation (continuous case) or a equation in di¤erences (discrete case). These representa-

106

tions are not included in the deep learning environment which suggests that deep learning

should be ampli�ed including ideas such as deep recurrent neural networks or deep dy-

namic neural models. These additions would make possible to predict better the behavior

of a system given that their respective natures could be represented with more precision.

107

Chapter 7

Appendixes

7.1 Appendix A. Kullback-Leibler divergence

The Kullback�Leibler divergence (also called relative entropy) is a measure of how one probab-

ility distribution diverges from a second, expected probability distribution. In the simple case, a

Kullback�Leibler divergence of 0 indicates that we can expect similar, if not the same, behavior

of two di¤erent distributions, while a Kullback�Leibler divergence of 1 indicates that the two

distributions behave in such a di¤erent manner that the expectation given the �rst distribution

approaches zero.

7.1.1 De�nition

Consider two discrete probability distributions P and Q, the Kullback-Leibler divergence from

Q to P is de�ned to be

DKL(P jjQ) = �
X
i

P (i) log
Q(i)

P (i)
(7.1)

which is equivalent to

DKL(P jjQ) =
X
i

P (i) log
P (i)

Q(i)
(7.2)

In other words, it is the expectation of the logarithmic di¤erence between the probabilities P

and Q, where the expectation is taken using the probabilities P: the Kullback-Leibler divergence

108

is de�ned only if for all i, Q(i) = 0 implies P (i) = 0 (absolute continuity). Whenever P (i) is

zero the contribution of the i-th term is interpreted as zero because limx!0 log(x) = 0:

For distributions P and Q of a continuous random variable, the Kullback-Leibler divergence

is de�ned to be the integral:

DKL(P jjQ) =
1Z

�1

p(x) log
p(x)

q(x)
dx; (7.3)

where p and q denote the densities of P and Q.

More generally, if P and Q are probability measures over a set X, and P is absolutely

continuous with respect to Q, then the Kullback-Leibler divergence from Q to P is de�ned as

DKL(P jjQ) =
Z
X

log
dP

dQ
dP; (7.4)

where dP
dQ
is the Radon-Nikodym derivative of P with respect to Q, and provided the ex-

pression on the right-hand side exists. Equivalently, this can be written as

DKL(P jjQ) =
Z
X

log

�
dP

dQ

�
dP

dQ
dQ; (7.5)

which is the entropy of P relative to Q: Continuing in this case, if � is any measure on X for

which p = dP
d�
and q = dQ

d�
exist (meaning that p and q are absolutely continuous with respect

to �) then the Kullback-Leibler divergence from Q to P is given as

DKL(P jjQ) =
Z
X

p log
p

q
d�; (7.6)

The logarithms in these formula are taken to base 2 if information is measured in units of bits,

or to base e if information is measured in nats. Most formulas involving the Kullback-Leibler

divergence hold regardless of the base of the logarithm.

7.1.2 Motivation

In information theory, the Kraft�McMillan theorem establishes that any directly decodable

coding scheme for coding a message to identify one value xi out of a set of possibilities X can

be seen as representing an implicit probability distribution q(xi) = 2�li over X, where li is the

109

length of the code for xi in bits. Therefore, the Kullback�Leibler divergence can be interpreted

as the expected extra message-length per datum that must be communicated if a code that is

optimal for a given (wrong) distribution Q is used, compared to using a code based on the true

distribution P .

DKL(P jjQ) = �
X
x

p(x) log q(x) +
X
x

p(x) log p(x) (7.7)

= H(P;Q)�H(P)

where H(P;Q) is the cross entropy of P and Q, and H(P) is the entropy of P .

7.1.3 Properties

1. The Kullback-Leibler divergence is always non-negative, DKL(P jjQ) � 0; a result known

as Gibb�s inequality, DKL(P jjQ) zero if and only if P = Q almost everywhere.

2. The Kullback-Leibler divergence remains well-de�ned for continuous distributions, and

furthermore is invariant under parameter transformations. For example, if a transforma-

tion is made from variable x to variable y(x), then, since P (x)dx = P (y)dy and Q(x)dx =

Q(y)dy the Kullback-Leibler divergence may be written:

DKL(P jjQ) =

Z xb

xa

P (x) log

�
P (x)

Q(x)

�
dx (7.8)

=

Z yb

ya

P (y) log

�
P (y)dy=dx

Q(y)dy=dx

�
dy

=

Z yb

ya

P (y) log

�
P (y)

Q(y)

�
dy

where ya = y(xa) and yb = y(xb):

The Kullback-Leibler divergence is additive for independent distributions in much the same

way as Shannon entropy. If P1; P2 are independent distributions, with the joint distribution

P (x; y) = P1(x)P2(y); and Q, Q1, Q2 likewise, then

110

DKL(P jjQ) = DKL(P1jjQ1) +DKL(P2jjQ2) (7.9)

The Kullback-Leibler divergence DKL(P jjQ) is convex in the pair of probability mass func-

tions (p; q), i.e. if (p1; q1) and (p2; q2) are two pairs of probability mass functions, then

DKL(�p1 + (1� �)p2jj�q1 + (1� �)q2) (7.10)

� �DKL(p1jjq1) + (1� �)DKL(p2jjq2)

for 0 � � � 1:

7.2 Appendix B. RBMs universal approximation theory

Lemma 12 Let p be the distribution over binary vectors v; obtained with an RBM Rp and let

p!;c be the distribution obtained when adding a hidden unit with weights ! and bias c to Rp.

Then 8p; 8! 2 Rd; p = p!;�1

Proof. Denoting eh =
24 h

hn+1

35 ; fW =

24 W

!T

35 and eC =

24 C

c

35 where !T denotes the
tranpose of ! and introducing z(v; h) = exp

�
hTWv +BTv + CTh

�
, we can express p(v; h) and

p!;c(v;eh) as follows:

p(v; h) / z(v; h) (7.11)

p!;c(v;eh) / exp
�fhTfWv +BTv + fCTeh�

/ z(v; h) exp(hn+1!
Tv + chn+1)

If c = �1, p!;c(v;eh) = 0 if hn+1 = 1. Thus, we can discard the terms where hn+1 = 1;

keeping only those where hn+1 = 0. Marginalizing over the hidden units, we have:

111

p(v) =

P
h z(v; h)P

h(0);v0 z(v
0; h(0))

(7.12)

p!;�1(v) =

Peh z(v; h) exp(hn+1!Tv + chn+1)Pgh(0);v0 z(v0; h(0)) exp(h(0)n+1!Tv + ch
(0)
n+1)

=

P
h z(v; h) exp(0)P

h(0);v0 z(v
0; h(0)) exp(0)

= p(v)

Theorem 13 If p 6= p0, there exists a pair (!; c) such that KL(p0jjp!;c) < KL(p0jjp)

Proof. Expanding the expression of p!;c(v) and regrouping the terms similar to the expres-

sion of p(v); we get:

p!;c(v) =

Peh exp(hTWv + hn+1!
Tv +BTv + CTh + chn+1)Pgh(0);v0 exp(h(0)TWv0 + h(0)Tn+1!v

0 +BTv0 + CTh(0) + ch
(0)
n+1)

(7.13)

=

P
h z(v; h)(1 + exp(!

Tv + c))P
h(0);v0 z(v

0; h(0))(1 + exp(!Tv0 + c))

=
(1 + exp(!Tv + c))

P
h z(v; h)P

v0;h(0)(1 + exp(!
Tv0 + c))z(v0; h(0))

Therefore, we have:

KL(p0jjp!;c) =
X
v

p0(v) log p0(v)�
X
v

p0(v) log p!;c(v) (7.14)

= �H(p0)�
X
v

p0(v) log

(1 + exp(!Tv + c))

P
h z(v; h)P

v0;h(0)(1 + exp(!
Tv0 + c))z(v0; h(0))

!
= �H(p0)�

X
v

p0(v) log(1 + exp(!
Tv + c))�

X
v

p0(v) log
X
h

z(v; h)

+
X
v

p0(v) log

0@ X
v0;h(0)

(1 + exp(!Tv0 + c))z(v0; h(0))

1A
Assuming !Tv + c is a very large negative value for all v, we can make a Taylor expansion

of the �rst and the last term. The �rst term becomes

112

X
v

p0(v) log(1 + exp(!
Tv + c)) =

X
v

p0(v) exp(!
Tv + c) + oc!�1(exp(c))

and the last term becomes

 X
v

p0(v)

!
log

0@ X
v0;h(0)

(1 + exp(!Tv0 + c))z(v0; h(0))

1A
= log

0@ X
v0;h(0)

z(v0; h(0))

1A+ log 1 + Pv0;h(0) exp(!
Tv0 + c)z(v0; h(0))P

v0;h(0) z(v
0; h(0))

!

= log

0@ X
v0;h(0)

z(v0; h(0))

1A+ Pv0;h(0) exp(!
Tv0 + c)z(v0; h(0))P

v0;h(0) z(v
0; h(0))

+ oc!�1(exp(c))

But

P
v0;h(0) exp(!

Tv0 + c)z(v0; h(0))P
v0;h(0) z(v

0; h(0))
=

X
v

exp(!Tv + c)

P
h(0) z(v; h

(0))P
v0;h(0) z(v

0; h(0))

=
X
v

exp(!Tv + c)p!;�1(v)

=
X
v

exp(!Tv + c)p(v)

Putting all terms back together, we have

KL(p0jjp!;c) = �H(p0)�
X
v

p0(v) exp(!
Tv + c) +

X
v

exp(!Tv + c) + oc!�1(exp(c))(7.15)

�
X
v

p0(v) log

 X
h

z(v; h)

!
+ log

0@ X
v0;h(0)

z(v0; h(0))

1A
= KL(p0jjp) +

X
v

exp(!Tv + c)(p(v)� p0(v)) + oc!�1(exp(c))

Finally, we have

113

KL(p0jjp!;c)�KL(p0jjp) = exp(c)
X
v

exp(!Tv)(p(v)� p0(v)) + oc!�1(exp(c)) (7.16)

The question now becomes: can we �nd a ! such that
P

v exp(!
Tv)(p(v)�p0(v)) is negative?

As p0 6= p, there is a bv such that p(bv) < p0(bv): Then there exists a positive scalar a such
that b! = a

�bv � 1
2
e
�
(with e = [1:::1]T) yields

P
v exp(b!Tv)(p(v)� p0(v)) < 0. Indeed, for v 6= bv,

we have

exp(b!Tv)
exp(b!Tbv) = exp(b!T (v�bv)) (7.17)

= exp(a

�bv � 1
2
e

�T
(v�bv))

= exp

a
X
i

�bvi � 1
2

�
(vi�bvi)!

For i such that vi�bvi > 0, we have vi = 1 and bvi = 0: Thus, bvi� 1
2
= �1

2
and the term inside

the exponential is negative (since a is positive). For i such that vi�bvi < 0, we have vi= 0 andbvi = 1: Thus, bvi� 1
2
= 1

2
and the term inside the exponential is also negative. Furthermore, the

terms come close to 0 as a goes to in�nity. Since the sum can be decomposed as

X
v

exp(b!Tv)(p(v)� p0(v)) = exp(b!Tbv) X
v

exp(b!Tv)
exp(b!Tbv)(p(v)� p0(v))

!
(7.18)

= exp(b!Tbv)
0@p(bv)� p0(bv) +X

v 6=bv
exp(b!Tv)
exp(b!Tbv)(p(v)� p0(v))

1A
we have

X
v

exp(b!Tv)(p(v)� p0(v))~a!+1 exp(b!Tbv)(p(bv)� p0(bv)) > 0: (7.19)

Therefore, there is a value ba such that, if a > ba; Pv exp(!
Tv)(p(v) � p0(v)) > 0: This

concludes the proof.

Using the above, we obtain the main theorem:

114

Theorem 14 Let p0 be an arbitrary distribution over f0; 1gn and let Rp be an RBM with mar-

ginal distribution p over the visible units such that KL(p0jjp) > 0. Then there exists an RBM

Rp!;c composed of Rp and an additional hidden unit with parameters (!; c) whose marginal dis-

tribution p!;c over the visible units achieves KL(p0jjp!;c) < KL(p0jjp):

Proof. Choose a bv such that p(bv) < p0(bv). Pick b! = a
�bv � 1

2
e
�
with a large enough and

c such that !Tv + c is a large enough negative value for all v. Then adding a hidden unit

parameters (b!;c) gives the desired result.
The next theorem is for the limit case when the number of hidden units is very large, so

that we can represent any discrete distribution exactly.

Theorem 15 Any distribution over f0; 1gn can be approximated arbitrarily well (in the sense

of the KL divergence) with an RBM with k + 1 hidden units where k is the number of input

vectors whose probability is not 0.

Proof. In the previous proof, we had

p!;c(v) =
(1 + exp(!Tv + c))

P
h z(v; h)P

v0;h(0)(1 + exp(!
Tv0 + c))z(v0; h(0))

(7.20)

Let ev be an arbitrary v and b! de�ned in the same way as before, i.e. b! = a
�ev � 1

2

�
:

Now de�ne bc = �b!Tev + � with � 2 R: We have:

lim
a!1

1 + exp(b!Tv + bc) = 1 for v 6= ev (7.21)

1 + exp(b!Tv + bc) = 1 + exp(�)

Thus, we can see that, for v 6= ev:

lim
a!1

pb!;bc(v) =

P
h z(v; h)P

v0 6=ev;h(0) z(v0; h(0)) +Ph(0)(1 + exp(b!Tev + bc))z(ev; h(0)) (7.22)

=

P
h z(v; h)P

v0;h(0) z(v
0; h(0)) +

P
h(0) exp(�)z(ev; h(0))

=

P
h z(v; h)P

v0;h(0) z(v
0; h(0))

1

1 + exp(�)
P
h(0)

z(ev;h(0))P
v0;h(0)

z(v0;h(0))

115

Remembering p(v) =
P
h z(v;h)P

v0;h(0)
z(v0;h(0))

, we have for v 6= v

lim
a!1

pb!;bc(v) = p(v)

1 + exp(�)p(ev) (7.23)

Similarly, we can see that

lim
a!1

pb!;bc(ev) = [1 + exp(�)] p(ev)
1 + exp(�)p(ev) (7.24)

Depending on the value of �, one can see that adding a hidden unit allows one to increase

the probability of an arbitrary ev and to uniformly decrease the probability of every other v by
a multiplicative factor. However, one can also see that, if p(ev) = 0; then pb!;bc (ev) = 0 for all �.
We can therefore build the desired RBM as follows. Let us index the v�s over the integers

from 1 to 2n and sort them such that

p0(vk+1) = ::: = p0(v2n) = 0 < p0(v1) � p0(v2) � ::: � p0(vk) (7.25)

Let us denote pi the distribution of an RBM with i hidden units. We start with and RBM

whose weights and biases are all equal to 0. The marginal distribution over the visible units

induced by that RBM is the uniform distirbution. Thus,

p0(v1) = ::: = p0(v2n) = 2
�n (7.26)

We de�ne !1 = a1(v1 � 1
2
) and c1 = �!T1 v1 + �1:

As shown before, we now have:

lim
a1!+1

p1(v1) =
[1 + exp(�1)] 2

�n

1 + exp(�1)2�n
(7.27)

lim
a1!+1

p1(vi) =
2�n

1 + exp(�1)2�n
8i � 2

As we can see, we can set p1(v1) to a value arbitrarily close to 1, with a uniform distribution

over v1; :::; v2n : Then, we can choose �2 such that
p2(v2)
p2(v1)

= p(v2)
p(v1)

: This is possible since we can

arbitrarily increase p2(v2) while multiplying the other probabilities by a constant factor and

since p(v2)
p(v1)

� p1(v2)
p1(v1)

: We can continue the procedure until pk(vk): The ratio
pi(vj)

pi(vj�1)
does not

116

depend on the value of i as long i > j: (because at each such step i; the two probabilities are

multiplied by the same factor). We will then have

pk(vk)

pk(vk�1)
=

p(vk)

p(vk�1)
; :::;

pk(v2)

pk(v1)
=
p(v2)

p(v1)
(7.28)

pk(vk+1) = ::: = pk(v2n)

From that, we can deduce pk(v1) = �kp(v1); :::; p
k(vk) = �kp(vk) with �k = 1�(2n�k)pk(v2n)

We also have pk(v1)
pk(v2n)

= p1(v1)
p1(v2n)

= 1 + exp(�1):

Thus, pk(v1) = p(v1)[1� (2n � k)pk(v2n)] = (1 + exp(�1))pk(v2n):

Resolving the above equations, we have

pk(vi) =
p(v1)

1 + exp(�1) + p(v1)(2n � k)
for i > k (7.29)

pk(vi) = p(vi)
1 + exp(�1)

1 + exp(�1) + p(v1)(2n � k)
for i > k

Making a Taylor expansion to the �rst order of KL(pjjpk) when �1 goes to in�nity, we have

KL(pjjpk) =
X
i

p(vi)
(2n � k)p(vi)
1 + exp(�1)

+ o(exp(��1))!�1!1 0 (7.30)

This concludes the proof.

7.3 Appendix C. Contrastive divergence

This appendiz describe Contrastive Divergence (CD), an approximate Maximum-Likelihhod

(ML) learning algorithm proposed by Geo¤rey Hinton

Suppose we would like to model the probability distribution of a data point x using a function

of the form f(x; �); where � is a vector of model parameters. The probability of x; p(x; �)

must integrate to 1 over all x, therefore:

p(x; �) =
1

Z(�)
f(x; �) (7.31)

117

where Z(�), known as the partition function, is de�ned as

Z(�) =

Z
f(x; �)dx (7.32)

The model parameters �; are learned by maximizing the probability of a training set of

data, X=x1;:::;K ; given as

p(X;�) =
KY
k=1

1

Z(�)
f(xk; �) (7.33)

or, equivalently, by by minimizing the negative log of p(X;�), denoted E(X;�), which we

shall call the energy:

E(X;�) = logZ(�)� 1

K

KX
k=1

log f(xk; �) (7.34)

First, choose the probability model function, f(x; �); to be the pdf of a normal distirbution

N(x;�; �); so that � = f�; �g. The integral of the pdf is 1, so that logZ(�) = 0. Di¤erentiating

equation 7.34 with respect to � is the mean of the training data X, and a similar calculation

with respect to � shows that the optimal � is the square root of the variance of the training

data.

Sometimes, as in this case, a method exists that can exactly minimize the particular energy

function. Now let choose the probability model function f(x; �); to be the sum of N normal

distributions, so that � =
�
�1;:::;K ; �1;:::;K

	
and

f(x; �) =
NX
i=1

N(x;�i; �i) (7.35)

This is equivalent to a sum of experts or mixture model, with equal weights on all the experts;

having di¤erent weights is a trivial extension to the model. Again using the fact that a normal

distribution integrates to 1, we can see from equation 7.35 that logZ(�) = logN: However, now

di¤erentiating equation 7.34 with respect to each of the model parameters produces equations

dependent on other model parameters, so we cannot calculate the optimal model parameters

straight o¤. Instead we can use the partial di¤erential equations and a gradient descent method

with line search to �nd a local minimum of energy in the parameter space.

Choose the probability model function f(x; �); to be the product of N normal distributions,

118

so that

f(x; �) =

NX
i=1

N(x;�i; �i) (7.36)

This is equivalent to a product of experts model. The partition function, Z(�), is now no

longer a constant. We can see this by considering a model consisting of two normal distributions,

both with � = 1: If �1 = �1 and �2 =1 then Z(�) = 0; while if �1 = �2 then Z(�) =
1
2

p
�:

While it is possible, in this case, to compute the partition function exactly given �, suppose

that the integration part is not algebraically tractable (as will be tha case with other probability

model functions). In this case we would need to use a numerical integration in parameter

space, and use a gradient descent method to �nd a local minimum. For high dimensional data

spaces the integration time is crippling, and a high-dimensional parameter space compounds

this problem. This leads to a situation where a situation where we are trying to minimize an

energy function that we cannot evaluate.

Even though we cannot evaluate the energy function itself, CD provides a way to estimate

the gradient of the energy function. CD e¤ectively gives us a sense of balance, by taking very

small steps in the direction of steepest gradient we can then �nd to a local minimum.

As explained, CD estimates the energy function�s gradient, given a set of model parameters,

�, and the training data, X. We derive the partial derivative of Equation 7.34:

@E(X;�)

@�
=

@ logZ(�)

@�
� 1

K

KX
i=1

@ log f(xi; �)

@�
(7.37)

=
@ logZ(�)

@�
� EX

�
@ log f(xi; �)

@�

�

where EX (�) is the expectation of � given the data distribution X.

The �rst term on the right-hand side comes from the partition function, Z(�), which, as

Equation 7.32 shows, involves an integration over x: Substituting this in, we get

119

@ logZ(�)

@�
=

1

Z(�)

@ logZ(�)

@�
(7.38)

=
1

Z(�)

@

@�

Z
f(x; �)dx

=
1

Z(�)

Z
@f(x; �)

@�
dx

=
1

Z(�)

Z
f(x; �)

@ log f(x; �)

@�
dx

=

Z
p(x; �)

@ log f(x; �)

@�
dx

= Ep(x;�)

�
@ log f(x; �)

@�

�

As discussed, this integration is generally algebraically intractable. However, in the form of

Equation 7.38, it is clear that it can be numerically approximated by drawing samples from the

proposed distribution, p(x; �):

Samples cannot be drawn directly from p(x; �) as we do not know the value of the partition

function, but we can use many cycles of Markov Chain Monte Carlo (MCMC) sampling to

transform the training data (drawn from the target distribution) into data drawn from the

proposed distribution. This is possible as the transfromation only involves calculating tha ratio

of two probabilities, p(x0; �)=p(x; �); so the partition function cancles out. Xn represents the

training data transformed using n cycles of MCMC, such that X0 � X. Putting this back into

Equation 7.37, we get:

@E(X;�)

@�
= EX1

�
@ log f(x; �)

@�

�
� EX0

�
@ log f(x; �)

@�

�
(7.39)

We still have a computational hurdle to overcome, i.e., the several MCMC cucles required

to compute an accurate gradient will take a long time. Hinton�s assertion was that only a few

MCMC cycles would be needed to calculate an approximate gradient. The intuition behind this

is that after a few iterations the data will have moved from the target distribution towards the

proposed distribution, and so give an idea in which direction the proposed distribution should

move to better model the training data. Empirically, Hinton has found that even 1 cycle of

MCMC is su¢ cient for the algorithm to converge to the ML answer.

120

�t+1 = �t + �

�
EX0

�
@ log f(x; �)

@�

�
� EX1

�
@ log f(x; �)

@�

��
(7.40)

As such, bearing in mind that we wish to minimize the energy function, the parameter

update equation may be written as Equation 7.40 where � is the step size factor, which should

be chosen experimentally, based on convergence time and stability.

121

Bibliography

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning algorithm for boltzmann

machines, Cognitive Science 9 (1985) 147-169.

[2] M. Alhamdoosh, D.Wang, Fast decorrelated neural network ensembles with random

weights, Information Sciences 264 (2014) 104-117.

[3] P.Angelov, An approach for fuzzy rule-base adaptation using on-line clustering, Interna-

tional Journal of Approximate Reasoning, Vol.35, No.3,275-289, 2004.

[4] Y. Bengio and O. Delalleau, Justifying and generalizing contrastive divergence, Neural

Computation 21 (6) (2009) 1601-1621.

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, Greedy layer-wise training of deep

networks, Advances in Neural Information Processing Systems (NIPS�06), pp. 153-160,

MIT Press, 2007.

[6] Y. Bengio and Y. LeCun, �Scaling learning algorithms towards AI,�in Large Scale Kernel

Machines, (L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds.), MIT Press, 2007.

[7] J. Bergstra, Y. Bengio, Random Search for Hyper-Parameter Optimization, Journal of

Machine Learning Research (2011) 281-305.

[8] G. Box, G. Jenkins, G. Reinsel, Time Series Analysis: Forecasting and Control, 4th Ed,

Wiley, 2008.

[9] E. Busseti, I. Osband and S.Wong, Deep learning for time series modeling, CS 229 Technical

Report, Stanford University, 2012

[10] G. Box, G. Jenkins, G. Reinsel. Time Series Analysis: Forecasting and Control, 4th Ed,

Wiley, 2008.

122

[11] M.Brown, C.J.Harris, Neurofuzzy Adaptive Modelling and Control, Prentice Hall: New York

, 1994.

[12] S. Chakrabartty, ; R. K. Shaga, K. Aono, Noise-Shaping Gradient Descent-Based Online

Adaptation Algorithms for Digital Calibration of Analog Circuits, IEEE Transactions on

Neural Networks and Learning Systems 24 (4) (2013) 554-565.

[13] S. Chen and S.A. Billings, Neural networks for nonlinear system modelling and identi�ca-

tion, Int. J. Control, 1992, 56(2), pp. 319-346.

[14] P.Chen, C-Y.Zhang, L.Chen, M.Gan , Fuzzy Restricted Boltzmann Machine for the En-

hancement of Deep Learning, IEEE Transactions on Fuzzy Systems, Vol.23, No.6, pp.2163-

2173, 2015.

[15] J-H. Chiang, P-Y. Hao, Support Vector Learning Mechanism for Fuzzy Rule-Based Mod-

eling: A New Approach, IEEE Transactions on Fuzzy Systems, Vol. 12, No. 1, 2004.

[16] S.L.Chiu, Fuzzy Model Identi�cation based on cluster estimation, Journal of Intelligent

and Fuzzy Systems, Vol.2, No.3, 1994.

[17] R. Collobert and J. Weston, A uni�ed architecture for natural language processing: Deep

neural networks with multitask learning, 25th International Conference on Machine Learn-

ing, pp. 160-167, ACM, 2008.

[18] Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y., Online passive-

aggressive algorithms, JMLR pp. 551-585, 2006

[19] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines: Cam-

bridge Univ. Press, 2000.

[20] G.Cybenko, Approximation by Superposition of Sigmoidal Activation Function,

Math.Control, Sig Syst, Vol.2, 303-314, 1989

[21] K. De Brabanter, P. Dreesen, P. Karsmakers, K. Pelckmans, J. De Brabanter, J.A.K.

Suykens and B. De Moor, Fixed-size LS-SVM applied to the Wiener-Hammerstein bench-

mark. In Proceedings of the 15th IFAC Symposium on System Identi�cation (2009) 826-831.

123

[22] E. de la Rosa, Deep learning for nonlinear systems identi�ca-

tion (Masters dissertation), CINVESTAV-IPN, 2014, Retrieved from

http://www.ctrl.cinvestav.mx/~yuw/pdf/MaTesER.pdf

[23] D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P.Vincent, Why Does Unsupervised

Pre-training Help Deep Learning?, Journal of Machine Learning Research 11 (2010) 625-

660.

[24] G. Chen, Deep learning with nonparametric clustering, arXiv:1501.03084, 2015

[25] X.Gu, F-L.Chung, Hi.Ishibuchi, S.Wang, Imbalanced TSK Fuzzy Classi�er by Cross-Class

Bayesian Fuzzy Clustering and Imbalance Learning, IEEE Transactions on Systems, Man,

and Cybernetics: Systems, DOI: 10.1109/TSMC.2016.2598270, 2016.

[26] S.Haykin, Neural Networks- A Comprehensive Foundation, Macmillan College Publ. Co.,

New York, 1994.

[27] G. E. Hinton, S. Osindero, and Y. Teh, A fast learning algorithm for deep belief nets,

Neural Computation, vol. 18, pp. 1527-1554, 2006.

[28] G. E. Hinton and T. J. Sejnowski, Learning and relearning in Boltzmann machines, Par-

allel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1:

Foundations, Cambridge, MA: MIT Press, (1986) 282-317.

[29] H. Hjalmarsson,C.R.Rojas, D.E.Rivera, System identi�cation: A Wiener-Hammerstein

benchmark, Control Engineering Practice 20 (2012) 1095-1096,

[30] C-H.Hu, X-S.Si, J-B.Yang, Z-J.Zhou, Online Updating With a Probability-Based Predic-

tion Model Using Expectation Maximization Algorithm for Reliability Forecasting, IEEE

Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, Volume:

41, Issue: 6, Pages: 1268 - 127, 2011

[31] G.B. Huang, L. Chen, and C. K. Siew, Universal approximation using incremental feed-

forward networks with arbitrary input weights, Technical Report ICIS/46/2003, (School of

Electrical and Electronic Engineering, Nanyang Technological University, Singapore), 2003.

124

[32] G-B.Huang, Q-Y.Zhu, C-K.Siew, Extreme learning machine: theory and applications,

Neurocomputing, vol. 70, no.1, pp.489-501, 2006.

[33] B. Igelnik and Y-H.Pao, Stochastic Choice of Basis Functions in Adaptive Function Ap-

proximation and the Functional-Link Net, IEEE Transactions on Neural Networks 6 (2)

(1995) 1320-1329.

[34] S. Jagannathan and F. L. Lewis, Identi�cation of Nonlinear Dynamical Systems Using

Multilayered Neural Networks, Automatica 32 (12) (1996) 1707-1712.

[35] J. S. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transactions on

Systems, Man and Cybernetics 23 (1993) 665�685.

[36] C.F.Juang, Combination of on-line clustering and Q-value based GA for reinforcement

fuzzy system design, IEEE Transactions on Fuzzy Systems, Vol.13, No.3, 289- 302, 2005

[37] X.Jin, J.Shao, X.Zhang, W.An, R.Malekian, Modeling of nonlinear system based on deep

learning framework, Nonlinear Dynamics, Volume 84, Issue 3, pp 1327-1340, 2016

[38] M.Kumar, A.Insan, N.Stoll, K.Thurow, R.Stoll, Stochastic Fuzzy Modeling for Ear Ima-

ging Based Child Identi�cation, IEEE Transactions on Systems, Man, and Cybernetics:

Systems, Volume: 46, Issue: 9 Pages: 1265 - 1278, 2016.

[39] M. Längkvist, L. Karlsson, and A. Lout�. A review of unsupervised feature learning and

deep learning for time-series modeling. Pattern Recognition Letters 42: 11-24. 2014.

[40] H. Larochelle and Y. Bengio, Classi�cation using discriminative restricted Boltzmann ma-

chines, Proceedings of the 25th International Conference on Machine Learning , 536-543,

2008

[41] H.K.Lam, Design of stable fuzzy controller for non-linear systems subject to imperfect

premise matching based on grid-point approach, IET Control Theory & Applications, Vol.4

, No.12, 2770-2780, 2010

[42] Y.LeCun, Y.Bengio, G. E.Hinton, Deep learning, Nature, 521 (7553): 436-444, 2015

[43] Y. LeCun, L.Bottou, Y.Bengio, and P.Ha¤ner. Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, Vol.86, No.11, 2278-2324,1998

125

[44] N. Le Roux and Y. Bengio, Representational power of restricted Boltzmann machines and

deep belief networks, Neural Computation, Vol. 20, 1631-1649, 2008

[45] J.M. Leski, TSK-Fuzzy Modeling Based on "-Insensitive Learning, IEEE Trans. on Fuzzy

System, vol. 13, no. 2, pp181-193, 2005.

[46] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, Tuning of the structure and

parameters of a neural network using an improved genetic algorithm, IEEE Transactions

on Neural Networks 14 (2003) 79-88.

[47] J.Li, S.Ray, B.G.Lindsay, A Nonparametric Statistical Approach to Clustering via Mode

Identi�cation, Journal of Machine Learning Research, Vol.8, 1687-1723, 2007

[48] C.-T. Lin and C-.S.G. Lee, Neural network-based fuzzy logic control and decision system,

IEEE Trans. Comput., vol 40 pp. 1320-1336, 1991.

[49] Y. Liu, K.Chan, K.A.Hua, Hybrid Manifold Embedding, IEEE Transactions on Neural

Networks and Learning Systems 25 (12) (2014) 2295 - 2302.

[50] Z.Liu and H-X.Li, Probabilistic Fuzzy Logic System for Modeling and Control, IEEE Trans.

on Fuzzy System, vol. 13, no. 6, pp848-859, 2005.

[51] L.Ljung, System Identi�cation-Theory for User, Prentice Hall, Englewood Cli¤s, NJ 07632,

1987.

[52] D. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM

Journal on Applied Mathematics 11 (2) (1963) 431-441.

[53] M. Minsky, S. Papert, Perceptrons: an introduction to computational geometry. Cam-

bridge: MIT Press; 1969.

[54] S. Mitra adn Y. Hayashi, Neuro�fuzzy rule generation: survey in soft computing framework,

IEEE Transactions on Neural Networks 11 (3) (2000) 748-769.

[55] T.M. Nabhan, A.Y. Zomaya, Toward generating neural network structures for function

approximation, Neural Networks, Vol.7, No.1, pp. 89-99, 1994

126

[56] K. S. Narendra and K. Parthasarathy, Gradient methods for optimization of dynamical

systems containing neural networks, IEEE Transactions on Neural Networks 3 (2) (1991)

252-262.

[57] K.Noori, K.JenabFuzzy Reliability-Based Traction Control Model for Intelligent Transport-

ation Systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume:

43, Issue: 1, Pages: 229 - 234, 2013.

[58] I. Rivals and L. Personnaz, Neural-network construction and selection in nonlinear model-

ing, IEEE Transactions on Neural Networks 14 (4) (2003) 804-820.

[59] P. Romeu, et al. Time-Series Forecasting of Indoor Temperature Using Pre-trained Deep

Neural Networks. Arti�cial Neural Networks and Machine Learning�ICANN 2013. Springer

Berlin Heidelberg, 451-458. 2013.

[60] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organiz-

ation in the brain. Psychol Rev. 1958;65(6):386�408.

[61] R.Salakhutdinov, G. E.Hinton, An E¢ cient Learning Procedure for Deep Boltzmann Ma-

chines, Neural Computation, Vol.24, 1967-2006, 2012

[62] R.Salakhutdinov, G. E.Hinton, Deep Boltzmann Machines, 12th International Conference

on Arti�cial Intelligence and Statistics (AISTATS), Clearwater Beach, Florida, USA, 2009

[63] W. F. Schmidt, M. A. Kraaijveld, R. P. W. Duin, Feedforward neural networks with random

weights, 11th IAPR International Conference on Pattern Recognition, pp. 1-4, The Hague,

Netherlands , 1992.

[64] J. Schoukens, J. Suykens, L. Ljung, Wiener-Hammerstein benchmark, 15th IFAC Symposi-

umon System Identi�cation, Saint-Malo, France, 2009.

[65] Q. Song, Robust Initialization of a Jordan Network With Recurrent Constrained Learning,

IEEE Transactions on Neural Networks 22 (12) (2011) 2460-2473.

[66] D. Sosulski, M. Bloom ML, T. Cutforth, R. Axel , S. Datta, Distinct representations of

olfactory information in di¤erent cortical centres. Nature. 2011;472:213�6.

127

[67] M. Sugeno, T. Yasukawa, A Fuzzy Logic Based Approach to Qualitative Modeling, IEEE

Trans.on Fuzzy Systems 1 (1) (1993) 7-31.

[68] T. Takagi and M. Sugeno, Fuzzy identi�cation of systems and its applications to modeling

and control, IEEE Trans. Syst., Man. and Cybern., vol. 1, pp. 116-132, Jan. 1985.

[69] S. Tamura and M. Tateishi, Capabilities of a four-layered feedforward neural network: Four

layers versus three, IEEE Transactions on Neural Networks, vol. 8, no. 2, pp. 251� 255,

1997.

[70] J. Tapson and A. van Schaik, Learning the pseudoinverse solution to network weights,

Neural Networks 45 (2013) 94-100.

[71] S.G.Tzafestas and K.C.Zikidis, NeuroFAST: On-line neuro-fuzzy ART-based structure and

parameter learning TSK model, IEEE Transactions on Systems, Man and Cybernetics,

Part B, Vol.31, No.5, 797-803, 2001.

[72] P. E. Utgo¤ and D. J. Stracuzzi, Many-layered learning, Neural Computation, vol. 14, pp.

2497�2539, 2002.

[73] L.Waltman, U.Kaymak, J.Berg, Maximum likelihood parameter estimation in probabilistic

fuzzy classi�ers, 14th IEEE International Conference on Fuzzy Systems, 1098-1103, 2005.

[74] L.X.Wang, Adaptive Fuzzy Systems and Control, Englewood Cli¤s NJ: Prentice-Hall, 1994.

[75] L. Wang and R. Langari, Complex Systems Modeling via Fuzzy Logic, IEEE Trans. on

Syst., Man, and Cybernetics 26 (1) (1996) 100-106.

[76] W. Yu, X. Li, Automated Nonlinear SystemModeling with Multiple Fuzzy Neural Networks

and Kernel Smoothing, International Journal of Neural Systems 20 (5) (2010) 429-435.

[77] W. Yu, X. Li, Online fuzzy modeling with structure and parameter learning, Expert Systems

With Applications, Vol. 36, 7484-7492, 2009

[78] L.A. Zadeh, A note on Z-numbers, Information Sciences, Vol. 181, pp.2923-2932, 2011.

[79] L.A. Zadeh, "Fuzzy sets". Inf. Control, vol 8, pp 338-353, Aug, 1998.

128

[80] H.Zhang, M.Li, J.Yang, D.Yang, Fuzzy Model-Based Robust Networked Control for a

Class of Nonlinear Systems,IEEE Transactions on Systems, Man, and Cybernetics - Part

A: Systems and Humans, Volume: 39, Issue: 2, Pages: 437 - 447, 2009.

129

