
Lecture 14: Home task problems
Plan of presentation

Nonholonomic Autonomous Vehicle (AV) models

Coordinate Systems

Kinematic constraints of the di¤erential-drive mobil AV

The Euler-Lagrange equation for nonholonomic systems

Problem formulation as ASG-DNN backstepping control

Another more simple problem
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Nonholonomic Euler-Lagrange models
Coordinate Systems

Two di¤erent coordinate systems (frames) need to be de�ned (see Fig.1).

Figure 1: AV description.
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Nonholonomic Euler-Lagrange models
Coordinate Systems

1 Inertial Coordinate System: This coordinate system is a global frame
which is �xed in the environment or plane in which the AV moves in.
Moreover, this frame is considered as the reference frame and is
denoted as fxI , yI g.

2 Relative (or proper) Coordinate System: This coordinate system is a
local frame attached to the considered AV, and thus, moving with it.
This frame is denoted as fxr , yrg. The origin of the relative frame is
de�ned to be the mid-point A on the axis between the wheels. The
center of mass C of the AV is assumed to be on the axis of symmetry,
at a distance d from the origin A.

As shown in Fig.1, the robot position and orientation in the Inertial Frame
can be de�ned as

qI := (xa, ya, θ)
| (1)
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Nonholonomic Euler-Lagrange models
Coordinate Systems

The important issue that needs to be explained at this stage is the
mapping between these two frames. The position of any point on the AV
can be de�ned in the inertial frame and the relative frame as follows:

ΘI :=
�
x I , y I , θI

�|
, Θr := (x r , y r , θr )| (2)

Then, the two coordinates are related by the following transformation:

ΘI = R (θ)Θr (3)

where R (θ) is the orthogonal (R| (θ) = R�1 (θ)) rotation matrix

R (θ) =

24 cos θ � sin θ 0
sin θ cos θ 0
0 0 1

35 (4)

This transformation is enable also the handling of motion between frames.
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Kinematic constraints of the di¤erential-drive mobil AV

The motion of a di¤erential-drive mobile AV is characterized by two non-holonomic constraint equations, which are obtained by

two main assumptions:

No lateral slip motion: This constraint simply means that the mobil AV can move only in a curved

motion (forward and backward) but not sideward. In the relative frame, this condition means that the velocity of the

center-point A is zero along the lateral axis, namely, for any time t � 0

y r = 0, ẏ r = 0 (5)

which can be expressed as

�ẋa sin θ + ẏa cos θ = 0 (6)

Pure rolling constrain: The pure rolling constraint represents the fact that each wheel maintains a one
contact point p with the ground. There is no slipping of the wheel in its longitudinal axis (x r ) and no skidding in its
orthogonal axis (y r ). The velocities of the contact points in the relative frame are related to the right (r ) and left (l )
wheel velocities by:

vp = R ϕ̇r , vl = R ϕ̇l (7)
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Kinematic constraints of the di¤erential-drive mobil AV

In the inertial frame, these velocities can be calculated as a function of the
velocities of the AV center-point A:

ẋpR = ẋa + Lθ cos θ
ẏpR = ẏa + Lθ sin θ

�
(8)

and
ẋpL = ẋa + Lθ̇ cos θ
ẏpL = ẏa + Lθ̇ sin θ

�
(9)
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Kinematic constraints of the di¤erential-drive mobil AV

Using the rotation matrix R (θ) (4) and (7), the rolling constraint equations (6)
are formulated as follows:

ẋpR cos θ + ẏpR sin θ = R ϕ̇R ,

ẋpL cos θ + ẏpL sin θ = R ϕ̇L .

9=; (10)

Applying the contact points velocities equation (8) - (9), and , the three
constraint equations (6) and (10) can be rewritten in the following matrix form:

Λ (q) q̇ = 0 (11)

where q = (xa, ya, θ, ϕR , ϕL)
| is the generalized position vector and Λ (q) is

Λ (q) =

24 � sin θ cos θ 0 0 0
cos θ sin θ L �R 0
cos θ sin θ �L 0 �R

35 . (12)
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The Hamilton�s principle

To derive equations of motion for nonholonomic systems (with constrains depending on the derivatives q̇ of the generalized

coordinate) we will apply the, so-called, Lagrangian approach using the Hamilton�s principle and the Euler-Lagrange equations,

respectively. In case when we have no any constrains for dynamic trajectories, according to the Hamiltonian principle, the

equations of motion for the considered system provides the extremal value for the Hamiltonian action, that is,

bZ
t=a

L (q, q̇, t) dt ! extr
q,q̇2Rn

(13)

where L = T �Π is the Lagrange function with the kineticT and potential Π energies, respectively. This

corresponds the condition

δ

bZ
t=a

L (q, q̇, t) dt =

bZ
t=a

�
∂|L
∂q δq + ∂|L

∂q̇ δq̇
�
dt = 0 (14)

Here we choose virtual (under �xed t ) variations δqt of the curve qt (t 2 [a, b]) in such a way that
δqt=a = δqt=b = 0.
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The Hamilton�s principle

Integrating by parts with �xed endpoints we get

bZ
t=a

�
∂|L
∂q

� d
dt

∂|L
∂q̇

�
δqdt = 0

which gives us, from the arbitrariness of δq, the Euler-Lagrange equation
(in the vector form)

∂L
∂q
� d
dt

∂L
∂q̇
= 0 (15)
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The Hamilton�s principle

Unfortunately, for the nonholonomic systems when there are constrains for
the admissible trajectories we can conclude (15) since the admissible
virtual variations δq are not arbitrary. They should satisfy (11) for all
t � 0, or equivalently,

Λ (q) δq = 0 (16)

To apply correctly in our case the Hamiltonian principle we need to take
into account the relation (11) considering the following extremal problem:

bZ
t=a

L (q, q̇, t) dt ! extr
q,q̇2Rn

under constrains (16)

(17)
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The Hamilton�s principle

Using the Lagrange multipliers approach we may conclude that the
variation of the Hamiltonian action (13) around the admissible extremal
curve q, satisfying the constrains (16), corresponds to the condition (the
extended version of D�Alembert�s principle)

δ

bZ
t=a

L (q, q̇, t) dt +

bZ
t=a

λ|Λ (q) δqdt = 0 (18)

where λ is the vector of Lagrange multipliers depending on t and the
virtual variations now are arbitrary. Following the analogous procedure as
before we conclude that (18) implies

bZ
t=a

�
∂|L
∂q

δq +
∂|L
∂q̇

δq̇ + λ|Λ (q) δq
�
dt = 0
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The Hamilton�s principle

And again the integration by parts of the second term leads to

bZ
t=a

�
∂|L
∂q

� d
dt

�
∂|L
∂q̇

�
+ λ|Λ (q)

�
δqdt = 0

which, by the arbitrariness of δq, is possible if and only if

∂L
∂q
� d
dt

∂L
∂q̇
+Λ| (q) λ = 0

or equivalently,
d
dt

∂L
∂q̇
� ∂L

∂q
= Λ| (q) λ (19)
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The Hamilton�s principle
The Euler-Lagrange equation for nonholonomic systems

In the presence of external nonpotential forces Qnonpot the Euler-Lagrange
equation for nonholonomic systems leads to

d
dt

∂L
∂q̇
� ∂L

∂q
= Qnonpot +Λ| (q) λ (20)
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Kinetic energy calculation fo AV

The total kinetic energy T for the considered AV contains three parts:
- the kinetic energy of the AV platform

Tc =
1
2
mcv2c +

1
2
Ic θ̇

2

- the kinetic energy of the right wheel

TwR =
1
2
mw v2wR +

1
2
Im θ̇

2
+
1
2
Iw ϕ̇2R

- the kinetic energy of the left wheel

TwL =
1
2
mw v2wL +

1
2
Im θ̇

2
+
1
2
Iw ϕ̇2L

where mc is the mass of the AV without the driving wheels and actuators (DC
motors), mw is the mass of each driving wheel (with actuator), Ic is the moment
of inertia of the AV with respect to the vertical axis passing through the center of
mass, Iw is the moment of inertia of each driving wheel with a motor with respect
to the wheel axis, and Im is the moment of inertia of each driving wheel with a
motor with repect to the wheel diameter.
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Kinetic energy calculation fo AV

Taking into account that all velocities may be expressed as a function of the
generalized coordinates using the general velocity equation in the inertial frame,
namely, as v2i = ẋ

2
i + ẏ

2
i , and in view of the relations

xc = xa + d cos θ, yc = ya + d sin θ
xwR = xa + L sin θ, ywR = ya + L cos θ
xwL = xa � L sin θ, ywL = ya + L cos θ

we may conclude that

T = Tc + TwR + TwL =
1
2
m
�
ẋ2a + ẏ

2
a

�
�

mcd θ̇ (ẏa cos θ � ẋa sin θ) +
1
2
Iw
�

ϕ̇2R + ϕ̇2L
�
+
1
2
I θ̇
2

where m = mc + 2mw is the total mass of AV and

I = Ic +mcd2 + 2mwL2 + 2Im

is the total equivalent of the moment of inertia.
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The Euler-Lagrange model in open format

Since during 2D movements Π = const, the dynamic model of the
nonholonomic Euler-Lagrange system (20) with q = (xa, ya, θ, ϕR , ϕL)

|

becomes
d
dt

∂T
∂q̇
� ∂T

∂q
= Qnonpot +Λ| (q) λ (21)

or, in the open format,

M(q)q̈ + V (q, q̇)q̇ = Qnonpot +ΛT (q)λ (22)
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The Euler-Lagrange model in open format

Here:

M(q)=

266664
m 0 -md sin θ 0 0
0 m -md cos θ 0 0

-md sin θ -md cos θ I 0 0
0 0 0 Iw 0
0 0 0 0 Iw

377775 , B=
266664
1 0
0 1
0 0
0 0
0 0

377775

Qnonpot = Bτ +F (q, q̇) , V (q, q̇) =

266664
0 0 �md θ̇ cos θ 0 0
0 0 �md θ̇ sin θ 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

377775
F (q, q̇) is the centripetal and Coriolis forces, τ is the control action vector
(torques of the right and left motors).
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A useful kinematic relation

Consider the kinematic relation

q̇ = S ϕ̇, ϕ :=
�

ϕR
ϕL

�
(23)

where

S (q) =
1
2

266664
R cos θ R cos θ
R sin θ R sin θ
R
L �R

L
2 0
0 2

377775 (24)
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Modi�ed Euler-Lagrange equation

It can be veri�ed that the matrix S (q) (24) acts in the null space of the
constraint matrix ΛT (q), that is,

Λ(q)S (q) = 0, S| (q)Λ|(q) = 0 (25)

and therefore, di¤erentiation of (23), leads to

q̈ = Ṡ (q) ϕ̇+ S (q) ϕ̈ (26)

Substitution (26) into (22) gives

M(q)
�
Ṡ (q) ϕ̇+ S (q) ϕ̈

�
+ V (q, q̇)S (q) ϕ̇

= Bτ +F (q, q̇) +ΛT (q)λ
(27)
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Modi�ed Euler-Lagrange equation

Multiplying both sides of (27) from left by S| (q) and using the property
(25), we �nally get

D(q)ϕ̈+ V̄ (q, q̇)ϕ̇ = B̄τ + F̄ (q, q̇) (28)

where

D(q) = S| (q)M(q)S (q) ,

V̄ (q, q̇) = S| (q)
�
M(q)Ṡ (q) + V (q, q̇)S (q)

�
,

B̄(q) = S| (q)B =
�
1 0
0 1

�
,

F̄ (q, q̇)=S| (q)F (q, q̇) .

9>>>>>>>>>>=>>>>>>>>>>;
(29)
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Recuperation of dynamics in initial variables

Using (26) and (28)

q̈ = Ṡ (q) ϕ̇+ S (q) ϕ̈,

ϕ̈ = �D�1(q)V̄ (q, q̇)ϕ̇+D�1(q)τ +D�1(q)F̄ (q, q̇),
we may get

q̈ = G (q, q̇, t +D�1(q)τ + ξ(q, q̇), (30)

where
G (q, q̇, t) :=

�
Ṡ (q)� S (q)D�1(q)V̄ (q, q̇)

�
ϕ̇

ξ(q, q̇) := D�1(q)S| (q)F (q, q̇)
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Problem formulation

Problem
Using dynamics (28), (30) and backstepping approach to design a robust
feedback τ = τ (q, q̇, t) which provides the arriving of the coordinates

(xa, ya)
| =

�
1 0 0 0 0
0 1 0 0 0

�
| {z }

C0

(xa, ya, θ, ϕR , ϕL)
| = C0q

to a given point (x�a , y
�
a , )

| avoiding obstacle of ellipsoidal type (see
reference in the beginning of the lecture).
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Another more simple problem

Problem
To stabilize the inverted pendulum in vertical position with horizontal
perturbations using DNN controller and DC-motor as an actuator.

Figure 2: Inverted pendulum.
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