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Abstract: Type-2 fuzzy systems have a great adoption in different branches of engineering,
due to the fact that this type of fuzzy systems are very well suited to tasks related to nonlinear
systems. Data driven models like neural networks and fuzzy systems have some disadvantages,
such as the high and uncertain dimensions and complex learning process. In this paper, we show
the advantages of type-2 fuzzy systems over type-1 fuzzy systems in modeling nonlinear systems.
We combine Type-2 Takagi-Sugeno fuzzy model with the popular deep learning model, LSTM
(long-short term memory), to overcome the disadvantages fuzzy model and neural network
model. We propose a fast and stable learning algorithm for this model. Comparisons with others
similar black-box and grey-box models are made, in order to show the advantages of the type-2
fuzzy LSTM neural networks.
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1. INTRODUCTION

Fuzzy system (FS) and fuzzy neural networks (FNN) have
had a really extensive development, since their structure
is interpreted as a set of ”IF-THEN” rules that are easy
to understand. Their theory has arrived at the distinction
of two main types of FSs, type-1 FSs (T1FSs) and type-
2 FSs (T2FSs). T2FSs are considered extensions of the
T1FSs, because the membership value of a type-2 fuzzy
set is a type-1 fuzzy number. The membership functions
(MFs) of T1FSs are well determined, while the MFs of
T2FSs are fuzzy; there are infinitely type-1 MFs (T1MFs)
contained in the uncertainty footprint characteristic of
type-2 MFs (T2MFs). T2FSs have proven to be better at
handling data with uncertainties and noise, as evidenced
by the work discussed below. The structure of a FNN,
which is known as a self-evolving interval type-2 fuzzy
neural network (ST2FNN), is shown in Juang (2008). The
ST2FNN is constructed as a Takagi-Sugeno-Kang (TSK)
FS with an adaptive structure, where the part of the
antecedents in the fuzzy rules is defined with T2MFs.
In addition, the ST2FNN was used in the modeling of
nonlinear systems, adaptive noise cancelation and predic-
tion of chaotic signals, obtaining good results. A study
presented in Aliev (2011) discusses the concept of type-2
fuzzy inference system (FIS) using type-2 fuzzy sets and
FNN based refinement. A category of type-2 FNNs was
developed based on type-2 fuzzy set constructions with
these fuzzy sets forming a collection of IF-THEN rules.
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The application of type-2 fuzzy neural networks (T2FNNs)
is reviewed in Tavoosi (2021). Different T2FNNs that have
been used for system identification are discussed, their
disadvantages and advantages are described, as well as
their effectiveness in different applications. The previous
works show the advantages of using T2FSs over T1FSs,
as well as the value of the former in the estimation of
nonlinear models. Motivated by the above, in this paper
we modified the FNN shown in Yu (2020) and Vega
(2020) to boost its performance. The FNN is based on
a T1FS for the estimation of nonlinear systems, obtaining
favorable results with it, so adapting its structure to a
T2FS will improve its performance. In the Fig. 1, we
show a Gaussian T2MF with uncertain standard deviation,
which is upper bounded by a T1MF (UMF) and lower
bounded by another T1MF (LMF) and the gray area is the
footprint of uncertainty (FOU). The T2FSs cope with the
uncertainties of a system from the fuzzy rules that define
it. Unlike the T1MFs present in the T1FSs, the T2MFs of
the T2FSs are themselves fuzzy because they are defined
in their respective FOU. There are an infinite T1MFs in a
FOU, which is why T2FSs have the ability to work with
data that have uncertainties and noise in a more efficient
way.

We combine the FNN structure known as a type-2 Takagi-
Sugeno fuzzy neural network with long-short memory
term cells, and propose a new model Type-2 fuzzy LSTM
(T2LSTM) and a training algorithm for it. Then, we
compare it with the type-1 Takagi-Sugeno fuzzy neural
network with long-short memory term cells (T1LSTM).
T1LSTM and T2LSTM were tested in the identification
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and control of nonlinear systems, in order to observe the
advantages of the T2FS implementation.

2. T2LSTM STRUCTURE

The T2LSTM is obtained from the NARMA model of a
nonlinear system:

y (k) = φ [Ur (k)] (1)

Ur (k) = [(k − 1) , · · · , y (k − ny) , u (k) , · · ·
· · · , u (k − nu)]

T
= [ur1 · · ·urm ]

T

where y(k) is the variable of interest of the system under
study (output signal), φ (·) is an unknown nonlinear dif-
ference equation, Ur (k) is the state vector with u (k) and
y (k) with the former as the input signal for the system;
ny indicates the number of the delayed output signal, nu
indicates the number of the delayed input signal, and m
indicates the number of elements urm in Ur (k).

To model (1), we used fuzzy IF-THEN rules. For the p-th
rule it has:

Rp : IF ur1 (k) IS A1p & ur2 (k) IS A2p & · · ·
· · · & urm (k) IS Ajp, THEN hp (k) = ϱp (k)

(2)

where hp (k) is an estimation to the function ϱp(k) that
represents the consequent part of each fuzzy rule. The sets
Ajp, with j = 1 . . . κ, are the fuzzy sets for the fuzzification
(using κ fuzzy sets) of each urm in (2).

The T2MFs associated with each Ajp are of the form
shown in Fig. 1 and are described as follows, first the UMF
associate to each Ajp:

µAjp,urm
(k) = exp

(
− (urm (k)− ςjp)

2

2νjp

)
(3)

and the LMF:

µ
Ajp,urm

(k) = exp

(
− (urm (k)− ςjp)

2

2νjp

)
(4)

in these Gaussian functions, the center is ςjp ∈ R and the
widths are νjp, νjp ∈ R+. For the estimation of (1), the
contribution of each input element to the premise part of
a fuzzy rule in (2) is obtained by the T-norm:

zp (k) =

κ∏
j=1

µAjp,urm
(k)

zp (k) =

κ∏
j=1

µ
Ajp,urm

(k)

assuming j = m.

The vectorial representation of the value of each element
of (3) and (4) in each fuzzy set is:
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Fig. 1. Type-2 Gaussian MF, bounded by UMF and LMF,
with uncertain standard deviation.

ζj = exp

[
(Ur (k)− χj)

2 ⊗
(
−1

2
Υj

)]
(5)

ζ
j
= exp

[
(Ur (k)− χj)

2 ⊗
(
−1

2
Υj

)]
(6)

with χj ,ΥjΥj ∈ Rm as the center and width vectors for

ζj , ζj ∈ Rm, respectively.

The vectors ζj , ζj represent the value of each element of

urm(k) in a fuzzy set Aj , and ⊗ is the operator for the
element to element product in vectors. This representation
will be useful for the adjustment of the parameters of the
FNN.

The estimation of (1) is obtained by the defuzzification of
the FS (2) with p rules:

ŷ (k) =

∑p
n=1 znhn(k)∑p

n=1 zn
+ (1− β)

∑p
n=1 znhn(k)∑p

n=1 zn

=

p∑
n=1

ẑnhn (k) + (1− β)

p∑
n=1

ẑnhn (k) (7)

where:

ẑp = zp/ (z1 + z2 + · · ·+ zn)

ẑp = zp/ (z1 + z2 + · · ·+ zn)

In (7), the premise part can be represented in a vectorial
way as ZF , ZF ∈ Rp, where all the elements of this new
vector are the organized multiplications as was explained
in (3) and (4). Also, each element of ZF and ZF is
normalized. Acording with the theory of T2FSs, the design
parameter, β, weights the sharing of the lower and the
upper firing levels of each fired rule, this parameter can be
a constant and in this paper we take β = 0.5.

For multiple estimations, the elements of ZF and ZF can
be organized in such a way that the premise parts repeats
for every estimation, hence the consequent parts are the
only ones that are different for several estimation in a same
system.

The hn(k) elements in (7) are calculate by LSTM cells.
The cells that we used in the T2LSTM have several parts,
which are describe as follows:

F (k) = σ
(
W fUr (k) + V fH (k − 1)

)
(8)

I (k) = σ
(
W iUr (k) + V iH (k − 1)

)
(9)

S (k) = ψ (W sUr (k) + V sH (k − 1)) (10)

C (k) = F (k)⊗ C (k − 1) + I (k)⊗ S (k) (11)

O (k) = σ (W oUr (k) + V oH (k − 1)) (12)

H (k) = O (k)⊗ ψ (C (k)) (13)

where F (k), I (k), S (k), C (k), O (k) and H (k) ∈ Rp are
the fitness of the internal state, the fitness of the internal
input, the internal input, the internal state, the fitness of
the output, and he output of the cells, respectively. The
synaptic weights are: W f , W i, W s and W o ∈ Rp×m; V f ,
V i, V s and V o ∈ Rp×p as diagonal matrices or V f , V i,
V s and V o ∈ Rp as vectors, according to the need. The
functions σ(·) and ψ(·) are the sigmoid and hyperbolic
tangent functions, respectively, Ur (k) ∈ Rm is the input
in (1).

From (7), the output of the FS is

ŷ (k) =
[
ZF + (1− β)ZF

]
H (k) (14)
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where H(k) = [h1 (k) · · ·hp (k)]T corresponds to the con-

sequent parts and ZF , ZF ∈ Rn are the elements of the
premise parts of the rules described by (2).

The cells, as well as the number of rules, are defined
as p = κm in the case of one estimation; for several
estimations it has p = l(κm) where l is the number of
estimations, thus ŷ ∈ Rl, as was described for (7). The
complete structure of the T2LSTM is contained in (5)-
(14).

By applying the function approximation theories of FSs,
(1) can be represented as:

y (k) =
[
ZF (W ∗) + · · ·

· · ·+ (1− β)ZF (W ∗)]H (W ∗) + µ (k) (15)

where W ∗ corresponds to the unknown weights which can
minimize the unmodeled dynamic µ (k).

We assume that (1) is bounded-input and bounded-output
(BIBO) stable, i.e., y(k) and Ur(k) in (1) are bounded. By
the bound of the membership functions (3) and (4), µ (k)
in (15) is bounded.

Remark 1. It can be noted that the main difference be-
tween the T2LSTM and the T1LSTM lies in (14), since
the latter equation is defined for a T1LSTM as follows:

ŷ (k) = ZFH (k)

for the T1FS, the premise part of the fuzzy rules, ZF ,
is simpler than in the T2FS case. This largely due to
the use of T2MFs instead of T1MFs, which as explained
above, offers higher robustness. But on the other hand, it
increases the computational complexity as shown later in
the paper.

3. COMPARISONS

We employed two exercises to compare the new T2LSTM
with a similar T1LSTM, taking into account the remark 1.
We talk about the performance of the T2FS, the exercises
exhibit the advantages of the T2FS over the T1FS. Both
exercises were handled as applications in real time under
the same conditions for the algorithms.

The first exercise consist on a model generation for a
nonlinear system, which is defined as:

y(k + 1) = 0.72y(k) + 0.025y(k − 1)u(k − 1)+

+ 0.01u2(k − 2) + 0.2u(k − 3) (16)

u(k) =



sin

(
πk

25

)
, k ≤ 250

1, 250 < k ≤ 500
−1, 500 < k ≤ 750

0.3 sin

(
πk

25

)
+ 0.1 sin

(
πk

32

)
+

+0.6 sin

(
πk

10

)
, 750 < k

with y (0) = 0, u (0) = 0, and a sampling time of T = 1s.

So, (16) was solved for 1, 200s and the system was sampled,
creating the vector y(k) with k = 1, . . . , 1, 201. We took
the values of y(k) to define Ur(k) = [y(k − 4), y(−8)]T ,
which was used to make the ŷ(k) estimate. We employed
the first 601 iterations to train the FNNs, meanwhile the
rest data were used for testing the algorithms.
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Fig. 2. Nonlinear system identification with tne FNNs:
(a) T1TSFNNLSTMC, (b) T2TSFNNLSTMC, (c)
Performance comparison.

We set p = 9 fuzzy rules for the FNNs (m = 2, κ = 3,
l = 1). Here, the modeling error E (k) at the end of
each phase is defined as in (??) and it represents the
performance of the algorithms, a low value indicates a
better performance. We used (??) for the training of the
FNNs because is the error that we want to minimize.

The comparison results are shown in the Table 1 and the
Fig.2, the latter has three parts: (a) shows the system
output and the output of the T1LSTM, (b) shows the
system output and the output of the T2LSTM, and (c)
shows a performance comparison between the T1LSTM
and the T2LSTM.

It can be seen that both FNNs have similar behavior,
however, the T2LSTM learned the system dynamics faster
compared to the T1LSTM, which is why the former has a
smaller modeling error or better performance during the
whole process.

Table 1. Performance of the FNNs during the
identification (×10−2)

System Training Testing

T1TSFNNLSTMC 4.80 3.78
T2TSFNNLSTMC 1.19 1.62

4. CONCLUSIONS

In this paper, we use the advantages of type-2 fuzzy
system and LSTM neural networks to design a novel model
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for nonlinear system modeling. The main advantage is
this model can reduce the modeling error compared with
the other fuzzy neural networks. However, the cost of
the computational complexity of the algorithm is more
than the others. This disadvantage can be reduced by
current computational technology, which allows the easy
application of this model.

REFERENCES

P. Singh, A brief review of modeling approaches based
on fuzzy time series, International Journal of Machine
Learning and Cybernetics, vol. 8, no. 2, pp. 397-420.

J. Qiu, H. Gao, and S. X. Ding, Recent Advances on Fuzzy-
Model-Based Nonlinear Networked Control Systems: A
Survey, IEEE Transactions on Industrial Electronics,
vol. 63, no. 2, pp. 1207-1217, Feb. 2016.

Z. Pezeshki and S. M. Mazinani, Comparison of artificial
neural networks, fuzzy logic and neuro fuzzy for pre-
dicting optimization of building thermal consumption:
a survey, Artificial Intelligence Review, vol. 52, no. 1,
pp. 495-525

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empir-
ical evaluation of gated recurrent neural networks on
sequence modeling , arXiv preprint arXiv:1412.3555.

H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S.
Valaee, Recent advances in recurrent neural networks ,
arXiv preprint arXiv:1801.01078, 2017.

S. Hochreiter and J. Schmidhuber, Long short-term mem-
ory , Neural computation, vol. 9, no. 8, pp. 1735-1780,
1997.

O. Ogunmolu, X. Gu, S. Jiang, and N. Gans, Nonlinear
systems identification using deep dynamic neural net-
works , arXiv preprint arXiv:1610.01439, 2016.

Y. Wang, A new concept using lstm neural networks
for dynamic system identification , in 2017 American
Control Conference (ACC). IEEE, 2017, pp. 5324 -5329.

F. Nicola, Y. Fujimoto, and R. Oboe, A lstm neural
network applied to mobile robots path planning , in
2018 IEEE 16th International Conference on Industrial
Informatics (INDIN). IEEE, 2018, pp.349 -354.

Y. Liu, Y. Zhou, and X. Li, Attitude estimation of un-
manned aerial vehicle based on lstm neural network , in
2018 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2018, pp. 1-6.

Chia-Feng Juang and Yu-Wei Tsao, A Self-Evolving Inter-
val Type-2 Fuzzy Neural Network With Online Struc-
ture and Parameter Learning, EEE Transactions on
Fuzzy Systems, vol. 16, no. 6, pp. 1411-1424, Dec. 2008.

R. A. Aliev et al., Type-2 fuzzy neural networks with
fuzzy clustering and differential evolution optimization,
nformation Sciences, vol. 181, no. 9, pp. 1591-1608, May
2011.

J.-Y. Chang, Y.-Y. Lin, M.-F. Han, and C.-T. Lin,
A functional-link based interval type-2 compensatory
fuzzy neural network for nonlinear system modeling,
2011 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2011), Jun. 2011.

Yang-Yin Lin, Jyh-Yeong Chang, N. R. Pal, and Chin-
Teng Lin, A Mutually Recurrent Interval Type-2 Neural
Fuzzy System (MRIT2NFS) With Self-Evolving Struc-
ture and Parameters, IEEE Transactions on Fuzzy Sys-
tems, vol. 21, no. 3, pp. 492-509, Jun. 2013.

E. Kayacan, E. Kayacan, and M. Ahmadieh Khanesar,
Identification of Nonlinear Dynamic Systems Using
Type-2 Fuzzy Neural Networks: A Novel Learning Al-
gorithm and a Comparative Study, IEEE Transactions
on Industrial Electronics, vol. 62, no. 3, pp. 1716-1724,
Mar. 2015.

H.-G. Han, Z.-Y. Chen, H.-X. Liu, and J.-F. Qiao, A
self-organizing interval Type-2 fuzzy-neural-network for
modeling nonlinear systems, Neurocomputing, vol. 290,
pp. 196-207, May 2018.

W. Yuan and L. Chao, Online Evolving Interval Type-2
Intuitionistic Fuzzy LSTM-Neural Networks for Regres-
sion Problems, IEEE Access, vol. 7, pp. 35544-35555,
2019.

M. A. Cunha Ferreira, R. Tanscheit, and M. Vellasco,
Automatic Generation of a Type-2 Fuzzy System for
Time Series Forecast based on Genetic Programming,
Proceedings of the 2019 Conference of the International
Fuzzy Systems Association and the European Society
for Fuzzy Logic and Technology (EUSFLAT 2019), 2019.

N. F. Rahim, M. Othman, R. Sokkalingam, and E. Ab-
dul Kadir, Type 2 Fuzzy Inference-Based Time Series
Model, Symmetry, vol. 11, no. 11, p. 1340, Oct. 2019.

M. Bilgili, A. Yildirim, A. Ozbek, K. Celebi, and F. Ek-
inci, Long short-term memory (LSTM) neural network
and adaptive neuro-fuzzy inference system (ANFIS)
approach in modeling renewable electricity generation
forecasting, International Journal of Green Energy, vol.
18, no. 6, pp. 578-594, Dec. 2020.

J. Tavoosi, A. A. Suratgar, M. B. Menhaj, A. Mosavi,
A. Mohammadzadeh, and E. Ranjbar, Modeling Re-
newable Energy Systems by a Self-Evolving Nonlinear
Consequent Part Recurrent Type-2 Fuzzy System for
Power Prediction, Sustainability, vol. 13, no. 6, p. 3301,
Mar. 2021.

A. Safari, R. Hosseini, and M. Mazinani, A novel deep in-
terval type-2 fuzzy LSTM (DIT2FLSTM) model applied
to COVID-19 pandemic time-series prediction, Journal
of Biomedical Informatics, vol. 123, p. 103920, Nov.
2021.

J. Tavoosi, A. Mohammadzadeh, and K. Jermsittiparsert,
A review on type-2 fuzzy neural networks for system
identification, Soft Computing, vol. 25, no. 10, pp. 7197-
7212, Mar. 2021.

W. Yu and F. Vega, Nonlinear system modeling using the
takagi-sugeno fuzzy model and long-short term memory
cells, Journal of Intelligent and Fuzzy Systems, vol. 39,
no. 3, pp. 4547-4556, Oct. 2020.

F.Vega, W.Yu, Fuzzy Modeling Using LSTM Cells for
Nonlinear Systems, IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, July 19-
24, 2020

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

6871


