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Abstract

Support Vector Machine (SVM) is a state-of-the-art classification method whose model is
a hyperplane of maximum margin. SVMs produce a high classification accuracy, a compact
model and have an extraordinary generalization capability. In spite of these attractive features,
this classifier has the disadvantage of being unsuitable for large data sets, because its training
phase is costly.

In this research, two methods to decrease the size of the training data sets are proposed,
in order to improve the training time of a SVM. The first method presented in this work uses
a convex-concave hull to detect objects in data sets that are located on the outer boundaries
of data, this method is suitable for low dimensional data sets. The second method uses the
concept of entropy to detect objects that are close to others with opposite label; this method
can work with an arbitrary number of dimensions.

Our methods allow to apply SVMs on large data sets. In fact, these methods also improve
the training time on medium-size data sets. The proposed methods were validated using
publicly available data sets and comparing performance against other state of the art methods.
After applying the novel methods, the training time of SVM is considerably improved whereas

the achieved classification accuracy is only slightly degraded.






Resumen

La Maquina de Soporte Vectorial o Maquina de vectores de soporte (SVM, por sus siglas
en inglés) es un clasificador del estado del arte cuyo modelo es un hiperplano de margen
maximo. Las SVMs alcanzan una elevada precisén de clasificacidn, un modelo compacto y
ttenen un poder de generalizacidn extraordinario. A pesar de estas atractivas caracter{sticas,
este clasificador tiene la desventaja de no ser apropiado para conjuntos de datos grandes,
debido a que su fase de entrenamiento es costosa.

En esta investigacion, se proponen dos métodos para disminuir el tamafio de conjuntos de
datos, estos mejoran el tiempo de entrenamiento de las SVMs. ELl primer método presentado
en este trabajo usa una cubierta cdncava-convexa para detectar objetos localizados en los
bordes externos de conjuntos de datos; este método es adecuado para conjuntos de datos de
baja dimensionalidad. El sequndo método usa el concepto de entropla para detectar objetos
que se encuentran cerca de otros de clase opuesta; este método puede trabajar con un ndimero
arbitrario de dimensiones.

Los métodos de reduccién de datos propuestos permiten aplicar SVM sobre conjuntos de
datos grandes. De hecho, estos métodos también mejoran el tiempo de entrenamiento en
conjuntos de datos medianos. Los métodos propuestos fueron validados usando conjuntos de
datos disponibles publicamente y comparando su desempefio con respecto al de otros métodos
del estado del arte. Después de aplicar los nuevos métodos, el tiempo de entrenamiento de las
SVMs mejora de manera considerable, mientras que la precisién alcanzada sélo es disminuida

ligeramente.
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Introduction

If we can really understand the problem, the
answer will come out of it, because the answer is
not separate from the problem

Jiddu Krishnamurti

The theoretical and technological advances in Computer Sciences and Computer
Engineering have made possible the current capabilities of storing a huge amount of
information at negligible costs. In fact, the rate of production of data is growing more and more.
Since 2002, when the so-called digital age started [1], information has been preferentially
stored in digital media. By 2007, almost 97% of information was stored in this way [1]. The
capacity for information storing, including digital and Analog Devices was estimated in more
than 295 Exabytes' in 2008.

The inclusion of complex electronic devices in virtually every place (security systems,
sale points, automobiles, industrial control systems, etc.) and the networking capabilities of
many systems (PDA, GPS, smart phones, computers, web applications, etc.) gave as a result
a massive generation of information. According to the most-recent study presented in June
2011 [2] the amount of data generated is estimated exceed 1.8 zettabytes (ZB) 2> (1.8 trillion
gigabytes). Every hour, thousands of mega Bytes (MB) are generated, and it is also estimated

that the amount of data will grow at least 50 times in the next 10 years".

"Exabyte (EB)= 10'® Bytes

?Zettabyte (ZB)= 10°" Bytes

3The exact number is 1,987, 262,613, 861, 770, 000, 000 Bytes, http://www.emc.com/leadership/programs/digital-
universe.htm

*http://www.emc.com/microsites/bigdata/index htm



Chapter 1. Introduction

Data are worthless if there are no mechanisms to extract useful or interesting knowledge
from them. The first successful attempts to explore this area were achieved by statisticians,
using parametric models to explain the data. In pure statistical methods, a model is generally
proposed a priori, and then the parameters are adjusted with the minimal possible error
using as less as possible data. It is known that using only classical statistical tools is now
impractical because the amount of data has dizzily increased, data are incomplete or noisy
and the underlying models that generate the data are complex and can change over time.

The area of automatic extraction of knowledge from databases emerged in the late 1980s
as a support to understand data digitally stored. The proposal was to create flexible and
powerful techniques with the ability to be driven by data instead of to be driven by a model.
The main goal was to extract new, interesting and worth knowledge from large amounts of data
[3] [4] with minimal or no human intervention. Much progresses have been accomplished, but
there is much work is pending yet, for example: scaling algorithms for big data; developing
methods for high speed data streams; adapting algorithms for distributed, multi core and
parallel platforms and creating new methods specific for dynamic environments on specific
devices (low power consumption or very limited resources).

The techniques developed for mining knowledge can be grouped in four main categories
[5] [6]: Classification, Clustering, Regression, and Association rules.

Classification is the task related to predict the associated type or category associated to
a given object, i.e, for a previously previously unseen object trying to identify the category
it belongs to. The category, called class, can be represented by discrete values where
the ordering among values has no meaning. Classification is said supervised because it
is necessary to start with a set of labeled objects (this set is called training data set) to build
a model to predict the labels as accurately as possible.

Linear classification methods use hyperplanes as decision boundaries, in general these
methods solve an optimization problem to determine the separating hyperplane, or, more
strictly, an affine plane. Some classification methods use kernels, which are non linear
functions that permit to work in a higher dimensional space where data can be treated as
linearly separable, even when they are not linearly separable in the original input.

The SVM is a state-of-the-art classification method that uses an optimal separating
hyperplane (linear boundary) to classify. The objects in the training data set that determine
the optimal separating hyperplane are called support vectors (SV) and they are obtained by
solving a quadratic programming problem (QPP).

2



Table 1.1: Training methods for SVM

Algorithm Data set size’ Features Type of method”
SMO (1998)[12] 32,562 14 Decomposition
SMO improved (2001)[13] 24,692 300 Decomposition
LibSVM (2005)[14] 100,000 54 Decomposition
RCH (2007)[8] 618 2 Geometric

SCH (2009)[11] 16,000 14 Geometric
LASVM (2005)[15] 521,012 14 Data reduction
Hybrid DT SVM (2010)[16] 22,696 123 Data reduction
Hyperplane Distance (2011)[17] 20,000 22 Data reduction

“Maximum number of objects reported in corresponding article
bTechnique used by the method

The SVM can produce linear or nonlinear optimal boundaries via kernels. Theoretically,
the optimal separating hyperplane solved by SVM produces the best generalization possible
for the linearly separable case. It has been demonstrated [7] that methods for classification
having optimal linear boundaries converge to the SVM, so all its benefits mentioned before
are inherent [8] [9] [10] [11].

Current methods for training SVMs can be categorized as: data reduction, based
on geometric properties, decomposition, variants of SVM and others. Table 1.1 shows

representative methods for training SVM.

The sequential minimal optimization (SMO) is probably the most popular method for training
SVMs, however, it is not the fastest. LibSVM is a library based on SMO, which outperforms
SMO in the literature, and such a behaviour was corroborated in our experiments. The
Reduced Convex Hull (RCH) and Scaled Convex hull (SCH) are geometric methods that do
not scale well in practice, they work well only with a few hundreds of examples.

In this research, we develop two novel reduction methods for improving the training time of
SVM classifiers. The idea behind data reduction methods is the observation that, in general,
the number of SV is small compared with the number of objects in data sets [18] [19][20] The
objects with a high probability of being support vectors (support vector candidates) are used
to train the SVM, the goal is to quickly detect the support vector candidates to reduce the
training time of the SVM.



Chapter 1. Introduction

Motivation and goals

SVM classifiers have been successfully adopted in many applications such as credit rating
[21], chemistry [22], spam filtering [23][24], control of electric machines [25] and marketing [26],
among others. The model produced by SVM is compact, geometrically interpretable and its
performance usually surpasses the classification accuracy of other methods. In spite of their
characteristics, SVM classifiers have a noticeable problem; the training phase consumes about
O(n?) time and O(n?) memory space [27] [28]. This prevents the use of SVM with large data
sets.

Enabling SVM on large data sets is an interesting problem. There are different types
of methods for training SVMs. Methods based on geometric properties of SVMs work well
for linearly separable cases, however, they do not achieve good accuracy on the linearly
inseparable cases. The Decomposition methods can be used with large training sets but they
converge slowly. Variants of SVM improve training time of SVM at the expense of classification
accuracy. Data reduction has shown scale better than the other approaches, and, additionally,
it can be applicable to other classification methods.

The main goal of this research is to develop novel data reduction methods to improve the
training time of the SVM classifier. These methods make possible to apply SVMs on large
data sets achieving an acceptable level of classification accuracy while keeping a training
time significantly lower than that of state-of-the-art methods.

The specific objectives are the following:

e Analyze the state-of-the-art methods for training SVMs on large data sets, in order to

identify the advantages and disadvantages of these methods.

e Analyze the geometric properties of SVMs to propose a method based on a non-convex

hull, to detect objects on the boundaries of the data distribution.
e Develop a novel method to detect objects located close to objects with opposite label.
e Determine the computational complexity of the proposed methods.
e Jest the developed methods with publicly available benchmark data sets.

e Fvaluate the performance of the proposed methods against the most representative

algorithms for training SVMs.



Contributions

In this work, we propose two novel data reduction methods for the SVM classifier. The
proposed methods outperform the state-of-the-art methods for training SVMs such as LibSVM,
SMO, RCH, SCH and SVM9t - A brief description of the contributions is provided next:

1. A fast reduction method based on non-convex hull. This method is suitable for low
dimensional data sets containing tens of thousands of objects. The method uses a
convex hull as a reference to guide a search of instances located on the boundaries of

the training set. The result is a super set of vertexes of CH that form a non convex hull.

2. A method based on the entropy concept. This method uses a decision tree to discover
low entropy regions, which are treated as clusters. Two main variants were developed.
The first one uses Fisher’s linear discriminant to detect objects located close to clusters
with an opposite class. The second variant uses the objects close to centers of clusters
to train a SVM.

Document Organization

The rest of this document is organized as follows. Chapter 2 is devoted to describe the
classification task, covering the basic background, terminology used, measures for evaluation
of classifiers and the classification methods available that are relevant for the purposes of this
thesis.

Chapter 3 shows the state of the art on training methods for SVM. Also, the results of a
preliminary experiment are presented to show that the closest examples to an opposite class
are good candidates to be SV candidates.

In Chapter 4, a data reduction method able to work with low dimensional data sets is
presented. The method is based on non-convex hulls and search objects located on the
boundaries of sets of points.

A method that uses a decision tree is explained in Chapter 5. This method can be applied
to large data sets regardless of the number of features of each object. A minor variant of this
method is also included in Chapter 5. This variant is faster but it is less accurate.

The general conclusions as well as some possible paths for future work are presented in

last part of this thesis.
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Classification

A man of knowledge lives by acting, not by

thinking about acting

Carlos Castaneda

The background on the classification task is presented in this Chapter. We begin with
some definitions and explain the main supervised and unsupervised methods, focusing on the
following classification methods: support vector machines, decision trees and Fisher’s linear
discriminant. These three classifiers are related to the methods developed during this research.

Finally, this Chapter provides a description of the main techniques used to evaluate classifiers.

Preliminaries

A data set is a collection of data that contains individual data units, which are called objects.

be used interchangeably throughout this document; in all cases, the meaning

The terms instance, object, record, sample, pattern or example will
is: an element of a given labeled or unlabeled data set.

The objects are composed of features also known as attributes or properties. The features
are usually measures of real-world objects or relations between entities. The number of
features is known as the dimension of an example. Instances usually have a small number of

features, generally tens of them; however, some data sets have many features'.

"The URL Reputation data set [23] has 3,231,967 attributes.

7



Chapter 2. Classification

There are five main types of attributes, these are:

e Nominal attributes, which are not numerical, t.e; they are simply a label. An example

can be the color of something or the gender of a person.

e Ordinal variables. These are similar to nominal ones; however, their values can be

arranged in a meaningful order, for example, light, medium or heavy.
e Numeric attributes. Their values are integer or real numbers.

e Interval features, which are quantities. Their values are not only ordered, but also

measured in fixed and equal units [3].

e Binary or Boolean. It is a special case of a nominal variable; it takes only two possible

values. Typical examples are: true or false, 0 or 1, male or female, etc.

b
Through this document, a data set is represented with an X. N
is the number of examples in X, e, N = |X|. The number of features is
referred as d.

The data sets used in this work have the form

X={(xiy),i=1.N,x €R,y ={C, GC}} (2.1)

A data set is said to be labeled, if all or most of its records contain a special attribute,
called the class attribute; this indicates that it has some significance or is meaningful. The
purpose of the class attribute is to identify the sample as being of a particular category or
class. If the data set does not contain a class attribute, then it is called unlabeled.

Table 2.1 shows a fragment of the Iris data set [29], taken from [30]. This set is probably
the most famous data set for classification. Each row in the labeled Iris data set represents
an instance, which has four properties and a class attribute.

Methods for retrieving knowledge from data can be categorized as supervised or
unsupervised. Both kinds of methods use data sets to build models. The supervised methods
build models from labeled data sets. The models obtained must be able to predict the class of
previously unseen objects. The unsupervised methods discover groups of similar objects from

unlabeled data sets.
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Table 2.1: Fragment of the Iris data set

Sepal Length Sepal Width Petal Length Petal Width Species

5.1 35 14 0.2 setosa
49 3.0 14 0.2 setosa
7.0 3.2 47 14 versicolor

6.4 32 45 15 versicolor

The main supervised methods are classification and regression. Classification methods use
labeled data sets whose class attribute is categorical. The three key objectives in classification
are high classification accuracy, comprehensibility (ability of a human expert to understand
the classification model) and compactness (size of model) [31]. The regression is similar to
classification; however, the labels are of numeric type, i.e.; the class attribute is continuous.

The principal unsupervised learning methods are: clustering, outlier analysis and frequent
pattern analysis. Clustering consists of identifying similar objects based on distances.
These algorithms are categorized in hierarchical, partitioning, density-based, constraint-based
clustering, grid-based methods and Model-based methods [32]. Outlier analysis consists in
identifying samples that do not comply with the general behavior or model of data. Frequent
patterns analysis includes those methods devoted to search for recurring relationships in a
given data set.

Supervised and unsupervised methods are related to data mining (DM). The latter refers
to a group of data-driven methods, devoted to extract knowledge from large amounts of data
[4]5] DM can be found in the literature with the following names: knowledge extraction,
exploratory data analysis, information discovery, information harvesting, data archeology and

data pattern processing [5].

] Classifiers

Classification is a supervised learning technique that consists in assigning an object to one
of a set of predefined categories. The input data for a classifier is a labeled data set X,

in which the class attribute is of cateqgorical type; the goal is to build a model to predict

9
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the (categorical) label of previously unseen samples. An unknown probability distribution is
used to extract examples from a data set, then a model is created utilizing these objects. The
model can predict accurately new examples if these are generated using the same probability
distribution.

In general, the available information is not enough to have a clear relationship between
inputs and output values. The goal in the classification task is to construct a decision function

to make good predictions, i.e, learn a map from input X into output Y, or, mathematically

fXisY (2.2)

where

f : is the decision function,

X : is the input space,

Y 1 is the output, the set of labels.

The training of a classification method consists in using pairs (x;, y;) to build decision
functions [28] Because the decision functions are used to classify objects, the former are
known as classifiers.

The decision functions partition the input space into a number of regions [33] (see eq. (2.3)),
defined by decision regions, decision boundaries or decision surfaces [34] After a decision
function has been learned from X, a given example x; can be mapped into a partition A; and

a label y € Y is assigned to x.

X = JA such that (A =@ (2.3)
j j

where

A; - The j— th partition of X.

The decision functions are also known as classification models. They are used as
explanatory tools to understand hidden relations in a data set, or to predict the class label of
unknown records.

Some algorithms for building classifiers use dot products and norms; these concepts are
presented in Definitions 1 and 2. The dot product is a tool for measuring angles and lengths
in geometry. Dot product is closely related with the concept of norm in vector spaces. Inner

products and norms are treated in classification as a measure of dissimilarity among instances.

10
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Definition 1 (Dot product) The dot product between two vectors u,v € R?

isamap (-,-): R x R — R, it is computed with

(uv)y=u'v= Z UV

i=1

The dot product fulfills the following properties:
1. Commutative. (u,v) = (v, u)
2. Distributive. (u,v+ w) = (u,v) + (u, w)
3. Bilinear. {u,rv+w) =r{u,v)+(u,w)

4. Scalar multiplication. (au, bv) = ab{v, u)

Definition 2 (Norm) A Norm is a function which assigns a length to vectors.

The norm between two vectors u,v € R is a map f : R — R, it satisfies
1. Positive homogeneity: Yu € RY, a > 0, f(au) = af(u).
2. Triangle inequality: Yu,v € RY, f(u + v) < f(u) + f(v).
3 Definiteness: Yu € RY, f(u) =0 implies u = 0.
Definition 3 presents convex sets, which play a central role in some classification methods,
specially those that use a linear decision boundary.

Definition 3 (Convex Set) A set C C R? is said to be convex if and only
ifforeveryci,c;e C,aeRst 0<a<

acer+(1—a)oeC, Vo,qel (2.4)

The classification methods that use linear boundaries, search for points in the line segment
defined by two points that belong to a set C. According to Definition 3, if C is convex, then

the points that are found by these methods will lie in C. An example of convex sets are the

11
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half spaces, which are important for classification. A closed half space is either of the two

parts into which a hyperplane divides an affine space, e, {w:w'u < b}, {w:w'u > b}.

Definition 4 (Convex Hull) The convex hull of a set X C R? is defined as

CH(X){W:W:Zaixi,aiZO,Zai=1,x[€X} (2.5)
i=1 i=1

A convex hull of a set is the intersection of all convex sets that contain the set. See
Definition 4 for a complete description of convex hull. One way to ensure a classification
algorithm is working in a convex set, is to compute the convex hull of input data set; and then,
allow the algorithm to run in it. In most cases this approach is very costly.

The w =3 7 ax;,a; >0,) 7, a; =1, in Definition 4, is called a convex combination.
In the algorithms, the a; are seen as a weight of instances, or as probabilities.

Definition 5 describes a hyperplane.

Definition 5 (Linear hyperplane) A linear hyperplane is a RI7'-

dimensional space H of a vector space V, ie,

H={veV, st (uv)=0}

Where

u is a fixed nonzero vector in V.

Geometric methods for classification, such as linear models or SVM, divide the space into
non overlapped regions or partitions. The boundaries (decision surfaces) of such partitions
are defined with hyperplanes.

Eidelheit separation theorem is shown in Theorem 2.1; it is important for linear classifiers.
The decision surface of these classifiers is a hyperplane, which produces two closed half spaces
where each one contains instances of one class. Figure 2.1 shows a graphical representation

of the theorem.

12
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K1

Figure 2.1: A graphic example of separating hyperplane

Theorem 2.1 (Eidelheit Separation Theorem) Let K and K be two convex
sets in a real vector space X, s.t. Ky contains interior points, and K, contains
no interior points of Ky. Then, there is a closed hyperplane H separating K;
and K. In other words, Ky and K lie in the opposite half-spaces determined

by the hyperplane H.

In order to determine separating hyperplanes, the distance between a convex set and a
point is usually computed. Theorem 2.2 shows that the point in the convex that is closest to

an exterior point to the set, is unique. Figure 2.2 is used to exemplify this fact.

Theorem 2.2 (Minimum Distance to a Convex Set) Let x be a vector in a
Hilbert space S and let K be a convex subset of S. Then, there is a unique

vector kg € K such that

x—kol| < |[x— k|| ¥ k € K (26)

Furthermore, a necessary and sufficient condition that ko be a unique

minimizing vector is that

(x—kx—k)<O0VkeK (2.7)

13
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Figure 2.2: Minimum distance to convex set

Duality is an important concept in optimization theory and also in classification. This
concept allows to represent a problem using another one which is equivalent. The latter can
be simpler to solve or to understand. An example of duality is the Minimum Norm Duality
Theorem 2.3, which states that the minimum distance from a point to a convex set C, is equal
to the maximum of the distances from the point to the (supporting) hyperplanes that separate
the point and the set C [35]

Theorem 2.3 (Minimum Norm Duality) Let x; be a point in a real normed
space X and let d > 0 denote its distance from the convex set K having
support functional h, then
d = inf ||x = xi|| = max [(x, x) — h(x")] (2.8)
veK <
Where the maximum on the right is achieved by some xy € X*.

If the infimum on the left is achieved by some xy € K, then —x; is aligned

with xo — X.

Multi class Problems

In binary classification problems, there are two categories of examples in the training data set.

The typical structure of data sets is the same as shown in eq. (2.1); in practice the classes C;
and G take values 0 and 1, or +1 and —1.
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Figure 2.3: Minimum Norm Duality

The data sets used for multi-class problems have more than two classes. The structure of

these data sets is:

X={(xy) xeX,xeR, y ={C,C,...,C}} (2.9)

The publicly available data sets usually contain a number of classes L, with L < 20°.
For multi-class problems, more than one decision function is used. The form of the

discriminant function is

gi(x) > g;(x) Vi) (2.10)
where
i=1,..L
j=1..L

The last discriminant (eq. (2.10)) can be interpreted as a network, which selects the
category corresponding to the largest margin [36] Other approaches, which do not use

discriminant functions can be found in [37]38]39] they are:
1. One-against-all Classification.
2. Using @ pair wise classifiers with one of the voting schemes listed below:

e Majority Voting

e Pairwise Coupling

“We analyzed the data sets for the classification task available at http://archive.ics.uci.edu/ml/
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3. Extending the formulation of SVM to support the k-class problem.

e Construct the decision function by considering all classes at once.

e Construct one decision function for each class, by considering only the training

data points that belong to that particular class.

Linear Models

The linear models for classification are among the best understood [27]. In these models, the
decision boundaries are linear combinations of inputs x; the decision surfaces are (d — 1)

dimensional hyperplanes. The simplest linear model takes the form

y=w x+ w (2.11)

where

yeRrR

w € RY, called weight vector.

wo € R, called the bias.

Figure 2.4 shows an example of a linear boundary in two dimensions. In the linear model,
the vector w is orthogonal to the decision boundary. The boundary is defined by w’x+ wy = 0.

The decision boundary separates the space in two semt planes.

O O
W \
w'z + wo=0| _ M ' )
........ \ K 1[‘,, i \
........... W ( \
.............. . U
- ( . 7
¢ w'xr+wy >0 () yi=+1
' ' yi=—1
: T
Separating |/ @& w z+wo <0
hyperplane - — — e >
............. X1

Figure 2.4: Linear Decision Boundary
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In Figure 24, all the samples can be perfectly classified. These type of data sets are
referred to as linearly separable data sets.

In the simplest classification problem, there are only two possible values for the label of
each instance, the data set X takes the form shown in eq. (2.1).

The vector w and the bias wy are obtained after the training. The new incoming samples
are tested using y = w’x + wp; the output y is a real number. Discriminant functions are
used to decide (predict) the label of a sample x;. A common form of these functions (for the

binary classification problem) is

. >0 THEN y; = +1
IF (F(w'x + wo)) (2.12)
<0 THEN y; = —1

This discriminant is called the sign function.

Support Vector Machines

SVMs classifiers prevent the over-fitting by using a separating hyperplane with maximum
margtin.

SVMSs compute a hard-margin separating hyperplane for linearly separable data sets.
It is enough to perfectly separate the examples. The linearly inseparable case is more
difficult. In this case, a soft-margin separating hyperplane and/or the so-called kernel trick
are necessary. Hard-margin and soft-margin separating hyperplanes refer to those that forbid

or allow misclassifications, respectively.

SVMs Classifiers for Linear Separable Case

Considering a linearly separable data set X, a linear decision function can be determined.

Because X is linearly separable, no sample in X satisfies
w'x+b=0 (2.13)
we have, then

. >+ Vy=+1i=1..,N
w' X; + wp (2.14)
<=1Vy =-1
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It is not difficult to see that (2.14) is equivalent to

yiw'x; +b) = yi(< w,x; > +b) >1,i=1,..,N (2.15)

Assuming that the hyperplanes (2.17) and (2.18) include both at least one element of X,
the optimal separating hyperplane (2.16) is in the middle of them [28].

w'x+b=0 (2.16)
w'x+b =41 (2.17)
w'x+b=—1 (2.18)

The generalization region of a classifier of this type is the space within the hyperplanes
(2.17) and (2.18).

Definition 6 (Margin) The distance between the separating hyperplane

and the closest object to the hyperplane is called the margin.

Definition 7 (Maximum separating hyperplane) /t is the separating
hyperplane that has the greatest margin. This is considered the optimal

separating hyperplane, and has the best generalization capability.

The optimal separating hyperplane

In Figure 2.5, the points x; and x, satisfy:

wixi +b) =1,y = +1
Gitwix +b) =1.ys (2.19)

gz(WTX2 +b)=1y,=—1

Projecting x; and x, on vector w

18
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Loy =41 My
\ \

Optimal separating hyperplane

Figure 25: Margin computation for linearly separable case

Xow

<X2,(U>
< W, w>
X5 W

<w, w>

The margin is determined the of difference of projections (2.20) and (2.21)

19
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Margin = S04 2 S2w 2 (222)
< W, w > < w,w >

<X, wW>—< X, W >

< W, w>
Using (2.19) we have
<x,w>=1—b> (2.23)
and
<x,w>=-1-=> (2.24)

Substituting (2.23) and (2.24) into (2.22) we obtain

—b—(—1-0b 2 2
Margin = 1=b=f ) = =— (2.25)
<Ww w> <Ww> w

In order to compute the maximum separating hyperplane (maximize (2.25), it is necessary

to minimize w?. The following nonlinear optimization problem arises:

min W’ (2.26)
st

yilw' x,+b)>1,i=1,.,N (2.27)

Non linear programming problems with equality and inequality constraints have, in

general, the following form:

min f(x) x € R? (2.28)
subject to

hiix)=0j=1,..m

gix) 20j=m+1.p
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The optimization of non linear problems is based on Karush-Kuhn-Tucker (KKT) conditions,

which were proved in 19571.

The KKT conditions state that, if both the objective function f(x) and all its constraints
are once differentiable at the point x*, and the first-order constraint qualification holds at x*;
then, the necessary conditions x* to be a local minimum are that exist Lagrange multipliers

a* and B* such that satisfy

hix)=0j=1,..m (2.29a)
gix)>0j=1,.p (2.29b)
a'gi(x)=0j=1,.p (2.29¢)
a* >0 (2.29d)
VLx* B a)=0 (2.29¢)
Where L(x, B.a) in (2.29¢) is the Lagrangian defined in (2.30).
P
L, B* a”) = f(x) + Z hil) = ) g (230)
j=m+1
The Lagrangian of the Quadratic Programming Problem (QPP) (2.26) becomes
2N
L(w, b, a) = 7—2 yi(w'x, + b) —1} (2.31)

With o; > 0.

The optimal solution of (2.31) is given by the saddle point, at which (2.31) is minimized
with respect to vector w and offset b (primal space). At the same time, it is maximized with
respect to Lagrange multipliers a; (dual space). The gradient of (2.31) with respect to the

primal variables vanishes at the saddle point, giving:
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dl(w,b,a) 0% B aZf\; af{ylwx + b) —1}
Jw  Ow dw
N
=w— Z axiy; =0 (2.32)
i=1
and
l(w,b,a) 0% Y N afylw x+b)—1}
db ~ 0b db
N
i=1
and from (2.29¢)
afy(w' xi+b) =1} =0i=1,..,N (2.39)
Using (2.32) and (2.33)
N
w=Y_ 235)
i=1
N
Z ay; = (2.36)

The samples X that fulfill o; # 0 (2.34) are called the support vectors (SVs). The SVs

satisfy y;(w’x; + b) = 1.

Substituting (2.35) and (2.36) in Lagrangian (2.31) produces
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| —

1 N
ZwTw—;a[{g,-(wai+b) —1} (2.37)
1 N N N
Za)Tw —w' Z ayixi—b Z iy + Z Q
i=1 i=1 i=1
1 N N
ZwTw —w'w— bZ iy + Z Q
i=1 i=1
1 N
—EC()T(U + ; Q;
N N
— Z Q;, O(jy[ij[TXj + Z Q;
i=1

i,j=1

N N
— Z a;, oYy < Xi, Xj > +Z Qi
i=1

i,j=1

the dual problem is now

N N
1
max > % =5 E a,-a/-g[-gjxfx/ (2.38)
i=1

i=1,j=1

s.t.

N

Zaig[ = O
i=1
Q; 2 0

Solution of (2.38) yields
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N
W= ayix (2.39)
i=1
1T & 1
— —x/w), xisa SV (2.40)
Nsv ; gt

Where
Nsy The number of support vectors.

Given a sample x, it is classified according to the following discriminant function:

N N >0 THEN y; = +1
1T «— 1

IF W*X—i—szafgixiTx—i— Zg——xw < 0 THEN y; = —1
i=1 = !

NS\/
= = 0 THEN x is on the boundary
(2.41)

SVMs Classifiers for Linearly Inseparable Cases

In the real-world, linearly separable data sets are not common. When the classes of a given

data set X overlap, there is not feasible solution for the previous derivation of SVMs classifiers.

In order to achieve a solution, soft-margin hyperplanes are used. Mathematically, this
means that the constraints (2.27) are relaxed, by introducing non negative slack variables &
in them (see eq. (2.43)). This ensures that a feasible solution exists. Figure 2.6 illustrates a

soft-margin optimal separating hyperplane in two dimensions.

The formulation of the optimization problem for this linearly inseparable case becomes
then
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)

) (- vi =+l
U yi=-1
X, A Error allowed ' Yi
("\ Support
¢ vectors
\’\'\ (M) ~
\\\ K, ‘// )
\\ \\ \.
\\ \\ \7 g
<,\2/;§E)!11?Slﬁe . Error allowed
(8 \\Q Misclassified
' . sample

' Q O[;tlmal (soft-margin)
' separating
hyperplane

wlz + wo

L.
>

X1

Figure 2.6: Soft-margin computation for linearly inseparable case

N
2
min w+CZEip

(2.42)
i=1
s.t.
yi(w'xi+b) >1=&i=1,..N (2.43)
&>0 (2.44)

Where

C is a penalty weight that controls the trade-off between the maximization of the margin

and the minimization of the classification error.

p is usually has the value 1 (L1 soft-margin support vector machine ) or 2 (L2 soft-margin

support vector machine).

Similarly to the linear separable case, the Lagrangian in this case is
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N

N
Lwb,aB)=w +C) &= afy (wx+b)—1+&} Zg,a (2.45)
i=1 i=1
where

a; > 0 and B; > 0 are Lagrange multipliers.

By the KKT conditions

dl(w,b,a,B)
— 6 - 0 (2.46)

dl(w, b, a, B) B
— 0 (2.47)

dl(w, b, a, B) B
T =0 (2.48)

and

a{yi(w'xi+b)—1+&} =0 (2.49)
Bi&i =0 (2.50)
2 >0,p2>0¢&>0 (2.51)

Proceeding as in the linearly separable case, it is possible to obtain:

N

w = Z XY, (2.52)
. _

Z apy; = 0 (253)
i=1

a+B=Ci=1.N (2.54)

Substituting in (2.45) produces:
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N
max L(w, b, a,p) = Z i Z QY X x; (2.55)

s.t.

N
)_ayi=0
i=1

C>a>0 i=1,..,N

Use of Kernels

For linearly inseparable cases, it is possible to obtain an optimal separating (soft-margin)
hyperplane. The generalization capability of such separating hyperplane could be degraded,
and so does the accuracy of the classifier. This is because the slack variables reduce the
margin [28]

In order to improve the generalization capabilities of SVMs, the separating hyperplane
is computed in a high-dimensional space, called the feature space. The data set becomes
linearly separable in the feature space.

The instances x; € X are mapped into the higher-dimensional feature space:

x € R [1(x), ..., pa(x)]| € R" (2.56)

where
m : Dimension of feature space (m > d)
¢: The mapping, it is usually a non linear function.

The linear decision model is represented as:

N
=Z +b—Zgal o(x)) + b (257)

A problem with eq. (257) is its complexity. This problem is more accentuated when the
dimension of the feature space is large. Evaluation of eq. (2.57) is impossible, if the dimension
of feature space is infinite.

In order to avoid the direct computation required to map examples to the feature space, a
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kernel is used; it is defined as follows:

Definition 8 (Kernel[40]) A function k : X x X — R is called kernel if
exists ¢ and H such that

kixi, xj) = (B(x), dlx))) ¥xi, x; € X (2.58)

where

X a non empty set

H a Hilbert space

¢ : X — H a feature map

In the previous definition, K = (k(xi,xj)w

1 Xij € X is named the Kernel matrix, or the

Gram matrix.
Not all functions are a kernel. Mercer's theorem 2.4 helps to identify which functions can
be a kernel [40]27]28]41]:

Theorem 2.4 (Mercer theorem) A symmetric function K(xy) can be

expressed as an inner product

Kx,y) = (¢(x), ¢(y))

for some ¢ if and only if K(xy) is positive definite, or equivalently:

K(x1,x1) K(x1,x2)

is positive definite for any collection {x;, x2, ..., x, }

Kernel functions allow to compute dot products in feature space without need for an explicit

mapping, so (2.57) becomes
N
flx) = > yiaik(xi, x) + b (2.59)
i=1
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The advantage of eq. (2.59) over eq. (2.57), lies on the number of operations required to
compute the dot product. Evaluating a kernel function is not necessarily proportional to the
number of features in the feature space.

Three of the most common kernels widely used in practice are the following ones.

Kernel name Kernel function

x[—xz
Gaussian RBF  K(x;, x;) = ST
Polynomial ) =[x/ x + 1]d

k(Xl', X/‘
Sigmoid k(xi, x;)) = tanh ([x/x; + b])

Decision Trees

Decision or induction trees make partitions of the input space, recursively. At each phase, the
partitions are purer. Here, the term pure, means that the partitions contain the majority of its
samples with the same label.

In general, the training methods for decision trees select an attribute and use it to partition
the data. The selection of an attribute is based on a measure, which determines the best way
to partition a subset. The measures are typically defined in terms of the class distribution of
the instances, before and after splitting a subset. In practice, these measures are based upon

the degree of impurity of the produced partitions. The most common impurity measures are:

c—1
Entropy(t) = =Y _ plilt)logaplil?) (2.60)
i=0
c—1
Gini =1=> [p(i|t)f (2.61)
i=0
Classification error(t) =1 — max|p(i|t)] (2.62)

Graphically, decision trees can be seen as a flowchart-like tree structure. Such a structure
has a root node, which is the topmost in the tree. A decision tree has internal nodes (those
that are not leaves), that represent a test on an attribute; it also has terminal or leaf nodes,
that maintain a class label. The internal nodes have exactly one incoming edge and two or
more outgoing edges (branches). Each branch from an internal node represents an outcome
of the test. Figure 2.7 [42] shows an example of a decision tree used to solve a toy example:

a mammal classification problem.
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Root node
: Body
- temperature
~.Branch
&
Internal
node i
Gives on
birtt mammals
A
e() ’L@:P
Non
mammals Viammas ~ :
_3 T Leaf
B nOde

Figure 2.7: An example of a decision tree

The task of finding the best decision tree is computationally infeasible in most cases[42].
In practice, the methods used to construct sub-optimal (but accurate) decision trees use a

greedy strategy.

Fisher's Linear Discriminant

Fisher’s linear discriminant can be considered as a method for linear dimensionality reduction.
The method is based on minimizing the projected class overlapping that maximizes the distance
between class means, while minimizing the variance within each class. Figure 2.8 shows an

example of the essence of this method.

Consider a given data set defined as in eq. (2.1). For binary classification problem, this
set can be partitioned into two disjoint subsets DT = {x; € X s.t. y; = +1} and D~ =
{xi € X s.t. y; = —1}. The means p* and p~ are computed with:
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D

pt = |D1—+|Zx, xe Dt (2.63)

|07
ut X, x € D™
IDIZ

Let w € R be a vector. If every object in X is projected on w, the means of projections

are given by

07|
1
m* = szi, xe Dt (2.64)
0|

m = D |Zp, xe D™

Where
pPi = (JJTX[
Combining (2.63) and (2.64), we obtain:

D |D*| |D*|
|D+|Zw X=w |D+|Zx—w ut (2.65)
D~ |0~ D~

Z ‘D‘wa—w‘D‘Zx—wu

=1

Fisher’s linear discriminant method searches for a vector w that maximizes the separation

between means m* and m~, and at the same time, that minimizes the scattering of subsets
D" and D~.
The distance between m*™ and m™ (s
m* —m| =o'yt — 'y (2:66)

The scatter, also called the within-class variance [36]34], is defined as:
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2 _ - 267

Sy = |D+|[:1 (yi_/J+) ( : )
[D7]

P 1

In order to measure the scattering of D* and D~, the following optimization problem must

be solved:

max J(w) = —————
(w) 5%4‘52,

(2.68)
The denominator in (2.68) is known as total within-class variance. A more useful form of
is the following:
w' Sgw

- = 2.69
max J(u) = (269)
Where
Sg=(u_ — p)(u— — py)" called the between-class covariance matrix.

Sw= Y (xi—p)xi—pe) + Y (x;—p_)(x;—p-)" called the total within-class covariance
xi €Dt X1607
matrix.

Solution of (2.69) is
w =Sy (s — 1) 270)

Computing eq. (2.70) consumes O(d?|X]) time.

A problem occurs with this classifier when the data distribution is multi-modal; furthermore,
when there exists overlapping between classes, the vector w cannot be enough to clearly
discriminate between classes. To face this problem, kernelized versions of Fisher’s linear

discriminant have been proposed.

Model Evaluation

The evaluation of performance of classifiers is very important. A classifier is evaluated to know
how well it predicts unobserved data. The capability of a classifier to predict on independent
data is called generalization. Generalization extremely important in practice, because it is

used to select a models; it also gives a measure on the quality of a model (model assessment)
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[43].
The most common measurement to evaluate the performance of a classifier is through its

classification accuracy.

Definition 9 (Clasification accuracy of a classifier) /t is the percentage of
examples in Xiest that are correctly classified by the classifier. Accuracy is

also known as recognition rate of a classifier and is computed with

ACC _ Ncorrect
N

Where
Neorrect : Number of examples correctly classified by the classifier.

N = |Xrest| . Size of testing data set.

Two important measures related to the accuracy are true error and error rate.

Definition 10 (True error)

true error = Pg[h(x) + g(x)]
X €
Where
X : Input space, x; € X.
h(x) : The classifier (hypothesis)
g(x) : Target function, it is in general unknown

D : Distribution, it defines the probability of finding x; in input space X.

Definition 11 (Error rate) The error rate is the percentage of misclassified

examples in Xresy committed by the classifier.

error
error rate = N =1— Acc

With

Nerror : Number of misclassification committed by classifier.
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The true error of a classifier h(x), with respect to a target g(x) and distribution D, is the
probability that A misclassifies an instance x;, randomly chosen according to D.

The error rate or sample error, is the error rate of a classifier over the available data. This
error can be measured in practice as shown in Definition 11.

Because the true error cannot be measured, it is necessary to estimate it. In order to

compute a confidence interval of it, the following formula is used in practice [44]:

error rate(1 — error rate)

confidence interval = error rate &+ Q\/ (2.71)

n

With Q having the following typical values: Q = 2.58 for 99% probability and 1.96 for 95%
probability.

When the accuracy of a classifier is being evaluated, two general scenarios can happen.
The first (less common) scenario occurs when there is plenty of data. The second (most
common) happens when the amount of data is limited. For the fist case, the given data set X

is divided into two subsets: X7.s; and X7,

X1r, Training 70%
X (2.72)
XTest, Testing 30%

A classifier is trained using X7, and its accuracy is measured on X7.s. The latter contains
previously unseen instances. It is said that a classifier has a good generalization capability,
if it accurately predicts the class of samples in Xres;.

For the second scenario, i.e, when the data set is not large, it is necessary to apply
efficient sample re-use. Current techniques include cross-validation and the bootstrap. The

original is now partitioned into three subsets: Training, Testing and Validation.

Xtr, Training 50%
X 09 Xtest, Testing 25% (2.73)
Xvai, Validation 25%
The Training set is used to calibrate the models. The Validation set is used to estimate the

prediction error (model selection). The Test set is used for assessment of the generalization

error of the final chosen model [43].
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There are several techniques to create the subsets from a given data set X; most common

techniques are Holdout, Random sub sampling, Cross validation, and Bootstrap.

In the Holdout selection method, the given X is randomly partitioned into two disjoint sets:

X = X7, U Xrest (274)
g = XTr N XTest

In the random sub sampling technique, the holdout method is applied a number of K times,
and the overall accuracy estimate is taken as the average of the accuracies obtained from each

iteration.

For the cross validation method, there are three variants: The k-fold cross validation,

leave-one-out and stratified cross-validation.

The k-fold cross validation makes random K partitions from X. Each partition has
approximately an identical size as the others. The classifier is trained and tested K times;
each time a distinct partition is used for testing and the rest is used as the training data set.
This approach is different from holdout and sub sampling, in the sense that each object is
used the same number of times for training and once for testing. The estimated accuracy is
the overall number of correct classifications from the K iterations, divided by the total number

of objects in X.

For leave-one-out variant only one sample is “left out” at a time for the test set. In stratified
cross-validation, the folds are ranked so that the class distribution of the examples in each

fold is approximately the same as that in the initial data [3].

The bootstrap method works by sampling X uniformly with replacement, i.e.; an object can

be selected again every time with the same probability.

Alternatives to accuracy and error rate are the specificity and sensitivity. They take into
account the proportion of negative examples (i.e. samples x; st. y; = —1) that are correctly

detected and the ratio of positive examples that are correctly classified, respectively.
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Definition 12 (Specificity)

t
R = neg
specificity Neg
With
theg - Number of instances x; € Xtes; St y; = —1 and that have been
correctly detected by the classifier.
Neg : Number of instances x; € Xyest St. y; = —1
Definition 13 (Sensitivity)
ficit tpos
specificity =
P y pos
With
tros - Number of instances x; € Xtest s.t. y; = +1 and that have been

correctly detected by classifier.

Pos : Number of instances x; € Xrest St y; = +1

Both sensitivity and specificity are used with imbalanced data sets. These have a large
number of instances of a type, and a few samples of the opposite type.

Another useful tool to observe how well (or bad) a classifier can predictthe class of instances
is the Confusion Matrix. It helps to see how the errors are distributed across the classes. The
confusion matrix is applicable to detect if a classification problem is complicated, by observing
its diagonal.

A confusion matrix is a | Y] x |Y| matrix whose entry c;; denotes the number of instances
in X7esiing having class i and the classifier has assigned a label j.

Table 2.2 shows an artificial example of the confusion matrix. Suppose |X;.| = 38, then
i1 = 10 and ¢;> = 1 means that the classifier has correctly classified ten samples and

incorrectly one sample. The accuracy of the classifier is computed as

T'race(Confusion Matrix)
|XTr|

Acc =
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Table 2.2: Example of the confusion matrix for a hypothetical binary classification problem

Predicted class

Yyi = +1 Yy = —1
Actual y; = +1 10 1
class y; = —1 2 25

The Receiver Operating Characteristic (ROC) curve is also used to compare two classifiers.
The ROC curve plots sensitivity versus specificity. As the parameters of a classification rule
change. The ROC curve is considered a summary for assessing the trade-off between sensitivity

and specificity. The area under the ROC curve is called the c-statistic.

P Conclusions

Classification is a supervised learning method. It consists in assigning an object to one of a
set of predefined categories (categorical values or labels). Supervised learning methods need
a labeled data set to construct a model from it; the model is used to predict labels of instances
that have not been seen before.

Some examples of classification methods are linear models, SVM, decision trees,
probabilistic models, rule based models, artificial neural networks and ensembles of classifiers.
An overview of some of these methods was presented in this Chapter. The SVM was studied
in more detail than the other methods.

SVM optimizes the linear boundary (separating hyperplane) previously proposed in other
models. The Perceptron and the linear models also use a separating hyperplane, but it is
not the one with the largest margin. This is the main difference and advantage of SVM with
respect to many other classifiers. Theoretically, the optimal separating hyperplane improves
generalization capability. This has been confirmed in many real-world applications. The use
of a kernel enables SVM to work in higher (infinity) dimensional spaces. This allows to

classify data sets that are not linearly separable in the original input space.
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Training Support Vector Machines with Large Data sets

It is impossible to recognize a wrong way without
knowing the right way
George Gurdjieff

In order to train SVM with large data sets, a number of methods have been developed in the
last years. These methods have been classified in the following cateqgories: data reduction,
decomposition, variants of SVM and other methods that use heuristics or parallelism. In
this Chapter we describe these methods. As a preamble to the algorithms developed in this
research, we show, experimentally, that the examples close to the decision boundaries are
good candidates to be support vectors.

Training methods for SVM are usually classified [45] according to the implemented

strategtes:

1. Data reduction For most cases, it has been found that after training a SVM, the number
of SV is small compared to N [18]19]. The basic idea behind the data reduction strateqy
is to select instances with a high probability of being SV, and then, train SVM with

them.

2. Decomposition The training time of SVMs can be reduced if only the active constraints
of QPP are taken into account [46]. A similar idea to active sets methods for optimization
is applied in decomposition methods. In the active set approach, two sets are used: the

working set and the set of fixed variables. The optimization is made only on the working
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set. For the case of SVM, the working set is usually composed of instances that violate
the KKT conditions.

3. Variants of SVM Some researchers have modified the original QPP problem for SVM
to speed up its training time, at the expense of losing classification accuracy [45]. Most
of the variants of SVMs conclude with a system of linear equations, which is solved

efficiently if the number of features is moderate, t.e., around 100.

4. Others We include here all those techniques not considered in the other categories: the

use of parallel computations, caching, geometric approach and alpha seeding.

Data reduction methods

For the linearly separable case, the optimal separating hyperplane of SVMs depends
completely on instances located closest to the separation boundary [7]. This instances are the
so-called SV. It is well known that for most data sets, the number of SV is a small portion
compared to N. Training an SVM using only the SV yields the same hyperplane than that
obtained with the whole data set. The training time is certainly the shortest in the former
case. This is the main motivation for attempting to reduce the size of the data sets before
training an SVM.

In order to achieve the best classification accuracy, and improve the training time of
SVMs, data reduction methods should preserve all the SV of data sets. These methods should
remove all instances that are not SV. Data selection can be viewed as the incorporation of
prior knowledge into SVMs.

The current approaches to achieve a reduction of training data sets can be classified into

these categories:

1. Random Sampling methods

2. Distance-based methods

Random Sampling Methods

Random sampling techniques are useful when the N 3> d. The general idea behind this kind
of algorithms, is to approximate the optimal separating hyperplane by using a small subset of

the training set X;. In [47]48]49] iterative methods which introduce misclassified examples
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3.1. Data reduction methods

into a reduced set X, are presented. At the beginning of the process, all samples in set
Xi; are given the same weight, which is related with the probability of being chosen, and a
number of K samples are selected randomly. This produces a separating hyperplane which
can produce classification errors. The misclassified samples (violators) in X;, are selected,
and their probability of being chosen is increased. This process is iterated several rounds.
Although it is reported that these methods converge to the global solution, there are some
problems with them. First, it is difficult to choose the value of K. If it is small, then the QPP
can be quickly solved, however, the produced model could have a high bias. If K is large, the
QPP is costly to be solved. Second, it is not clear how the initial weight must be chosen,
and how it should be updated during iterations. Algorithm 1 shows the pseudo code for these

techniques.

Algorithm 1: Iterative Random Sampling, Generic Algorithm
Input

Xy Training set
K: Number of samples to select in each iteration
A: Initial weight
Output:
X.: A subset of X,

1 begin

2 Assign to each sample in X;, a probability A of being chosen

3 repeat

4 X, <Select randomly K samples from X,

5 heup & Train SVM with X,

6 Classify Xi, using sub optimal separating hyperplane h,p

7 Change the probability (weight A) of each sample of being chosen according to

whether it is misclassified or not
8 until No misclassified samples;

9 ¥End

Reduced SVM (RSVM) [50] produces a very compact SVM, based on a random selection
of samples. It is shown in [51]52] that uniform random sampling is the optimal robust selection
scheme, in terms of several statistical measures. RSVM reformulates the QPP to come up
with a much smaller problem, whose number of variables is about 1 to 10% of |X;,|, and the
number of constraints is equal to |X;.|. The reformulation of QPP (eq. (2.42)) consists of using

2-norm (p = 2) and weighting the slack variables & by the factor C/2. The next problem
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shows these two changes:

cN
- T 2 2
min —(w w+b)+7§=1 ¢ (3.1)
st.
yi(wxi+b) +&>10=1,..N 5 >0

RSVM translates the constrained QPP into an unconstrained one:

min 1(wTw+b2) +£J~"(1 —yi (w'x = b)) (32)
wb& 2 2
where F(-) = max (0, -).
In [53], it is shown that this problem is a strongly convex minimization problem, with
a unique solution. The last transformation of RSVM, consists in using a smoothing, in
order to apply an Armijo-Newton like method. RSVM uses about 10% of X;, to solve the
reformulated QPP, and the entire training set to refine the classification accuracy of the
separating hyperplane. Refining means to select the best coefficients of the chosen kernel
functions.
In practice, RSVM has a problem; the distance between selected examples must exceed a

certain tolerance. This introduces an extra cost, which is not reported in the literature.

Distance-based methods

The distances between objects, or the distance from separating hyperplane to the examples,
has been used as a quide to select instances from data sets.

Two heuristics commonly used are the following: (1) The samples which are located closest
to others with opposite label are probably SV [18], (2) samples far from a hyperplane do not
contribute to the definition of decision boundary [54].

By far, the Euclidean distance is the most commonly used in these algorithms; however,
Mahalanobis and Hausdorff distances have been also utilized. The former gives a measure of
length in a natural sense, but it only gives a reference between two objects. The Mahalanobis

distance (eq. (3.3)) takes into account the correlation between the variables; it is used
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to measure similarities between multidimensional random variables or groups of objects.
Mahalanobis distance can be seen as a measure of divergence or distance between groups
in terms of multiple characteristics. The Hausdorff distance (eq. (3.4)) computes the maximum

distance from a set to the nearest point in other set. d(x, y) is any metric between the points

X, Y.

du(x) =~/ (xi — )7 S~ (x; — p) (3.3)
With
U the mean
S the covartance matrix
max{sup inf d(x,y), sup inf d(x, y)} (3.4)

xeXyeY, yevxeX

The Mahalanobis distance is used in [55] to propose a data reduction algorithm; the
examples on the boundaries are detected by measuring the relative differences of the
Mahalanobis distances. The hypothesis is that important samples correspond to the ones
with large relative differences of Mahalanobis distances. The use of Mahalanobis instead of
Euclidean is justified because the former is invariant to rotations; it is also invariant to linear
transformations of the input variables [55]. This method has the disadvantage of needing to

compute all distances between every point and the set with different class.

In [18], an algorithm that uses the Hausdorff distance from an example to the objects with
different class is proposed. This criterion selects patterns near to the decision boundary. The
distance from a training example to the closest training examples of the opposite class is used

as an approximation to the convex hull. This approach is related to the nearest point problem:
d(x;) = min ||x — x| (35)

JYj#Yi
In [56] [57] all the Euclidean distances between objects with opposite label are first

computed. The closest samples are then selected. This method works in the input space. The

algorithm in [45] shows how to select samples in feature space. The results shown in all these
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papers correspond to small data sets.

Algorithm 2: Distances Based Sampling, Generic Algorithm
Input

Xir: Training set
Output:
X.: A subset of X,

1 begin

2 Separate into positive and negative classes:

3 Xt ={x X, st y =+1}

4 X" ={x X, sty =-1}

5 Compute distances from objects in X™ to a point or reference of X~
6

7

X; «—Choose objects whose distance satisfy a criterion
End

In [18] an algorithm that detects instances near to the class boundaries is introduced. It
selects all the examples with the same label, which are contained within a hyper sphere of
maximum radius. In order to choose examples around a point, it is necessary to increase the
diameter of the sphere. Because each instance is tested as a center, this represents the major
drawback of this approach.

In general, distance based algorithms are not too efficient, because they have to compute a
large number of distances. Their worst case is O(n?) in time and space. Algorithm 2 shows the
general strategy of this kind of algorithms. An opportunity area is to develop novel methods
that select examples by computing only a small number of distances.

Some proposals to reduce the size of training sets, are based on neighborhood properties
of SV. The fundamental idea is that SV are located close to opposite class examples. To
exemplify the idea, we use the figure 3.1. The area around two SV is represented by circles,
and the Euclidean distances from an SV to the points within each area are represented by
straight lines. Most of the time, a number of objects (neighbors) around an SV have an opposite
class. This is more pronounced at points close to decision boundaries.

The pioneering work "“condensed nearest neighbor rule”, presented in [58][59] takes
advantage of this observation. The algorithm proposed in [59] discovers samples close to
decision boundaries based on the Mutual Neighborhood Value (MNV). It is computed between
any two samples of a set, as the sum of the conventional nearest neighbor ranks of these two

samples with respect to each other. Mathematically, let be x;, x; € X with X C R?, suppose
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Figure 3.1: Some neighbors of support vectors have opposite label

h

x; is the m'" nearest neighbor of x;, and x; is the n'" nearest neighbor of x;, then MNV s

defined as in eq. (3.0).

MNV(x;,x;) = m +n with m,n € {0,1, ., N — 1} (3.6)

The value of m and n equals to zero when i = j. Considering only the first K nearest
neighbors of each point, then if either x; or x;, or both, are not found in each other’s k-nearest
neighborhood, then x; and x; do not belong to the mutual neighborhood. Samples that are
near the decision boundary will have low values of MNV, and their distances will be short.

Recently, in [60] a similar approach has been presented.

Some algorithms that select examples located between the overlap region around the
decision boundary are shown in [61], [62] [63] [64], [18] and [65] These algorithms are also
based on neighborhood properties of SV. The general strategy is to begin with a subset of
objects randomly chosen from the training set. Then, patterns near the decision boundary
are found, and their neighbors are examined successively until all the patterns near the
decision boundary are chosen and evaluated. Two main disadvantages of this method are: it
is unsuitable for linearly separable cases, and it only works when the classes are overlapped.

The method presented in [66] is quite similar, but it uses fuzzy C-means clustering to select
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samples on the boundaries of the class distribution.

Two methods devoted to discover points on boundaries of data sets are BRIM and
BORDER. The BRIM algorithm was proposed in [67]. It selects points that are on the exterior
boundaries of data distribution. BRIM works as follows: for each sample in the data set,
its neighborhood is computed and the point with maximal density in this neighborhood is
selected; this point is called an attractor. Then, the distribution feature of the points in the
neighborhood in the direction of the attractor is calculated. This has a double effect: first,
outliers are ignored, because there are no other points and the outlier itself is the attractor.
Second, the neighborhood is split into two parts, one with a large number of points (the side
of the attractor) and another with few points. The boundary degree of each point is computed,
and those with a higher boundary degree are selected. The boundary degree is the relation
between the number of objects in each part of the neighborhood.

The BORDER method presented in [68] detects instances on the boundaries by selecting
those with the lowest number of reverse k-nearest neighbors (RkNN), see Definition 14 [69].
The RkNN of an object p consists of the points that look upon p as one of their k-nearest
neighbors.

Definition 14 (Reverse K-Nearest Neighbor) Given a data set X, a query
point p, a positive integer k, and a distance metric d( ), the reverse k
nearest neighbors of p, denoted as RkNN,(k), is a set of points p; such
that pi € X and Vpi; p € RkKNN,i(k), where RkNN,(k) are the k nearest
neighbors of point p;.

The RKNN examines the neighborhood of an object p considering the “view" of the whole
data set instead of the object itself; the number of RkKNN decreases as the distance of a point
from the center increases [68]. This fact is used by Border to the identification of boundary
points that lie between two or more distributions. The Border algorithm begins by finding the
k-nearest neighbors for each example in the data set; a RkNN number is assigned to each
sample and those whose RkNN number is smaller than a user defined threshold detected as
boundary points.

The problem with both BORDER and BRIM is that their complexity is about O(n?), so
they are unsuitable for large data sets.

Different from detecting samples on the boundaries, a number of techniques begin selecting

a small number of samples to compute an initial separating hyperplane. Then this number of
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samples is used to choose samples iteratively from the data set in order to compute a more
accurate separating hyperplane. The Sequential Bootstrapped Accelerator (SBA) algorithm
[70] uses this approach. SBA selects a quite small subset of the training data set to train
an SVM; the computed hyperplane is used to look for the data which is farthest away from
the hyperplane and that is misclassified. This iterates until no more misclassified points
can be found. Figure 3.2 exemplifies this idea. Figure 3.2(a) shows a toy data set and
the optimal separating hyperplane. In Figure 3.2(b) most examples have been removed, the
point misclassified by the separating hyperplane would be used as the candidate in the next
iteration. It is important to notice that this approach does not work for the linearly inseparable

case. A kernel can be applied to compute the distances:
dist(x) =) yiaK(x,x)+ b £1

The main advantage of SBA is that the related QPP is very small, whereas its major
drawback is that all samples need to be tested each time the separating hyperplane is updated.
In [71] a similar strateqy is used; however, a number of clusters are used instead of all points.
These clusters are detected with Fuzzy C-means and minimum enclosing balls.

An algorithm based on minimum enclosing ball (MEB) clustering is presented in [72] as an
extension of the method presented in [71]. The algorithm is conformed of four steps: (1) data
selection via MEB clustering, (2) SVM classification, (3) declustering, and (4) second-stage
SVM classification. After the training data are partitioned by the proposed clustering method,
the centers of the clusters are used for the first SVM classification. Then, the clusters whose
centers are support vectors are utilized in the second SVM classification. A disadvantage
in the method presented in [72] occurs in the first step. It requires to know a priori two
parameters; the number of balls and their radit. In [72], a quess is realized. Because it is not
clear how to propose the parameters of the algorithm, an estimate of the number of balls can
be obtained from the data, using the method of cross validation. However, this is a very time

consuming task.

Decomposition Methods

The optimal separating hyperplane for an SVM is computed solving the QPP (eq. (2.26) or
(2.42)). When a kernel is used, the kernel matrix (eq. (2.58)) is involved in the solution of the
QPP.
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(b) A small subset of training set and separating hyperplane

Figure 3.2: Separating hyperplane is used to select examples

The Gramm matrix is as large as the square of the training set size, and in addition, such
matrix is dense; this makes classical optimization methods unsuitable to be directly applied

on this situation [38]12]. To show this, consider the problem:

1
min EXTI—IX with H definite positive (3.7)

st
Ax < b, Ae R™"

The explicit solution of problem (3.7) is given explicitly by
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x=—H (H7AT(AHAT) ) b (38)

The main drawback this solution, is that inverting a matrix takes about O(n?) time, so this
kind of direct solutions should be avoided. The naive alternative of recomputing the kernel
matrix when needed is not practical, because all its values are frequently used.

Decomposition methods tackle the problem of training an SVM by optimizing iteratively
only on the variables belonging to a subset of tractable size. This is the so-called working or
active set. The variables that do not belong to the working set are fixed and form the so-called
fixed set. Decomposition methods can be classified into primal and dual methods. They aim
for dual(primal) feasibility, while maintaining primal (dual) feasibility and complementary
slackness. Algorithm 3 [73] shows the general scheme of the active set methods.

A clear advantage in this scheme, in addition to its proved convergence [74]75], is that
its memory requirements grow linearly with the number of training examples. On the other
hand, because only a fraction of the variables is being considered in each iteration, it is time
consuming [45] if elements in the working set are not carefully selected. It has been observed
that the active set method can oscillate nearby the solution [73].

The most important element in decomposition methods for them to converge quickly is
the selection of the subset of variables in the working set [38]. One method, commonly used,
consists in selecting those samples that violated the most KTT conditions [76]77]19].

One of the firsts decomposition methods was Chunking [54] It repetitively obtains the
maximum margin hyperplane from a number of instances (called the chunk), and then forms a
new chunk with the SV from the previous solution and some recent instances.

The SVM! @t 78] implementation selects working set members using the steepest feasible
direction of descent. It has only a number of non-zero elements; the variables corresponding
to these elements will constitute the current working set.

Probably, the most famous decomposing algorithm is SMO [12].  SMO considers the
smallest size working set: only two training samples. In SMO, the parameters to optimize

m

in each iteration are two if ) ", a;y; = 0 holds. This problem can be solved analytically
without requiring the use of any library. The key elements in SMO are two: A heuristic step,
that finds the best pair of parameters to optimize; and the use of an analytic expression to

ensure that the Lagrangian increases monotonically [79].
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Algorithm 3: Active Set Method, Generic Algorithm

Input : A QPP to solve
x1. A feasible point
A: Initial active set
Output:
x*: Solution of QPP

1 begin
2 while no solution found do
3 if 0 =0 does not solve (3.9) then
4 Solve (3.9) for s
5 Find o to solve (3.10) and set xk*1 = x(k 4 xks(k)
6 if AW < 1 then
7 L A=AUp
8 else
9 Compute Lagrange multipliers %) and solve (3.11) if A} > 0 then
10 L return x* = x(¥
11 else
12 L remove q from A
13 kek+1
14 | End
15 Where
16
] T (k)
mémzéTG(S +0'g (3.9)
st
al6=0ic A
17
b, — al xk)
0 — i : (— ai
oo 1'[:[@A7zjf£<k><o al s 510
18
min AN (3.11)
icANn/
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LibSVM [80] is an algorithm based on SMO with the improvement of a more advanced
selection mechanism for the working set, which uses the second-order information method

previously shown in [14].

Variants-based methods

Approximate versions of standard SVM have been proposed to improve its training time at
the expense of accuracy. The least square SVM (LS-SVM) [81] changes the original QPP
by using a linear system of equations that can be solved explicitly or by using a conjugate
gradient method [81].

Original SVMs classify instances by assigning them a label, depending on which side of a
separating hyperplane they are. The PSVM (Proximal SVM) [82] takes a different approach;
the instances are classified by assigning them to the closest of two parallel lines, these lines
(hyperplanes) cluster samples that cannot be linearly separated. The problem is thus reduced

to that of solving a linear system in O(n?) time.

Other methods

In this section, techniques which are different from the previous ones are presented.

Parallel implementations

Rather than detecting samples that are likely SV, or decomposing the QPP in smaller
sub problems, some algorithms try to speed up the training time of SVM by parallel
implementations.

The Parallel implementation of QPP is difficult, this is because there is a strong data
dependency [83] Most approaches divide the training set into independent subsets to train
SVMs in different processors, as in [83] [84] and [85] In [86], the kernel matrix of SVMs
is approximated by block diagonal matrices. The original optimization problem can be
decomposed into hundreds of sub problems, which are easy to solve in a parallel fashion.
A similar parallel computation of the kernel matrix for high dimensional data space is
implemented in [87].

In [88], the authors use the variable projection decomposition technique. adapted to work
in parallel; this work was inspired on the SVM"9"" implementation of [78]

A distributed SVM algorithm for row and column-wise data distribution is described in
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[89], which cannot be used with non linear kernels. A parallel MPIl-based decomposition solver
for training support vector machines has been implemented in [90], whereas multi-processor

shared memory (SMP) clusters have been introduced in [91].

Alpha seeding

Almost all SVM training methods begin by assuming that all Lagrangian multipliers (o;) have
zero values. The alpha seeding approach exposed in [92] consists in providing initial estimates
of the ¢; values, for the starting of QPP. According to the results produced by alpha seeding,
it seems to be a practical method to improve the training time of SVMs [92] Recently, in [93]
has been proposed a similar method.

A very simple algorithm called DirectSVM is proposed in [94]. Instead of solving the related
QPP, DirectSVM uses an iterative scheme based on two heuristics. This method requires to
compute the closest pair of points in the data set, at the beginning, and several times during
the iterations if necessary, which introduces an intensive workload. This is a disadvantage of
the method.

On-line training

Training an SVM from scratch when one or more samples are added to the training data set
is not computationally efficient. Incremental methods have been developed to address this
problem. Currently, these training methods can be classified depending on how they work:
(a) Algorithms that use batches of instances, e.g. [95]96], (b) Algorithms that use partitions
and (c) other methods.

The general idea of methods of type (a) is as follows: retain the SV previously computed
and then add one or more samples, afterwards solve a new optimization problem of small
size. This approach resembles Chunking (see subsection. 3.2) but it is different because it
produces low accuracy in on-line classification [97]. Variants of (a) have also been proposed.
The method presented in [98] consists in updating a set of linearly independent vectors to
construct the separating function. A single-pass algorithm for training SVM is presented in
[82], and it takes advantage of PSVM[82]. In this algorithm, instead of finding the separating
hyperplane, the instances that avoid linear separability are clustered by two hyperplanes. In
the incremental step, the SV are retained whereas all the other samples are removed.

Some other methods (type (b)) create at least three partitions with the arrived instances:
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3.5. Preliminary experiments

the partition of SV, the partition of error samples and the remaining set [99]. The key is to move
each sample to the correct partition and then update. Most algorithms use the KTT conditions
to determine where to move samples. Examples of this technique are in [97]100]101].

There are several algorithms that use an approach different from those of type (a) and
(b). The idea of controlling the changes of the optimal separating hyperplane by using the
previously computed in the optimization problem as a weighted penalty was proposed in [102].
Recently, [103], used similar idea by coupling two SVMs combined with a time window. In
[104] the authors use a property of the radial basis kernel, updating the separating hyperplane
locally.

The “Huller” algorithm shown in [105] treats SVMs as NPPs, solving a simple optimization
problem. This algorithm is very fast but cannot deal well with linearly inseparable or noisy

data sets.

Preliminary experiments

It can be found in the literature that SVs are located near to decision boundaries [54]7]106]
or are the closest to opposite class examples[18]107]108]. Other data reduction methods use
simple random sampling [48]65]109]110]. In this section, we explore both approaches and
present some results.

For the linearly separable case, the optimal separating hyperplane is determined by the
closest points that belong to the convex hull of each class [7]. In Most cases these points are
also close to opposite class examples [111]112]. The trivial idea for reducing the size of the
training sets for classification with an SVM consists in selecting the closest objects with an
opposite label.

Consider the toy data set shown in Figure 3.3. Figure 3.4 shows the smallest distances
from positive(negative) objects to negative(positive) examples. The distances marked with a
circle correspond to the real SV obtained after training an SVM with a linear kernel. Figures
3.5 and 3.6 show another toy example that is linearly inseparable.

The objects closest to the opposite class are also SVs for the last two toy examples.
In order to explore the behavior of this approach to detect SV candidates, we executed an
experiment using the following real-world data sets: Breast Cancer, Diabetes and lonosphere.
Table 3.1 shows the main features of them. We used the radial basis function kernel

K(x1, x2) = exp(—y H)q — szz)). The value of the parameter y was set to value 1/N in all

cases. The goal was to observe the general performance of the approach based on distances.
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Figure 3.3: Toy example of a linearly separable data set

Negative label

-
o

Positive label

= N
o o
- N

o
[

© o o o
A
o
'

[N}
o
)

[++]

Distance to closest positive sample
o
[}

Distance to closest negative sample

il ll

Figure 3.4: Distances to the closest example, linearly separable case
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Many strategies to choose SV candidates from a data set using the distances as a guide
can be designed, for example, (a) Select the initial M (M <« N) objects closest to the opposite
class, (b) prefer objects, randomly, with a probability for each object of being chosen set
as a function of its distance or (c) Get rid off examples whose distance is greater than a
certain threshold. We implemented strategy (a) in this experiment, i.e;; we chose a number
of X, objects that form the first Dist,s.q smallest distances. Strategy (b) depends on random

numbers, and can give unrepeatable results, strategy (c) is similar to strategy (a).

Table 3.1: Data sets for testing SV candidate selection using a naive approach

Data set Size Dim |y, =+1] |yi= —1]
Breast-Cancer 683 10 444 239
Diabetes 768 8 500 268
lonosphere 357 34 126 225

Figure 3.7 shows the general procedure to test and compare our methods with other ones.
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Figure 3.6: Distances to the closest example, linearly inseparable case

The training set is separated into training and testing set. A classification model is generated
with the entire training set, this is referred as Model A in Figure 3.7. We apply our data
reduction methods on the training set to obtain a "reduced data set”. This is used to train
a SVM classifier; a Model B is obtained. Both models are tested with the training set, the
classification accuracy is measured. The training times of our methods include the time to
reduce the training set and the time to train a SVM classifier.

Table 3.2 shows the results obtained. The reported results are the average of 100 runs of
each experiment. The standard deviation is very large, and the accuracy is low if one takes
about 1% of the training set. In general, the classification accuracy achieved with this naive
selection method is lower than to classification accuracy achieved using the whole data set.

It is important to note that in this experiment, the training of the SVM took place in both
feature and input space, whereas the selection of examples is executed in the input space. For

both cases, the accuracy achieved with the approach based on distances gives approximate
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results even if the SVM training method is using a linear or a Gaussian kernel; this can be
attributed to the fact that the Gaussian kernel preserves distance [112].

A problem with this approach is that the computation of distances has a complexity of
about O(n?) in time and space; therefore, this method is unsuitable for large data sets. That
is why we chose small real-world data sets for our experiment.

Data selection using simple random sampling is the cheapest computational method for
reducing the size of training sets. This consists in taking a portion of the training set, randomly,
and using it to build an SVM. Table 3.3 shows the results of 100 runs for each data set using
this approach. It can be seen that the accuracy obtained with the 1% of training set is better
than that obtained with the method based on distances; however, the standard deviation
is considerably higher. Using about 10% of the training set seems a good tradeoff between
accuracy, standard deviation and size of training set. It is important to notice that the standard

deviation remains high for simple random sampling.
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Chapter 3. Training Support Vector Machines with Large Data sets

Algorithm 4: Naive data reduction based on distantes
Input

X: Set of points
Output:
A subset of X

1 begin

2 Separate the data set X into two subsets:
3 Xt ={x € Xst y,=+1}

4 X" ={x e Xst y,=-1}
5

6

For each x; € X*, x; € X~ compute d;; = +/(x; — x;)*

Select examples in X taking into account the d;.

Table 3.3: Results using selection based on simple random sampling

Data set Size X.(%) |SVic| |SVi| Acc(%)/stdDev  Acc,(%)/stdDev
Breast-Cancer 1% 3 2 76.44/13.56 87.46/10.41
10% 13 7 85.44/12.15 95.91/4.12
50% 33 15 95.20/4.01 96.62/3.01
Diabetes 1% 5 3 52.01/19.19 66.52/14.01
10% 53 24 65.57/17.33 73.06/10.77
50% 268 137 65.54/13.78 76.71/9.32
lonosphere 1% 2 1 57.76/16.90 60.00/16.50
10% 20 13 74.79/10.08 77.50/9.00
50% 70 42 89.27/4.29 85.75/5.80

The meaning of column names.
Size X (%): Portion of training set randomly selected
|SVicl [S Vi, Accri(%)/stdDev, Accy;(%)/stdDev: Same as table 3.2.

Conclusions

The state-of-the-art regarding methods for training SVMs was presented in this chapter.
These methods are categorized in Data reduction, Decomposition, Variants of SVM and other
algorithms.

Data reduction methods allow to improve the training time of an SVM at the expense
of degrading classification accuracy. The observation that objects that define the optimal

separating hyperplane are usually close to decision boundaries, or located close to opposite
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class examples, can be used as a guide to select SV candidates. We explored the performance
of this approach using two naive strategies; the first is based on distances, and the second is
based on simple random selection.

The objects whose distances are the closest to opposite class examples correspond to SV,
regardless of the type of kernel adopted by the SVM (linear or a Gaussian). Using only a
small number of candidates selected with respect to distance produces low accuracy, and high
standard deviation. Simple random selection is probably the cheapest method, computationally
speaking. It can achieve a higher accuracy than the previous approach, with a smaller number

of examples. However, when using this apporach the standard deviation remains very high.
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Data reduction method based on convex-concave hull

As above, so below

Hermes Trismegistus

The pioneering works on classification, proposed classifiers that used linear decision
boundaries to predict the class of patterns. Although the first classifiers worked only on
linearly separable cases, they provided powerful insights about the geometry of classification.

Linear decision boundaries are simple to understand in the input space. The linearly
separable case can be graphically represented in two dimensions, along with a separating
hyperplane. Intuition says that something similar happens in higher dimensions, and this is
supported mathematically.

The classification of linearly separable data sets can be solved by using convex hulls.
However, these data sets are not common in real-world applications. Convex hulls can be
adapted for these problems. A reduced convex hull is used in [7] to classify linearly inseparable
data sets.

In this chapter, we introduce a novel data reduction method called convex-concave hull. It
improves the training time of SVM classifier. This method does not require to modify convex

hulls. Also, it can be applied on both, linearly separable and inseparable cases.

Convex hull for classification

Linear classifiers, such as the simple perceptron and SVMs, compute linear decision
boundaries; these are linear combinations of inputs. The SVM with linear kernel is pretty

similar to the simple perceptron, in the sense that they both compute a linear decision
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Chapter 4. Data reduction method based on convex-concave hull

boundary. However, in the former, the decision boundary is the optimal. The hyperplane
found by SVM has the largest margin.

Figure 4.1 shows the geometry of the decision boundaries for the linearly separable case.
The separating hyperplane is determined by vector w, and the distance from the origin is

given by ﬁ.

A Class=+1 Class=-1
Xo

Separating hyperplane

>

X1

Figure 4.1: Linear decision boundary for a binary classification problem

For all linearly separable cases, no point can be expressed as a linear combination of
the subsets X* = {x € X st. class x is +1} and X~ = {x € X' st. class x is -1}. The two
convex hulls CH(X™) and CH(X ™) do not intersect [7].

Computing the “best” separating hyperplane, is equivalent to finding the closest pair of
points (x* € X* and x~ € X7) that belong to CH(X™) and CH(X™), respectively [7]113]114].

In order to identify these two points, the following problem must be solved:

M L
~ 2
s.t.
M L
Y a=1) a=1j=1.Mi=1,N
i=1 j=1
and ¢;; >0
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4.1. Convex hull for classification

Where

XTCRIX"CRY

| XT =M, | X" |=L

The separating hyperplane is the normal vector to the line that joins the closest points.
It is called “optimal’, in the sense that it has the maximum margin. As explained in Chapter
2, the margin is the distance from the hyperplane to closest pattern. This is exemplified in
Figure 4.2.

-1 J=+1

Separating hyperplane

Figure 4.2: A separating hyperplane is defined by the closest pair of points in the convex
hulls

The solution of problem (4.1) is equivalent to SVM [7][115]. This can be explained, based on
the principle of Duality, in the area of Minimum Norm Problems. Observe that the hyperplanes

must satisfy the equations

(x,w)y>a, Vi=1.,M (4.2)

and 3 x, € X7 sit.(x, w) =«

(g w)<B Vj=1 .1 (43)
and I x; € X~ s.t. (x;, w) =B
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The distance between these two hyperplanes — eq. (4.2) and eq. (4.3) — is computed by

a—p

w

D = (4.4)

The optimal separating hyperplane is the one that maximizes D. In order solve this problem,
w must be minimized, and (a — B) maximized. Seen otherwise, t is necessary to minimize

—(a = B).

Using these observations, the problem to be solved is transformed into

max S’ — (o~ f) (45)
s.t.

(xywy>aVi=1..,M
—<x/ w>2—BV/= L

The Lagrangian of eq. (4.5) is

1
Llw, a, B, u,v)= sz —(a=B) = Ail{x, w) —a) = A; ({x;, w) + B) (4.6)
with
i=1 .. Mandj=1,.,L

A >0,4 >0

The dual optimization problem is

max L(w, a, B, u,v) (4.7)

w,a,B,u,v

According to the KKT conditions, for eq. (2.29a) to eq. (2.29¢), we have

va(w,a,B,U,V) = (U—)&[X[—F)\j)(j =0 (48)
Vollw, a, B, u,v) =—1—A =0 (4.9)
Vel(w, a, B, u,v) —1—A ~0 (4.10)
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4.1. Convex hull for classification

The gradient of this Lagrangian is

L M
j=1 i=1

From (4.9), (4.10) and (4.6):

M
Y A=1,42>0 (412)
i=1
L
A=1,42>0 (4.13)
j=1
Interchanging A by a yields
M L
: 2 _ 2
st
M L
Y a=1) a=1j=1.Mi=1.,N
i=1 Jj=1
and ¢;; >0

which is equivalent to (2.20).

Most data sets are not linearly separable. In these situation, the convex hulls do intersect,
and therefore, the solution to problem (4.1) does not exist. Current geometric methods for
training SVMs, take the idea presented in [7]. It consists in shrinking or reducing the CH to
avoid overlapping. In [8] a reduced convex hull (RCH) is used. The RCH is defined as

k K
RCH(X, p) = «[w:w=Zaixi where 20[21,X[EX,;J<1 andogaigu]»

i=1
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Chapter 4. Data reduction method based on convex-concave hull

Given a linearly inseparable data set, the initially overlapping convex hulls can be reduced

to become separable. This is achieved by selecting a suitable value of . Figure 4.3 shows
an example of the shape of RCH.

= Convex hull
PN -+ - Reduced convex hull

Figure 4.3: Reduced convex hull, y = 0.5

There are some problems with the reduced convex hulls: The parameter y must be carefully
selected. A large value of i does not avoid intersection of convex hulls; a very small value of
p produces many vertices of the RCH. Another intrinsic problem with RCH is that it changes
the shape of original set of points; the separating hyperplane misclassifies many examples.

One variant of a convex hull is the scaled convex hull (SCH), defined by

k
&ﬂﬂij:{w;w=§:a¢ML+m—Amn}

i=1

With
Y a=1,xeX A<land0< a; <1

In SCH, the shape of the convex hull is maintained. Figure 4.4 shows a SCH in two
dimensions.

The training times of SVMs using RCH or SCH are large, and the classification accuracy
is degraded with both methods.

In our method, it is unnecessary to change the convex hull. Instead we detect the objects

that are close to exterior boundaries of class distribution and use them to train a SVM.
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Convex hull
PN - - - Scaled convex hull

Figure 4.4: Scaled convex hull, A = 0.5

In order to detect objects on the boundary, we use the convex hull first, and then, we create
non-convex hulls.

Non-Convex Hull

The border points B(X) of a set X € R? are the vertices of a convex-concave hull, if they
satisfy the following properties:

1. The vertices of a convex-concave hull B(X) are all the vertices of a convex hull (CH),
plus the points that are “close” to the edges of CH(X):

B(X) = \/CH(X) U ClOSE’CH(X) (414)

Where
Ver(xy is the set of the vertices of the convex hull.
Closecyx is the set of points that are close to the edges of CH(X).

The degree of closeness, is different from point to point. There is no unique set of border
points.

If the points in B(X) are joined properly, it results in a concave polygon. A polygon is

concave if any internal angle is greater than 180°. Figure 4.5 shows a concave polygon.

In general, the B(X) is not a convex hull.
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A

>

Figure 45: An example of a concave polygon

2. The border points should exclude at least one member of X:

B(X) C X (4.15)

A direct result is that the cardinality of B(X) fulfills:

max |[B(X)| < N (4.16)

3. The minimum size of B(X) is three (a triangle can never be concave). In most cases,
when the cardinality of X is large, the minimum size of B(X) is equal to the number of
vertices of CH(X).

The polygon formed with B(X) is convex, if there are no points “close” to any vertex of
CH(X). Similarly to a convex hull, this polygon “envelopes” the elements in X. In general,
B(X) is not convex, and we call it a convex-concave hull of X.

In the following subsection, we describe a method to detect the vertices of a convex-concave
hull.

] Searching for the vertices of convex-concave hull

We begin with the set of vertices in the CH(X), where X = {x € R?}. As shown in Figure
4.6, for any two adjacent vertices v; and v; of CH(X), all points in X must be located at one
side of the line that passes through v; and v;.

We call v; the starting point, and v; the stopping point. The general procedure to detect

objects "close” to the edge defined by these vertices is summarized as follows:
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QO Element of X
@ Vertex of CH(X)
- - - Convex hull

Figure 4.6: The convex hull of a set of points X and two adjacent vertices

1) The starting point is considering the “currentPoint”.

2) The point that fulfills the following is considered “close” to the current edge:
e |t is one of the K-nearest neighbors of currentPoint.

e |t has the smallest angle with respect to v; and v;.

e |t does not intersect the polygon formed with the previously selected points.

3) Once a point that fulfills the last conditions is found, it becomes the new currentPoint.

4) The steps 2 and 3 are repeated until the stopping point is reached.

Algorithm 5 shows implementation details for this procedure.

Figure 4.7 shows the points close to an edge of the convex hull. In this example, the
number of nearest neighbors is equal to three.

In order to compute B(X), the previous procedure is applied on each pair of adjacent
vertices. Algorithm 6 implements this task.

Figure 4.8 shows real examples of the convex-concave hull B(X) computed via Algorithms
5 and 6.

It is possible to obtain a different set B(X) by changing the parameter K in Algorithm 5.
For example, in Figure 4.8 the values of K are: (a) K =9, (b) K =4 and (c) K = 6. The

greater the value of K, the more similar it is to the convex hull.

Remark 4.1 Algorithm 5 shows how the space between two consecutive extreme points is
explored. The underlying idea is similar to Jarvis" march [116] where a set of points is
wrapped. However, Jarvis" march considers all points, whereas Algorithm 5 uses only local

neighbors.
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Algorithm 5: Search closest points

16
17
18

19
20
21
22

23

Input

X 1 A set of points

S: Two adjacent vertices {v;, v;} of CH(X)

K: Number of neighbors

6 : The previous angle between adjacent vertices
Output:

{vivit

begin

currentPoint « v;;

stopPoint « v,

CIOSQCH(X) — Vi

Maximum value of K is the size of set X

K <« max {|X|, K}

while currentPoint # v; do

candidates «<—get the K nearest points to currentPoint;

Compute the angle of every p; € candidates w.rt. to angle 6,

Sort candidates by increasing angle;

foreach p;, € candidates do

L is a segment of line defined by p; and currentPoint;

if L does not intersect the convex-concave hull then
C[OS@CH(X)% CZOS@CH<X) U Pi;

L exit this loop;

Closecyx) : The set of points close to the edge defined by adjacent vertices

if no point was added in the last loop then
Closecy x)«— Closecyx) U v;;
return Closecyx);

Remove currentPoint from X;

Update 6 using the two more recently added points of Closecyx);
if currentPoint = v; then

L return Closecyxy;

currentPoint « p;;

/70
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,@ QO Element of X
N
.7 AN @ Vertex of CH(X)
T 0 s - - - Convex hull
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Figure 4.7: Points close to an edge of CH(X)

Remark 4.2 The convex-concave hull has the following advantages over the KNN concave
hull [117]: 1) The starting and stopping points of our algorithms are set before, using the
convex hull. This ensures that all vertices of the convex hull are always in the vertices of a
convex-concave hull. 2) The angles in [117] are entirely depended on the previously computed
ones. In our method, the extreme points are used to compute the angles. This allows an easy
concurrent implementation. 3) Our algorithm does not use recursive invocations. The stop
point is added to the set of the border points when it cannot find more any points. This saves
the detection time of B(X).

The properties of a convex-concave hull are used to formulate a pre-processing step of
data sets for SVMs. Now, we show how to take advantage of these properties.

According to the first property, (B(X) = Venp U CloseCH(X)), the set of vertexes of the
convex-concave hull B(X) is a super-set of the vertexes of convex hull Veyyx), Le., Verxy C B(X).

Algorithm 6 computes CH(X), and then, it uses two extreme points v;, v; to search for
the closest points, via Algorthm 5. At the last iteration, B(X) contains all vertices of CH(X).
According to property 1, if B(X) is used to train a SVM, then the optimal separating hyperplane
is computed. This is true in the case in which the X is linearly separable.

The property 2, (B(X) C X), ensures that the number of points selected is at most N, where

N = |X|. In practice, the size of X is often reduced.
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Chapter 4. Data reduction method based on convex-concave hull

X2

Figure 4.8: Convex-concave hull computed with different values of K, (a) K=9, (b) K =4
and (c) K = 6.

Finally, property 3 ensures that B(X) is not an empty set; this is interpreted to mean that
SVMs will have data to be trained. A special case occurs when the size of X is less than 3;
however, in such case, no data reduction is required.

The parameter K, in Algorithm 5, is quite important. It decides the number of nearest
neighbors of currentPoint. If K is chosen to be large enough, for example, K > N, then the
rest of elements in X are nearest neighbors. In this case, the proposed Algorithms converge to
a convex hull. This is because for a currentPoint v;, the point that satisfies the three conditions
to be a closest point is the stopping point.

Up to this moment, the properties of a convex-concave hull have been useful only for the
linearly separable case. The direct application of convex hulls is not valuable for the general
case of classification. The problem with real-world data sets is that the convex hulls usually
overlap.

The idea behind RCH and SCH methods is to transform the problems into linearly

separable ones. According to the geometry of classification, the patterns that define the
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4.3. Searching for the vertices of convex-concave hull

Algorithm 6: Convex-Concave Searching Scheme
Input

X: Set of points

K: Number of candidates
Output:

B(X): Convex-concave hull

1 begin

2 //Set of vertices begins empty

3 B(X) <« @ Compute CH(X)

4 The vertices of CH(X) are vj,...V,;

5 for each pair of adjacent vertexes (v;, v;) do

6 0 « compute angle defined by (v;, v; );

7 Detect points ‘close’ to edge (v;, v} );

8 Apply Algorithm 5 using (X, (v, vj), K, 0) B(X) « B(X) U Closecyx)

linear decision boundary are the closest points to the opposite (and modified) convex hull.
The vertices of convex hulls are enough to compute the separating hyperplane.

Instead of reducing or scaling convex hulls, our data reduction method takes a different
approach. First, we create partitions, and then, we compute the convex-concave hulls. The

results are joined in a set. This is a super set of B(X):

JB(XY) 2 B(X) 2 CH(X)

Where

X' the i — th partition of set X.

NX' =&

UX' = X.

We use Figure 4.9 to explain this. A set X has been been partitioned into four subsets.
The convex-concave hull of each one of them has been computed. The set of vertices of convex

hull Vewx) is a subset of UVey x).

Remark 4.3 If the Algorithms 5 and 6 are applied on the disjoint partitions of X, the joining
of results contain all the vertices of CH(X). The points in intersection of convex hulls are also

included in B(X). This is helpful for linearly inseparable cases for SVM classification.
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Figure 4.9: A super set of B(X) obtained by applying Algorithms 5 and 6 on partitions

Pre processing

The convex-concave hull algorithms shown in the previous section work for sets with two
features. In order to extend our method to more than two dimensions, a dimensionality
reduction is necessary. The principal component analysis (PCA) is a common method to
reduce the dimension of data sets; however, we do not use PCA. It is costly, and, additionally,
the features are linear combinations of features.

We select the two dimensions with the lowest variance, and then, we compute the
convex-concave hull. The other features are used to search for more points.

The general approach to apply our algorithms on data sets with higher dimensions is the

following:

1. Partition the input space to create a number of partitions X".

2. Select two features from X' to create a set Y € R2 The Y' can be viewed as X' with

all its features fixed, at exception of two.
3. Apply convex-concave hull searching on Y°.
4. Explore fixed features for more points.

5. Join the points recovered in the previous steps.
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Figure 4.10: General process of the convex-concave hull method
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Chapter 4. Data reduction method based on convex-concave hull

Partition the input space

The partition of input space must be fast to avoid a bottleneck problem. We use a binary tree
data structure to manage a grid G. All points in X are mapped into a grid G, ie, they are
inserted into a cell of it. Figure 4.11 shows the structure of the grid. The cells are hyper

boxes. Each side such a hyper boxes has a length

max(d;) + min(d)
2hg

side; =

Where

hy the height of the binary tree, or, the granularity of G.

d; is the i — th feature of the training set.

The size of each cell is controlled by the height of the tree. Figure 4.12 shows how the
binary tree manages the grid. The h, decides how many times one feature should be halved.

Each leaf of the tree represents a cell.

Y2 D1 Y2 D1
Ya D1 % D1

hg=2

hg=1

% D2

X2
D2

Y2 D2
Va D2

D1

X1

Figure 4.11: Partition of the input space using a grid

The mapping from X into grid also reduces the repeated points; if a set of points in X are
very close to each other, they are mapped into the same cell.

We use two examples to show how the grid and the convex-concave hull work together.
Figure 4.13 shows the result of applying the algorithms on the whole points (h, = 0). Figure
4.14 shows the result with h, = 1. The border point is realized by the union set operation.

76



4.3. Searching for the vertices of convex-concave hull
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X2 x2
hg=2

[ ] B[]

Figure 4.12: Binary tree represents the grid

09f
08F
07
06

o5t

04F

02

Figure 4.13: Example with granularity h, =0
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Figure 4.14: Example with granularity h, = 1

IEW] Scarching for convex-concave hull vertices in higher

dimensions

The convex-concave hull search utilizes the convex hull as an intermediate step. It is well
known that computing the convex hull in more than three dimensions is computationally
expensive, and this should be avoided.

We overcome this difficulty by searching the vertices of the convex-concave hull in two
dimensions. The other features are used to find more points. After searching in the two
selected dimensions, we move in one dimension at a time and apply this process iteratively.
The effect of this procedure in three dimensions is similar to slicing a cube. An example of
convex-concave hull in three dimensions is shown in Figure 4.15.

In order to cross the dimensions, we use the following strategy: We choose the cells of
the grid G that are at height h, < h, in the binary tree, searching from heigh h, < h, (see
Figure 4.16). Then we reach the next node of the tree and repeat the process. The selection

of hy < hy, can be realized quickly by testing the values 0,1,2.., hy — 1.

W S\/M Classification via Convex-Concave Hull

Figure 4.10 shows the general steps to apply our methods with SVMs. These steps can be

summarized as follows:

1. Split the data set into two subsets: positive an negative records.
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4.4 SVM Classification via Convex-Concave Hull

Figure 4.16: Partition in higher dimensions

2. Create partitions
3. Compute the convex-concave hulls on partitions.
4. Join the previous results.

5. Train a SVM

Basically, SVM classification can be grouped into two types: linearly separable and
linearly inseparable cases. The grid and convex-concave hull algorithms are suitable for the
linearly separable and linear inseparable cases. Figure 4.1/ shows an example of application

of our methods on a linearly separable case.
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Figure 4.17: Linearly separable case, h;, =0

In the linearly inseparable case, the convex hulls CH(X) are intersected, see Figure 4.18.
Because the SVs are generally located on the exterior boundaries of the data distribution,
they are not the vertices of CH(X™*) and CH(X™) [118]7]. On the other hand, the vertices of

the convex-concave hull are the border points, and they can be used as SVs.

Figure 4.18: Linearly inseparable case, h; =0

The parameters of the kernel are chosen utilizing the grid search method, widely used
in the literature. That method tests the performance of a classifier using different parameter

values in an interval.
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45. Performance analysis

I Performance analysis

In this section, we show the memory space and computation time complexities of our CCH-SVM
method.

It is not easy to analyze the exact complexity of the normal SVM algorithm. For n input
data, this operation involves a multiplication of matrices of size n, which has complexity O(n??)
and O(n”®) at worst [119]. In the following, we assume that a QP implementation of each

stage of SVM takes O(n?) computation time and O(n?) memory space.

Memory space

During the pre processing phase of our method, all the examples in the training set X
are mapped into a grid G by inserting them in a binary tree.The height of the tree is h,

(granularity). Considering the following facts:

e Fach example has d dimensions and those data types are double (8 bytes),

e The internal nodes in the binary tree occupy each one about 40 bytes (two references

to the child nodes and internal variables),

The amount of memory to manage all examples in G is
2%hs (d + 5) — 40 bytes

, where hy is the height of the binary tree, d is the number of features in the data set X. This
amount of memory is computed as follows: The maximum number of leaves in a binary tree
of height h, is given by 2"s. Each leaf contains a vector of d features, and each feature is

stored in 8 bytes, the amount of memory used by the leaves is
20 . 8.d=2M23. d

. It is well known that the number of internal nodes in a binary tree of height h, is given
by 2"+ — 1. Because each internal node in the implemented binary tree uses about 40 bytes.

The amount of memory used for the internal nodes is
40 - (2" —1)

81



Chapter 4. Data reduction method based on convex-concave hull

The total amount of memory used by a binary tree is composed of the leaves and the

internal nodes, ie.,
(2"2° . d) 440 - (2" — 1)

This can be simplified as 279 - 23 - d + 40 - (2" — 1) = 2h9 . 23d + 2h9 . 40 — 40 =
209 .23 . d 4 2h9 - 23 .5 — 40. Grouping terms we obtain 2" - 23(d + 5) — 40 bytes.

This amount of memory is used when all leaves of the binary tree exist. In this case, more
than one example is usually mapped into the same leaf of the tree. Reducing the amount of
memory originally required to allocate the training set X, ie, 8- |X]| - d bytes. With |X| the
size of the training set, namely n.

The memory used by Algorithms 5 and 6 can be ignored, because they use little memory

space compared with the binary tree.

‘W4 Computational time

In order to analyze the computational cost of the proposed method, we separate it in the

following phases:

e Create a grid G via a binary tree. The computational time for creating G is obtained

with the insertion of examples in a binary tree. It is O(n log, n) with n = |X]| examples.

e Detect the vertexes of the convex-concave hulls in partitions Y; by looking downward

the tree from height h, down to height hy.

Algorithm 6 uses the partition Y; to obtain the vertexes of a convex hull. The cost is
O(|Yiltog, | Yil).

To simplify the analysis we consider a uniform distribution of examples, in this case the

: , X
size of Y; can be approximated as ‘2,—!

For Algorithms 5 and 6, the worst case occurs if all examples of Y; are considered
as vertexes; this happens when Y; has few elements. The computational time is small
compared with these few samples. In the general case, Algorithm 5 searches a small
subset from Y; by the K-nearest neighbors method (KNN). The computational time of
the simple KNN is O(d|X]?). For our case, it becomes O (d (ﬁ) )

22»(/7[7)
Because we search at each node that is located at heigh h,, this becomes a bottleneck

of our method when dealing with higher dimensions. This is the major disadvantage of
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our method; it is scalable with the size of the training set but not with the number of

features. We have observed that our method is unsuitable for more than four dimensions.

The total computational time on the pre-processing steps is

2

O(|X| log, |X|) + O(% log, %) + O (d ( 2|§f|7b) ) ) (4.17)

e Train a SVM using a QPP solver. We assume that a QP implementation of a SVM
takes O(n?) time and O(n?) space for |X| input data. On the other hand, the number
of vertexes of convex-concave hull is greater than the vertexes of convex hull |[B(X)| >
Venpg|- However, |B(X)| < |X|, because not all points are on the boundary. The time
to train an SVM using |B(X)| is lower than the time used to train a SVM with the whole
training set X, e, O(|B(X)]?)

MY Results

We used eight data sets to compare our algorithms with other methods. Four data sets are
publicly available in the UCI repository; one was modified, and four more were created to
observe the performance of each method.

The data sets from the UCI repository are: Four classes, Skin-no-skin, Breast cancer and
Haberman's survival. The data set modified was Checkerboard (Figure 4.19), and the synthetic
data sets are Cross (figure 4.20) Rotated-cross (Figure 4.21) and Balls aDb (Figure 4.22). Al
of them all are linearly inseparable. Table 4.1 shows a summary of the data sets used in the
experiments. The synthetic data set Balls aDb has “a” features and size "b"x1000.

Our algorithms were compared with the SMO ' [12], library LIBSVM . [80] and the reduced
convex hull SVM (RCHSVM) [8]. The SMO and LIBSVM are trained with the original data
set. The RCHSVM finds the closest points within a reduced convex hull. Our convex-concave
hull SVM (CCHSVM) uses the border points detected by the proposed algorithms.

All experiments were run on a computer with the following features: Core 7 2.2 GHz
processor, 8.0 GB RAM and Windows 7 operating system. The algorithms are implemented in
the Java language. The maximum amount of random access memory given to the Java virtual

machine is set to 2.0 GB. The reported results correspond to 100 runs of each experiment.

1lmplementatl0n http://wiki.pentaho.com/display/DATAMINING/SMO
“http://www.cs.iastate.edu/ yasser/wlsvm html
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Figure 4.20: Cross artificial data set
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Figure 4.21: Rotated-cross artificial data set

X2 -100 -50 X1

Figure 4.22: Balls artificial data set
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Table 4.1: Data sets used in the experiments for the convex-concave hull method

Data set Features Size y,=+1 y,=—1 classes
Four-class 2 862 307 555 2
Checkerboard50 2 50,000 13,000 12,000 2
Cross 2 90,000, 50,000, 40,000 2
Rotated-cross 2 90,000, 50,000, 40,000 2
Skin-no-Skin 3 245,057 50,859 194,198 2
Haberman's Survival 3 306 225 81 2
Balls aDb a b b/2 b/2 2
Breast cancer 9 286 201 85 2

For each experiment, the training data are chosen randomly from 70% of the data set; the rest
data was used for testing.
The kernel used in all experiments is a radial basis function. The RBF kernel is chosen

as:

(4.18)

x—2) (x—z
f(x,z)=exp(—( ;yg ))

where y was selected using the grid search method.

Experiment 1: Size of the training set

In this experiment, we use the checkerboard data set [120] which is commonly used for
evaluating SVM implementations.

Although this data set can be reduced applying a random selection of examples [50], the
checkerboard data set is useful for illustrating the scaling properties of our algorithms.

We first examine how the training data size affects the training time and the classification
accuracy of our convex-concave hull SVM (CCHSVM). We use 500; 1,000; 2,000; 5, 000;
10, 000; 50,000 and 100, 00, 000 examples to train CCHSVM and LibSVM. The comparison
results of 100 runs of experiments are shown in Table 4.2.

In Table 4.2, the columns Avg Acc and Avg training are the averages of the classification
accuracy and the training times respectively. The column stdDev is the standard deviation of
the accuracy. For experiment 1, the values y = 0.9 and C = 1.0 were chosen using the grid

search method.
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Table 4.2: Classification results for the data set Checkerboard

Method Data set Avg training Avg Acc stdDev
size x1000 time (ms) %
LibSVM 05 16.66 85.04 0.27
CCHSVM 05 2813 85.32 0.19
LibSVM 1 46.36 91.34 0.27
CCHSVM 1 61.86 91.01 0.19
LibSVM 2 108.10 98.31 0.27
CCHSVM 2 156.46 94.90 0.19
LibSVM 5 362.00 97.12 0.12
CCHSVM 5 336.80 96.35 0.15
LibSVM 10 102340 98.27 0.33
CCHSVM 10 792.80 97.15 0.27
LibSVM 50 15,692.93 99.28 0.07
CCHSVM 50 5,185.00 98.60 0.27
LibSVM 100 47,670.80 99.58 0.05
CCHSWVM 100 13,434.81 98.32 0.15

The parameters of the CCHSVM algorithm were selected using a grid method. The values
for this experiment were K =50, hy =9, h, =4 and h, = 8.

We can see that our CCHSVM has less training time than LibSVM when the size of the
training set is large. For data sets with few hundreds of examples, the LibSVM outperforms
our method. The classification accuracy is slightly lower than that obtained with LibSVM.

The pre-processing time reduces the size of the training set; this improves the training
time of SVMs. The size of the training set is important when the set contains thousands of

examples. In other cases, the pre-processing step is not valuable.

When the data size is increased, the training time is augmented with LibSVM, while
with our method, it only increases a little. Although the classification accuracy cannot be
significantly improved when data size is very large, it does not get worse, and the testing
accuracy is still acceptable.

Figure 4.23 shows performance of CCHSVM algorithm. It can be seen that with more than
10, 000 examples, our method is significantly better than LibSVM.
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Figure 4.23: Performance of CCHSVM with respect to size of the training set

Experiment 2: Parameters
The CCHSVM method has four parameters: hg, h,, h, and K. The h, controls the granularity

of the grid, i.e, the height of the binary tree in which the examples of the training set are
mapped into. The parameter h, is used to create the partitions in higher dimensions. The
binary tree is traversed down to heigh h,. The parameter K controls the number of neighbors
to detect border points close to edges of the convex hull.

We used the synthetic Balls3D40 data set (40, 000 examples) to analyze the effect of the
parameters of the algorithm. The LibSVM method was used as a reference. Table 4.3 shows
the results. For experiment 1, the values y = 1.9 and C = 2.5 were chosen using the grid
method.

The most important effect of parameter K is on the size of the reduced set. Its effect on
the classification accuracy and running time seems not too important.
The parameters h, and h, have an impact in the training time and accuracy. The higher

the value of h, the deeper the binary tree and also the greater the number of cells in the grid.
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Table 4.3: Effect of parameters of the convex-concave hull method

Method he hy hg K  Avg size Avg training Avg Acc stdDev
reduced time (ms) %

LibSVM - - - - - 1,164,500.00 99.69 0.13
CCHSVM 4 7 12 50 927704 23,443.00 99.83 0.24
CCHSVM 4 7 12 5 999202 23,790.00 99.83 0.20
CCHSVWM 4 7 8 50 924401 19,945.00 99.75 0.26
CCHSVM 5 9 12 5 1758501 90,130.00 99.92 0.19
CCHSVM 5 9 12 500 8,460.05 20,130.00 99.71 0.22
CCHSVW 4 6 6 100 7,760.80 9,898.20 99.73 0.24
CCHSVW™W 4 7 8 100 792010 13,260.00 99.76 0.16
CCHSVM 4 5 7 100 424512 5,815.00 92.35 0.19
CCHSVM 4 5 8 100 428733 8,656.60 91.97 0.20
CCHSVM 3 6 8 100 4500.40 3,079.40 9455 0.19
CCHSVM 3 6 8 300 439540 3,296.81 92.91 0.53

The value of h, affects the number of partitions. A larger value of this parameter involves
a major number of searches for boundary points. The accuracy is degraded when h, is low

because many support vectors are omitted.

Experiment 3: Comparative with other methods

In this experiment, we compare our method with the SMO, LibSVM and RCHSVM. We use four
benchmark data sets and three synthetic ones. The Balls3D100 contains 100, 000 examples,
and it has three features. Both the Cross and the Rotated-cross data sets have two features
and 100, 000 examples.

For experiment 3, the parameters were selected using the grid search method. The values
for the first data set are LibSVM y = 0.68 and C = 1.0, SMO y = 0.68 and C = 1.0,
RCHSVM y = 0.1 and C = 0.5, CCHSVM y = 0.9 and C = 3.0. The values that produced
the better results in this experiment were K =5, hy = 10 and h, = 5 and h, = 9 for all data
sets except for Skin-NoSkin, in this case the values used were K =7, hy =12 and h, = 0.

The training of SVMs with data sets that contain tens of thousands or more examples, is
generally expensive. The results obtained in this experiment are shown in Table 4.4. The
RCHSVM algorithm does not scale well with the size of the training set. The LibSVM and
SMO produce the best accuracies and standard deviations in practically all cases, but their

training times are very high. Our CCHSVM method can train SVM very fast; the accuracy
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and standard deviation are slightly degraded but yet acceptable. For small data sets, our

method is not the best in terms of the training time.

' Conclusions
This Chapter proposes a novel method for SVM classification, the CCHSVM. By using

convex-concave hull and a grid method to avoid costly computations in higher dimensions,
the CCHSVM overcomes the problems of slow training times of an SVM and the low accuracy
of many geometric properties based methods.

The key point of our method is the detection of vertices of a convex-concave hull, which
corresponds to the examples located on the boundaries of the data set. Experimental results
demonstrate that our approach has good classification accuracy, while the training time is
significantly faster than other SVM classifiers. The classification accuracy is higher than that
of other geometric methods such as reduced convex hull.

The training time of SVM has been significantly reduced. Our method is unsuitable for
small data sets. The accuracy achieved by CCHSVM is maintained slightly lower than that
of the classical SVM classifiers which use the whole data set, and the training time is not
reduced.

However, in the case of larger data sets, the classification accuracies are almost the same

than that of other SVM methods; in contrast, the training time is greatly improved.
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Table 4.4: Comparison with other methods

Method Data set Training Acc stdDev
time (ms) %
SMO Four-class 17.00 9533 0.20
LibSVM  Four-class 6.10 99.01 0.0
RCHSVM  Four-class 27.00 98.08 012
CCHSVM  Four-class 2283 98.55 0.14
SMO Checkerboard50 27,740.00 98.08 0.19
LibSVM  Checkerboard50 19,001.00 98.2 0.01
RCHSVM  Checkerboard50 48,225.00 929 24
CCHSVM  Checkerboard50 3,791.01 96.82 0.68
SMO Cross 27,740.00 98.08 0.19
LibSVM  Cross 19,001.00 98.2 0.01
RCHSVM  Cross program crashes program crashes program crashes
CCHSVM  Cross 5,234.20 95.82 0.68
SMO Rotated-Cross 27,740.00 98.08 0.19
LibSVM  Rotated-Cross 19,001.00 98.2 0.01
RCHSVM  Rotated-Cross program crashes program crashes program crashes
CCHSVM  Rotated-Cross 4,986.20 95.82 0.68
SMO Skin-NoSkin 3,100,254.00 96.08 0.32
LibSVM  Skin-NoSkin 1,860,014.00 96.34 0.09
RCHSVM  Skin-NoSkin program crashes program crashes program crashes
CCHSVM  Skin-NoSkin 12,780.00 94.72 0.23
SMO Haberman's survival 9.46 72.31 0.02
LibSVM  Haberman'’s survival 9.30 72.25 012
RCHSVM  Haberman's survival 12.30 7210 0.13
CCHSVM  Haberman’s survival 11.45 73.94 0.10
SMO Balls3D100 2,100,013.25 95.26 0.02
LibSVM  Balls3D100 2,000,663.02 96.10 0.10
RCHSVM  Balls3D100 program crashes program crashes program crashes
CCHSVM  Balls3D100 15,260.50 97.66 0.21
SMO Breast cancer 95.00 96.78 0.01
LibSVM  Breast cancer 80.01 96.93 0.13
RCHSVM  Breast cancer 128.25 91.35 0.23
CCHSVM  Breast cancer 1,026.66 9513 0.21
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Data reduction with decision tree and Fisher's linear discriminant

Out of one thousand who seek me..one is mine

Jesus of Nazareth

A novel data reduction algorithm, called DTFSVM (Decision Tree and Fisher’s linear
discriminant for SVMs), is presented in this chapter. DTFSVM discovers low entropy regions
in the input space, and analyzes them to detect objects close to others with an opposite
label. Our method has advantages over simple random sampling and also over distance
based methods. First, DTFSVM does not use any kind of unplanned selection, which allows
repeatable results; second, it does not compute all distances between objects, avoiding the
bottleneck of naive algorithms. We also introduce a minor variant of the DTFSVM; this variant
uses a directed random selection, which improves even more the training time at the expense
of degrading the classification accuracy of SVMs classifiers. We tested DTFSVM and its
variant on seventeen publicly available data sets. The results are very competitive compared
with respect to LIbSVM and the SMO. The training of the SVM is reduced in several orders;

the classification accuracy is almost preserved, and its standard deviation is quite low.

Decision trees and SVMs

Among the currently classification methods, SVMs produce a high accuracy, a have a compact
model and extraordinary generalization capability. On the other hand, decision trees are
classifiers that produce models comprehensible by human experts. In general, the algorithms
to induce decision trees are not costly. Decision trees are used in this thesis to improve the

training time of SVMs.
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Chapter 5. Data reduction with decision tree and Fisher's linear discriminant

Data reduction methods based on decision trees have been proposed before. They allow
the use of SVMs on large data sets. In [121] each partition discovered by a decision tree
is used to train a SVM. That method uses the fact that the partitions are less “complicated”
than the entire training set. A SVM is applied to each partition to build the classifier. In [16]
the number of instances is reduced to train a SVM; the underlying idea is to approximate the
decision boundary of SVMs, by capturing the objects near to it, using a decision tree.

Decision trees have been combined with SVMs to facilitate their application on multi-class
problems. The method in [122], selects two classes at every node of a decision tree. Then, it
employs the probabilistic outputs, to measure the similarity between the remaining samples.
In [123], multi-class problems are simplified. They are converted into a number of two-class
classification problems. The C4.5 [124] algorithm is used as a tool to generate two subsets; all
the classes that are less separated by the margin are joined, and treated as one class; the class
with the largest margin is considered as the opposite class. Two drawbacks in the methods
shown in [123] are: (a) the margins need to be computed at each stage of a decision tree,
which is costly; and (b) the method exhibits a poor performance when the number of classes
ts small. In [39], these drawbacks are solved by inserting information about margin measures
in a list data structure. Another algorithm that faces multi-class problems was presented in
[125]. It creates a tree using an SVM to split the data. The main disadvantage of this method,
is that for each internal node, a separating hyperplane is computed. This strategy has the
negative effect that the right, and the left sub trees are imbalanced. It is known that SVMs
don’t achieve a high classification accuracy on skewed data sets.

Detecting regions with support vectors

The optimal separating hyperplane of the SVMs classifiers is defined by a few examples known
as the SV. In general, these objects are located close to others with an opposite class. These
examples are near to the boundaries of class distribution [126] [127] [64]. The SV candidates
could be selected using a brute force approach; by computing all the distances between
objects and choosing the pairs of examples with the shorter distances. However, a problem
with this trivial method is that it takes about O(N?) in time and space, as shown in Chapter
3. This naive approach becomes computationally expensive and, therefore, is unsuitable even
for medium-size data sets.

DTFSVM avoids the bottleneck of the brute force approach, by using a different strategy.

Instead of computing all the distances between objects, DTFSVM discovers low entropy
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52 Detecting regions with support vectors

regions. The majority class of each region is the most repeated class in it. DTFSVM
determines all the adjacent regions whose majority class is different from the current region
being analyzed. Having two regions with opposite majority class, DTFSVM applies a
search-method that selects the examples with the shortest distances.

It is well known that decision trees create partitions of the input space. According to such
approach, these partitions have generally a low entropy value. The partitions are discovered

in O(N - d) time, with N being the number of examples and d the number of dimensions.

WHRY Computing adjacent regions

In this subsection, a method to detect adjacent regions in the input space of a given data set
is presented. In order to explain the approach, this subsection is divided into two parts. The
first part explains the representation of partitions discovered by decision trees (leaves), and
exposes some definitions that are used later. The second subsection describes how to detect

adjacent regions.

| eaves of decision trees

Decision trees separate the input space of data sets into low entropy partitions. These are
represented as leaves (terminal nodes) in the tree's structure. The boundaries of leaves are
constrained by hyperplanes that are parallel to the axes. The partitions can be interpreted as
disjoint ortho topes or hyperboxes. Their vertices are orthogonal to the axes of the attributes.

Let 7 represent a decision tree and let £; its i-th leaf. In this work, a leaf £; is represented
by

d
Li=(ry ly<ry<hy (5.1)
j=1
where:

L; : the i — th leaf in the decision tree 7.

d: the number of dimensions of the training set.

r;;. a region of input space determined by boundaries [(;;, h;;) with {;;, h;; € R. These

lij, hi; are the cutting points found by an induction tree algorithm.

i,jl
Figure 5.1 shows an example of a leaf, and the contained region in two dimensions. In

this case, the region is a rectangle. In three dimensions, the region would be a rectanqular
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prism, and in higher dimensions, it would be a hyperbox.

Xo
hia
L;
l’i2
li hi1 X1)

Figure 5.1: A leaf £; in two dimensions

A candidate to be neighbor of a leaf or region £, of T, is another leaf £, of 7, that is
located together to L,. Definition 15 formalizes this notion.

Definition 15 (Neighbor candidates ) wo leaves L, and L, are

candidates to be neighbors if their boundaries have been changed from
eq. (5.1) to eq. (5.2).

d
Lo = () oy loj < roj < hoy (52)

Remark 75.7 Most induction tree algorithms split the input space using a rule of the form
x; < C for one partition and x; > C for the other one. In the Definition 15, the boundaries of
leaves £, and L, have changed to give them a chance to be connected.

Two leaves are together (they are true neighbors) if they share at least a split point. Any
two points of two true neighbors can be joined by a path.
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52 Detecting regions with support vectors

Definition 16 (True neighbors) Two leaves L,, L, which are candidates to

be neighbors, become true neighbors if L, U L, is a connected space.

Remark 16.1 Leaves L, and L, are neighbors if there exists an m with 1 < m < d, and

the following are satisfied:

hom="1lymor ly,="h,n 53
p. p

[p,n < [o,n < hp,n or lpn < ho,n < hp,n (54)

with 1< n < dwithn+m
Explanation
If two leaves £, and L, are neighbors, then there exists at least one point x, that fulfills

the following.

Xo € {rox Nrpi}, for k=1,..,d (5.5)

This means that leaves £, and £, must necessarily share a boundary, which is orthogonal
to an axis of features, for example m. The possible options are that the lower(upper) bound of
L, coincides with the upper(lower) bound of £,, as stated in eq. (5.3).

Remark16.2 Eq. (5.3) is a necessary but insufficient condition for two leaves to be true
neighbors; they need to share all their boundaries at the other dimensions. In order to be
true neighbors, eq. (5.5) and eq. (5.4) must both be fulfilled.

Figure 5.2 shows an example in which the condition Eq. (5.3) is fulfilled, but Eq. (5.4) is
not. Here, h,1 = 51 (the separating hyperplane orthogonal to dimension one is shared by
leaves £, and L5) but £, and L3 are not neighbors. Something similar occurs with the pairs
(L2.L4), (L£2.L7), (L1.L7), (L£3.L8), (L£4,L5), (L4,.L7), (L4.Ls), (Ls5,L6), etc.

In order to implement our method, it is necessary to discover true neighbors of a leaf. In

the next subsection, we explain an algorithm to compute them.

A method to find all the neighbors of a leaf

In this part, we propose a method to compute the neighbors of a leaf. The method was designed

for the C4.5 decision tree; however, it can be extended to other trees.
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yi = C1
A yi = Ca
X1
Lo Ls
b
L Ls L7
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d & =
6
f
Ly
. £
ad C X2 L3 Ly

Figure 5.2: Example of boundaries produced by an induction tree

At the beginning, the tree is traversed to determine the boundaries of each leaf; all
boundaries are stored in a matrix M € RN*2d with N, the number of leaves in the induced
decision tree. The matrix M can be filled in O(N_h;) time, with h; the height of the tree.
During the traversing of the decision tree, the split points in each internal node are used to
discover the boundaries of partitions.

The i — th row in the matrix M, contains all the boundaries of leaf £;. The columns of the
matrix M represent the values [;; and h;;, with j = 1,..,d. These values are implemented in
a vector B, which is initialized with the minimum and maximum value of float point variables
at root node. These values are represented as —oco and 4oc0. Algorithm 7 shows the pseudo
code to fill out the matrix M.

To exemplify the results produced with Algorithm 7, Table 5.1 shows the boundaries of the
leaves for the tree shown in Figure 5.2.

The neighbors of any leaf £, can be quickly computed, using Algorithm 8. The set of
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Table 5.1: Matrix M computed with Algorithm / for the tree of Figure 52

Ly Ly hiyo Lo hpo
1T —o0 a —oo b
2 —0o0 a b +o0
3 a c f e
4 a c —00 f
5 a c e b
6 c 400 —o0 d
7 c +oo d b
8 a +oo b +o0

Algorithm 7: Computation of leaves’ boundaries

Input
T: An induced C45 decision tree
Output:
M: A matrix with the boundaries of all the leaves of T.

1 begin

2 B € R B[1 to d] « {[—ca]},B[d + 1 to 2d] « {[+o0]} ;
3 call DiscoverBoundariesRecursive(B, M) from root node;
4 return M;

[6)]

DiscoverBoundariesRecursive(5,M)
6 if current node is a leaf then
7 L Insert vector B as last row into matrix M;

8 else

9 Create B, copying boundaries from B;

10 B,;: Change hy; using attribute index and the split point value of current node;
11 call DiscoverBoundariesRecursive(B;, M) on the left son of current node;

12 Create Bg copying boundaries from B;

13 Br: Change [; using attribute index and the split point value of current node;
14 call DiscoverBoundariesRecursive(Bg, M) on the right son of current node;

15 return
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Algorithm 8: Neighbors of a leaf
Input

M matrix of leave's boundaries
L, A leaf

Output:
N The neighbors of leaf £,

1 begin

2 foreach attribute m in data set do

3 Cet all leaves that satisfy (5.3);

4 foreach leaf L, obtained in the previous step do
5 if £, satisfies (5.4) then

6 L LAdd L, to list N;

7 Remove repeated elements in \;
8 return \V;

leaves that satisfy eq. (5.3) for attribute m are computed by searching in the matrix M. This
set is explored again to find those leaves that are neighbors, namely, those that satisfy Eq.
(5.4).

Detecting objects on boundaries

We recover the instances that are close to others with an opposite label using the detected
neighbors of each leaf. We apply Fisher’s linear discriminant to each pair of neighbors. Then
use of Fisher’s linear discriminant is based on the observation that for linearly separable cases,
the linear discriminant produces similar results than SVMs [128]. The idea is to approximate
two adjacent regions with opposite class as a linearly separable case. Algorithm 9 shows
the implementation: Once two adjacent regions have been detected, all the points in £; are
projected on vector w (eq. (2.70)), a number of 0 x |£;| examples with smaller projections are
added to the reduced set Xg. Here, |C)| refers to the number of examples in the leaf £; of 7.
0 is a parameter given by the user.

It is important to notice that high entropy regions will contain support vectors, and they
do not need to be analyzed with Fisher’s linear discriminant, and are included directly in Xx.

To exemplify the method, consider the toy example shown in Figure 5.3. After the training

of a decision tree, the input space has been partitioned into six regions £ to L¢. Each region
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Algorithm 9: General Algorithm using Decision Tree and FLD

12

13

14
15

16

Input

X: Training set

0: Threshold
Output:

Xp: Xp C X st. |XR| < |X|
begin

Train a decision tree 7 ;

Xr <— NULL || Xr Begins empty;

foreach leaf L; of T do

foreach opposite class neighbor L; do

if entropy of L; is low then

//[Select SVs candidates:

Use £; and £L; to build X* and X~, respectively;

Compute w (eq. (2.70));

Project every example in X~ on w;

Select the most separate (w.r.t. projections) pair of objects x;” € X* and
Xj € X7,

Compute distance between x;* and every element in X, sort examples
w.rt. distance;

Select the first 0% of objects in £; and join them to Xg;

else
L Xp <= XgULj/| Add all the elements;

return Xp
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Table 5.2: Partition of input space and adjacent regions

Region Majority class Adjacent regions
L +1 L L3, Ly
ﬁz mixed £1, £4,£5
L3 +1 L1, L4
Ly -1 Ly, Ly, L5,L5, Le
Ls -1 Lo, L4, Lo
Ls +1 Ly, L5

—1 for this

example. Table 5.2 shows the discovered partitions, the majority class of each one and the

L is associated with a majority class y = {G, G}, with G = +1 and G

adjacent regions.

For certain region £;, our method selects the examples that are located “close” to adjacent
—1) the

regions L; that contain different class examples. For example, for region L4 (y

adjacent regions are £, L3 and Lg (y = +1).

Regions with high entropy value, such as £, in Figure 5.3, are aggregated directly to Xg.
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Figure 5.3: Decision boundaries for SVM and Decision Tree classifier
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5.3. Experiments and results

Table 5.3: Data sets used to test DTFSVM

Data set Size Dim |y, =+1] |y;=—1]
Iris-setosa 100 4 50 50
Iris-versicolor 100 4 50 50
Iris-virginica 100 4 50 50
Haberman's Survival 306 3 225 81
lonosphere 351 34 126 225
Breast-Cancer 683 10 444 239
Diabetes 768 8 500 268
Four-class 862 2 307 555
Waveform-0 3,308 40 1,653 1,655
Waveform-1 3, 347 40 1,692 1,655
Waveform-2 3, 347 40 1,692 1,653
ijcnn 35,000 22 3,415 31,585
Bank marketing 45, 211 16 39,922 5,289
Cod-rna 59,535 8 19, 845 36, 690
Cross rotated 90, 000 2 50, 000 40, 000
Checkerboard100K 100, 000 2 50, 000 50, 000

Experiments and results

We compare the performance of our method with respect to that of the SMO' [12] and LIBSVM?
[80] In the experiments, SMO and LIBSVM are trained with the entire data set. DTFSVM
trains @ SVM using the points detected by the proposed algorithms.

The experiments were conducted on a computer with the following features: Core i/
2.2 GHz processor, 8.0 GB RAM and Windows 7 operating system. The algorithms are
implemented in the Java language. The maximum amount of random-access memory given to
the Java virtual machine is set to 2.0 GB. The reported results correspond to 100 runs of each

experiment. The 70% of the data is used to create the training set; the remainder is used for

testing.

The kernel used in all experiments is a radial basis function, the value of y was selected

using the grid search method.

1lmplementatl0n http://wiki.pentaho.com/display/DATAMINING/SMO
implementation http://www.cs.iastate.edu/ yasser/wlsvm.html
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Data sets used in the experiments

We tested the method on eighteen data sets. Nine of them are publicly available. We modified
three sets to create binary problems. In order to explore the performance of the method, one
data set was produced artificially.

The public data sets are Haberman's survival, lonosphere, Breast cancer, Diabetes,
Four-class, ijcnn1, Bank marketing and cod-rna.

The data sets modified were Checkerboard [120] Iris and Waveform.  The former
was generated to have 100,000 examples (Fig.4.19), the second was separated into three
binary classification problems: Iris-setosa, Iris-versicolor and Iris-virginica.  The third
was also separated in binary classification problems: WaveformBin-0, WaveformBin-1 and
WaveformBin-0. The name after the hyphen is the removed class, for example, the data set
Iris-setosa consists of all elements of data set Iris minus those elements with label “setosa”.

A synthetic data set called Rotated cross (Fig. 4.21) was built; it is linearly inseparable;
it has two features and 90, 000 instances.

Table 5.3 shows a summary of the data sets used in the experiments. The column’s names
and meaning are the following: Size is the number of examples in the data set; Dim is the
number of features in the data set; |y; = +1| and |y; = —1| are the number of examples with

label +1 and —1, respectively.

Table 5.5: Performance of the DTFSVM algorithm

Training Training time  Acc Acc Size
Method  Data set time avg (ms) std dev %) (std dev) (%)
LibSVM  Iris-setosa 3.1 0.24 94.65 0.03 -
SMO 3.01 023 9470 0.02 -
DTFSVM 3.88 0.38 89.21 0.19 79.46
LibSVM  Iris-versicolor 1.51 0.23 100.00 0.00 -
SMO 1.65 0.31 100.00 0.00 -
DTFSVM 1.35 0.37 100.00 0.00 68.19
LibSVM  lIris-virginica 1.76 0.24 100.00 0.00 -
SMO 1.68 0.25 100.00 0.00 -

Continued on next page
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Table 5.5 — continued from previous page

Training Training time  Acc Acc Size
Method  Data set time avg (ms) std dev %) (std dev) (%)
DTFSVM 1.43 0.40 100.00 0.00 68.04
LibSVM  Haberman 9.48 079  73.41 0.03 -
SMO 10.51 0.66 73.55 0.03 -
DTFSVM 4.51 0.89 73.08 0.06 80.52
LibSVM  lonosphere 9.48 0.79 73.41 0.03 -
SMO 8.59 099 73.05 0.03 -
DTFSVM 4.51 0.89 73.08 0.06 80.52
LibSVM  Breast-cancer 29.36 1.95 96.63 0.01 -
SMO 35.00 145  96.92 0.01 -
DTFSVM 15.78 176 95.31 0.08 84.51
LibSVM  Diabetes 81.13 6.27 7473 0.02 -
SMO 35.00 712 77.34 0.03 -
DTFSVM 15.00 477  73.25 0.08 84.46
LibSVM  Four-class 18.10 5.87  99.81 0.00 -
SMO 21.23 8.51 98.78 0.02 -
DTFSVM 14.06 714 97.55 0.04 70.49
LibSVM  waveformBin-0 1,210.40 180.69  94.39 0.01 -
SMO 1,687.00 78.96  93.99 0.02 -
DTFSVM 193.30 66.57 93.78 0.01 88.22
LibSVM  waveformBin-1 1,659.50 49.39 9252 0.02 -
SMO 1,840.00 33.89  92.60 0.00 -
DTFSVM 316.60 68.59  91.31 0.01 64.01
LibSVM  waveformBin-2 1,667.00 42.85 9250 0.01 -
SMO 1,859.00 3055 9270 0.02 -
DTFSVM 193.00 7555 9198 0.00 89.98
LibSVM  ijennT 25,875.25 3,650.04 97.92 3.65 -
SMO 48,923.31 4,605.03  96.01 1.01 -
DTFSVM 5,444.25 375.03  96.06 0.00 89.96

Continued on next page
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Table 5.5 — continued from previous page

Training Training time  Acc Acc Size
Method  Data set time avg (ms) std dev %) (std dev) (%)
LibSVM  Bank marketing ~ program crashes -
SMO program crashes -
DTFSVM 39,102.12 6,062.00  89.91 0.03 9112
LibSVM  cod-rna 441,568.70 33,942.69  93.05 0.01 -
SMO 989, 476.00 89,279.26  94.01 0.02 -
DTFSVM 23,224.7 11,866.53  92.46 0.01 87.67
LibSVM  Rotated Cross 119,123.14 22,368.78  94.15 0.02 -
SMO 309,111.00 2,078.03  93.65 0.01 -
DTFSVM 0,726.91 2,400.82 93.78 0.02 9253
LibSVM  Checkerboard100K 131,855.25 3,116.76  98.86 5.79 -
SMO 285,621.12 4,036.99  98.99 0.01 -
DTFSVM 8,740.25 41239 97.15 0.00 89.99

e Calibration of Parameters

The parameters of our algorithms are the minimum number of objects in each leaf of a decision
tree (Min_obj) and the fraction of examples that are taken from each region (9).

The parameter Min_obj is required by the C4.5 decision tree. A set is not partitioned if it
contains fewer samples than Min_obj. Choosing a large value for this parameter, produces a
fast training of decision trees, at expense of creating impure partitions.

In general, data reduction methods should retain the patterns closest to opposite class
examples. As explained in the preliminary experiments, shown in section 3.5 of Chapter 3,
there are different strategies for the selection of examples using the brute force approach. In
our DTFSVM method, instead of choosing a constant number of examples, a percentage of
each partition is used; the parameter 0 is used to decide this.

In order to achieve the best classification accuracy, these two parameters need to be
tuned. Table 5.4 shows the values used for each data set in the experiments. These values

were selected applying a grid search method.
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For large data sets, the values of the parameter Min_obj are sizable. The parameter
0 also becomes large for imbalanced data sets, such as Breast-cancer and Diabetes. This
is attributed to the fact that for skewed data sets decision trees produce impure partitions;
therefore, more points are needed to achieve a better classification accuracy.

In Table 5.4, the reqularization parameter for the QPP and the gamma for the kernel are

represented by C and y, respectively.

Results

The performance of the SMO algorithm, LibSVM library and our method are shown in Table
5.5. column Acc (%) is the classification accuracy. Column Size (%) is the percentage of objects
deleted from the training set. It can be seen that the training time is improved in practically all
cases with our method DTFSVM. For small data sets, the savings in time are not considerable;
however, when the training sets are large, the improvement becomes important.

It is noticeable that the accuracy is slightly degraded, but still acceptable. This is due to
the fact that some of the SV are not selected during the pre-processing step. The sizes of the
training sets are reduced in about 80% and 90% for most cases; this reduction makes faster
the training of SVMs.

Variant of the DTFSVM method

The use of Fisher’s linear discriminant in the DTFSVM method selects the closest examples
to the opposite class. This helps to improve accuracy at the expense of increasing the
computational complexity of the method. In this section, we show a modification of the
DTFSVM algorithm called DTDRSSVM (Decision Tree Directed Random Sampling SVM) .
This method consists of replacing the linear discriminant by a random sampling. We observed

that this produces better results than simple random sampling.

Methods based on clusters for training SVMs

Most clustering based methods to improve the training time of SVMs use centroids of detected
clusters, and afterwards, they train the SVM multiple times to refine the separating hyperplane
[129]130]131].

DTDRSSVM s similar to clustering methods, in the sense that it first creates clusters of

examples, and then, it trains the SVM using a summarized version of the clusters.
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The main difference between DTDRSSVM and the others, is that it is not necessary
to guess the number of clusters in the training set, which is a drawback in some of those
algorithms.  The method does not use any distance measure to create the clusters, and,
additionally, a SVM is trained only once.

DTDRSSVM is also somewhat similar to random sampling methods. However, a uniform
distribution of examples is not assumed in this case, as simple random sampling or other
algorithms do. Additionally, a SVM is not trained several times, which is an important
difference to other randomized methods.

In this variant, the centroids are not used as a summary of the training sets, but a number
of examples is randomly selected. The probability of an example to be chosen varies with
respect to its distance to the center of the cluster. In this way, the examples located on
exterior boundaries of clusters are preferred because they are probably SV, according to the
observation made in [16]. This mechanism is a guided random selection and not a simple
random sampling.

In general, decision trees find regions in which almost/all of the contained examples are
of the same class. Each region is specified by a leaf of decision trees, it can be seen as a
kind of cluster. Clustering methods such as KNN or Fuzzy C-Means, form clusters explicitly
by grouping examples, using distance or density measures. In contrast, in our DTDRSSVM
a decision tree discovers pure regions, using a purity function such as the Gini index or the
entropy gain. An advantage of decision trees is that they don't require specifying the number
of leaves.

Figure 5.4 shows a toy example, and the decision boundaries discovered by a decision
tree C4.5. The number of clusters (leaves) is four and all the clusters are not pure.

At this time, it is useful to remember that according to the KKT conditions (2.29a), the
examples that are located close to decision boundaries determine the optimal separating
hyperplane. Intuition says that the points close to the center of clusters are not too important
and can be safely discarded. Other methods that exploit this observation in a different way
are reported in [129]64]66].

This intuition can be supported by Eidelheit's separation Theorem (see Therorem 2.1),
which states that given two convex sets Ky and K, in a real vector space X, such that Kj
contains interior points, and K, contains no interior points of Kj. In other words, Ky and K5
lay on the opposite half-spaces determined by the hyperplane H.

Based on this observation, we develop a variant of DTFSVM. Instead of using a linear
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Figure 5.4: Decision tree applied on a toy example

discriminant, we exploit the clusters discovered by a decision tree, and execute a random
selection. The method can be summarized as follows: Consider two adjacent clusters, say
C and D in Figure 54, the minority class examples from each one can be removed, so the
clusters become pure ones.

Without loss of generality, we can say that each cluster is in a convex set, and they do
not intersect. The division created by a decision tree perfectly separates these two clusters,
so the split is a separating boundary h,;, although probably not the optimal one.

It is possible to select the closest pair of examples that produce the optimal separating
hyperplane for clusters C and D, by using a brute force approach; however, this is
computationally expensive. Considering that this process must be repeated for each pair
of clusters with different majority class, a computationally expensive approach is not a good
choice.

Instead of solving this costly problem, we select randomly some examples from each cluster.
However, different from simple random sampling, in this method the probability of an example
to be selected from a cluster is given by

1 (0)?

plx)=1-— U\/ﬂe_ﬁ (5.6)

Where n is the (normalized) distance from the example to the center of the cluster and o

is the standard deviation. The greater the distance of an example with respect to the center
of the cluster, the higher its probability to be chosen.

Figure 55 shows the probability values represented in a gray scale for the toy data set.
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-1 -0.5 0 0.5 1

Figure 5.5: Probabilities within clusters represented in a gray scale

The darker a region is, the higher its probability to contain more important examples.

Selection using directed random sampling

DTDRSSVM s straightforward to implement, it consists of three simple steps:

1. Train a decision tree, using the whole data set. In this thesis, we use C4.5.
2. Recover all the leaves of the decision tree; these are treated as clusters with low entropy.

3. Select examples from clusters weighting their probability to be chosen as a function of

the distances to the center.

4. Train the SVM with the selected instances.

Algorithm 10 shows the pseudocode for the three first steps (data selection). The decision
tree used in the algorithm was the C4.5 of Weka [132], and it is called as J48 class within
Weka. We modified this class to have access to some of its internal members. Another
important modification to the original J48 class, was that not all examples are examined for
the selection of the best division. This is because we are interested in discovering regions
with low level entropy and not necessarily clusters with zero entropy.

Once clusters have been discovered, each example in a cluster is “normalized” before

computing (5.6). This is implemented using
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54. Variant of the DTFSVM method

Algorithm 10: Data Selection

1 Input: X A training set
2 Output:
X, A subset of X

Train a C4.5 DT on X
for each cluster do//Each leaf of DT is seen as a cluster
for each x; in current cluster do
Compute p(x;) using (5.6)
Add x; to X, randomly according to its p(x)
end for
10 end for
11 return X,

w

© © N o O b

Xkj — min {X,/}

~ Jmax {xi,} = min {x,]]

(5.7)

/
X

Where k is the current example being examined,
j=1,..,dis the j/ feature of k" example,
i=1,..N

min {X[-,j} and max {X[,/} is the minimum and maximum values of feature j in the cluster

respectively.

The “distance” 0 , from example k to the center of the cluster, is computed with:

) 2 1/2
> j = (ij - 05)
O = . (5.8)

with d of the training set.

Because of the previous normalization, the center of every cluster has always a value of

0.5 in each feature or dimension.

The use of d in (5.8) is to produce
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Figure 5.6: Example of quided selection for different o values on a uniform distribution of
examples

Parameter o affects the number of selected examples by the method. Fig. 5.6 shows an
example of guided selection for a uniformly distributed set of examples, for different values of
o: (A) Original set, (B) 0 = 0.10, (C) o0 = 0.40, (D) 0 = 0.70,

] Performance analysis

The proposed method uses the algorithm C4.5 to detect clusters. Then, it randomly selects
examples from these clusters, assigning a higher probability to be chosen to those that are

located on the exterior boundaries of each cluster.

The algorithm C4.5 has the following training time for non-numeric features.

O(d - N - loga(N)))

where d is the number of features.

The original Weka implementation of the algorithm C4.5 does not use any discretization
of continuous-valued attributes. However, for the presented method, we introduce this

modification at the expense of degrading the accuracy of the classifier.
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The resulting complexity of the slightly modified C4.5 is
O(L-d-m-logy(m))) (59)

where L is a non negative integer number. Several values were tested, finally, the value
was set to L = 20 for the experiments.

At each node, the decision tree tests for the best attribute, considering only L bins, without
considering all the examples in the node.

Once the decision tree has been trained, its leaves are used as clusters, and some examples
in them are selected. The selection is executed in linear time, so the time complexity of the

method is

OL-d-m-logo(m)+ > N, (5.10)

™~

i=1
With C the number of clusters and /N; the number of examples in each cluster.
Observe that

N =N

c
i=1

Solving the QPP to compute the optimal separating hyperplane adds up a quadratic term
to the final training time of the SVM. However, since the total number of selected examples is
always lower than the original size of the training set, the proposed method is more efficient

than other implementations.

Experiments and results

In this section, we present the results of the DTDRSSVM method applied on nine different
data sets. Given that some of the selected data sets are for multi-class problems, we created
binary versions of them by selecting two classes. The total number of data sets was finally

thirteen.

Data sets

In order to test the effectiveness of the proposed method, it was evaluated on typical data sets

used for classification. Table 5.6 shows the main characteristics of them. Most of the training
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sets have numeric features and one of them has mixed features.

Setup

The method was implemented in Java, as our programming language, and Weka as our base
platform. The C4.5 decision tree implemented in the J48 class of Weka was slightly modified
to obtain access to some of its members.

All the experiments were run on a Laptop with Intel core i/ 26700M CPU at 2.2 GHz 8
GB RAM, running the Windows 7 Operating System.

The library LibSVM [80] * was used to train SVM, the kernel used for SVM was the RBF
function, the values for the parameter y are shown in Table 5.4. The amount of memory given
to the JVM was set to 1,200 MB. Among all the implementations of the training algorithms
for SVMs, LibSVM was selected because it outperformed the other methods in previous tests.

For each run, the training sets were randomly partitioned into two sets: the training (70%)
and the testing (30%). The results presented correspond to the average of 100 runs of each

experiment; these results are shown in Table 5./.

Results and discussion

Table 5.7: Performance of DTDRSSVM

Training Training time Acc Acc Size
Method Data set time avg (ms) std dev %) std dev (%)

DTDRSSVM  Iris-setosa 3.51 2.61 88.12 0.23 7057
(n=0.01)
Libsvm 311 0.24 94.65 0.03 -
DTDRSSVM  Iris-versicolor 1.94 0.29 100.00 0.00 67.73
(n = 0.99)
Libsvm 151 0.23 100.00 0.00 -
DTDRSSVM  Iris-virginica 2.09 0.79 100.00 0.00 68.28

(n = 0.99)

Continued on next page

Jimplementation http://www.cs.iastate.edu/~yasser/wlsvm html
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Table 5.7 — continued from previous page

Training Training time Acc Acc Size
Method Data set time avg (ms) std dev %) std dev (%)

Libsvm 1.76 0.24 100.00 0.00 -
DTDRSSVM  lonosphere 9.14 1.5 73.00 040 5947
(n = 0.70)
Libsvm 9.48 0.79 73.41 0.03 -
DTDRSSVM  Diabetes 80.17 9.23 75.0 21 26.02
(n=10.10)
Libsvm 81.13 6.27 74.73 0.02 -
DTDRSSVM  Waveform-0 190.01 50.78 92.00 090 6051
(n =0.50)
Libsvm 1,210.40 180.69 94.39 0.01 -
DTDRSSVM  Waveform-1 215.62 35.37 90.98 057 6017
(n =0.50)
Libsvm 1,659.50 49.39 92.52 0.02 -
DTDRSSVM  Waveform-2 185.75 80.55 89.75 0.13 6050
(n = 0.50)
Libsvm 1,667.00 42.85 92.50 0.01 -
DTDRSSVM ijenn1 4,027.16 400.00 95.13 023 8033
(n=0.40)
Libsvm 25,875.25 3,650.04 97.92 3.65 -
DTDRSSVM  bank-full 452812 7,085.00 86.10 050 7954
(n =0.60)
Libsvm program crashes program crashes
DTDRSSVM  svmguide3 165.00 5.31 76.35 0.50 80.01
(n =10.30)
Libsvm 360.00 12.09 78.82 0.33 -
DTDRSSVM  cod-rna 59,156.60 198.13 91.74 110 7559
(n = 0.60)
Libsvm 441,568.70 33,942.69 93.05 0.01 -
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Table 5.7 shows the comparison between LibSVM and the DTDRSSVM method. It can
be seen that for all the experiments, DTDRSSVM reduces the training time of SVM. The
achieved accuracy is improved for some data sets. For some training sets, the accuracy is

degraded, although acceptable.

For small size data sets, it is neither necessary nor useful to apply a data reduction method
such as DTDRSSVM. The main motivation to apply our method on small data sets, was to

explore the behavior of the proposed method.

Taking as a particular example the Iris-setosa set, the proposed method gave the worst
result in accuracy. Examining both the original training set (see Figure 5.7) and the reduced
version after applying the DTDRSSVM method, it can be verified that the method successfully
detects examples located close to the decision boundary (see Figure 5.8) and discards those
elements far from it. In general, if there are regions where classes overlap, then the accuracy
is degraded. Because in practice, most data sets have this characteristic, it is necessary to

adjust the parameters of the QPP solver to improve classification accuracy.

The method removes examples that have less chance to contribute to define the optimal
separating hyperplane. During this process some SVs can be accidentally deleted. Although
this was not used in the results reported in Table 5.7, by adjusting the parameters y, and
the penalty factor C; in the QPP solver, the accuracy of the classifier can be improved. For
example, using y = 0.85 and C = 2, the achieved accuracy for Iris-setosa is 94.81%. This

effect also occurs in other data reduction methods.

The parameter o can be easily adjusted using the grid method. The values o =
0.1,0.2,,...,0.9 were tested to select the values that produced the best training time and
accuracy. For the modified Iris data sets, this value was calibrated using a finer grid, because

the training times are very short.

The results become more noticeable with the largest size data sets. The accuracy is
competitive with that achieved with LibSVM using all the training examples. The cases where
the accuracy is slightly degraded can be attributed to the fact that some of the SVs were not

included during the selection phase.
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Conclusions

In this Chapter, we proposed a data reduction method to improve the training time of SVMs,
called DTFSVM. This approach discovers low entropy regions which are then analyzed to
detect opposite class regions in order to select examples located close to decision boundaries.
The number of selected examples is a subset whose size is considerably smaller than the size
of the whole training set; this subset is used to train the SVM. The training time of the SVM
is improved with practically all the training sets tested in the experiments, and the accuracy
is maintained slightly below the one obtained with the entire training set.

We also proposed the DTDRSSVM method, which is a variant of DTFSVM. Our proposed
DTDRSSVM applies random sampling. However, unlike other methods that use simple random
sampling, we guide the selection giving more chances to be selected to those examples that
are on the boundaries of clusters discovered by a decision tree. Experiments on different data

sets, commonly used for the classification task, show the defectiveness of the proposed variant.
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The method gives better results when the training sets are large.

The difference in performance between DTFSVM and DTDRSSVM is that the former
achieves higher classification accuracies and lower standard deviations.
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Table 5.4: Value of DTFSVM ’s parameters used in the experiments

Method  Data set C y 0 Min_ obj
RBF Kernel Algorithm 9 C45
LibSVM  Iris-setosa 3.00 3.00 - -
DTSVM 2.00 1 0.10
LibSVM Iris-versicolor 1.00 3.00 -
DTFSVM 3 1 0.10 2
LibSVM  Iris-virginica 1.00  3.00 -
DTFSVM 3.00 1 0.15 2
LibSVM  Haberman's survival ~ 3.00 2.00 - -
DTFSVM 2.00  2.00 0.30 15
LibSVM  lonosphere 250 155 - -
DTFSVM 3.00 2.00 0.50 2
LibSVM Breast-cancer 1.00 1/n - -
DTFSVM 1.50 1/n 0.50 10
LibSVM Diabetes 1.00 1/n - -
DTFSVM 25 200 0.15 5
LibSVM Four-class 2.00 3.00 - -
DTFSVM 20.00 350 0.15 2
LibSVM  Waveform-0 1.00 1/n - -
DTFSVM 2.50 1/n 0.35 35
LibSVM  Waveform-1 1.00 1/n - -
DTFSVM 2.50 1/n 0.35 35
LibSVM  Waveform-2 1.00 1/n - -
DTFSVM 2.50 1/n 0.35 35
LibSVM ijjenn 3.00 1/n - -
DTSVM 5.00 1/n 0.10 30
LibSVM  Bank marketing 3.50 2.3 - -
DTSWVM 4.30 1/n 0.05 40
LibSVM  cod-rna 450 35 - -
DTFSVM 10.50 35 0.35 100
LibSVM  Rotated Cross 2.00 1/n - -
DTFSVM 3.00 1/n 0.15 20
LibSVM  Checkerboard100K 2.00  3.00 - -
DTFSVM 20.00 350 0.35
DTFSVM 2.00 1/n 0.15 25
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Table 5.6: Data sets for experiments with DTDRSSVM

Data set Size Dim Class1 Class 2 Feat. type
Iris-setosa 100 4 50 50 Numeric
Iris-versicolor 100 4 50 50 Numeric
Iris-virginica 100 4 50 50 Numeric
lonosphere 357 34 126 225 Numeric
diabetes 768 8 500 268 Numeric
svmguide3 1,243 22 296 947 Numeric
Waveform-0 3,308 40 1,653 1,655  Numeric
Waveform-1 3, 347 40 1,692 1,655  Numeric
Waveform-2 3, 347 40 1,692 1,653 Numeric
Mushroom 8,124 112 3,916 4,208 Numeric
ijenn' 35,000 22 3,415 31,585 Numeric
bank-full 45,211 16 39,922 5,289 Mixed
cod-rna 59,535 8 19,845 36,690 Numeric
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Better than a thousand hollow words, is one word
that brings peace
Siddharta Gautama

Conclusions

In this work, we developed novel data reduction methods for SVM classifiers. Our methods
are applied to data sets with the purpose of removing the objects that are not SV. It this way,
the size of the training sets is significantly decreased and the reduced set is used to train the
SVM.

We compared our methods against other state-of-the-art methods with the following
results: the training time of SVM is significantly improved; the classification accuracies are
similar to those obtained with the whole training set and the standard deviations of accuracy
remain low.

As a preliminary study to our methods, we explored the performance of two strategies
commonly used in other data reduction algorithms: Simple random selection and detection
of objects close to an opposite class. The former is the least costly and achieves good
classification accuracy if at least 10% of the size of the training set is used. A disadvantage of
this approach is that the standard deviation remains large. The second method is unsuitable
for large data sets, because it has O(n?) time and space complexities. Furthermore, this
approach obtains lower classification accuracy than random sampling. However, the standard

deviations of classification accuracy are low, in addition, the latter method can discover SVs
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regardless of the type of kernel (i.e, linear or Gaussian) used by the SVM. The objects that
present the closest distances to opposite class examples are usually also SVs. A problem the
method that computes all the distances between objects, is that some SV cannot be detected,
because their distances are greater than other points that are not SV, this occurs, specially,
in linearly inseparable cases.

Our methods achieve better classification accuracies than these two naive methods. This
is because we detect objects that characterize decision boundaries, and then we extract SV
candidates. The standard deviations of classification accuracy are considerably smaller than
those obtained with such naive methods. The training time of a SVM using our algorithms is
better than that required by algorithms such as SMO, RCH, SCH and LibSVM.

The first method that we present is called CCH-SVM. This approach begins by mapping
all examples into a grid. This makes that points located close to other ones are put in same
cell of the grid. The key element in CCH-SVM is the detection of vertices of a convex-concave
hull, which corresponds to the examples located on the boundaries of the data set. For the
linearly separable case, the SV are the closest pair of points of convex hulls; however, for
the general case this is not true. The reduction or scaling of a convex hull has two main
disadvantages: it is computationally costly and, in general, the accuracy obtained is not good.
Current methods that use reduced or scaled convex hulls work only with small data sets. The
points that define vertices of a convex-concave hull contain the vertices of a convex hull, and
most of these points are close to the edges of convex hull. In this way, our first method works
in both the linearly separable and the inseparable cases. We propose a method to apply our
CCH-SVM to more than two dimensions.

Unlike the naive method based on distances, CCH-SVM selects objects not only close
to their opposite class, but also the distribution of examples is sparser. A disadvantage of
CCH-SVM is that is unsuitable for both high dimensional data sets and small data sets. The
accuracy achieved by CCH-SVM is maintained slightly lower than the classical SVM trainers
that use the whole data set. The training time is not reduced with our CCH-SVM method in
these two cases.

The second method that we developed is named DTFSVM. This method discovers low
entropy regions to detect objects that describe the decision boundaries, i.e, SV candidates.
DTFSVM uses a decision tree to discover regions where most elements are of the same class,
and then it selects objects close to their opposite class regions using a linear discriminant.

Similar to the naive algorithm based on distances, DTFSVM works in input space, but it is
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applicable to SVMs with Gaussian kernel. Unlike the simple algorithm based on distances,
our method selects objects in a clever way as shown in the results of experiments. DTFSVM
does not use random selection as other methods that use a similar approach. This allows
to produce repeatable results, high classification accuracies and low standard deviations. A
minor variant of the DTFSVM is also proposed, which, instead of using a linear discriminant,
executes a random selection in the low entropy regions. This is considered as a directed
random sampling and not a simple random sampling. Although the training time obtained
with the variant of DTFSVM is better than that achieved with the original DTFSVM, the
classification accuracy is lower. DTFSVM and its variant are suitable for mediumsAq size

and large data sets with a number of features typically used in the classification task.

Future work

We are interested in extending our research to the following problems:

1. Data selection on large and skewed data sets. When the ratio of minority and majority
classes is very small, the SVM and other classifiers present a poor performance. In this
case, it is necessary to design new data reduction methods not only to reduce the size
of the training sets, but also to improve the accuracy of classification, sensitivity and

specificity.

2. Classification task with big data. Classic classifiers and also SVMs are unsuitable
to deal with sets that contain trillions of data. Classic classifiers and data reduction

methods need to be updated, and implemented in parallel and distributed environments.

3. SVMs for data streams. The data stream classification has been an active research
area in the last few years. There are algorithms such as VFDT, cVFDT and on demand
classification for these type of applications. However, current proposals that apply
SVMs are only able to deal with low-speed-rate data streams, and the accuracy that
is achieved not good enough. Data reduction methods include the use of time windows

or horizons.

4. SVM Classification with embedded devices. One interesting problem is to reduce the
complexity of the operations involved in the solution of the quadratic programming
problem, as well as reducing the power consumption, so that this type of classifier

can be used in low performance devices.
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