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Neural Observer as a Universal Software Sensor
Cover-page of the book

Below we will follows the theory presented in the book:

Figure 1: World Scieti�c, 2001.
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Neural Observer as a Universal Software Sensor
Plant structure

Consider the following dynamic system

ẋt = f (xt , t) + g (xt , t) ut + ξt , x0 is given,

yt = Cxt + ηt ,

9=; (1)

where

xt 2 Rn is the state vector at time t � 0,
ut 2 R r is a control action (measurable input) applied to the
system at time t � 0,
y 2 Rm is the output of the system at time t � 0,
ξ 2 Rn is an external perturbation acting to the system,
η 2 Rm is a noise in sensors measurements in the output,
f : Rn � R+ ! Rn, g : Rn � R+ ! Rn�r are given mappings,
C 2 Rm�n is a given output matrix.
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Neural Observer as a Universal Software Sensor
Main Assumptions (1)

yt and ut are only available at any time t � 0;
the matrix C 2 Rm�n is known;
f (xt , t) , g (xt , t) as well as ξ 2 Rn and η 2 Rm are unknown;
the external perturbations ξ and η are assumed to be bounded with
known upper bounds, i.e.,

kξtk � ξ+ < ∞, kηtk � η+ < ∞, (2)

and admit the existence of the solutions of ODE (1);
f (xt , t) and g (xt , t) are globally quasi-Lipschitz on xt and measurable
on t � 0, that is, there exist matrices A 2 Rn�n and B 2 Rn�r such that
for all x 2 Rn and all admissible u (xt , t)

kf (x , t)� Axk2 � f0 + f1 kxk2 ,

k(g (x , t)� B)k2 � g0 + g1 kxk2 < ∞,

9=; (3)
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Neural Observer as a Universal Software Sensor
Main Assumptions: quasi-Lipschitz functions

Figure 2: The quasi-Lipschitz function: the single dimensional case n = k = 1,
a > c1 > 0.
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Neural Observer as a Universal Software Sensor
Main Assumptions (2)

the control u (xt , t) is measurable and bounded, that is,

ku (x(t), t)k � k, (4)

for any control bounded as in (4) all trajectory of the systems remain
uniformly bounded, i.e.,

kxk2 � d0 + d1k2 (5)

De�nition
We will referred to this property as the BIBO-property (Bounded Input -
Bounded Output) or "heterogeneity".

Below we will assume that the matrices A 2 Rn�n , B 2 Rn�r as well as the
non-negative constants f0, f1, g0, g1 are known.
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Neural Observer as a Universal Software Sensor
Quasi-linear format of the model (1)

Under these assumptions the plant (1) can be represented in the quasi-linear
format as

ẋt = Axt + But + ξ̃t
yt = Cxt + ηt

xt 2 Rn, yt 2 Rm

9=; (6)

where the generalized uncertain term is

ξ̃t := [f (xt , t)� Axt ] + [g (xt , t)� B ] ut + ξt . (7)
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Neural Observer as a Universal Software Sensor
Quasi-linear format of the model (2)

Corollary

Notice that for this new variable ξ̃ (xt , t) the following property holds:ξ̃t
2 � 4 kf (x (t) , t)� Ax (t)k2 +

4
�
k2 k(g (x (t) , t)� B)k2 + kξ (t)k2

�
�

4
�
f0 + f1 kxk2 + k2g0 + k2g1 kxk2 + ξ2+

�
= c0 + c1 kxk2

(8)

with
c0 = 4

�
f0 + k2g0 + ξ2+

�
, c1 = 4

�
f1 + k2g1

�
.
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General requirements to a state estimator structure

De�nition

We say that a �state estimate� x̂t is generated by a global (full order) linear
di¤erential observer (or, a �lter) if it satis�es the following three conditions:

1) (ODE property): the function x̂t is the solution of the following ordinary
linear stochastic di¤erential equation

d
dt
x̂t = Gt x̂t + But + Ltyt , x̂0 is �xed (9)

where Gt 2 Rn�n , Lt 2 Rn�m are some deterministic matrices;
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De�nition

2) (The exact mapping property): the trajectories xt of the given system (6)
and x̂t (9) coincide for all t � 0, that is,

xt = x̂t ,
d
dt
xt =

d
dt
x̂t , (10)

if the initial states (9) coincide, i.e., xt=0 = x̂t=0, and when there are no
uncertainties and disturbances at all, that is, when for all

ξ̃ (xt , t) = 0, ηt = 0, C = Im�n for all t � 0; (11)

3) (The asymptotic consistency property): if the initial states of the original
model and the estimating model do not coincide, that is,
kxt=0 � x̂t=0k > 0, but still there are no uncertainties (11), then the
estimates x̂t should be asymptotically consistent:

∆xt := xt � x̂t , k∆xtk !
t!∞

0. (12)
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Gain matrices relation

Lemma
Model (9) satis�es the condition 2 in if and only Gt and Lt are related as

Gt = A� LtC for almost all t � 0. (13)

Proof. Since by the condition 2 ξ̃ (xt , t) = 0, ηt = 0, it follows

d
dt

∆x t= (A� LtC � G t ) xt�G t∆x t . (14)

a) Necessity. Putting ∆x t= 0 and
d
dt

∆x t= 0, we get (A� LtC � G t ) xt= 0
for any xt which implies the identity A� LtC � G t= 0 for all t � 0.
b) Su¢ ciency. Suppose that (13) holds. Then by (14) we have
d
dt

∆x t= �G t∆x t , which, in view of the condition ∆x t=0= 0 implies

∆xt = Φ�G (t, 0)∆xt=0 = 0, where ΦG (t, 0) is the fundamental matrix of
the last linear vector equation. Lemma is proven.
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Filter structure

Substitution (13) with constant parameters in (9) gives

d
dt
x̂t = Ax̂t + But + L [yt � Cx̂t ] , x̂0 is �xed (15)

which is referred to as the Luenberger�s �lter.
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Neural Observer (DNNO) as a Universal Software Sensor
Universal Neuro-Observer (software-sensor) structure

Consider the DNN-observer or DNN - software sensor having the following
structure

d
dt
x̂t = Ax̂t + But + L [yt � Cx̂t ]

+ W0,tϕ (x̂t ) + W1,tψ (x̂t ) ut

9>=>; (16)

where

x̂ 2 Rn, ϕ:Rn! Rkϕ , W02 Rn�kϕ , ψ:R r! Rkψ�r , W12 Rn�kψ , L 2 Rn�m

and the sigmoid vector ϕ (x) and matrix functions ψ (x) are supposed to be
bounded, ful�lling

kϕ (x)k� ϕ+, kψ (x)k= λ1/2
max (ψ (x)

| ψ (x))� ψ+ (17)
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Neural Observer as a Universal Software Sensor
Time variable parameters in any approximator is a very strong instrument

For nonlinear system

ẋt = f (xt , t) , xt=0 = x̊

any approximator of the right-hand side

f (xt , t) = Atσ (xt , t) , xt=0 = x̊

with
At = ẋtσ| (xt , t) [σ (xt , t) σ| (xt , t) + εI ]�1 , ε > 0

shows for a bounded dynamics the "nice" ε�approximating process

d
dt
x̂t = ẋtσ| (x̂t , t) [σ (x̂t , t) σ| (x̂t , t) + εI ]�1 σ (x̂t , t) , x̂t=0 = x̊ .
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Neural Observer as a Universal Software Sensor
Learning Law for weights adaptation

De�ne the Reinforcement Learning Law as

Ẇ0(t) = �
Λ�1
0

k0
(W0,t�W �

0) ϕ (x̂t ) ϕ| (x̂t )� α
2 (W0,t�W �

0)

Ẇ1(t) = �
Λ�1
1

k1
(W1,t�W �

1)ψ (x̂t ) utu
|
t ψ| (x̂t )� α

2 (W1,t�W �
1)

9>>>>=>>>>;
(18)

Here W �
0 and W

�
1 some matrices which will be de�ned below as a solution of the

corresponding optimization problem with a matrix constraint.

The analysis of the workability of such DNN is based on Attractive
Ellipsoid Method.
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