
Chapter 4
Stable Adaptive Compensation with Fuzzy
Cerebellar Model Articulation Controller for
Overhead Cranes

Wen Yu and Xiaoou Li

Abstract This chapter proposes a novel control strategy for overhead cranes. The
controller includes both position regulation and anti-swing control. Since the crane
model is not exactly known, fuzzy cerebellar model articulation controller (CMAC)
is used to compensate friction, and gravity, as well as the coupling between position
and anti-swing control. Using a Lyapunov method and an input-to-state stability
technique, the controller is proven to be robustly stable with bounded uncertainties.
Real-time experiments are presented comparing this new stable control strategy with
regular crane controllers.

4.1 Introduction

Although cranes are very important systems for handling heavy goods, automatic
cranes are comparatively rare in industrial practice [5] [28], because of high invest-
ment costs. The need for faster cargo handling requires control of the crane motion
so that its dynamic performance is optimized. Specifically, the control of overhead
crane systems aims to achieve both position regulation and anti-swing control [11].
Several authors have looked at this including [4], time-optimal control was consid-
ered using boundary conditions, an idea which was further developed in [3] and [29].
Unfortunately, to increase robustness, some time optimization requirements, like
zero angular velocity at the target point [23], have to be given up. Gain scheduling
has been proposed as a practical method [12] to increase tracking accuracy, while
observer-based feedback control was presented in [28].
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Many attempts, such as planar operation [12] and assuming the absence of fric-
tion [23], have been made to introduce simplified models for application of model-
based control [28]. Thus, a self-tuning controller with a multilayer perceptron model
for an overhead crane system was proposed [21], while in [10], the controller con-
sists of a combined position servo control and a fuzzy-logic anti-swing controller.

Classical proportional and derivative (PD) control has the advantage of not re-
quiring an overhead crane model but because of friction, gravitational forces and
the other uncertainties, it cannot guarantee a zero steady-state error. While a propor-
tional integral derivative (PID) control can remove this error, it lacks global asymp-
totic stability [17]. Several efforts have therefore been made to improve the perfor-
mance of PD controllers. Global asymptotically stable PD control was realized by
pulsing gravity compensation in [31] while in [18], a PD controller for a vertical
crane-winch system was developed, which only requires the measurement of angles
and their derivatives rather than a cable angle measurement. In [14], a passivity-
based controller was combined with a PD control law. Here, asymptotic regulation
of the gantry and payload position was proven, but unfortunately both controllers
again require a crane model to compensate for the uncertainties. There is one weak-
ness in applying PD control to this application: due to the existence of friction and
gravitational forces, the steady-state error is not guaranteed to be zero [16].

Since the swing of the payload depends on the acceleration of the trolley, mini-
mizing both the operation time and the payload swing produces partially conflicting
requirements. The anti-swing control problem involves reducing the swing of the
payload while moving it to the desired position as fast as possible [2]. One partic-
ular feedforward approach is input shaping [30], which is an especially practical
and effective method of reducing vibrations in flexible systems. In [22] the anti-
swing motion-planning problem is solved using the kinematic model in [20]. Here,
anti-swing control for a three-dimensional (3D) overhead crane is proposed, which
addresses the suppression of load swing. Nonlinear anti-swing control based on the
singular perturbation method is presented in [35]. Unfortunately, all of these anti-
swing controllers are model-based. In this paper, a PID law is used for anti-swing
control which, being model-free, will affect the position control.

Therefore, there are three uncertain factors influencing the PD control for the
overhead crane: friction, gravity, and errors coming from the PID anti-swing con-
trollers. A model-free compensator is needed to reduce steady-state error. Two pop-
ular models can be used: neural networks and fuzzy systems. While neural networks
are black-box models, which use input/output data to train their weights, fuzzy sys-
tems are based on fuzzy rules, which are constructed from prior knowledge [9].
Sometimes, fuzzy systems are regarded as gray-box models.

CMAC proposed by Albus [1] is an auto-associative memory feedforward neu-
ral network, it is a simplified mode of cerebellar based on the neurophysiological
theory. A very important property of CMAC is that it has better convergence speed
than feedforward neural networks. Many practical applications have been presented
in recent literature [7], [8].

Since the data in CMAC is quantized, linguistic information cannot be dealt with.
FCMAC uses fuzzy sets (fuzzy labels) as input clusters instead of crisp sets [8].
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Fig. 4.1 Overhead crane

Compared with the normal CMAC, FCMAC can not only model linguistic variables
based on fuzzy rules, but also is simple and highly intuitive [7]. Many ideas were
realized on FCMAC extension and application. Bayesian Ying–Yang learning was
introduced to determine the optimal FCMAC [24]. The Yager inference scheme was
subsequently mapped onto FCMAC by [25]. In [26], a credit assignment idea was
used to provide fast learning for FCMAC. Adaptation mechanisms were proposed
for FCMAC learning in [34].

In this chapter, a FCMAC is used to estimate the above uncertainties. The re-
quired on-line learning rule is obtained from the tracking error analysis and there is
no requirement for off-line learning. The overall closed-loop system with the FC-
MAC compensator is shown to be stable. Finally, results from experimental tests
carried out to validate the controller are presented.

4.2 Preliminaries

The overhead crane system described schematically in Figure 4.1(a) has the system
structure shown in Figure 4.1(b). Here α is the payload angle with respect to the
vertical and β is the payload projection angle along the X-coordinate axis. The
dynamics of the overhead crane are given by [32]:

M (x) ẍ +C (x, ẋ) ẋ + G(x)+ F = τ (4.1)

where x = [xw,yw,α,β ,R]T , τ = [Fx,Fy,0,0,FR]T , Fx, Fy and FR represent the control
forces acting on the cart and rail and along the lift-line, (xw,yw,R) is position of
the payload, F = [μx,μy,0,0,μR]T ẋ, μx, μy and μR are frictions factors, G(x) is
gravitational force, C (x, ẋ) is the Coriolis matrix and M (x) is the dynamic matrix of
the crane.
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Fig. 4.2 The architecture of CMAC

In (4.1), there are some differences from other crane models in the literature. The
length of the lift-line is not considered in [14], so the dimension of M is 4×4, while
in [22], which also addresses anti-swing control and position control, the dimension
of M is 3× 3. In [19], the dimension of M is 5× 5 as in this chapter. However,
some uncertainties such as friction and anti-swing control coupling are not included.
This overhead crane system shares one important property with robot systems: the
Coriolis matrix C (x, ẋ) is skew-symmetric, i.e., it satisfies the following relationship
[14]

xT [Ṁ(x)−2C(x, ẋ)
]

x = 0. (4.2)

A general FCMAC (see Figure 4.2) has five layers: input layer (L1), fuzzified
layer (L2), fuzzy association layer (L3), fuzzy post-association layer (L4), and output
layer (L5).

Each input variable xi in the n−dimension input space L1 is quantized into m
discrete regions (or elements) according to a resolution definition. Several elements
in L1 can be accumulated as a block. CMAC requires that the block number p is
bigger than 2. By shifting an element in each input variable, different pieces are
obtained. Each piece performs a basis function, which can be formulated as rectan-
gular, triangular, Gaussian, or any continuously bounded function. If an input falls
in q−th receptive-field, this field is active. Its neighborhoods are also activated, so it
produces similar outputs near q−th receptive-field. This FCMAC property is called
local generalization. The total shifting times is defined as l.

A fuzzified layer L2 is also called association memory space. Each function at
the fuzzified layer L2 corresponds to a linguistic variable which is expressed by a
membership functions φ i

j i = 1 · · ·n, j = 1 · · · l. The dimension of this layer is ln. L2

can be regarded as a fuzzification of input variables.
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Fuzzy association layer L3 is also called receptive-field space. The areas formed
by the shifting units are called receptive-fields. Each location corresponds to a fuzzy
association. A fuzzified layer connects and accomplishes the matching of the pre-
condition of fuzzy logic rule. Each node at this layer completes fuzzy implication
operation to obtain firing strength which is defined as αk which is defined as

α j =
n

∏
i=1

λq
(
φ i

j (xi)
)
, q = 1 · · · l, j = 1 · · · l

where q is association time, l is the association number (or total shifting times), λ
is the selection vector of the association memory which is defined as

λq
(
φ i

j (xi)
)

= φ i
j (xi) = [0,0 · · ·1,0 · · · ]

⎡
⎢⎣
φ i

1
...
φ i

l

⎤
⎥⎦ .

Fuzzy post association layer L4 is also called weight memory space, which cal-
culates the normalization of firing strength and prepares for fuzzy inference

ϕq = αq/
l
∑
j=1

α j

=

(
n

∏
i=1

λk
(
φ i

q (xi)
))

/

(
l
∑
j=1

n

∏
i=1

λ j

(
φ i

j (xi)
))

.

In the output layer L5, Takagi fuzzy inference is used, that is, the consequence of
each fuzzy rule is defined as a function of input variables

R j : I f x1 is A1
j · · ·and xn is An

j Then ŷ is f (X) (4.3)

where X = [x1, · · · ,xn]
T . The output of the FCMAC can be expressed as

ŷ =
l

∑
j=1

wjϕk j (4.4)

where wj denotes the connecting weight of j−th receptive-field. In matrix form it is

ŷ = Wϕ (X) (4.5)

where W = [w1, · · ·wl ] , ϕ (x) = [ϕ1, · · ·ϕl]
T .
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4.3 Control of an Overhead Crane

The control problem is to move the rail in such a way that the actual position of
the payload reaches the desired one. The three control inputs [Fx,Fy,FR] can force
the crane to the position [xw,yw,R] , but the swing angles [α,β ] cannot be controlled
using the dynamic model (4.1) directly. In order to design an anti-swing control,
linearization models for [α,β ] are analyzed. Because the acceleration of the crane
is much smaller than the gravitational acceleration, the rope length is kept slowly
varying and the swing is not big, giving

|ẍw|  g, |ÿw|  g,
∣∣R̈∣∣ g,∣∣Ṙ∣∣ R, |α̇|  1,
∣∣∣β̇
∣∣∣ 1,

s1 = sinα ≈ α, c1 = cosα ≈ 1.

The approximated dynamics of [α,β ] are then

α̈ + ẍw + gα = 0, β̈ + ÿw + gβ = 0.

Since ẍw = Fx
Mr

, ÿw = Fy
Mm

, the dynamics of the swing angles are

α̈ + gα = − Fx

Mr
, β̈ + gβ = − Fy

Mm
. (4.6)

Only Fx and Fy participate the anti-swing control, FR does not affect the swing
angles α,β . The control forces Fx and Fy are assumed to have the following form

Fx = A1 (xw, ẋw)+ A2 (α, α̇) ,
Fy = B1 (yw, ẏw)+ B2

(
β , β̇

) (4.7)

where A1 (xw, ẋw) and B1 (yw, ẏw) are position controllers, and A2(α, α̇) and B2(β , β̇ )
are anti-swing controllers. Substituting (4.7) into (4.6), produces the anti-swing con-
trol model

α̈+ gα+ A1
Mr

= − A2
Mr

,

β̈ + gβ + B1
Mm

= − B2
Mm

.
(4.8)

Now if A1
Mr

and B1
Mr

are regarded as disturbance, A2
Mr

and B2
Mm

as control inputs, then
(4.8) is a second-order linear system with disturbances. Standard PID control can
now be applied to regulate α and β thereby producing the anti-swing controllers

A2 (α, α̇) = kpa2α + kda2α̇ + kia2
∫ t

0 α (τ)dτ,
B2

(
β , β̇

)
= kpb2β + kdb2β̇ + kib2

∫ t
0 β (τ)dτ (4.9)

where kpa2, kda2 and kia2 are positive constants corresponding to proportional,
derivative and integral gains.

Substituting (4.7) into (4.1), produces the position control model
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M (x) ẍ +C (x, ẋ) ẋ + G(x)+ T ẋ+ D = τ (4.10)

where D = [A2,B2,0,0,0]T , τ = [A1,B1,0,0,FR]T . Using this model, a position con-
troller will be designed in the next section.

4.4 Position Regulation with FCMAC Compensation

A PD type controller is used for position regulation, which has the following form

τ = −Kp(x− xd)−Kd(ẋ− ẋd)

where Kp and Kd are positive definite, symmetric and constant matrices, which cor-
respond to the proportional and derivative coefficients, xd ∈ ℜ5 is the desired po-
sition, and ẋd ∈ ℜ5 is the desired joint velocity. Here the regulation problem is
discussed, so ẋd = 0.

A filtered regulation error is defined as

r = (ẋ− ẋd)+Λ(x− xd) = x̃2 +Λ x̃1

where x̃1 = (x− xd),x̃2 = (ẋ− ẋd), ·x̃1 = x̃2,Λ = ΛT > 0. Using (4.10) and ẋd =
ẍd = 0,

M
·
r = M

·
x̃2 + MΛ

·
x̃1

= M
··
x−M

··
x

d
+ MΛ

·
x̃1

= τ−C
·
x−G−T

·
x−D+ MΛ

·
x̃1 +CΛ x̃1 −CΛ x̃1

= τ−Cr + f

(4.11)

where
f (s) = MΛ ·

x +CΛ x̃1 −G−T
·
x−D

where s =
[

xT ,
·
x

T
, x̃T

1

]T

.

Because f
(

x,
·
x, x̃1

)
= [ fx, fy, fz]

T is unknown, a FCMAC (4.5) is used to approx-

imate it. The fuzzy rule (4.3) has the following form
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Ri: IF
(
xw is A1

1i

)
and

(
α is A1

2i

)
and

( ·
xw is A1

3i

)
and

( ·
α is A1

4i

)
and

(
x̃w is A1

5i

)
THEN f̂x is B1i

IF
(
yw is A2

1i

)
and

(
β is A2

2i

)
and

( ·
yw is A2

3i

)

and

( ·
β is A2

4i

)
and

(
ỹw is A2

5i

)
THEN f̂y is B2i

IF
(
R is A3

1i

)
and

( ·
R is A3

2i

)

and
(

R̃ is A3
3i

)
THEN f̂z is B3i.

(4.12)

Here f̂x, f̂y and f̂z are the uncertainties (friction, gravity and coupling errors) along
the X,Y,Z -coordinate axis. i = 1,2 · · · l. A total of fuzzy IF-THEN rules are used to
perform the mapping from the input vector x = [xw,yw,α,β ,R]T ∈ℜ5 to the output

vector ŷ(k) =
[

f̂1, f̂2, f̂3

]T
= [ŷ1, ŷ2, ŷ3] ∈ R3. Here A1i, · · ·Ani and B1i, · · ·Bmi are

standard fuzzy sets. In this paper, some on-line learning algorithms are introduced
for the membership functions A ji and B ji such that the PD controller with the fuzzy
compensator is stable. (4.5) can be expressed as

f̂ = ŴtΦ (s) (4.13)

where the parameter matrix Ŵ = diag
[
Ŵ1,Ŵ2,Ŵ3

]
, and the data vector Φ (x) =

[Φ1,Φ2,Φ3]
T , Ŵp =

[
wp1 · · ·wpl

]
, Φp =

[
φ p

1 · · ·φ p
l

]T
.

The position controller have a PD form with a fuzzy compensator

τ = [A1 (xw, ẋw) ,B1 (yw, ẏw) ,0,0,FR]T = −Kr− f̂
= −KΛ

(
x− xd

)−K
(
ẋ− ẋd

)−ŴtΦ(s)
(4.14)

where x = [xw,yw,α,β ,R]T , xd =
[
xd

w,yd
w,0,0,Rd

]T
, and xd

w, yd
w and Rd are the de-

sired positions, K = KT
p1 > 0.

According to the Stone-Weierstrass theorem [13], a general nonlinear smooth
function can be written as

f (s) = MΛ ·
x +CΛ x̃1 −G−T

·
x−D = W ∗Φ(s)+ μ (t) (4.15)

where W ∗ is the optimal weight matrix, and μ (t) is the modeling error. In this chap-
ter the fuzzy compensator (4.13) is used to approximate the unknown nonlinearity
(the gravity, friction, and coupling of anti-swing control).

The coupling between anti-swing control and position control can be explained
as follows. For the anti-swing control (4.8), the position control A1 and B1 are dis-
turbances, which can be decreased by the integral action in PID control. Although
the anti-swing model (4.8) is an approximator, the anti-swing control (4.9) does not
in fact use this, as it is model-free. Hence while the anti-swing control law (4.9)
cannot suppress the swing completely, it can minimize any consequent vibration.
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For the position control (4.10), the anti-swing control lies in the term D =
[A2,B2,0,0,0]T , which can also be regarded as a disturbance. The coupling due
to anti-swing control can be compensated by the fuzzy system. For example, in or-
der to decrease the swing, we should increase A2 and B2, this means increase the
disturbances of the crane, so τ should be increased.

4.5 FCMAC Training and Stability Analysis

(4.15) can be rewritten as

MΛ
·
x̂ +CΛ x̃1 −G−T

·
x−D = W 0Φ(s)+ηg (4.16)

where s1 =
[
xT ,xT

2 , x̃T
1

]T
, W 0 is a fixed bounded matrix, and ηg is the approximation

error whose magnitude also depends on the value of W 0. Now, ηg is assumed to be
quadratic bounded such that

ηT
g Λgηg ≤ η̄g (4.17)

where η̄g is a positive constant. In this paper, we use Gaussian functions in the
receptive-field φ j

i , which is expressed as

φ j
i = exp

[
−
(

s j − ci, j

σi, j

)2
]

(4.18)

where φ j
i presents the i−th rule of the j−th input x j, ci

j is the mean, σ i
j is the

variance, Φ (x) = [Φ1,Φ2,Φ3]
T , Φp =

[
φ p

1 · · ·φ p
l

]T
.

Firstly, we assume the Gaussian functions in the receptive-field are given by prior
knowledge, i.e., we only train Ŵt . Now defining W̃t = W 0 −Ŵt , for the filtered reg-
ulation error r = (

·
x− ẋd)+Λ(x− xd), the following theorem holds.

Theorem 4.1. If the updating laws for the membership functions in (4.13) are

d
dt

Ŵt = KwΦ(s)rT (4.19)

where Kw is a positive definite matrix, and Kd satisfies

K >
1
2
Λ−1

g , (4.20)

then the PD control law with FCMAC compensation in (4.14) can make the tracking
error r stable. In fact, the average tracking error r1 converges to

limsup
T→∞

1
T

∫ T

0
‖r‖2

Q1
dt ≤ η̄g (4.21)
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where Q1 = 2K −Λ−1
g .

Proof. The following Lyapunov function is proposed

V = rT Mr + tr
(

W̃ T
t K−1

w W̃t

)
(4.22)

where Kw is a positive definite matrix. Using (4.11) and (4.14), the closed-loop
system is given by

M
·
r = τ−Cr + f = −Kr−W̃tΦ(s1)−Cr +ηg. (4.23)

Now the derivative of (4.22) is

·
V = −2rT Kr−2rTCr + 2rTηg + rT

·
Mr−2rTW̃tΦ(s)+ 2tr

(
W̃ T

t K−1
w

·
W̃t

)
. (4.24)

In view of the matrix inequality,

XTY +
(
XTY

)T ≤ XTΛ−1X +YTΛY (4.25)

which is valid for any X ,Y ∈ ℜn×k and for any positive definite matrix 0 < Λ =
ΛT ∈ℜn×n, it follows that if X = r, and Y = ηg, from (4.17)

2rTηg ≤ rTΛ−1
g r +ηT

g Λgηg ≤ rTΛ−1
g r + η̄g. (4.26)

Using (4.2) and (4.24), this then can be written as

V̇ ≤−rT (2K −Λ−1
g

)
r + 2tr

[(
K−1

w
d
dt

W̃t −Φ(s)rT
)

W̃

]
+ η̄g. (4.27)

Since xd
2 = ẋd

2 = 0, and using the learning law (4.19), then (4.27) becomes

V̇ ≤−rT Qr + η̄g (4.28)

where Q1 = 2K −Λ−1
g . Now, from (4.20), it is known that Q1 > 0, and (4.28) can

then be represented as

V̇ ≤−λmin (Q1)‖r‖2 +ηT
g Λgηg.

V is therefore an input-to-state stability (ISS)-Lyapunov function. Using Theorem
1 from [27], the boundedness of ηg and η̄δ implies that the tracking error ‖r‖ is
stable, so x and x̂ are bounded.

Integrating (4.28) from 0 to T yields

∫ T

0
rT Q1rdt ≤V0 −VT + η̄gT ≤V0 + η̄gT.

(4.21) is established. ��



4 Stable Adaptive Compensation with FCMAC for Overhead Cranes 77

Secondly, neither the receptive-field function nor Ŵt are known. pth output of the
FCMAC compensator can be expressed as ŴpΦp(s), p = 1,2,3. Using the Taylor
series,

ŴpΦp(s)− f (s)+ μp

=
l
∑

i=1

(
w∗

pi − ŵpi

)
zp

i /bp +
l
∑

i=1

np

∑
j=1

∂
∂cp

ji

(
ap
bp

)(
cp∗

ji − cp
ji

)

+
l
∑

i=1

np

∑
j=1

∂
∂σ p

ji

(
ap
bp

)(
σ p∗

ji −σ p
ji

)
−R1p

(4.29)

where R1p is second order approximation error of the Taylor series, and

zp
i =

n

∏
i=1

λk
(
φ i

j

)
, ap =

l

∑
k=1

wpzp, bp =
l

∑
k=1

zp.

Using the chain rule, we get

∂
∂cp

ji

(
ap
bp

)
= ∂

∂ zp
i

(
ap
bp

)
∂ zp

i
∂cp

ji

=
(

1
bp

∂ap

∂ zp
i

+ ∂
∂ zp

i

(
1

bp

)
ap

)(
2zp

i
s j−cp

ji[
σ p

ji

]2

)

=
(

wpi
bp

− ap

[bp]2

)(
2zp

i
s j−cp

ji[
σ p

ji

]2

)

= 2zp
i

wpi−ŷp
bp

s j−cp
ji[

σ p
ji

]2

and
∂

∂σ p
ji

(
ap
bp

)
= ∂

∂ zp
i

(
ap
bp

)
∂ zp

i
∂σ p

ji

= 2zp
i

wpi−ŷp
bp

(
s j−cp

ji

)2

[
σ p

ji

]3 .

There are three subsystems, for each one

ŴpΦp(s)− f (s)p = ZpW̃p +ΨpC̃pI +ΨpB̃pI− ζp (4.30)

where ζp = μp + R1p
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Zp =
[
zp

1/b · · ·zp
l /b

]T
, W̃p = Ŵp −W ∗

p , Wp =
[
ŵp1 · · · ŵpl

]
,

Ψp =
[
2zp

1
ŵp1−ŷp

bp
, · · · ,2zp

l
ŵpl−ŷp

bp

]
, I = [1, · · ·1]T ,

C̃p =

⎡
⎢⎢⎢⎢⎣

s1−cp
11

[σ p
11]

2

(
cp

11 − cp∗
11

) sn−cn1

[σ p
n1]

2

(
cp

n1 − cp∗
n1

)
. . .

s1−cp
1l

[σ p
1l]

2

(
cp

1l − cp∗
1l

) sn−cnl

σ p2
nl

(
cp

nl − cp∗
nl

)

⎤
⎥⎥⎥⎥⎦

B̃p =

⎡
⎢⎢⎢⎢⎢⎣

(
s1−cp2

11

)2

σ p3
11

(
σ p

11 −σ p∗
11

) (sn−cn1)2

σ p3
n1

(
σ p

n1 −σ p∗
n1

)
. . .

(s1−cp
1l)

2

σ3p
1l

(
σ p

1l −σ p∗
1l

) (sn−cnl)
2

σ3p
nl

(
σ p

nl −σ p∗
nl

)

⎤
⎥⎥⎥⎥⎥⎦

.

In vector form
ŴtΦ(s1)− f1 (s1) = ZW̃ +ΨC̃I +Ψ B̃I− ζ . (4.31)

Now, ζ is assumed to be quadratic bounded such that

ζTΛζζ ≤ ζ .

For the filtered regulation error r, the following theorem holds.

Theorem 4.2. If the updating laws for the membership functions in (4.13) are

d
dt Ŵp = −KwZprT ,

d
dt cp

ji = −2kczp
i

ŵpi−ŷp
bp

s j−cp
ji[

σ p
ji

]2 rT ,

d
dtσ

p
ji = −2kbzp

i
ŵpi−ŷp

bp

(
s j−cp

ji

)2

[
σ p

ji

]3 rT

(4.32)

where Kw is definite matrix, kc and kb are positive constant, and K satisfies

K >
1
2

(
Λ−1
ζ +Λ−1

g

)
,

then the PD control law with fuzzy compensation in (4.14) can make the tracking
error stable. The average tracking error r converges to

limsup
T→∞

1
T

∫ T

0
‖r‖2

Q2
dt ≤ η̄g + ζ

where Q2 = 2K −
(
Λ−1
ζ +Λ−1

g

)
.

Proof. Let use define c̃ ji = ĉ ji − c∗ji, b̃ ji (k) = σ̃ ji (k)−σ∗ (k) , the element of C̃ is

expressed as c̃ ji =
[
C̃
]
. We selected a positive defined scalar V3 as
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V1 = rT Mr1 + tr
(
W̃ T

t K−1
w W̃t

)
+ tr

(
C̃T

t K−1
c C̃t

)
+ tr

(
B̃T

t K−1
b B̃t

)
(4.33)

where Kp, Kw Kc and Kb are any positive definite matrices. Using (4.30),

M
·
r = τ−Cr + f = −Kr−W̃tΦ(s)−Cr +ηg (4.34)

Mẋ2 = −Cx2 −Kpx̄1 −Kdx̃2 +ŴtΦ(s)− (G(x)+ F (x)+ D) .

So
rT M

·
r = −rT Kr− rTW̃tΦ(s)− rTCr

+rTηg − rT
[
ZW̃ +ΨC̃I +Ψ B̃I − ζ

]
.

Similar as to Theorem 4.1

2rTζ ≤ rTΛ−1
ζ r + ζTΛζζ ≤ rTΛ−1

g r + ζ ,

V̇1 = −rT
(

2K −Λ−1
g −Λ−1

ζ

)
r + η̄g + ζ + 2tr

[(
K−1

w
d
dt W̃t −ZrT

)
W̃
]

+2tr
[(

K−1
c

d
dt C̃t −ΨrT

)
C̃t
]
+ 2tr

[(
K−1

b
d
dt B̃t −ΨrT

)
B̃t
]
,

(4.35)

using the learning law (4.32), then (4.35) becomes

V̇1 ≤−rT Q2r + η̄g + ζ .

The rest of the proof is the same as the proof for Theorem 4.1. ��

4.6 Experimental Comparisons

The proposed anti-swing control for overhead crane systems has been implemented
on a InTeCo [15] overhead crane test-bed, see Figure 4.3. The rail is 150cm long,
and the physical parameters for the system are as follows: the mass of rail is
Mr = 6.5kg, the mass of cart is Mc = 0.8kg, the mass of payload is Mm = 1.3kg,
see Figure 4.3. Here interfacing is based on a microprocessor, comprising a mul-
tifunction analog and digital I/O board dedicated to the real-time data acquisition
and control in the Windows R© XP environment, mounted in a PC Pentium R©-III
500MHz host. Because the chip supports real-time operations without introducing
latencies caused by the Windows default timing system, the control program oper-
ated in Windows XP with MATLAB R© 6.5/SIMULINK R©.

There are two inputs in the anti-swing model (4.14), A1 and A2 with A1 from the
position controller and A2 from the anti-swing controller. When the anti-swing con-
trol A2 is designed by (4.8), A1 is regarded as a disturbance. The chosen parameters
of the PID (4.9) control law were

kpa2 = 2.5, kda2 = 18, kia2 = 0.01,
kpb2 = 15, kdb2 = 10, kib2 = 0.6.
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Fig. 4.3 Real-time control for an overhead crane

The position control law in (4.14) is discussed next. In this case there are two types
of input to the position model (4.10), D = [A2,B2,0,0,0]T , τ = [A1,B1,0,0,FR]T .
When the position control A1 is designed by (4.14), the anti-swing control A2 in
(4.10) is regarded as a disturbance which will be compensated for the fuzzy system
(4.13). Theorem 4.2 implies that to assure stability, Kd should be large enough such
that Kd >Λ−1

g . Since these upper bounds are not known, Kd1 = diag [80,80,0,0,10]
is selected. The position feedback gain does not effect the stability, but it should be
positive, and was chosen as Kp1 = diag [5,5,0,0,1] .

A total of 20 fuzzy rules in the receptive-field were used to compensate for the
friction, gravity and the coupling from anti-swing control. The membership function
for A ji was chosen to be the Gaussian function

A ji = exp
{
−(x j −m ji)2 /σ2

ji

}
, j = 1 · · ·5, i = 1 · · ·20

where m ji and σ ji were selected randomly to lie in the interval (0,1). Hence, Ŵt ∈
R5×20,Φ(x) = [σ1 · · ·σ20]

T . The learning law took the form in (4.32) with Kw = 10.
The desired gantry position was selected as a circle with xd

w = 0.5sin(0.2t) , yd
w =

0.5cos(0.2t). The resulting gantry positions and angles are shown in Figure 4.4 and
Figure 4.5. The control inputs are shown in Figure 4.6.

For comparison, the PID control results (Kd1 = diag [80,80,0,0,10], Kp1 =
diag [5,5,0,0,1] , Ki1 = diag [0.25,0.25,0,0,0.1]) are shown in in Figure 4.7 and
Figure 4.8.

It can be seen that the swing angles α and β are decreased a lot with the anti-
swing controller. From Figure 4.6 and Figure 4.8 we see that the the improvement is



4 Stable Adaptive Compensation with FCMAC for Overhead Cranes 81

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

)(mx
w

 

)(my
w

 

Fig. 4.4 Positions control with FCMAC compensation
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Fig. 4.7 PID position control with anti-swing control
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Fig. 4.8 Angles of PID position control with anti-swing control

not so good in α direction, because in this direction the inertia comes from the rail,
its mass Mr is bigger than the cart Mc (β direction).

Clearly, PD control with FCMAC compensation can successfully compensate
the uncertainties such as friction, gravity and anti-swing coupling. Because the PID
controller has no adaptive mechanism, it does not work well for anti-swing coupling
in contrast to the fuzzy compensator which can adjust its control action. On the other
hand, the PID controller is faster than the PD control with fuzzy compensation in
the case of small anti-swing coupling.

The structure of fuzzy compensator is very important. From fuzzy theory the
form of the membership function is known not to influence the stability of the fuzzy
control, but the approximation ability of fuzzy system for a particular nonlinear
process depends on the membership functions selected. The number of fuzzy rules
in receptive-field constitutes a structural problem. It is well known that increasing
the dimension of the fuzzy rules can cause the ”overlap” problem and add to the
computational burden [33]. The best dimension of CMAC to use is still an open
problem. In this application 20 fuzzy rules were used. Since it is difficult to obtain
the fuzzy structure from prior knowledge, several fuzzy identifiers can be put in
parallel and the best one selected by a switching algorithm. The learning gain Kw

will influence the learning speed, so a very large gain can cause unstable learning,
while a very small gain produces a slow learning process.
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4.7 Conclusions

In this chapter, a FCMAC compensator is used to compensate for gravity and fric-
tion. Using Lyapunov-like analysis, the stability of the closed-loop system with the
FCMAC compensation was proven. Real-time experiments were presented compar-
ing our stable anti-swing PD control strategy with regular crane controllers. These
showed that the PD control law with FCMAC compensations is effective for the
overhead crane system.

References

1. J.S. Albus, A New Approach to Manipulator Control: The Cerebellar Model Articulation
Controller (CMAC), Journal of Dynamic Systems, Measurement, and Control, Transactions
of ASME, pp. 220-227, 1975.

2. E.M.Abdel-Rahman,A.H. Nayfeh, Z.N.Masoud, Dynamics and control of cranes: a review,
Journal of Vibration and Control, Vol.9, No.7, 863-908, 2003.

3. J.W.Auernig and H.Troger, Time optimal control of overhead cranes with hoisting of the
payload, Automatica, Vol.23, No.4, 437-447, 1987.

4. J.W.Beeston, Closed-loop time optimatial control of a suspended payload-a design study,
Proc. 4th IFAC World Congress, 85-99, Warsaw Poland, 1969.

5. W.Blajer, K.Kotodziejczyk, Motion planning and control of gantry cranes in cluttered work
environment, IET Control Theory & Applications, Vol.1, No.5, 1370 - 1379, 2007.

6. C.I.Byrnes, A.Isidori and J.C.Willems, Passivity, feedback equivalence, and the global stabi-
lization of minimum phase nonlinear systems, IEEE Trans. Automat. Contr., Vol.36, 1228-
1240, 1991.

7. J.-Y.Chen, P.-S.Tsai and C.-C.Wong, Adaptive design of a fuzzy cerebellar model arithmetic
controller neural network, IEE Proceedings - Control Theory and Applications, vol.152, no.2,
133-137, 2005.

8. C.-T.Chiang and C.-S. Lin, CMAC with general basis functions, Neural Networks, vol. 9, no.
7, pp. 1199–1211, 1996.

9. C.-Y. Chang, Adaptive Fuzzy Controller of the Overhead Cranes With Nonlinear Disturbance,
IEEE Transactions on Industrial Informatics, Vol.3, No. 2, 164 - 172, 2007.

10. S.K.Cho, H.H.Lee, A fuzzy-logic antiswing controller for three-dimensional overhead
cranes,ISA Trans., Vol.41, No.2, 235-43, 2002.

11. A.H.W.Chun, R.Y.M.Wong, Improving Quality of Crane-Lorry Assignments With Constraint
Programming, IEEE Transactions on Systems, Man, and Cybernetics, Part C, Vol.37, No. 2,
268 - 277 2007.

12. G.Corriga, A.Giua, and G.Usai, An implicit gain-scheduling controller for cranes, IEEE
Trans. Control Systems Technology, Vol,6, No.1, 15-20, 1998.

13. G.Cybenko, Approximation by superposition of sigmoidal activation function, Math.Control,
Sig Syst, Vol.2, 303-314, 1989.

14. Y.Fang, W.E.Dixon, D.M.Dawson and E.Zergeroglu, Nonlinear coupling control laws for an
underactuated overhead crane system, IEEE/ASME Trans. Mechatronics, Vol.8, No.3, 418-
423, 2003.

15. InTeCo, 3DCrane: Installation and Commissioning Version 1.2, Krakow, Poland, 2000.
16. R.Kelly, Global Positioning on overhead crane manipulators via PD control plus a classs of

nonlinear integral actions, IEEE Trans. Automat. Contr., vol.43, No.7, 934-938, 1998.
17. R.Kelly, A tuning procedure for stable PID control of robot manipulators, Robotica, Vol.13,

141-148, 1995.



4 Stable Adaptive Compensation with FCMAC for Overhead Cranes 85

18. B. Kiss, J. Levine, and P. Mullhaupt, A simple output feedback PD controller for nonlinear
cranes, Proc. Conf. Decision and Control, pp. 5097–5101, 2000.

19. H.H.Lee, Modeling and control of a three-dimensional overhead crane, Journal of Dynamic
Systems, Measurement, and Control, Vol.120,471-476, 1998.

20. H.H.Lee, A new motion-planning scheme for overhead cranes with high-speed hoisting, Jour-
nal of Dynamic Systems, Measurement, and Control, Vol.126,359-364, 2004

21. J. A.Méndez, L.Acosta, L.Moreno, S.Torres, G.N.Marichal, An application of a neural self-
tuning controller to an overhead crane, Neural Computing and Applications, Vol.8, No.2,
143-150, 1999.

22. K.A.Moustafa and A.M.Ebeid, Nonlinear modeling and control of overhead crane load sway,
Journal of Dynamic Systems, Measurement, and Control, Vol.110, 266-271, 1988.

23. M.W.Noakes, J.F.Jansen, Generalized input for damped-vibration control of suspended pay-
loads, Journal of Robotics and Autonomous Systems, Vol.10, No.2, 199-205, 1992.

24. M.N.Nguyen, D.Shi, and C.Quek, FCMAC-BYY: Fuzzy CMAC Using Bayesian Ying–Yang
Learning, IEEE Trans. Syst., Man, Cybern. B, vol.36, no.5, 1180-1190, 2006.

25. J.Sim, W.L.Tung and C.Quek, CMAC-Yager: A Novel Yager-Inference-Scheme-Based Fuzzy
CMAC, IEEE Trans. Neural Networks, vol.17, no.6, 1394-1410, 2006.

26. S.-F.Su, Z.-J.Lee and Y.-P.Wang, Robust and Fast Learning for Fuzzy Cerebellar Model Ar-
ticulation Controllers, IEEE Trans. Syst., Man, Cybern. B, vol.36, no.1, 203-208, 2006.

27. E.D.Sontag and Y.Wang, On characterization of the input-to-state stability property, System
& Control Letters, Vol.24, 351-359, 1995.

28. O.Sawodny, H.Aschemann and S.Lahres, An automated gantry crane as a large workspace
robot, Control Engineering Practice, Vol.10, No.12, 1323-1338, 2002.

29. Y.Sakawa and Y.Shindo, Optimal control of container cranes, Automatica, Vol.18, No.3, 257-
266, 1982.

30. W. Singhose, W. Seering and N. Singer, Residual vibration reduction using vector diagrams
to generate shaped inputs, Journal of Dynamic Systems, Measurement, and Control, Vol.116,
654 -659,1994.

31. M.Takegaki and S.Arimoto, A new feedback method for dynamic control of manipulator,
ASME J. Dynamic Syst. Measurement, and Contr., Vol.103, 119-125, 1981.

32. R.Toxqui, W.Yu, and X.Li, PD control of overhead crane systems with neural compensation,
Advances in Neural Networks -ISNN 2006, Springer-Verlag, Lecture Notes in Computer Sci-
ence, LNCS 3972, 1110-1115, 2006

33. L.X.Wang, Adaptive Fuzzy Systems and Control, Englewood Cliffs NJ: Prentice-Hall, 1994.
34. S.Wu and M.J.Er, Dynamic fuzzy neural networks- a novel approach to function approxima-

tion, IEEE Trans. Syst., Man, Cybern. B, Vol.30, 358-364, 2000.
35. J.Yu, F.L.Lewis and T.Huang, Nonlinear feedback control of a gantry crane, Proc. 1995 Amer-

ican Control Conference, Seattle, 4310-4315, USA, 1995.




