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Chapter 1

Introduction

Fuzzy control can be divided into direct and indirect methods [83]. The direct fuzzy uses

a fuzzy system as a controller, while the indirect fuzzy control uses a fuzzy model to ap-

proximate the nonlinear system. The indirect fuzzy controller utilizes the simple topological

structure and universal approximation ability of fuzzy model. It has been widely used in

uncertain nonlinear system control. We use indirect fuzzy control in this research work.

Conventional mathematical tools for example di¤erence equations, algebraic systems,

interpolation polynomial, have been used extensively for system modeling and parameter

identi�cation. Uncertain nonlinear system modeling is a mature subject with a variety of

powerful methods and a long history of successful industrial applications. Fuzzy modeling

method is a popular tool for uncertain nonlinear system modeling. The fuzzy model usually

comes from several fuzzy rules [202]. These fuzzy rules represent the controlled nonlinear

system. Since any nonlinear system can be approximated by several piecewise linear systems

(Takagi-Sugeno fuzzy model) or known nonlinear systems (Mamdani fuzzy model) [140],

fuzzy models can approximate a large class of nonlinear systems while keeping the simplicity

of the linear models. In this work, we discuss another type of fuzzy model. The basic idea

is that many nonlinear systems can be expressed by linear-in-parameter models, such as

Lagrangian mechanical systems [194]. The parameters of these models are uncertain and

the uncertainties satisfy the fuzzy set theory [219]. In this way the inconvenience problems
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in nonlinear modeling, such as complexity and uncertainty, are solved by the fuzzy logic

theory and linear-in-parameter structure. In recent days, many methods involving uncer-

tainties have used fuzzy numbers [55][76][110][187], where the uncertainties of the system

are represented by the fuzzy coe¢ cients. The models are fuzzy equations or fuzzy di¤eren-

tial equations (FDEs). The modeling process with the fuzzy equation is to �nd the fuzzy

coe¢ cients of the linear-in-parameter model such that the fuzzy equation can represent the

uncertain nonlinear system. The application of the fuzzy equations and the FDEs are in

direct connection with the nonlinear modeling and control.

The decisions are carried out based on knowledge. In order to make the decision fruitful,

the knowledge acquired must be credible. Z-numbers are associated with the reliability of

knowledge [221]. Many �elds related to the analysis of the decisions actually use the ideas of

Z-numbers. Z-numbers are much less complex for calculation in comparison with nonlinear

system modeling methods. The Z-number is abundantly adequate number compared with

the fuzzy number. Although Z-numbers are implemented in many literatures, from theoret-

ical point of view this approach is not certi�ed completely. Here the uncertainties are in the

sense of Z-numbers.

1.1 Motivations

The nonlinear system modeling corresponds to �nd the fuzzy parameters of the fuzzy equa-

tions or FDEs and the fuzzy control is to design suitable nonlinear functions in the fuzzy

equation or FDE. Conventional mathematical tools for example di¤erence equations, alge-

braic systems, interpolation polynomial have been used extensively for system modeling and

parameter identi�cation. A special case of uncertain system modeling with fuzzy equation

is fuzzy polynomial interpolation. There are various interpolation techniques. However, if

there are uncertainties in the interpolation points, some methods cannot work well. This is

the reason why we use the fuzzy polynomial interpolation.

The general form of fuzzy polynomial is fuzzy equation. It can be applied directly for

nonlinear control. The nonlinear system modeling corresponds to �nd the fuzzy parameters
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of the fuzzy equation or FDE and the fuzzy control is to design suitable nonlinear functions in

these equations. Both fuzzy modeling and fuzzy control via fuzzy equations and FDEs require

solution of these equations. There are various approaches. However, all of analytical methods

for the solutions of fuzzy equations or FDEs are very di¢ cult to be applied, especially for

nonlinear fuzzy equations or FDEs. Moreover, the numerical methods are very complex and

the approximation accuracy of the numerical calculations are normally less. Neural networks

can give a good estimation for the solutions of fuzzy equations but since the structure of the

neural network is not suitable for FDE, the approximation accuracy is poor. Thats why we

use a new model named Bernstein neural network which has good properties of Bernstein

polynomial for FDE. Since Z-numbers have higher potential to illustrate the information of

the human being, in this research work the uncertainties are in the sense of Z-numbers.

1.2 Contributions of this thesis

Many uncertain nonlinear systems can be modeled by linear-in-parameter models. The un-

certainties can be regarded as parameter changes, which can be described as fuzzy numbers.

These models are fuzzy equations or FDEs. They are alternative models for uncertain non-

linear systems. The modeling of the uncertain nonlinear systems is to �nd the coe¢ cients of

these equations. The solutions of them are the controllers and are applied to analyze many

engineering problems. However, it is very di¢ cult to obtain solutions of the mentioned

equations.

In this research work the modeling and controlling uncertainty nonlinear systems with

fuzzy equations is proposed. We use fuzzy equations to model uncertain nonlinear systems.

The uncertainty is represented by fuzzy numbers. Since normal modeling methods cannot

be applied for fuzzy number and fuzzy equation directly, we transform the fuzzy equation

into a neural network. Then we modify the gradient descent method for fuzzy numbers and

propose a back-propagation learning rule for fuzzy equations. In continue we propose a novel

fuzzy controller via dual fuzzy equations which are the general case of fuzzy equations. The

controllability condition is given for the fuzzy control through these equations. Two types of
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neural networks are applied to approximate the solutions of the mentioned equations. These

solutions are then transformed into the fuzzy controllers. Afterwards approximation of the

solutions of FDEs by two types of Bernstein neural networks is suggested. We �rst transform

the FDE into four ordinary di¤erential equations (ODEs) with Hukuhara di¤erentiability.

Then we construct neural models with the structure of ODEs. With modi�ed backprop-

agation method for fuzzy variables, the neural networks are trained. Also a methodology

involving novel iterative technique considering neural networks is suggested to extract ap-

proximate solution for the second-order nonlinear partial di¤erential equations (PDEs) with

real constant coe¢ cients (RCCs) taking into account initial and boundary conditions. This

perspective is designed to grant good approximation on the basis of learning technique which

is associated with quasi-Newton rule. The constructed neural network has the regularizing

parameters (weights and biases), which can be utilized to make the error function minimal.

The construction of the model leads to the satisfaction of the initial and boundary condi-

tions along with the training of neural network which satis�es the PDEs. Also a sophisticated

methodology is provided in order to solve PDEs on the basis of the application of Bernstein

polynomial that is modeled with the help of two pattern of neural networks. In continue, the

uncertainties are in the sense of Z-numbers. We use dual fuzzy equations as the models. The

conditions of controllability are proposed. Two types of neural networks are implemented to

approximate solutions of the fuzzy equations with Z-number coe¢ cients.

1.3 Resumen

Muchos sistemas no lineales inciertos pueden ser modelados por modelos lineales en parámet-

ros. Las incertidumbres pueden ser consideradas como cambios de parámetros, que pueden

ser descritos como números difusos. Estos modelos son ecuaciones difusas o FDEs. El mod-

elado de los sistemas no lineales inciertos es encontrar los coe�cientes de estas ecuaciones.

Las soluciones de ellos son los controladores y se aplican para analizar muchos problemas de

ingeniería. Sin embargo, es muy difícil obtener soluciones de las ecuaciones mencionadas.

En este trabajo de investigación se propone el modelado y control de sistemas no lineales
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de incertidumbre con ecuaciones difusas. Utilizamos ecuaciones difusas para modelar sis-

temas no lineales inciertos. La incertidumbre está representada por números difusos. Dado

que los métodos normales de modelado no pueden aplicarse directamente al número difuso ya

la ecuación difusa, transformamos la ecuación difusa en una red neuronal. A continuación,

modi�camos el método de descenso de gradiente para la actualización de números difusos

y proponemos una regla de aprendizaje de retropropagación para ecuaciones difusas. En

continuo proponemos un nuevo controlador difuso a través de ecuaciones difusas dobles que

son el caso general de las ecuaciones difusas. La condición de controlabilidad se da para el

control difuso a través de estas ecuaciones. Se aplican dos tipos de redes neuronales para

aproximar las soluciones de las ecuaciones mencionadas. Estas soluciones se transforman

a continuación en los controladores difusos. Posteriormente se sugiere la aproximación de

las soluciones de FDEs por dos tipos de redes neuronales de Bernstein. Primero trans-

formamos el FDE en cuatro ecuaciones diferenciales ordinarias (ODEs) con diferenciación

de Hukuhara. Entonces construimos modelos neuronales con la estructura de ODEs. Con

el método de retropropagación modi�cado para las variables difusas, se forman las redes

neuronales. También se sugiere una metodología que implique una nueva técnica itera-

tiva considerando redes neuronales para extraer la solución aproximada para las ecuaciones

diferenciales parciales no lineales (EDP) de segundo orden con coe�cientes constantes reales

(CCR) teniendo en cuenta las condiciones iniciales y fronterizas. Esta perspectiva está dis-

eñada para conceder una buena aproximación sobre la base de la técnica de aprendizaje

que se asocia con la regla cuasi-Newton. La red neural construida tiene los parámetros de

regularización (pesos y sesgos), que pueden utilizarse para hacer que la función de error sea

mínima. La construcción del modelo conduce a la satisfacción de las condiciones iniciales y

fronterizas junto con el entrenamiento de la red neuronal que satisface las PDEs. También

se proporciona una so�sticada metodología para resolver las PDEs sobre la base de la apli-

cación del polinomio de Bernstein que es modelado con la ayuda de dos patrones de redes

neuronales. Para continuar, las incertidumbres están en el sentido de números Z. Utilizamos

ecuaciones difusas duales como los modelos. Se proponen las condiciones de controlabilidad.

Se implementan dos tipos de redes neuronales para aproximar soluciones de las ecuaciones
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difusas con coe�cientes de número Z.
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Chapter 2

Fuzzy equations for the modeling and

control of uncertain nonlinear systems

A review of the methodologies associated with the modeling and control of uncertain nonlin-

ear systems has been given due importance in this chapter. The basic criteria that highlights

the work is relied on the various patterns of techniques incorporated for the solutions of fuzzy

equations as well as di¤erential equations that correspond to controllability constraint re-

lated to fuzzy control. The solutions which are generated by these equations are considered

to be the controllers. Currently, numerical techniques have come out as superior techniques

in order to solve these type of problems. Taking into consideration the modeling case as well

as controlling uncertain nonlinear systems, the implementation of neural networks technique

has contributed in the complex way of dealing the appropriate coe¢ cients and solutions of

the fuzzy systems. In the current context, few types of neural networks to be mentioned

as feed-forward (static) as well as recurrent (dynamic) at par with least mean square and

quasi-Newton learning techniques have been demonstrated. In the context of this review,

the applications and the e¤ectiveness of fuzzy control design techniques in real world have

been reviewed.
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2.1 Introduction

An exceptional instance of uncertain system modeling at par with fuzzy equation is fuzzy

polynomial interpolation [159]. Polynomials have been used with fuzzy coe¢ cients in order

to interpolate uncertain data that have been expressed using fuzzy numbers [39]. Interpo-

lation methodolgy has been broadly utilized for function approximation as well as system

identi�cation [47, 144, 179]. The theory constraint associated with polynomial interpolation

is researched in [189]. It elaborates that the interpolation of the function f(x) includes

O(n) time complexity at par with n data points. In [223], two-dimensional polynomial in-

terpolation is demonstrated. The constraint associated to multivariable interpolation has

been investigated in [159]. In [169], the multivariate Vandermode matrix is utilized. Sparse

grid interpolation is an extra technique. Smooth function approximation has been broadly

implemented currently [200][207]. It yields a model by utilizing Lagrange interpolating poly-

nomials, at the points of product grids [215][39]. Whatsoever if it involves uncertainties

in the interpolation points, the suggested techniques will not work appropriately. For this

purpose we use the fuzzy polynomial interpolation.

The generalized form of fuzzy polynomial is termed as fuzzy equation. In comparison

with the normal systems, fuzzy equations are considered to be very noncomplex [140][202].

It is feasible for them to apply directly for nonlinear control. The nonlinear system modeling

is concerned to obtain the fuzzy parameters related to fuzzy equation. The approach of

fuzzy control is associated with the design of appropriate nonlinear functions in the fuzzy

equation. Fuzzy modeling as well as fuzzy control through fuzzy equations in combination

require solution of the fuzzy equation. Several approaches are incorporated. [85] utilized

the parametric mode of fuzzy numbers and restored the original fuzzy equations using crisp

linear systems. In [56], the extension principle is implemented and it suggests that the

coe¢ cients can be either real or complex fuzzy numbers. Whatsoever, the validation of the

solution is not assured. [4] prescribed the homeotypic analysis methodology. [9] inducted

the Newton�s technique. In [29], the solution of fuzzy equations are extracted using the �xed

point methodology. One of the methodology which is most talked recently is the method
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of �-level [91]. By utilizing the technique of superimposition of sets, resolving of the fuzzy

numbers will be possible. In current days, fuzzy fractional di¤erential as well as integral

equations have been researched abundantly in [14][32][145][186][211]. Whatsoever the above

methodologies are somewhat complicated.

The numerical solution associated with fuzzy equation can be fetched using the iterative

technique [119][136], interpolation technique [213], and Runge-Kutta technique [174]. It can

also be implemented to FDEs [138]. These techniques are also complicated for implementa-

tion. Both neural networks as well as fuzzy logic are considered to be the universal estimators

which can estimate any nonlinear function to any noti�ed precision [69]. Current outcomes

demonstrate that the fusion methodology of these two di¤erent techniques appears to be

highly e¢ cient for nonlinear systems identi�cation [218]. Neural networks can also be imple-

mented for resolving the fuzzy equation. A generalized fuzzy quadratic equation is resolved

by utilizing the neural networks which has been mentioned in [49]. [111][112] elaborated

the outcomes of [49] into fuzzy polynomial equation. Neural networks have been utilized

in order to extract the solution of dual fuzzy equations which has been illustrated in [110].

A matrix pattern associated to the neural learning has been quoted in [153]. Whatsoever,

these techniques are not usual as they cannot resolve general fuzzy equations associated to

neural networks. Also, they cannot generate the fuzzy coe¢ cients straight away associated

with neural networks [201][108].

In several FDEs, the coe¢ cients are in the form of fuzzy numbers which are used to

demonstrate the uncertainties [78]. The applications associated to FDEs are at par with

nonlinear modeling as well as control [110]. FDEs with di¤erent attributes utilize fuzzy

variables for illustrating the uncertainties. The investigation on the solutions of FDE are in-

corporated with chaotic analysis, quantum system as well as several engineering constraints,

viz civil engineering and modeling actuators. The general idea in concerned with fuzzy deriv-

ative was initially laid down by [64]. After that it is elaborated in [75]. The linear �rst-order

equation is the most generalized FDE. In [43] the analytical solution is extracted via gen-

eralizing the di¤erentiability. The �rst order FDE along with periodic boundary conditions

is investigated and mentioned in [126], also the higher order linear FDE is discussed. In
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[27], the analytical solutions related to the second order FDE are extracted. The analytical

solutions associated to the third order liner FDE are demonstrated in [95]. Also, analytical

techniques in order to solve n-th order linear FDE are suggested in [53][24].

Too much complexity is involved in solving nonlinear FDE. [195] investigated the basis

solutions of nonlinear FDEs associated with generalized di¤erentiability by utilizing interval-

valued methodology. [163] utilized periodic boundary as well as Hukuhara di¤erentiability

for impulsive FDE. [82] proposed some appropriate criteria in order to fuzzify the crisp solu-

tions. [135] utilized two-point fuzzy boundary value in concerned with FDE. [94] illustrated

homotopy analysis methodology at par with for FDE. Whatsoever, all of the above men-

tioned analytical methodologies associated to the solutions of FDEs are very much complex,

notably for nonlinear FDEs.

Numerical solutions of FDEs have been elaborately mentioned by many researchers in

current days. An iterative methodology for the numerical solutions related to the �rst-order

FDE is suggested in [192]. Laplace transform has been utilized for second-order FDE in [18].

The elaboration of classical fuzzy set theory in [101] results in obtaining of numerical solution

related to FDE. The predictor-corrector technique is implemented in [23]. [139][205][162]

portrays the methodology of Euler numerical technique in order to resolve FDE. To be

mentioned few numerical approaches, such as Nystrom method [125], Taylor method [5] and

Runge-Kutta method [173] can also be implemented for resolving FDEs. Whatsoever, the

approximation precision of these numerical methods are generally not very much [137].

The solution of FDE is uniformly continuous, also it is inside compact sets [52]. Neural

networks is a superior approximator for estimating the solutions of FDEs. [15] illustrated

that the solution of ODE can be estimated with the help of neural network. [84] demonstrated

the variations in the midst of the exact solution and approximation solutions associated to

ODEs. [146][217] implemented neural approximations at par with ODEs to dynamic systems.

[147] applied B-splines neural network for obtaining the approximated solutions related to

nonlinear ODEs. [132] implemented dynamics neural networks for the approximation of the

�rst-order ODE. There are very limited number of works related to FDE. [77] proposed a

static neural network in order to resolve FDE. As the structure of the neural network is not
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appropriate for FDE, the precision of the approximation is not of quality level.

Exact (closed-form) solution associated to di¤erential equation implicates a superior task

in the appropriate holding of qualitative natures related to several proceedings as well as

events at par with various �elds in concerned to natural science. Exact solutions allow re-

searchers to lay down design as well as to initiate experiments by establishing justi�able

natural provisions for determination of these parameters or functions. Whatsoever, extract-

ing the exact solutions related to the PDEs apart from very particular or non complex cases

is too complex. Investigation of previous research opens up the fact that several method-

ologies have been laid down for resolving some types of PDEs. The Homotopy analysis

methodology has been incorporated to obtain the solution of linear as well as nonlinear

higher dimensional initial boundary value problems with variable coe¢ cients which has been

mentioned in [109]. The Homotopy perturbation methodology in order to solve PDEs at

par with variable coe¢ cients is employed in [117]. In [33, 113] the PDEs have been solved

by utilizing two-dimensional di¤erential transformation techniques. In [209] the modi�ed

technique at par with non complex equation has been incorporated in order to �nd the exact

analytical solutions associated to nonlinear PDEs. In [107] Adomain decomposition method

is applied in order to solve Burgers-Fisher equation. Moghimi et al. [151] utilized a novel

iteration technique in order to carry out generalized Burger-Fisher as well as Burger equa-

tion. In [214] an iteration technique in order to solve both linear as well as nonlinear wave

equations has been researched.

Other researchers have also mentioned some numerical solutions related to PDEs. The

spreadsheet program has been utilized in order to generate the numerical solution of the

hyperbolic equation which is mentioned in [124] . Some experiments have been conducted in

order to generate solution which is in the form of an array that holds the value of the solution

at chosen group of points [128]. Additional group of investigators implemented �nite element

technique which has been variedly used in the area of mechanics for solving few speci�c PDEs

[102]. There prevail other numerical approach namely �nite di¤erence technique [193]. An

explicit monotone di¤erence technique in order to estimate the entropy solutions related to

degenerate parabolic equation is introduced in [79]. In [57] a Taylor polynomial estimation
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in order to extract the solution of hyperbolic PDEs associated to constant coe¢ cients has

been laid down. In [114] the spectral collocation technique is illustrated for obtaining the

solution related to the generalized Burgers-Fisher equation. The investigation revealed by

the researchers related to double non-traveling wave solutions associated to two systems of

nonlinear PDEs has been mentioned in [92]. Colzani et al. [67] have researched the radial

solutions of the wave equation in concerned to the Euclidean space. In [80] the application

of convolution quadrature was revealed in relation to the time-domain boundary integral

formulation associated to the wave equation at par with non-zero initial conditions. Higdon

[99] investigated on the �nite di¤erence equation and came to the conclusion that the discrete

forms of the one-way wave equation are compatible at par with the analytical forms which

ascertain suitable absorption at certain nonzero angles of incidence. A linear wave equation

in concerned to a boundary damping term was investigated in [142]. The Cauchy problem

at par with the semilinear wave equation incorporated in the Schwarzschild metric (3+1)-

dimensional spacetime was illustrated in [62]. The results of feedback control in refer to the

wave equation has been illustrated in [90], whereas the open loop control in concerned to the

wave equation has been demonstrated in [88, 129]. Whatsoever, there is complexity involved

with the above mentioned methodologies.

Since the solutions of the PDE are uniformly continuous and also the safety problems

in connection to the viable sets are mostly compact, neural networks are superiorly selected

candidates for the estimation of the feasibility problems [69]. The capacity in concerned to

the function approximation which is embedded to the neural networks gives accurate and

di¤erentiable solutions in a closed analytic form [96]. In [72] some appropriate theoretical

results on the basis of asymptotic manner of �nite neural networks, considering the issue of

�xed boundary conditions has been validated. The methodology for optimization associated

to the training of multidimensional neural network as well as carrying out its simulation was

mentioned in [130]. A feed-forward neural network is suggested in order to resolve an elliptic

PDE in connection to 2D in [74]. Other methodology for solving a class of �rst-order PDEs

on the basis of multilayer neural networks is demonstrated in [98]. The investigators of [152]

laid down an unsupervised neural network to resolve the nonlinear schrodinger equation. In
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[30] a two dimensional wave equation as well as the vibration problem in relation to a lateral

beam having both �xed ends up to �ve decimal digits accuracy incorporated in a neural

approach has been resolved. In [198] by employing a feed forward neural network, controlled

heat problem at par with three decimal digits accuracy has been solved. Whatsoever, the

advancement in researches related to the approximation abilities of networks will display

that arti�cial neural networks can be numerically precise and foreseeable as extraordinary

computational methodologies. The progress in training and analysis of existing architectures

can be carried out using arti�cial neural networks which are termed as numerical tools.

2.2 Fuzzy equations and dual fuzzy equations

2.2.1 Fuzzy neural network method

In [51] neural network has been employed for solving fuzzy linear equation

AX = C (2.1)

where A, B and X are considered to be triangular fuzzy numbers. Taking into account

certain values of A and C, (2.1) generates no solution for X [56]. The training of neural

network in order to solve (2.1) was mentioned by the researchers in [51], considering that

zero is not at par with the support of A. The investigation was carried out considering neural

network solutions termed to be Y and X�. When there is no restrictions in concerned to

the weights of the network, then the neural network output will be Y . The non existence

of relationship between Y and X was proved and validated by utilizing computer analysis.

X� is the solution of the neural network, taking into consideration that the certain sign

restrictions are set on the weights. X� is illustrated to be an approximation which is named

as a new solution of fuzzy equations. It has been displayed by using X � X�.

The evolutionary algorithm as well as neural network in combination have been utilized

for solving fuzzy equation which has been mentioned in [54] as follows

AX �B = C (2.2)
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where A;B;C and X are termed as triangular fuzzy numbers. The �rst solution Xc related

to (2.2) is stated to be the classical solution that utilizes �-cut and interval arithmetic for

obtaining Xc.

Example 2.1 Assume [A] = (1; 2; 3), [B] = (�3;�2;�1) and [C] = (3; 4; 5). Employing

the intervals into the fuzzy equation generates

(1 + �)X�
c + (�3 + �) = (3 + �)

(3� �)X
�

c + (�1� �) = (5� �)

here [Xc]
� = (Xc

�; Xc
�
). It can be extracted

X�
c =

6
1+�

X
�

c =
6

3��

However [X�
c ; X

�

c ] does not state a fuzzy number as because X
�
c (X

�

c ) is a decreasing (increas-

ing) function of �. Occasionally Xc prevails and sometimes wont exist.

By the fuzzi�cation of the crisp solution (c � b)=a; a 6= 0, we extract the other solution.
(C � B)=A represents the fuzzi�ed solution, taking into assumption that zero is not at par

with the support of A. For the evaluation of the fuzzi�ed solution, two approaches have

been suggested. The primary approach generates the solution Xe by utilizing the extension

principle as well as the secondary approach generates the solution XI by the means of �-cut

and interval arithmetic. Xe can be achieved as mentioned below

Xe = minf�(a; b; c)j(c� b)=a = xg

where �(a; b; c) = minfA(a); B(b); C(c)g. For obtaining �-cut of Xe the process is described

as follows
X�
e = minf c�ba ja 2 [A]

�; b 2 [B]�; c 2 [C]�g
X
�

e = maxf c�ba ja 2 [A]
�; b 2 [B]�; c 2 [C]�g

where [Xe]
� = (Xe

�; Xe
�
). The solution XI can be calculated as follows

[XI ]
� = ([C]� � [B]�)=[A]�
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The original fuzzy equation maybe or may not be solved by Xe(XI). Taking into account

some fuzzy equations, Xe are mathematically very much complex to extract, so in [54] an

evolutionary algorithm has been implemented for estimating their �-cuts. The mentioned

paper can be normalized for interacting with the fuzzy problems, evolutionary algorithms as

well as neural nets. There have been disadvantages incorporated in the method which has

been mentioned in [54]. The method is exclusively meant for the symmetric fuzzy numbers,

in addition it computes just the upper bound as well as the lower bound of the fuzzy numbers

avoiding the center part.

An architecture related to fuzzy neural network is suggested in order to obtain a real

root at par with fuzzy polynomials which is illustrated in the form mentioned below [11]

A1x+ :::+ Anx
n = A0 (2.3)

where x 2 R as well as A0; A1; :::; An 2 E. A learning algorithm associated with the

cost function in order to tweak the crisp weights has been suggested. The methodology

mentioned in [11] has drawbacks. It was solely capable of extracting a crisp solution of fuzzy

polynomials, and this neural network cannot extract a fuzzy solution.

In [111] the researchers obtained the approximate solution related to the following fuzzy

polynomial having degree n

A1x+ :::+ Anx
n = A0 (2.4)

where A0; A1; :::; An; x 2 E. They laid down two types of neural networks for approximat-

ing the solution related to (2.4), namely feedforward (static) as well as recurrent (dynamic)

models. The corresponding algorithm related to both neural networks is based on the least

mean square. The di¤erence between two neural networks states that dynamic neural net-

work is superiorly robust than static neural network. The technique which is illustrated in

[111] is su¢ cient to �nd approximate solution at par with special case of fuzzy equation, not

generalized case.

The general fuzzy equation to be mentioned as dual fuzzy equation [213] has been il-

lustrated in [110]. Normal fuzzy equations posses fuzzy numbers solely on one side of the

equation. Whatsoever, dual fuzzy equations posses fuzzy numbers on both sides of the equa-
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tion. As because it is not possible to move the fuzzy numbers in between the sides of the

equation [119], dual fuzzy equations are superiorly generalized and complex. In [110] the

existence of the solutions related to the dual fuzzy equations is analyzed, which is incorpo-

rated with the controllability problem associated to fuzzy control [65]. Afterward two kinds

of neural networks for approximation of the solutions related to dual fuzzy equations have

been demonstrated namely static and dynamic models.

2.2.2 Ranking method

The ranking methodology was primarily laid down by Delgado et al [71]. In [183] the

researcher has obtained the real roots of polynomial equation which has been demonstrated

as follows

C1x+ C2x
2 + :::+ Cnx

n = C0

where x 2 R as well as C0; C1; :::; Cn are taken to be fuzzy numbers. Fuzzy polynomial

equation is converted to system of crisp polynomial equations. This conversion takes place

with ranking method on the basis of three parameters Value, Ambiguity as well as Fuzziness.

The obtained system of crisp polynomial equations is resolved numerically.

In [165] the conceptual content of a ranking method is suggested in order to extract

the real roots associated to a dual fuzzy polynomial equation which has been illustrated as

follows

A1x� A2x
2 � Anx

n = B1x�B2x
2 �Bnx

n + d

where x 2 R as well as A1; :::; An; B1; :::; Bn; d are denoted as fuzzy numbers. The dual fuzzy
polynomial equations is converted to the system associated to the crisp dual polynomial

equations. This conversion is carried out by utilizing ranking methodology on the basis of

three parameters namely Value, Ambiguity and Fuzziness.

In [166] the real roots corresponding to the polynomial equation to be mentioned as

A1x+A2x
2+ :::+Anx

n = A0 is obtained by utilizing the ranking method considering fuzzy

numbers, where x 2 R as well as A0; A1; :::; An are denoted as fuzzy numbers. In the quoted
paper, the ranking methodology is utilized for real roots associated with dual polynomial
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equations as mentioned below

A1x+ A2x
2 + :::+ Anx

n = B1x+B2x
2 + :::+Bnx

n + d

where x 2 R, A1; :::; An; B1; :::; Bn as well as d are considered as fuzzy numbers.
In [167] the ranking technique is implemented in order to obtain the real roots of an

interval type-2 dual fuzzy polynomial equation A1x + A2x
2 + ::: + Anx

n = B1x + B2x
2 +

:::+ Bnx
n + d, where x 2 R, the coe¢ cients A1; :::; An; B1; :::; Bn as well as d are termed as

interval type-2 fuzzy numbers. Type-2 dual fuzzy polynomial equation is converted into a

system at par with crisp type-2 dual fuzzy polynomial equation. The mentioned conversion

is done by ranking method associated with fuzzy numbers on the basis of three parameters

viz value, ambiguity and fuzziness.

It was revealed that solutions in correspond to three parameters such as Value, Ambiguity

and Fuzziness are not su¢ cient to generate solutions. Henceforth in [168], a novel ranking

methodology is suggested in order to eradicate the intrinsic weakness. The novel ranking

methodology which is incorporated with four parameters is then implemented in the interval

type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual

fuzzy polynomial equations as well as system of fuzzy polynomials. The e¤ectiveness of the

novel ranking methodology is numerically considered in the triangular fuzzy numbers as well

as the trapezoidal fuzzy numbers.

2.2.3 Newton method, steepest descent method, Broyden�s method

and genetic algorithm method

In 1669, Isaac Newton introduced a novel algorithm [161] for solving a polynomial equation

which was demonstrated on the basis of an example as y3 � 2y � 5 = 0. To obtain a precise
root of the mentioned equation, initially a starting value should be assumed, where y � 2.
By assuming y = 2+p and substituting it into the original equation, the following is obtained

as p3+6p2+10p�1 = 0. As p is presumed to be minute, p3+6p2 is neglected in comparison
with 10p�1, also the previous equation generates p � 0:1, so a superior approximation of the



20 Fuzzy equations for the modeling and control of uncertain nonlinear systems

root is y � 2:1. The repetition of this process is feasible and p = 0:1+q is extracted, also the
substitution deliver q3+6:3q2+11:23q+0:061 = 0, henceforth q � �0:061=11:23 = �0:0054:::,
so a novel approximation of the root is y � 2:0946. It is the requirement to repeat the process
till the expected number of digits is achieved. In his methodology, Newton did not distinctly

utilize the hypothesis of derivative but only applied it on polynomial equations.

In [8] the Newton�s methodology is proposed in association with fuzzy nonlinear equa-

tions in lieu of standard analytical methodologies, as they are not appropriate throughout.

The primary intention is to extract a solution for fuzzy nonlinear equation F (x) = c. Pri-

marily the cited researchers have mentioned fuzzy nonlinear equation in parametric form as

illustrated below (
F (x; x; �) = c(�)

F (x; x; �) = c(�)

so they resolved it by utilizing Newton�s methodology.

In [25] the investigators have found the solution of

A1x� A2x
2 � :::� Anx

n = A0

where Ai; Xj 2 E for i = 1; :::; n j = 0; 1; :::; n: The fuzzy quantities are demonstrated in

parametric form. The primary initiative is based on the conversion of the polynomial fuzzy

coe¢ cients into parametric form, thereby implementing Newton�s technique on each limit.

In the �nal phase, for �nding the root, which is considered to be fuzzy number, the �-level

sets of fuzzy coe¢ cients on each limits are computed numerically.

In [3] some e¤ective numerical algorithms in order to solve nonlinear equation f(x) = 0

on the basis of Newton�Raphson methodology is demonstrated. The modi�ed Adomian

decomposition methodology is implemented for developing the numerical algorithms.

In [93] the iterative methods are illustrated to obtain a simple root �, i.e. f(�) = 0 as

well as f 0(�) 6= 0, of a nonlinear equation f(x) = 0. The authors have been mentioned the
construction of some higher-order recti�cations of Newton�s method in order to resolve non-

linear equations that maximize the convergence order of prevailing iterative methodologies

by one, two or three units. The mentioned construction can be implemented to any iteration
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formula as well as per iteration. The resulting methodologies sum up only one additional

function evaluation in order to maximize the order. This enables the computational e¤ectiv-

ity superior. This scheme can be endlessly employed for improving any prevailing iteration

formula.

The privilege of the Newton�s methodology is due to the convergency speed, once an

adequately precise approximation is known. A drawback of this methodology is that a precise

initial approximation in concerned with the solution is required to validate convergency.

In [10], a numerical solution associated with fuzzy nonlinear equation F (x) = 0 is sug-

gested using steepest descent technique, where the fuzzy quantities are demonstrated in

parametric form. The equation is represented by parametric form as mentioned below(
F (x; x; �) = 0

F (x; x; �) = 0

The function G : R2 ! R is stated by

G(x; x) = [F (x; x; �); F (x; x; �)]2

The technique of steepest descent characterizes a local minimum considering two-variable

function G. The technique of steepest descent is instinctively stated as:

1. Finding out G at an initial approximation X�
0 = (x

�
0 ; x

�
0 ).

2. Determine a direction from X�
0 = (x

�
0 ; x

�
0 ) which causes a decrease in the value of G.

3. Shift a suitable amount in this direction and consider the new value X�
1 = (x

�
1 ; x

�
1 ).

4. Repeat sequence 1 via 3 along with X�
0 replaced by X

�
1 .

The steepest descent technique approaches only linearly to the solution, but in general

it will approach even for weak initial approximations [59]. Even though steepest descent

technique does not need a superior initial value, its drawback is due to its low convergency

speed.

The drawbacks of Newton�s technique is due to the calculation and inversion of the

Jacobian matrix J(x) at each iteration. The rapid convergence of Newton�s technique is

possible when an appropriate initial value is achieved. However, it is di¢ cult to extract
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this kind of value, also this technique is relatively expensive to implement [60]. The steepest

descent technique is not relied on a superior initial value. Its �aw is related to the low speed of

convergency. Broyden�s methodology is suggested to resolve this kind of equation. Broyden�s

methodology is leaned towards superlinearly convergency. This methodology is selected since

it is superiorly alternative in comparison to Newton�s technique, also it minimizes the amount

of computation at each iteration without remarkably demeaning the speed of convergency.

It substitutes the matrix Ak�1 whose inverse is directly evaluated at each iteration in place

of the Jacobian matrix J , also it minimizes the arithmetic operation O(n3) to O(n2) [60]. In

lieu of utilizing standard analytical methods, such as Buckley and Qu methods, which are not

appropriate for resolving a system of fuzzy nonlinear equations taking into consideration that

the coe¢ cient is fuzzy number, Broyden�s technique is suggested for resolving fuzzy nonlinear

equations. In [181], Broyden�s technique is implemented in order to solve fuzzy nonlinear

equations. Initially, fuzzy nonlinear equations are displayed in parametric form, also they are

resolved by utilizing the Broyden�s technique. The suggested eight steps algorithm results

in the solution having maximum error which is less than 10�5.

A genetic algorithms methodology for resolving the linear and quadratic fuzzy equations

Ax = B as well as Ax2 +Bx = C, where A;B;C and x are considered to be fuzzy numbers

is mentioned in [143]. The methodology based on the genetic algorithms primarily begins

with a set of random fuzzy solutions. After that in each generation of genetic algorithms,

the solution candidates converge to the superior fuzzy solution. In the suggested methodol-

ogy the �nal attained solution is not only restricted to fuzzy triangular but also it can be

a fuzzy number. In the mentioned methodology, in order to obtain the best fuzzy solution

associated to a fuzzy equation, initially a solution is required to be converted to its chromo-

some demonstration. The solution candidates related to the fuzzy equations are transformed

to their level sets demonstration which are computable by genetic algorithms. Figure 2.1

displayes a level set structure associated with the chromosome in concerned to a potential

solution.

A genetic algorithm for resolving the fuzzy equation P (x) = y is demonstrated in [58],

where x and y are considered to be k-sampled real fuzzy numbers, also P is taken to be a
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Figure 2.1: Chromosome representation of a potential solution x for fuzzy equation

fuzzy function relying on x. The motive is to obtain a suitable value associated with the

fuzzy argument x in such a manner that the calculated value of the polynomial, P (x), is

very much adjacent to the supplied target value y. The presented genetic algorithm utilized

a distinct demonstration of the fuzzy numbers which permits the implementation of simple

genetic operators. The algorithm is self su¢ cient for �nding multiple solutions associated

with the fuzzy equations. Regrettably, no method has been utilized for an identical problem

involved in the area of neural networks that can be taken possession of. Because of the

distinct discrete criteria of the fuzzy arithmetic, the single realistic approach for resolving

this problem is to design a committed genetic algorithm [149].

In [134] genetic algorithms are implemented for solving fuzzy equations without stating

membership functions related to fuzzy numbers, also it has not used the extension principle

as well as interval arithmetic, �-cut operations and a penalty technique in order to constraint

violations. An important matter for using genetic algorithms in order to extract a better

solution associated with the problem is the parameter settings that includes the probability

of crossover, the probability of mutation as well as the number of generations. The fuzzy

conception related to the genetic algorithm scheme is contrasting, but generates superior

solutions in comparison with classical fuzzy techniques.

2.2.4 exponent to production method

In [26] the exponent to production technique is illustrated in order to generate an analytical

and approximated solution related to fully fuzzy quadratic equation (FFQE) F (X) = D,

where F (X) = AX2 + BX + C. In the mentioned technique, the 2nd exponent of a fuzzy

number is undergone a conversion into product of two fuzzy numbers which is in parametric
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form. By utilizing this sort of conversion, an analytical as well as approximated solution

associated to a FFQE is extracted. The optimum spreads are revealed in order to minimize

maximum error. In exponent to production technique, initially the 1-cut solution of FFQE

at par with the real root is found out and so undetermined manipulated unsymmetrical

spreads are subjected to the core point. In this case � and � have been extracted as optimum

values that develops the superior spreads. This technique resolves some problems which are

barred of analytical solution, also it is an bene�t of exponent to production technique. Since

numerical techniques require initial assumption for continuation, so the mentioned technique

generates this requirement. In addition, in this technique the complexities do not rely on

the sign of the coe¢ cients as well as variable.

2.2.5 Adomian decomposition method

In [2] the standard Adomian decomposition is implemented on simple iteration technique

in order to resolve the equation f(x) = 0, where f(x) is a nonlinear function, also it has

proved the convergency related to the series solution. Initially the nonlinear equation is

transformed into canonical form, after that the Adomian technique computes the solution

which is at par with the series form. As practically all the terms associated with the series

are not possible to determine, hence the estimation of the solution from the truncated series

has been accomplished. Therefore, the convergency related to the truncated series is usually

very rapid.

Babolian et al. [34] altered the standard Adomian technique mentioned in [2] in order

to solve nonlinear equation f(x) = 0 for acquiring a sequence of approximations related to

the solution, with approximate superlinear convergency. They have employed Cherruault�s

de�nition [66] and took into consideration the order of convergency related to the technique

[35].

In [171] a potential numerical algorithm in order to solve fuzzy polynomial equationsPn
i=1 aix

i = c on the basis of Newton�s technique is demonstrated, where x and c are

considered to be fuzzy numbers, also all coe¢ cients are taken to be fuzzy numbers. The
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modi�ed Adomian decomposition methodology is implemented for the construction of the

numerical algorithm. Primarily the fuzzy polynomials are illustrated in a parametric form

and �nally they have been resolved using Adomian decomposition technique.

In [208] the Shanks transformation is employed on the Adomian decomposition technique

in order to resolve nonlinear equations so as to improvise the preciseness of the approximate

solutions. The numerical results demonstrate that the the implementation of this technique

in similar conditions generates more appropriate solutions in concerned to the nonlinear

equations when compared with those extracted from the Adomian decomposition technique.

The Shanks transform is an e¤ective approach which can speed up the convergency rate of

the series. Adomian generates the solution of in�nite series generally converging to a precise

solution.

2.2.6 Fuzzy linear regression model

Generally, there exist two techniques in fuzzy regression analysis namely linear program-

ming based technique [176][185][203][204] and fuzzy least squares technique [184][73]. The

primary technique is relied on diminishing fuzziness at par with optimal critera. The sec-

ondary technique utilizes least square errors at par with �tting criteria. As illustrated in

[212], the bene�t of primary technique is its simplicity associated to programming as well as

calculation, whereas in the fuzzy least squares technique is its minimal degree of fuzziness

in the midst of the observed and approximated values. Currently, the least of the total

squares errors associated with the spread values are utilized as the �tting criteria as well as

advanced mathematical programming methodology in such a manner that the predictability

of the primary technique can be improvised and the calculation complication related to the

secondary technique can be minimized [157].

Fuzzy linear regression was initially put up by Tanaka et al. [204]. The main intension

was to diminish the total spread of the fuzzy parameters related to the support of the

approximated values which enclose the support of the observed values at par with a certain

�-level. Even though this concept was lately modi�ed by Tanaka et al. [203], their model is
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termed to be very responsive to outliers. However, it can generate in�nite solutions as well

as the spread of the approximated values, since it becomes wider as more data are piled up

in the model.

In [185] a fuzzy linear regression model is generated in the form of Yi = A0 + A1xi at

par with fuzzy output as well as fuzzy parameters taking into consideration mathematical

programming problem by utilizing three indices in concerned with equalities between fuzzy

numbers. Three patterns of multiobjective programming problems in order to extract fuzzy

linear regression models are laid down related to the three indices. A linear programming

relied on interactive decision making method in order to extract the convenient solution

at par with the decision making for formulating the multiobjective programming problems

is stated. The technique implied in [185] can generates an in�nite number of solutions

via repeated observations. Therefore, the mentioned technique is able to generate crisp

coe¢ cients. By the repeated observations this technique results in redundant constraints.

Hence, all observations cannot contribute to the computation associated with the model.

In [185], fuzzy linear regression undergoes from crisp coe¢ cients, redundant constraints as

well as the possibility related to an in�nite number of solutions. To deal with the possibility

related to an in�nite number of solutions, the approximation point of the centers at par with

the fuzzy coe¢ cients can be computed using the available data which is implemented into

fuzzy linear regression algorithms. In [188] it is displayed that the least squares technique

can be utilized as point approximation to center the fuzzy coe¢ cients which is employed in

the Tanaka techniques. Two highly advantages are linked to the use of point approximation

to center the fuzzy coe¢ cients. Initially, if the researcher selects point approximation which

is distinctively de�ned, hence possibility of an in�nite number of solutions is eradicated.

Secondly, point approximations permit all data points to contribute information in the fuzzy

linear algorithm. Hence, under repeated observations, the utilization of point approximations

associated with the center of the fuzzy coe¢ cients tackles some of the problems imparted by

redundant constraints.

Nasrabadi et al. [158] utilized a multi-objective programming concept in order to lay

down the linear regression coe¢ cients Yi = A0 + A1Xi + ::: + AnXin, i = 1; :::;m where
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Xij = (xij; rij), A = (aj; �j) as well as Yi = (yi; �i) are considered to be symmetric fuzzy

numbers. In the mentioned fuzzy regression work, powerful predictions are developed on the

basis of the fuzzy number parameters.

In [154] the fuzzy linear regression Yi = A0�A1xi1�A2xi2� :::�Anxin as well as fuzzy
polynomial regression Yi = Al0�

Pn
j=1Aljxij�

Pn
j=1

Pn
k=1Aljkxijxik� :::, where input units

are taken to be crisp numbers and output unit is taken to be a fuzzy number are mentioned.

The proposed technique is relied on neural network model in order to extract the estimation

of the regression coe¢ cients. More generalized pattern of fuzzy polynomial regression has

been revealed in [170].

In [170] a polynomial fuzzy regression model at par with fuzzy independent variables as

well as fuzzy parameters based on the following form is illustrated as

Yi = Al0 �
nX
j=1

AljXij �
nX
j=1

nX
k=1

AljkXijXik � :::

where i denotes the di¤erent observations, Xi1; Xi2; :::; Xin, are coe¢ cients as well as Yi are

considered to be fuzzy numbers. A fuzzy neural network model is utilized for extraction of an

estimate related to the fuzzy parameters along a statistical sense. This technique permits the

development of nonlinear regression models along with general fuzzy number inputs, outputs

and parameters. The suggested technique consists of numerable properties. Initially, it can

use non-triangular fuzzy observations. Furthermore, the fuzzy neural network technique

carries out perfect, with respect to the sum of squared errors as well as the accuracy in

approximation.

In order to obtain a fuzzy polynomial interpolation having degree n, it is essential to

extract n fuzzy coe¢ cients. So as to �nd these coe¢ cients, it is a requirement to resolve

2n� 2n equations which is very complicated in terms of large values of n, also sometimes it
is barred of a fuzzy solution, for more details refer [85][86]. In [141], an innovative estimation

algorithm for fuzzy polynomial interpolation by utilizing Arti�cial Bee Colony algorithm for

interpolating fuzzy data is demonstrated. It is assumed that X = fx1; :::; xng be a set of
m distinct points associated with R, also F = fy1; :::; yng be the value of a triangular fuzzy
function f at the point xi, i = 1; :::; n. The below mentioned polynomial of m degree is
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taken into account

pm(x) =
mX
j=0

ajx
j =

mX
j=0

(aj(r); aj(r))x
j

where aj is a trapezoidal fuzzy number at par with parametric form (aj(r); aj(r)) for j =

0; 1; :::;m. The experimental data are considered to be (x1; y1); (x2; y2); (xn; yn), xi 2 X and

yi 2 F (given that n > m+ 1).

2.2.7 Algebraic fuzzy equations

Some investigations have been carried out on algebraic fuzzy equations, but the existing

methodologies calculate the roots of an algebraic fuzzy equation analytically, also there exist

no analytical solution related to algebraic fuzzy equations having degree greater than 3 [50].

Thus by utilizing numerical methodologies in concerned to such equations is utter essential.

In [31] the author presented an algebraic fuzzy equation having degree n including fuzzy

coe¢ cients as well as crisp variable which is stated by

anx
n + :::+ a1x+ a0 = 0 (2.5)

in which 0; a0; a1; :::; an 2 E and an 6= 0. i.e., also Pn(x) = 0, where Pn(x) =
Pn

j=0 ajx
j

is mentioned as a polynomial of degree n. In order to determine the roots of the stated

algebraic fuzzy equation an algorithm on the basis of Gauss-Newton technique produces a

series, that can converge under the condition that the modal value function includes a root,

or else the series can diverge. In addition, suppose that the equation contains more than one

root, the roots can be obtained via di¤erent initial vectors. In order to resolve the algebraic

fuzzy equation, the root as well as fuzzy zero are assumed to be unknowns, therefore by a

series they can be determined. In case that a fuzzy zero is provided, then only the root of

algebraic fuzzy equation should be extracted.

Consider the equations mentioned below

F (X)�B = 0; F (X) = B

where B is taken to be as an interval or fuzzy value, F (X) is taken to be some interval or

fuzzy function. The above displayed equations are not termed to be equivalent. However,
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the crucial problem is linked with the conventional interval or fuzzy extension of the usual

equation, which results in the interval or fuzzy equation to be mentioned as F (X)�B = 0.
An interval exists on the left hand side of this elongated equation, whereas a real valued

zero exists on the right hand side. As it is not possible for the interval to be equal with the

real value, this result is termed as "interval equation�s right hand side problem". Minimal

problems will outcome while dealing with interval or fuzzy equations as F (X) = B, but in

many issues its roots are termed as inverted intervals, i.e., in such a manner that x < x. The

detail analysis of this fact has been mentioned in [190].

The linear equation consider in [190] is mentioned as

ax = b (2.6)

where its algebraically equivalent forms are denoted as

x =
b

a
(2.7)

ax� b = 0 (2.8)

considering a; b to be intervals. Suppose [a] = (a; a) as well as [b] = (b; b) be intervals., hence

considering the case [a] > 0; [b] > 0; i.e., a; a > 0 and b; b > 0, the interval extension of

(2.6) is given by (a; a)(x; x) = (b; b). It can be portrayed as (ax; ax) = (b; b). It is quiet

evident that the equivalence of the right as well as left hand sides of the mentioned equation

is feasible only if ax = b and ax = b, which are illustrated as

x =
b

a
; x =

b

a
(2.9)

Interval extension of (2.7) can be regarded as below

x =
b

a
; x =

b

a
(2.10)

The suggested methodology can be utilized solely in the uncomplicated cases of linear equa-

tions. Generally, the choosing of the suitable interval or fuzzy extensions in concerned to

nonlinear case is a complicated task.
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Example 2.2 Assume [a] = (3; 4), [b] = (1; 2): Hence from (2.9) it can be extracted x =

0:333, x = 0:5, also from (2.10) x = 0:25, x = 0:666.

In [12] the decomposition methodology has been utilized for quadratic, cubic as well

as generalized higher-order polynomial equations and negative, or nonintegral powers and

random algebraic equations. The algebraic equations can be dealt by using the decompo-

sition methodology and it supplies a crucial methodology in order to calculate the roots of

polynomial equations usually resulting a very fast convergence. This methodology generally

converges towards a precise solution.

In [36] a novel algorithm on the basis of the Adomian methodology is demonstrated

in order to resolve algebraic equations. This modernized algorithm computes the superior

estimations related to the exact solution of algebraic equations, when compared with the

standard Adomian methodology. A nonlinear equation is considered as follows

F (x) = 0 (2.11)

that can be transformed to

x = F0(x) + c0 (2.12)

where F0 is taken to be a nonlinear function, also c0 is a constant. The Adomian methodology

calculates x as a series

x =
1X
i=0

xi (2.13)

The decomposition of nonlinear function is illustrated below

F (x) =
1X
i=0

Ai (2.14)

where Ai�s are considered to be Adomian polynomials stated by

An(x0; :::; xn) = (
1

n!
)(
dn

d�n
)F (
X

xi�
i)j�=0 (2.15)

Substituting (2.13) as well as (2.14) to (2.12) results in
1X
i=0

xi =
1X
i=0

Ai + c0
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each term of the series x =
P1

i=0 xi, at par with the Adomian method, can be computed

using the relations mentioned below

x0 = c0

x1 = A0

x2 = A1

:

:

:

xn = An�1

In calculation of x by utilizing any software, since n increases the number of terms in the

expression related to An increases and this results in the dissemination of round o¤ errors.

Also, the factor 1
n!
mentioned in the formula related to An makes it superiorly minute, hence

its contribution to x is not taken into account, therefore, the primary few terms related to the

series
P1

i=0 xi state the preciseness of the estimated solution. By taking into consideration

of this concept, [36] laid down a novel algorithm on the basis of the Adomian methodology

in order to improvise the preciseness dramatically.

2.3 Fuzzy partial di¤erential equations and fuzzy dif-

ferential equations

2.3.1 Fuzzy neural network method

In [1] a technique is introduced in order to resolve PDEs with boundary and initial condi-

tions by imparting neural networks. An evolutionary algorithm is employed for training the

networks. The outcomes of implementing the methodology to a one-dimensional as well as

a two-dimensional problem are highly superior and convincing.

Whatsoever the principle concept is that evolutionary algorithms uncover all regions

of the solution space as well as exploit favorable areas via implementing recombination,



32 Fuzzy equations for the modeling and control of uncertain nonlinear systems

mutation, selection and reinsertion operations to the individuals of a population. In [1]

the researchers worked considering a single population. In [177] it is illustrated that single

population evolutionary algorithms are strong and out performs on a broad variation of

problems. Nevertheless outcomes are highly e¤ective which are extracted while working

with multiple subpopulations in lieu of just a single population.

In [130] a technique in order to resolve both ODEs and PDEs is presented and is depen-

dent on the function approximation abilities of feedforward neural networks, which results

in the development of solution presented in a di¤erentiable and closed analytic form. This

form applies a feedforward neural network as the general estimation element, that its para-

meters (weights and biases) are tweaked to diminish a suitable error function. In order to

train the network, optimization methodologies have implemented, that need the calculation

of the gradient error considering the network parameters. In the suggested methodology

the model function is presented as the sum of two terms. The �rst term su¢ ces the ini-

tial/boundary conditions, also does not includes adjustable parameters. The second term

includes a feedforward neural network to be trained in order to su¢ ce the di¤erential equa-

tion. The implementation of a neural architecture sums up several attractive features to the

technique:

1- The solution through arti�cial neural network is di¤erentiable having closed analytic

form which is easily utilized in any subsequent computation. Most other methodologies

suggest a discrete solution (viz predictor-corrector or Runge�Kutta methodologies) or a

solution of limited di¤erentiability (viz �nite elements).

2- The implementation of neural networks supplies a solution with highly superior gen-

eralized attributes. Compared results with the �nite element methodology depicted in this

work describe this point vividly.

3- The required number of model parameters is very much less than any other method

and hence, compact solution models are extracted with low demand criteria on memory

space.

4- The technique is simple and can be implemented to ODEs, systems of ODEs and also

to PDEs stated on orthogonal box boundaries. However, the process is in advancement to
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rectify the case of irregular (arbitrarily shaped) boundaries.

5- The technique can be tested in hardware, utilizing neuroprocessors, and also it proposes

the chance to handle real-time complex di¤erential equation problems that occur in several

engineering applications.

6- The technique can also be e¤ectively imposed on parallel architectures.

This technique is simple and can be employed to both ODEs as well as PDEs by devel-

oping the suitable form of the trial solution. The technique displays superior generalization

performance as the deviation at the test points is in no case major than the maximum devi-

ation at the training points. This is in contrast with the �nite element technique in the case

that the deviation at the testing points is extremely higher in comparison with the deviation

at the training points.

The case which requires to be inspected is at par with the sampling of the grid points

which are utilized for training. In [130] the grid was developed in a general way by taking

into account equidistant points. It is expected that superior outcomes can be extracted

considering the case in which the grid density will di¤er while training at par with the

corresponding error values. This signi�es that it is feasible to consider more training points at

regions where the error values are more. Also the suggested methodologies can easily employ

to the domains of higher dimensions (three or more). Since the dimensionality increases, the

number of training points increases. This leads to a grievous problem for techniques which

take into account local functions around each grid point as the needed number of parameters

becomes extensively higher and hence, both memory as well as calculation time requirements

become severely high. If we consider the case of the neural technique, the number of training

parameters stays almost �rm since the problem dimensionality increases. The only e¤ect on

the calculation time evolves from the fact that each training pass needs the demonstration

of more points, i.e., the training set becomes larger. This problem can be handled by taking

into consideration either parallel implementations or implementations on a neuroprocessor

which can be inscribed in a traditional machine and supply su¢ ciently superior execution

times.

In [105] a modi�ed technique is proposed in order to obtain the numerical solutions of
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fuzzy PDEs by utilizing fuzzy arti�cial neural networks. Utilizing improvised fuzzy neural

network ensure that the training points get selected over an open interval without training

the network in the range of �rst and end points. This novel technique is on the basis of

substituting each x in the training set (where x 2 [a; b]) by the polynomial Q(x) = �(x+ 1)

in such a manner that Q(x) 2 (a; b), by selecting an appropriate � 2 (0; 1). Also, it can be
suggested that the proposed methodology can deal e¢ ciently all types of fuzzy PDEs as well

as to supply precise estimation solution entirely for all domain and not only at the training

set. Hence, one can utilize the interpolation methodologies (to be mentioned as curve �tting

methodology) in order to obtain the estimated solution at points in the midst of the training

points or at points outside the training set.

In [77] a new technique is proposed in order to solve FDEs having initial conditions on

the basis of the utilization of feed-forward neural networks. Initially, the FDE is substituted

by a system of ODEs. The trial solution related to the system is stated as an addition of two

parts. The �rst phase su¢ ces the initial condition, also does not have adjustable parameters.

The second phase includes a feed-forward neural network having adjustable parameters (the

weights). Therefore by development, the initial condition is su¢ ced, also the network is

trained to su¢ ce the di¤erential equations. In this novel scheme, the inputs of the neural

network are considered to be as the training points. This technique supplies solutions with

superior generalization as well as high preciseness.

In [156] a technique for estimating solution of a second order FDE is suggested by utilizing

fuzzy neural network on the basis of back-propagation-type learning algorithms. The employ

of more simpli�es network architectures causes the back-propagation-type learning algorithm

highly complex. In [156] a notable simulation results from partially fuzzy neural network

is demonstrated but the researchers have not elaborated their learning algorithm to neural

network having more than three layers.

In [103] a novel technique on the basis of learning algorithm associated with fuzzy neural

network as well as Taylor series is laid down for extracting numerical solution of FDEs. A

fuzzy neural network on the basis of the semi-Taylor series (in concerned to the function ex)

for the �rst (and second) order FDE is utilized. It is possible to use the same approach for
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solving high order FDE as well as fuzzy PDE. A fuzzy trial solution related to the fuzzy initial

value problem is presented as an addition of two parts. The primary phase su¢ ces the fuzzy

initial condition and it includes Taylor series, also contains no fuzzy adjustable parameters.

The secondary phase includes a feed-forward fuzzy neural network having fuzzy adjustable

parameters (the fuzzy weights). Therefore by development, the fuzzy primery condition is

su¢ ced and the training of fuzzy network is carried out in order to su¢ ce the FDE. The

preciseness of this technique is relied on the Taylor series that is selected for the trial solution.

This selection is not distinct, hence, the preciseness is di¤erent from one problem to another

problem. The suggested technique gives more precise estimation. Superior outcome will be

possible if more neurons or more training points are used. However, after resolving a FDE

the solution is achievable at any arbitrary point in the training interval (even in the midst

training points).

In [104] a hybrid scheme on the basis of the modi�ed fuzzy neural network as well as

optimization method is proposed for resolving FDEs. Utilizing modi�ed fuzzy neural network

leads to the fact that the training points should be chosen over an open interval without

training the network in the range of �rst and end points. hence, the computing volume

which includes calculation error is minimized. Actually, the training points that relied on

the distance chosen for training neural network are transformed to similar points in the open

interval by incorporating a novel strategy, so the network is trained in these similar �eld. The

suggested model produces solutions with high preciseness. Modi�ed fuzzy neural networks

contain high ability in function estimation.

In [155] a new hybrid technique on the basis of learning algorithm of fuzzy neural network

for extracting the solution of di¤erential equation with fuzzy initial value is demonstrated.

The model obtains the estimated solution of FDE inside of its domain for the close by neigh-

borhood of the fuzzy initial point. One lack of fully fuzzy neural networks along with fuzzy

connection weights is long calculation time. One more lack is that the learning algorithm

is complex. In order to minimize the severity of the learning algorithm, in [155] a partially

fuzzy neural network architecture is demonstrated by taking into account that the connec-

tion weights to output unit are fuzzy numbers whereas connection weights and biases to
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hidden units are real numbers. By using the other learning algorithms, di¤erent simulation

outcomes can be achieved. For example, some global learning algorithms to be mentioned

as genetic algorithms can train non-fuzzy connection weights more superiorly than the back-

propagation-type learning algorithm for fuzzy mappings of triangular-shape fuzzy numbers

having incrementing fuzziness. Also the utilization of more general network architectures

causes the back-propagation-type learning algorithm to be more complex.

2.3.2 Euler method

In [139], the FDE is substituted by its parametric form. The classical Euler technique is

implemented for resolving the novel system that contains two classical ODEs having initial

conditions. The capacity of technique is demonstrated by resolving several linear as well as

nonlinear �rst-order FDEs.

In [162], a linear �rst-order FDE by employing the strongly generalized di¤erentiability

approach is analyzed. This work is based on the Generalized Characterization Theorem

in which the FDE is substituted with its equivalent systems and so for estimating the two

fuzzy solutions, two ODE systems are resolved by using generalized Euler approximation

technique that includes four classic ODEs having initial conditions. Furthermore, the error

analysis of the generalized Euler technique that assures pointwise convergency is laid down.

The signi�cance of transforming a FDE into a system of ODEs is based on the fact that any

numerical technique which are appropriate for ODEs can be employed.

In [16], a novel fuzzy version of Euler�s methodology in order to solve di¤erential equa-

tions having fuzzy initial values is suggested. The suggested methodology is relied on Zadeh�s

extension principle in order to reformulate the classical Euler�s methodology, that consid-

ers the dependency problem which is generated in fuzzy setting. This problem is regularly

avoided in the numerical methodologies which is included in the literature in order to resolve

di¤erential equations having fuzzy initial values. This paper has positive attributes when

compared with the traditional fuzzy version of Euler�s methodology. At par with the [48],

taking into consideration non-dependency problem associated with fuzzy calculation will re-
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sult in repetition of some numerical calculations. Therefore, there prevails expected errors,

also in the last phase the errors may generate estimations which are broader in comparison

with the correction. This is authentic as the initial results carried out in [17] have demon-

strated that the solution of FDEs extracted by utilizing the suggested methodology in [139]

has overestimation in calculation.

In [206] two improvised Euler type methodologies to be mentioned as Max-Min improved

Euler methodology and average improved Euler methodology are suggested for extracting

numerical solution of linear as well as nonlinear ODEs at par with fuzzy initial condition.

In this paper all the possible blends of lower as well as upper bounds in concerned with the

variable are considered and then resolved by the suggested methodologies. Also, an exact

method is laid down.

In [205] the numerical solution associated with linear, non-linear as well as system of

ODEs having fuzzy initial condition is researched. Two Euler type methodologies namely

Max-Min Euler methodology and average Euler methodology are laid down for extracting

numerical solution related to the FDEs. Several investigators in their works have considered

the left and right bounds of the variables at par with the di¤erential equations. In this

research work, the investigators constructed the methodologies by taking into account all

possible combinations of lower as well as upper bounds of the variable. The solution extracted

by Max-Min Euler methodology very closely resembles with the outcomes extracted by [139]

and exact solution.

2.3.3 Taylor method

In [150], di¤erential transform technique is di¤erent from the conventional high-order Taylor

series technique, that needs symbolic calculation of essential derivatives of the data function,

also is computationally costly in concerned to higher order. In the mentioned paper, FDTM

is suggested for resolving fuzzy PDE. A few examples were analyzed by utilizing FDTM,

also the outcomes exhibits signi�cant performance.

In [6], an approach on the basis of the 2nd Taylor technique is illustrated in order to
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resolve linear as well as nonlinear FDEs. The convergence order of the Euler technique

in [139] is O(h), whereas the convergence order in [6] is O(h2). The better solutions are

extracted by [6].

In [5], a concept on the basis of the Taylor technique of order p is demonstrated thor-

oughly, also this is followed by a complete error analysis. The solutions have superior pre-

ciseness in this paper.

2.3.4 Di¤erential transform method

In [150], a two-dimensional di¤erential transform methodology of �xed grid size is employed

to obtain approximate solutions related to fuzzy PDEs. Also an adaptive grid size mechanism

on the basis of the �xed grid size methodology is laid down. The suggested methodologies

generate the Taylor series expansion solution for the domain between any adjacent grid

points. This methodology is e¤ective for extracting exact and approximate solution of lin-

ear, nonlinear ordinary as well as for fuzzy PDEs. The di¤erential transform methodology

provides an analytical solution in the polynomial form. Di¤erential transform methodology

converts the PDEs as well as related initial conditions into a recurrence equation which ul-

timately results in the solution of a system related to algebraic equations as coe¢ cients of

a power series solution. It is varied from the conventional high-order Taylor series method-

ology, that needs symbolic calculation of the essential derivatives of the data functions, also

is computationally costly for high order. The fuzzy di¤erential transform methodology �nds

out the estimating solution by utilizing �nite Taylor series. The fuzzy di¤erential transform

methodology is bared from evaluating the derivatives symbolically, whereas it computes the

relative derivatives by utilizing an iteration technique stated by the fuzzy transformed equa-

tions extracted from the original equations.

In [28], an elongation of the di¤erential transformation methodology in order to resolve

the FDE is proposed. A di¤erent types of exact, approximate, and purely numerical method-

ologies are given to extract the solution related to a fuzzy initial value problem. The in-

vestigators have generally gone through the methodologies on the basis of the Hukuhara
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derivative. Whatsoever, in some situations this concept undergoes a severe drawback. The

solution includes a property that dim (x(t)) is non-decreasing in t, i.e. the solution is irre-

versible in possibilistic terms. Hence, this explanation is not an appropriate generalization of

the linked crisp case. It is considered that this problem is the outcome of fuzzi�cation related

to the the derivative employed in the development of the FDE. Additionally, most known

methodologies of resolving FDEs are computationally intense, since they are trial-and-error

in nature or require complex symbolic calculations. In [28], the authors have solved these

di¢ culties by utilizing a more simple de�nition of the derivative at par with the fuzzy map-

pings, elaborating the class of di¤erentiable fuzzy mappings which are laid down in [41][42],

and then utilized di¤erential transformation methodology for solving FDEs.

In [38], a generalization of di¤erential transformation methodology in order to solve the

fuzzy PDE by utilizing the strongly generalized di¤erentiability approach is researched.

2.3.5 Nystr�om method

In [125], a numerical approach on the basis of Nystr�om technique for resolving fuzzy �rst-

order initial value problem is suggested. Su¢ cient conditions for the validation of stability

and convergency of the suggested algorithms are supplied. The illustrated technique is

Convergent as well as stable.

In [191] the Nystr�om technique is constructed for estimating the solutions related to hy-

brid FDE initial value problems by utilizing the Seikkala derivative. The di¤erential equa-

tions includes fuzzy valued functions as well as interaction having a discrete time controller

termed as hybrid FDEs [175].

2.3.6 Predictor-corrector method

In [23], three numerical methodologies in order to resolve fuzzy ODEs are proposed. These

methodologies are Adams�Bashforth, Adams�Moulton and predictor�corrector. Predictor�

corrector is extracted by blending Adams�Bashforth as well as Adams�Moulton methodolo-

gies. The suggested methodologies are Convergent and stable. Considering the convergence
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order of the Euler methodology which is O(h) (as given in [139]), a higher order of conver-

gency is achievable by utilizing the suggested methodologies in [23], to be mentioned that a

predictor�corrector methodology of convergence order O(hm) is utilized where the Adams�

Bashforth m-step methodology and Adams�Moulton (m� 1)-step methodology are taken to
be as predictor and corrector, respectively. By going with the ideas of [182], the suggested

methodologies in [23] can resolve the sti¤ problems.

In [40], it has shown that the exact solutions demonstrated in [23], are not solutions asso-

ciated with the FDEs and the correct exact solutions related to these problems is illustrated.

Two characterization theorems are laid down for the solutions of FDEs that are employed

for converting a FDE into a system of ODEs. The characterization theorems reveal the fol-

lowing investigation direction for FDEs. Convert the FDE into a system of ODEs, afterward

resolve the system of ODEs, as it is feasible to go back to the original FDE. This scheme

can be employed with other di¤erentiability concepts which include more natural attributes

in comparison with the Hukuhara derivative.

In [127] a numerical solution in concerned with hybrid FDE is researched. The improved

predictor�corrector methodology is selected and altered in order to resolve the hybrid FDEs

on the basis of the Hukuhara derivative. The symbolic systems associated with the computer

to be mentioned as Maple and Mathematica are employed to carry out complex computa-

tions of algorithm. It is displayed that the solutions extracted using predictor�corrector

methodology is more precise and well matched with the exact solutions.

2.3.7 Runge-Kutta method

In [173] an e¤ective s-stage Runge-Kutta technique is employed for extracting the numerical

solution of FDE. Runge�Kutta method is applied for a more generalized category of problems

and a convergence de�nition as well as error de�nitions are given at par with FDEs theory.

Convergency related to s-stage Runge�Kutta methods is analyzed. This technique when

compared with developed Euler technique performs superior. Although Euler technique is

suitable, it is embedded with the disadvantage. When the convergence of Euler technique
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is analyzing [139], the authors generally investigate on the convergence of the ODEs system

which takes place while resolving numerically.

In [7] a numerical algorithm in order to resolve linear as well as nonlinear fuzzy ODEs on

the basis of Seikkala�s derivative of fuzzy process is investigated. A numerical methodology

on the basis of four-stage order Runge�Kutta technique is stated and is carried on by a

complete error analysis. Whatsoever, their work generalizes the same problems which is

mentioned in [139], also relies totally on four-stage methodologies.

In [115] a numerical algorithm in order to solve linear as well as nonlinear fuzzy ODE

on the basis of Seikkala derivative of fuzzy process is suggested. A numerical technique on

the basis of the Runge-Kutta methodology of order �ve is elaborately investigated and this

is carried on by going through an analysis of complete error. This technique with O(h5)

outperforms than improved Euler�s technique with O(h2).

In [115] a numerical solution for nth-order FDEs on the basis of Seikkala derivative having

initial value problem is investigated. The Runge-Kutta Nystrom technique is employed for

extracting the numerical solution of this problem, also the convergency as well as stability

related to the method is validated. In this methodology the nth-order FDE is transformed

to a fuzzy system that can be resolved by utilizing the Runge-Kutta Nystrom methodology.

A family of extended Runge-Kutta-like formulae are implemented in [89]. The formula

reveals the utilization of �rst derivatives f 0. This approach uses an elaborated Runge-Kutta

methodology involving local truncation error of order 5 with only four evaluations of both f as

well as f 0 to approximate the local error in an elaborated Runge-Kutta methodology having

order four per step. The positive attribute of this method is that just four evaluations of

both f as well as f 0 are needed per step, also arbitrary classical Runge-Kutta methodologies

of orders 3 and 4 employed in combination require six evaluations of f per step. In [89]

a numerical algorithm in order to resolve the fuzzy �rst order initial value problem on the

basis of elaborated Runge-Kutta-like formulae of order 4 is implemented. In this paper

the elaborated Runge-Kutta-like formula is employed for enhancing the order of preciseness

related to the solutions by evaluating both f and f 0, instead of only evaluating f .

In [120] a numerical algorithm in order to solve FDEs on the basis of Seikkala�s derivative
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including a fuzzy process is suggested. A numerical technique based on a Runge-Kutta

Nystrom technique of order three is employed for solving the initial value problem, also

it is illustrated that this methodology is superior in comparison with the Euler method

by considering the convergence order of Euler methodology (O(h)) as well as Runge-Kutta

Nystrom methodology (O(h3)).

2.3.8 Finite di¤erence method

Finite di¤erence methodologies illustrate functions as discrete values across a grid, also

estimate their derivatives as di¤erences between points on the grid. In [81] a numerical

methodology for solving the fuzzy heat equation is laid down. A di¤erence approach is taken

into account for the one dimensional heat equation. Additionally the necessary conditions

for stability of the suggested approach is illustrated. The suggested di¤erence methodology

associated with the example mentioned in [81] is tested when the exact solution is known.

In this example the Hausdor¤ distance between exact solution and estimated solution is

extracted.

In [133] �nite di¤erence methodologies for resolving di¤erential equations is proposed.

Furthermore, �nite di¤erence estimations to higher order derivatives are suggested.

In [160] an implicit �nite di¤erence methodology for resolving fuzzy PDEs is discussed.

The stability related to this methodology is demonstrated and resolved the parabolic equation

with this concept.

In [13] a numerical methodology on the basis of the seikkala derivative for resolving fuzzy

PDE is taken into account. Di¤erence methodology for solving the FPDEs to be mentioned

as fuzzy hyperbolic equation as well as fuzzy parabolic equation is illustrated, beside that

the stability associated with this methodology is analyzed and conditions for stability are

supplied. If all terms of FPDE belong to E, so the solutions of FPDE prevails, that are

concluded from the numerical values. Examples demonstrate that the Hausdor¤ distance

between exact solution and approximate solution is minute.

In [106] it has been stated how to induce boundary conditions into �nite di¤erence
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methodologies so the resulting estimations copy the identities between the di¤erential oper-

ators of vector as well as tensor calculus. The scheme is valid for wide class of PDE, also is

stated for Poisson�s equation with Dirichlet, Neumann as well as Robin boundary conditions.

These estimations retain the crucial properties of original di¤erential problems. Particularly,

the discrete estimation is symmetric and positive de�nite. The properties associated with

the discrete operators make feasible to utilize e¢ cient iteration methodologies in order to

resolve system of linear equations.

In [22] di¤erence methodologies based on the seikkala derivative for resolving linear and

nonlinear fuzzy PDEs is considered. Fuzzy reachable set can be estimated by suggested

methodologies including complete error analysis. The methodologies are demonstrated by re-

solving three types of FPDE namely �nite di¤erence Poisson equation (the di¤erence method-

ology by utilizing the Taylor series), backward di¤erence heat equation (Crank-Nicolson

methodology) and �nite di¤erence wave equation.

In [123] an implicit �nite di¤erence methodology is discussed in order to solve fuzzy PDEs

on the basis of the Siekkala derivative. Furthermore the stability of the methodology is laid

down.

2.4 Conclusions

In this chapter, some of numerical methodologies are demonstrated as a solution of fuzzy

equations, dual fuzzy equations, fuzzy PDEs as well as FDEs. This review illustrates that

the real roots associated with fuzzy equation can be extracted with di¤erent algorithms.

Whatsoever in few cases there exist no real roots in certain fuzzy equation. Solution of fuzzy

polynomial by ranking methodology is proposed for solving fuzzy polynomial equation which

convert to a crisp system of polynomial equations, therefore the system is easily solvable.

For obtaining the real roots of system in a case that there is no exact solution, iteration

methodologies can be utilized for estimating the solution. By modi�ed Adomian decom-

position methodology, the real roots can be extracted by laying down fuzzy polynomial in

parametric form and solving it by Adomian decomposition methodology. Obtaining solution



44 Fuzzy equations for the modeling and control of uncertain nonlinear systems

by Newton methodology demonstrates that the real roots of fuzzy equation can be extracted

on initial step with high preciseness. Di¤erently with fuzzy neural network, the real root of

fuzzy equation can be obtained by laying down a learning algorithm. This review supplies

an input for those showing interest in the �eld of fuzzy equations.



Chapter 3

Fuzzy control and modeling with

fuzzy equations

In this chapter, we discuss more general fuzzy equations termed as dual fuzzy equations [213].

Normal fuzzy equations have fuzzy numbers only on one side of the equation. However,

dual fuzzy equations have fuzzy numbers on both sides of the equation. Since the fuzzy

numbers cannot be moved between the sides of the equation [119], dual fuzzy equations

are more general and di¢ cult. We �rst discuss the existence of the solutions of the dual

fuzzy equations. It corresponds to controllability problem of the fuzzy control [65]. Then

we provide two methods to approximate the solutions of the dual fuzzy equations. They are

controller design process.

For modeling, we �rst transform the fuzzy equation into a neural network. Then we

modify the normal gradient descent method to train the fuzzy coe¢ cients. With this mod-

i�cation, we can apply normal neural modeling methods to uncertainty nonlinear system

modeling with fuzzy equations. The approximation theory for crisp models are extended

into fuzzy cases. The upper bounds of the modeling errors with fuzzy equations are esti-

mated.

Some simulation results are provided to show performance and e¤ectiveness of our fuzzy

control and modeling design methods with neural networks.
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3.1 Nonlinear system modeling with fuzzy equations

Consider the following unknown discrete-time nonlinear system

�xk+1 = �f [�xk; uk] ; yk = �g [�xk] (3.1)

where uk 2 Ru is the input vector, �xk 2 Rl is an internal state vector and yk 2 Rm is

the output vector. �f and �g are general nonlinear smooth functions �f; �g 2 C1. Denote

Yk =
�
yTk+1; y

T
k ; � � �

�T
and Uk =

�
uTk+1; u

T
k ; � � �

�T
: If @Y

@�x
is non-singular at �x = 0 and U = 0;

then this leads to the following model

yk = �[y
T
k�1; y

T
k�2; � � �uTk ; uTk�1; � � � ] (3.2)

where � (�) is an unknown nonlinear di¤erence equation representing the plant dynamics, uk
and yk are measurable scalar input and output. The nonlinear system (3.2) is a NARMA

model. We can also regard the input of the nonlinear system as

xk = [y
T
k�1; y

T
k�2; � � �uTk ; uTk�1; � � � ]T

and the output as yk:

Many nonlinear systems as in (3.2) can be rewritten as the following linear-in-parameter

model,

yk =
nX
j=0

ajx
j
k (3.3)

or

yk =

nX
i=1

aifi (xk) (3.4)

or

yk +
mX
i=1

bigi(xk) =

nX
i=1

aifi (xk) (3.5)

where aj, ai and bi are linear parameters, x
j
k, fi (xk) and gi(xk) are nonlinear functions. The

variables of these functions are measurable input and output.
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A famous example of this kind of model is the robot manipulator [194]

M (q) �q + C (q; _q) _q +B _q + g (q) = � (3.6)

(3.6) can be rewritten as
nX
i=1

Yi (q; _q; �q) �i = � (3.7)

To identify or control the linear-in-parameter system (3.3), (3.4), (3.5) or (3.7) the normal

least square or adaptive methods can be applied directly.

Here we consider the uncertain nonlinear systems, i.e., the parameter aj, ai, bi and �i
are not �xed (not crisp). They are uncertain in the sense of fuzzy logic. The uncertain

nonlinear systems are modeled by linear-in-parameter models with fuzzy parameters. These

models are called fuzzy equations. The special case of fuzzy equations is fuzzy polynomial

interpolation. Before introducing fuzzy equations and fuzzy polynomial interpolation, we

need the following de�nitions. The explanations for these de�nitions can be found in [220].

De�nition 3.1 (fuzzy number) A fuzzy number u is a function u 2 E : < ! [0; 1], such

that, 1) u is normal, (there exists x0 2 < such that u(x0) = 1; 2) u is convex, u(�x + (1 �
�)y) �minfu(x); u(y)g, 8x; y 2 <;8� 2 [0; 1]; 3) u is upper semi-continuous on <, i.e.,
u(x) � u(x0) + ", 8x 2 N(x0); 8x0 2 <;, 8" > 0; N(x0) is a neighborhood; 4) The set

u+ = fx 2 <; u(x) > 0g is compact.

We use membership functions to express the fuzzy number. The most popular member-

ship functions are the triangular function

u (x) = F (a; b; c) =

(
x�a
b�a a � x � b
c�x
c�b b � x � c

(3.8)

otherwise u (x) = 0 and trapezoidal function

u (x) = F (a; b; c; d) =

8>><>>:
x�a
b�a a � x � b
d�x
d�c c � x � d

1 b � x � c

(3.9)
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otherwise u (x) = 0:

Similar with crisp number, the fuzzy number u has also four basic operations: �; 	, �;
and �: They represent the operations: sum, subtract, multiply, and multiplied by a crisp
number.

The dimension of x in the fuzzy number u depends on the membership function, for

example (3.8) has three variables, (3.9) has four variables. In order to de�ne consistency

operations, we �rst apply ��level operation to the fuzzy number.

De�nition 3.2 (�-level) The �-level of fuzzy number u is de�ned as

[u]� = fx 2 < : u(x) � �g (3.10)

where 0 < � � 1, u 2 E:

So [u]0 = u+ =fx 2 <; u(x) > 0g: Because � 2 [0; 1]; [u]� is bounded as u� � [u]� � u�:

The �-level of u between u� and u� is de�ned as

[u]� = A (u�; u�) (3.11)

Let u; v 2 E; � 2 <, we de�ne the following fuzzy operations. u� and u� are the function of
�: We de�ne u� = dM(�); u

� = dU(�), � 2 [0; 1].

De�nition 3.3 (Lipchitz constant) [164] The Lipschitz constant H of a fuzzy number

u 2 E is
jdM(�1)� dM(�2)j � H j�1 � �2j
or jdU(�1)� dU(�2)j � H j�1 � �2j

(3.12)

De�nition 3.4 (fuzzy operations) [210] Sum,

[u� v]� = [u]� + [v]� = [u� + v�; u� + v�] (3.13)

Subtract,

[u	 v]� = [u]� � [v]� = [u� � v�; u� � v�] (3.14)
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Multiply,

w� � [u� v]� � w� or [u� v]� = A (w�; w�) (3.15)

where w� = u�v1 + u1v� � u1v1, w� = u�v1 + u1v� � u1v1, � 2 [0; 1]. It is a cross product
of twp fuzzy numbers.

Multiplied by a crisp number: For arbitrary crisp real positive number � ,

��u� � [u]� � � � ��u�

or [u]� � � = A (��u�;��u�)

Obviously, we have the following properties: the scalar multiplication: � 2 [0; 1]

[�u]� = �[u]� =

(
A (�u�; �u�) � � 0
A (�u�; �u�) � < 0

(3.16)

	u = (�1)u; u 2 E

De�nition 3.5 (dot product) [37]The dot product of two fuzzy variables u and v is

(u:v)� = A

 
minfu�v�; u�v�; u�v�; u�v�g
maxfu�v�; u�v�; u�v�; u�v�g

!

De�nition 3.6 (distance) The distance between the fuzzy numbers u and v is

d(u; v) = sup
0���1

fmax (ju� � v�j; ju� � v�j)g (3.17)

De�nition 3.7 (absolute value) [9]Absolute value of a triangular fuzzy number u(x) =

F (a; b; c) is

ju(x)j = jaj+ jbj+ jcj (3.18)

De�nition 3.8 (positive) A fuzzy number u 2 E is said to be positive if u1 � 0 and

negative if u1 � 0.
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Clearly, If u is positive and v is negative then u � v = 	(u � (	v)) is a negative fuzzy
number. If u is negative and v is positive then u � v = 	((	u) � v) is a negative fuzzy

number. If u and v are negative then u� v = (	u)� (	v) is a positive fuzzy number.
If u is positive and v is negative:

(u� v)� = A

 
u�v1 + u1v�

�u1v1; u�v1 + u1v� � u1v1

!
If u is negative and v is positive:

(u� v)� = A

 
u�v1 + u1v�

�u1v1; u�v1 + u1v� � u1v1

!
If u and v are negative:

(u� v)� = A

 
u�v1 + u1v�

�u1v1; u�v1 + u1v� � u1v1

!

When the parameters in the linear-in-parameter model (3.3), (3.4) or (3.5) are fuzzy

number, (3.3), (3.4) and (3.5) become fuzzy equations. For the uncertain nonlinear system

(3.1), we use the following two types of fuzzy equations to model it

yk = a1f1(xk)� a2f2(xk)� :::� anfn(xk) (3.19)

or

a1f1(xk)� a2f2(xk)� :::� anfn(xk) = b1g1(xk)� b2g2(xk)� :::� bmgm(xk)� yk (3.20)

Because ai and bi are fuzzy numbers, we use the fuzzy operation �: (3.20) has more general
form than (3.19), it is called dual fuzzy equation.

In a special case, fi(xk) has polynomial form,

yk = a1xk � :::� anx
n
k (3.21)

or

a1xk � :::� anx
n
k = b1xk � :::� bnx

n
k � yk (3.22)
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(3.21) is called fuzzy polynomial and (3.22) is called dual fuzzy polynomial.

Modeling with fuzzy equation (or fuzzy polynomial) can be regarded as fuzzy interpola-

tion. We use the the polynomial fuzzy equation (3.21) or dual polynomial fuzzy equation

(3.22) to model a nonlinear function

zk = f(xk) (3.23)

The object is to minimize error between the two output yk and zk: Since yk is a fuzzy number

and zk is a crisp number, we use the maximum of all points as the modeling error

max
k
jyk � zkj = max

k
jyk � f(xk)j = max

k
j�kj (3.24)

where yk = F (a (k) ; b (k) ; c (k)) ; �k = F (�1; �2; �3) ; which are de�ned in (3.8). From the

de�nition of the absolute value of a triangular fuzzy number (3.18),

maxk j�kj = maxk

"
ja (k)� f(xk)j

+jb (k)� f(xk)j+ jc (k)� f(xk)j

#
�1 = maxk ja (k)� f(xk)j
�2 = maxk fb (k) + f(xk)g
�3 = maxk fc (k) + f(xk)g

(3.25)

The modelling problem (3.24) is to �nd a (k) ; b (k) ; and c (k) ; such that

min
ak;bk;ck

n
max
k
j�kj

o
= min

ak;bk;ck

n
max
k
jyk � f(xk)j

o
(3.26)

From (3.25)

�1 � ja (k)� f(xk)j; �2 � b (k) + f(xk); �3 � c (k) + f(xk)

(3.26) can be solved by the linear programming method regarded to fuzzy polynomial,8>><>>:
min �1

subject:
�1 +

Pn
j=0 ajx

j
k � f(xk)

�1 �
Pn

j=0 ajx
j
k � �f(xk)

(3.27)
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8>><>>:
min �2

subject:
�2 �

Pn
j=0 ajx

j
k � f(xk)

�2 � 0
(3.28)

8>><>>:
min �3

subject:
�3 �

Pn
j=0 �ajx

j
k � f(xk)

�3 � 0
(3.29)

Also, (3.26) can be solved by the linear programming method regarded to dual fuzzy poly-

nomial, 8>><>>:
min �1

subject:
�1 +

Pn
j=0 ajx

j
k 	

Pn
j=0 bjx

j
k � f(xk)

�1 � f
Pn

j=0 ajx
j
k 	

Pn
j=0 bjx

j
kg � �f(xk)

(3.30)

8>><>>:
min �2

subject:
�2 �

hPn
j=0 ajx

j
k 	

Pn
j=0 bjx

j
k

i
� f(xk)

�2 � 0
(3.31)

8>><>>:
min �3

subject:
�3 �

hPn
j=0 �ajx

j
k 	

Pn
j=0
�bjx

j
k

i
� f(xk)

�3 � 0
(3.32)

where aj; bj; �aj and �bj are de�ned as in (3.11). In this way, the best approximation of f(xk)

at point xk is yk = F (ak; bk; ck). The approximation error of �k is minimized.

In this chapter, we use fuzzy equation (3.19) and dual fuzzy equation (3.20) to model

the uncertain nonlinear system (3.1), such that the output of the plant yk can follow desired

output y�k;

min
ak
kyk � y�kk (3.33)

This modeling object can be considered as: �nding ak for the following fuzzy equation

y�k = a1f1(xk)� a2f2(xk)� :::� anfn(xk) (3.34)

where xk = [yTk�1; y
T
k�2; � � �uTk ; uTk�1; � � � ]T :
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Figure 3.1: Fuzzy equation in the form of a neural network

The controller design process is to �nd uk; such that the output of the plant yk can follow

desired output y�k; or the trajectory tracking error is minimized

min
uk
kyk � y�kk (3.35)

This control object can be considered as: �nding a solution uk for the following dual

fuzzy equation

a1f1(xk)� a2f2(xk)� :::� anfn(xk) = b1g1(xk)� b2g2(xk)� :::� bmgm(xk)� y�k (3.36)

3.1.1 Fuzzy parameter estimation with neural networks

We design a neural network to represent the fuzzy equation (3.19), see Figure 3.1. The input

to the neural network is x (k) ; the output is the fuzzy number ŷk: The weights are ai: The

objective is to �nd suitable weight ai such that the output of the neural network ŷk converges

to the desired output y�k:

In order to simplify the operation of the neural network, we use the triangular fuzzy

number (3.8). The input fuzzy number xk is �rst applied to �-level as in (3.10)

[xk]
� = A

�
xk
�; xk

�
�

k = 0 � � �N (3.37)
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Then we have

[Oj]
� = A(fj(xk)

�; fj(xk)
a j = 1 � � �n (3.38)

The output of the neural network is

[ŷk]
� = Af

P
j�M Oj

�aj
� +

P
j�C Oj

�
aj
�

+a0
�;
P

j�M 0 Oj
�
aj
� +

P
j�C 0 Oj

�aj
� + a0

�g
(3.39)

where M = fjj aj� � 0g, C = fjj aj� < 0g, M 0 = fjj aj� � 0g, C 0 = fjj aj� < 0g.
In order to train the weights, we need to de�ne a cost function for the fuzzy numbers.

The training error is

ek = y�k � ŷk

where [y�k]
� = A

�
y�k
�; y�k

�
�
; [ŷk]

� = A
�
ŷk
�; ŷk

�
�
; [ek]

� = A
�
ek
�; ek

�
�
: The cost function is

de�ned as
Jk = J� + J

�

J� = 1
2

�
y�k
� � ŷk

�
�2

J
�
= 1

2

�
y�k
� � ŷk

�
�2 (3.40)

Obviously, Jk ! 0 means [ŷk]
� ! [y�k]

� :

Now we use gradient method to train the weight aj =
�
a1j ; a

2
j ; a

3
j

�
de�ned in (3.8); or arj ;

r = 1; 2; 3. We calculate @Jk
@arj

as

@Jk
@arj

=
@J�

@arj
+
@J

�

@arj

By the chain rule
@J�

@arj
=

@J�

@ŷk
�

@ŷk
�

@aj�

@aj
�

@arj
=
�
y�k
� � ŷk

�
�
�

where j = 0, and
@J�

@arj
= @J�

@ŷk
�

@ŷk
�

@aj�
@aj

�

@arj

=
�
y�k
� � ŷk

�
�( Oj

��; aj
� � 0

Oj
�
�; aj

� < 0
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where j = 1; :::; n and � =

8>><>>:
1� � r = 1

� r = 2

0 r = 3

; also we have

@J
�

@arj
=

@J
�

@ŷk
�

@ŷk
�

@aj
�

@aj
�

@arj
=
�
y�k
� � ŷk

�
�
�1

where j = 0; and
@J

�

@arj
= @J

�

@ŷk
�
@ŷk

�

@aj�
@aj

�

@arj

=
�
y�k
� � ŷk

�
�( Oj

�
�1; aj

� � 0
Oj

��1; aj
� < 0

where j = 1; :::; n and �1 =

8>><>>:
0 r = 1

� r = 2

1� � r = 3

:

The coe¢ cient aj is updated as

arj (k + 1) = arj (k)� �
@Jk
@arj

(3.41)

where r = 1; 2; 3; � is the training rate � > 0: In order to increase training process, we add

a momentum term as

arj (k + 1) = arj (k)� �
@Jk
@arj

+ 
�
arj (k)� arj (k � 1)

�
(3.42)

where  > 0:

3.1.2 Upper bounds of the modeling errors

In this part, we extend some well known approximation theories into fuzzy equation model-

ing. We �rst de�ne the modelling error in the sense of fuzzy number.

De�nition 3.9 The distance between two fuzzy numbers, u; v 2 E; is de�ned as the Haus-
dor¤ metric dH(u; v),

dH(u; v) = maxfsup
x2u

inf
y2v
jx� yj; sup

y2v
inf
x2u
jx� yjg (3.43)
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Lemma 3.1 If � � E is a compact set, then � is uniformly support-bounded, i.e. there is a

compact set U � <, such that 8u 2 �,

Supp(u) � U:

Lemma 3.2 Let u; v 2 E, and � 2 (0; 1], � 2 (0;+1], then we have: (i) if f : < ! < is

continuous, [f(u)]� = f([u�]) holds; (ii) if f : < ! < is continuous, then f(Supp(u)) =

Supp(f(u)).

Proof. We need to only prove (ii) since (i) comes from [216]. At �rst, we demonstrate

f(A) = f(A) for A � <. In fact, since f(A) � f(A), and f(A) is closed by the continuity of

f , hence f(A) � f(A). On the other hand, for arbitrarily given y 2 f(A), there is a sequence
fxnjn 2 Ng � <, and a x 2 <, such that xn ! x (n ! +1), y = f(x). The continuity of

f implies limn!+1f(xn) = f(x) = y. But f(xn) 2 f(A), so y 2 f(A). Hence f(A) � f(A).

Thus f(A) = f(A).

Considering
Supp(f(u)) = fy 2 <jf(u)(y) > 0g
f(Supp(u)) = f

�
fx 2 <ju(x) > 0g

�
we obtain the fact that

f(Supp(u)) = f(fx 2 <ju(x) > 0g) = ff(x) 2 <ju(x) > 0g

holds. Since it may be easily proved that fy 2 <jf(u)(y) > 0g = ff(x)ju(x) > 0g. Therefore,

Supp(f(u)) = f(Supp(u))

which implies the lemma.

Lemma 3.3 Let B � < be a compact set, and f; g be continuous on B; h > 0, moreover

8x 2 B; jf(x)� g(x)j < h (3.44)

Then for each compact set B1 � B, we have jsupx2B1f(x)�supx2B1g(x)j < h:
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Proof. Because of the facts that B1 is a compact set and f; g are continuous on B1, then

there are x0 2 B1, y0 2 B1, such that

f(x0) = sup
x2B1

f(x); g(y0) = sup
x2B1

g(x)

Supposing jf(x0)� g(y0)j � h, we have

f(x0)� g(y0) � �h; or f(x0)� g(y0) � h (3.45)

In the �rst case (3.45), because f(y0) � f(x0),

f(y0)� g(y0) � f(x0)� g(y0) � �h) jf(y0)� g(y0)j � h

holds, which contradicts (3.44). In the second case (3.45), since g(x0) � g(y0), we obtain

f(x0)� g(x0) � f(x0)� g(y0) � h) jf(x0)� g(x0)j � h

which also contradicts (3.62). Therefore, (3.44) is not true, hence �h < f(x0)� g(y0) < h,

so jf(x0)� g(x0)j < h, i.e. j supx2B1 f(x)� supx2B1 g(x)j < h. The proof is completed.

Theorem 3.1 Let f : < ! < be a continuous function, then for each compact set � � E0

(the set of all the bounded fuzzy set), and  > 0, there are n 2 N , and a0; ai 2 E0; i =

1; 2; :::; n, such that

8x 2 � and 8~x 2 <; d(f(~x);
nX
i=1

fi(x)ai + a0) <  (3.46)

where  is a �nite number.

Proof. The proof of Theorem can be followed from the below results.

If the function f : < ! <, we can extend f by the extension principle to the fuzzy
function which is also written as f : E0 ! E as follows:

8u 2 E0; f(u)(y) =
_

f(x)=y

fu(x)g y 2 < (3.47)
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f is called the extended function. Moreover, cc(<) stands for the set of bounded closed
intervals of <. Obviously

u 2 E0 =) 8� 2 (0; 1]; [u]� 2 cc(<) (3.48)

Moreover

Supp(u) 2 cc(<) (3.49)

So from now on, we suppose

Supp(u) = [s1(u); s2(u)] (3.50)

Theorem 3.2 Let f : < ! < be a continuous function, then for each compact set � � E0,

% > 0 and arbitrary " > 0, there are n 2 N , and a0; ai 2 E0; i = 1; 2; :::; n, such that

8x 2 �; d(f(x);
nX
i=1

fi(x)ai + a0) < % (3.51)

where % is a �nite number. The lower and the upper limits of the �-level set of fuzzy

function diminish to %, but the center goes to ".

Proof. Because � � E0 is a compact set, hence by Lemma 3.4, we let U � < be the
compact set corresponding to �. 8" > 0, by the conclusions in [69], there are n 2 N , and

a0; ai 2 <; i = 1; 2; :::; n, such that

8x 2 U; jf(x)�
nX
i=1

fi(x)ai + a0j < " (3.52)

holds. Let g(x) =
Pn

i=1 fi(x)ai + a0; x 2 <, then

8x 2 U; jf(x)� g(x)j < " (3.53)

By Theorem 3.5, we imply (3.51) holds.

Theorem 3.3 Supposing � � E0 is compact, U the corresponding compact set of �, and

f; g : < ! < are the continuous functions which satisfy the condition that for given h > 0,

8x 2 U; jf(x)� g(x)j < h (3.54)

holds. Then 8u 2 �; d(f(u)� g(u)) � h.
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Proof. Let u 2 E and � 2 (0; 1]. Because f; g are continuous, hence [f(u)]� = f([u�]),

[g(u)]� = g([u�]) holds by Lemma 3.5. Therefore, we obtain the following facts by the

conclusions from [178],

dH([f(u)]
� � [g(u)]�) = dH(f([u

�])� g([u�])) = sup
jpj=1

fjs(p; f([u�]))� s(p; g([u�]))jg (3.55)

Because for p 2 <: jpj = 1, we have

js(p; f([u�])� s(p; g([u�]))j = j supfpyjy 2 f([u�])g � supfpyjy 2 g([u�])gj
= j supfpf(x)jx 2 [u]�g � supfpg(x)jx 2 [u]�gj

(3.56)

holds. And considering the conditions in the theorem, we obtain

8x 2 [u]�; jpf(x)� pg(x)j = jf(x)� g(x)j < h (3.57)

Therefore, by (3.55), (3.56) and Lemma 3.6, the following

8� 2 (0; 1]; dH([f(u)]
�; [g(u)]�) < h) d(f(u); g(u)) = sup

�2(0;1]
fdH([f(u)]�; [g(u)]�)g � h

(3.58)

holds, which proves the theorem.

Arbitrary given u 2 E, and � 2 (0; 1]. Because f; g are continuous, hence [f(u)]� =
f([u�]), [g(u)]� = g([u�]) holds by Lemma 3.5. Therefore, we obtain the following facts by

the conclusions from [178],

dH([f(u)]
� � [g(u)]�) = dH(f([u

�])� g([u�])) = sup
jpj=1

fjs(p; f([u�]))� s(p; g([u�]))jg (3.59)

Because for p 2 <: jpj = 1, we have

js(p; f([u�])� s(p; g([u�]))j = j supfpyjy 2 f([u�])g � supfpyjy 2 g([u�])gj
= j supfpf(x)jx 2 [u]�g � supfpg(x)jx 2 [u]�gj

(3.60)

holds. And considering the conditions in the theorem, we obtain

8x 2 [u]�; jpf(x)� pg(x)j = jf(x)� g(x)j < h (3.61)
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Therefore, by (3.55), (3.56) and Lemma 3.6, the following

8� 2 (0; 1]; dH([f(u)]
�; [g(u)]�) < h) d(f(u); g(u)) = sup

�2(0;1]
fdH([f(u)]�; [g(u)]�)g � h

(3.62)

holds, which proves the theorem.

3.2 Fuzzy controller design

There are not analytical solution for the dual fuzzy equation (3.36). Here, we use neural

networks to approximate the solution (control). In order to use neural networks to approxi-

mate the solution of the dual fuzzy equation (3.36), we �rst need to transform it into normal

fuzzy equation as (3.19).

Generally, the inverse element for an arbitrary fuzzy number u 2 E does not exist , i.e.,

there is not v 2 E; such that
u� v = 0

In other word,

u� (	u) 6= 0

So (3.36) cannot be

a1f1(xk)� :::� anfn(xk)	 b1g1(xk)	 :::	 bmgm(xk) = y�k

[a1 	 b1] f1(xk)� [a2 	 b2] f2(xk)� ::: = y�k

Here we use the � operation. We add �bigi(x); and apply �� on the both sides of (3.36)

a1f1(xk)� :::� anfn(xk)� f[b1g1(x)� :::� bmgm(x)]� �g
= b1g1(xk)� :::� bmgm(xk)� f[b1g1(x)� :::� bmgm(x)]� �g � y�k

(3.63)

When � = 1, by the de�nition of �; (3.63) is

a1f1(x)� :::� anfn(x)	 b1g1(x)	 :::	 bmgm(x) = y�k (3.64)
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Figure 3.2: Dual fuzzy equation in the form of neural network (NN)

We design a neural network to represent the fuzzy equation (3.64), see Figure 3.2. The

input to the neural network is the fuzzy numbers ai and bi; the output of the fuzzy number

is yk: The weights are fi (x) and gj (x) :

The objective is to �nd suitable weight x (solution) such that the output of the neural

network ŷk converges to the desired output y�k: In the control point of view, we want to �nd

a controller uk which is a function of x; such that the output of the plant (3.1) yk (crisp

value) approximate the fuzzy number y�k:

In order to simplify the operation of the neural network as in Figure 3.2, we use the

triangular fuzzy number (3.8). The input fuzzy numbers ai and bi are �rst applied to �-level

as in (3.10)

[ai]
� = A (a�i ; a

�
i ) i = 1 � � �n

[bj]
� = A

�
b�i ; b

�

i

�
j = 1 � � �m

(3.65)

Then they are multiplied by the weights fi (x) and gj (x) ; and summarized according to

(3.13)

[Of ]
� = A

 P
i�Mf

fi (x) ai
� +

P
i�Cf

fi (x) ai
�;P

i�Cf
fi (x) ai

�;
P

i�Mf
fi (x) ai

�

!

[Og]
� = A

 P
j�Mg

gj (x) bj
� +

P
j�Cg

gj (x) bj
�
;P

j�Cg
gj (x) bj

�
;
P

j�Mg
gj (x) bj

�

! (3.66)
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where Mf = fijfi (x) � 0g, Cf = fijfi (x) < 0g; Mg = fjjgj (x) � 0g, Cg = fjjgj (x) < 0g:
The output of the neural network is

[ŷk]
� = A

�
Of

� �Og
�; Of

� �Og
�
�

(3.67)

In order to train the weights, we need to de�ne a cost function for the fuzzy numbers.

The training error is

ek = y�k 	 ŷk

where [y�k]
� = A

�
y�k
�; y�k

�
�
; [ŷk]

� = A
�
ŷk
�; ŷk

�
�
; [ek]

� = A
�
ek
�; ek

�
�
: The cost function is

de�ned as
Jk = J� + J

�

J� = 1
2

�
y�k
� � ŷk

�
�2

J
�
= 1

2

�
y�k
� � ŷk

�
�2 (3.68)

Obviously, Jk ! 0 means [ŷk]
� ! [y�k]

� :

Remark 3.1 A main advantage of the least mean square index (3.68) is that it has a self-

correcting feature which permits to operate for arbitrarily long period without deviating from

its constraints. The corresponding gradient algorithm is susceptible to cumulative round o¤

errors and is suitable for long runs without an additional error-correction procedure. It is

more robust in statistics, identi�cation and signal processing [199].

Now we use gradient method to train the weights fi (x) and gj (x). The solution x0 is

the functions of fi (x) and gj (x) : We calculate
@Jk
@x0

as

@Jk
@x0

=
@J�

@x0
+
@J

�

@x0

By the chain rule

@J�

@x0
= @J�

@ŷk
�

@ŷk
�

@Of
�

P @Of
�

@fi(x)
@fi(x)
@x0

+ @e�

@ŷk
�

@ŷk
�

@Og�

P @Og�

@gj(x)

@gj(x)

@x0

@J
�

@x0
= @J�

@ŷk
�
@ŷk

�

@Of
�

P @Of
�

@fi(x)
@fi(x)
@x0

+ @ek
�

@ŷk
�
@ŷk

�

@Of
�

P @Of
�

@gj(x)

@gj(x)

@x0
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If f 0i and g
0
j are positive

@J�

@x0
=
Pn

i=1�
�
y�k
� � ŷk

�
�
a�i f

0
i +
Pm

j=1

�
y�k
� � ŷk

�
�
b�j g

0
j

@J
�

@x0
=
Pn

i=1�
�
y�k
� � ŷk

�
�
ai
�f 0i +

Pm
j=1

�
y�k
� � ŷk

�
�
bj
�
g0j

Otherwise
@J�

@x0
=
Pn

i=1�
�
y�k
� � ŷk

�
�
ai
�f 0i +

Pm
j=1

�
y�k
� � ŷk

�
�
bj
�
g0j

@J
�

@x0
=
Pn

i=1�
�
y�k
� � ŷk

�
�
a�i f

0
i +
Pm

j=1

�
y�k
� � ŷk

�
�
b�j g

0
j

The solution x0 is updated as

x0 (k + 1) = x0 (k)� �
@Jk
@x0

where � is the training rate � > 0: In order to increase training process, we add a momentum

term as

x0 (k + 1) = x0 (k)� �
@Jk
@x0

+  [x0 (k)� x0 (k � 1)]

where  > 0:

After x0 is updated, it should be substituted to the weights fi (x0) and gj (x0).

The solution of the dual fuzzy equation (3.36) can be also approximated by another type

of neural network, see Figure 3.3. Here the inputs are the nonlinear functions fi (x) and

gj (x) ; the weights are the fuzzy number ai and bj:We use the training error ek to update x.

The input is a crisp number x (k) : The nonlinear operations fi (x) and gj (x), Of and Og
are the same as (3.66). The output of this neural network is the same as (3.67).

The di¤erent between the networks of Figure 3.2 (NN) and Figure 3.3 (FNN) are: FNN

does not change weights, it is an autonomous system. NN is a standard neural network.

FNN is more robust than NN, and we can use bigger training rate � in FNN.

3.2.1 Controllability of uncertain nonlinear systems via dual fuzzy

equations

Since the control object is to �nd a uk for the dual fuzzy equation (3.36), the controllability

problem occurs if the dual fuzzy equation has solution. In order to show the existence of the

solution of (3.36), we need the following lemmas
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Figure 3.3: Dual fuzzy equation in the form of feedback neural network (FNN)

Lemma 3.4 If the dual fuzzy equation (3.36) has a crisp solution uk; then�
\nj=1domain [fj (x)]

	
\
�
\mj=1domain [gj (x)]

	
6= � (3.69)

Proof. Let u0 2 < be a solution of (3.36), the dual fuzzy equation becomes

a1f1(u0)� :::� anfn(u0) = b1g1(u0)� :::� bmgm(u0)� y�k

Since fj(u0) and gj(u0) exist, u0 2domain[fj (x)] ; u0 2domain[gj (x)]. Consequently, it can
be concluded that u0 2 \nj=1domain[fj (x)] = D1; and u0 2 \mj=1domain[gj (x)] = D2. So

there exists u0; such that u0 2 D1 \D2 6= �.

Obviously, the necessary condition for the existence of the solution of (3.36) is (3.69).

Assume two fuzzy numbers m0; n0 2 E, m0 < n0. De�ne a set K (x) = fx 2 E;m0 �
x � n0g; and an operator S : K ! K; such that

S (m0) � m0; S (n0) � n0 (3.70)

here S is condensing and continuous, it is bounded as S(z) < r(z); z � K and r(z) > 0:

r(Z) can be regarded as the measure of z:
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Lemma 3.5 If we de�ne ni = S (ni�1) and mi = S (mi�1), i = 1; 2; :::, the upper and lower

bounds of S are �s and s, then

�s = lim
i!+1

ni; s = lim
i!+1

mi; (3.71)

and

m0 � m1 � ::: � mn � ::: � nn � ::: � n1 � n0: (3.72)

The proof of this lemma is directly, see [63].

If there exists a �xed point x0 in K, the successive iterates xi = S (xi�1) ; i = 1; 2; ::: will

converge to x0, i.e., the distance (3.17) limi!1 d(xi; x0) = 0.

Theorem 3.4 If the fuzzy numbers ai and bj (i = 1 � � �n; j = 1 � � �m) in (3.36) satisfy the
Lipschitz condition (3.12)

jdM(ai)� dM(ak)j � H jai � akj
jdU(ai)� dU(ak)j � H jai � akj
jdM(bi)� dM(bk)j � H jbi � bkj
jdU(bi)� dU(bk)j � H jbi � bkj

(3.73)

where k = 1 � � �n; dM and dU are de�ned in (3.12), the upper bounds of fi and gj are jfij � �f;

jgjj � �g; then the dual fuzzy equation (3.36) has a solution u which is in the following set

KH =

(
u 2 E; ju�1 � u�2 j

�
�
n �f +m�g

�
H j�1 � �2j

)
(3.74)

Proof. Because the fuzzy numbers ai and bj in (3.36) are linear-in-parameter, from the

de�nition (3.12) and the property (3.16)

dM(�) = a1M(�)f1(x)� :::� anM(�)fn(x)	 b1M(�)g1(x)	 :::	 bmM(�)gm(x)
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So
jdM(�)� dM(')j = jf1(x)j j a1M(�)	 a1M(') j
+ � � �+ jfn(x)j janM(�)	 anM(')j
+ jg1(x)j jb1M(�)	 b1M(')j
+ � � �+ jgm(x)j jbmM(�)	 bmM(')j

(3.75)

By the Lipschitz condition (3.12), (3.75) is

jdM(�)� dM(')j � �fH
Pn

i=1 j�� 'j+ �gH
Pn

i=1 j�� 'j =
�
n �f +m�g

�
H j�� 'j

Similarly, the upper bounds satisfy

jdU(�)� dU(')j �
�
n �f +m�g

�
H j�� 'j

Since the lower bound jdM(�)� dM(')j � 0; by Lemma 3.2 the solution is in KH which is

de�ned in (3.74).

The following theorem uses linear the programming conditions (3.30)-(3.32) to show the

controllability conditions of the dual polynomial fuzzy equation (3.22).

Lemma 3.6 If the data number m and the order the polynomial n in (3.22) satisfy

m � 2n+ 1 (3.76)

where k = 1 � � �m; then the solutions of (3.31) and (3.32) are �2 = �3 = 0.

Proof. Because
nX
j=0

ajx
j
k 	

nX
j=0

bjx
j
k � �f(xk) (3.77)

i = 1; 2; :::;m: We choose 2n+ 1 points for xk, and the interpolating the dual polynomial

b (k) =
nX
j=0

ajx
j
k 	

nX
j=0

bjx
j
k (3.78)

If h = maxkfb (k) + f(xk)g and h > 0; then we can change the dual polynomial (3.22) into
a new dual polynomial b (k) � h. This new dual polynomial satis�es (3.77). Because the

feasible point of (3.31) �2 � 0; it must be zero. Similar result can be obtained for (3.32).
Both f(xk) and xk are crisp. If the data number is k = 1 � � �n; there exists solution for

the polynomial approximation [148]. Because b (k) and c (k) ; (3.30) has a solution.
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Theorem 3.5 If the data number is big enough as (3.76), and the dual polynomial fuzzy

equation (3.22) satis�es

D [h (xk1; uk1) ; h (xk2; uk2)] � lD [uk1; uk2] (3.79)

where 0 < l < 1; h (�) represents a dual polynomial fuzzy equation,

h (xk1; uk1) : a1xk1 � :::� anx
n
k1 = b1xk1 � :::� bnx

n
k1 � yk1 (3.80)

D [u; v] is the Hausdor¤ distance [197],

D [u; v] = max

�
sup
x2u

inf
y2v

d (x; y) ; sup
x2v

inf
y2u

d (x; y)

�
d (x; y) is the distance de�ned in (3.17), then (3.22) has a unique solution u.

Proof. From Lemma 3.2 we know, there are solutions for (3.30)-(3.32), if there are many

data which satisfy (3.76). Without loss of generality, we assume the solutions for (3.30)-(3.32)

are at xk = 0; which corresponds to u0: (3.79) means h (�) in (3.80) is continuous. If we choose
a � > 0 such that D [yk; u0] � �; then

D [h(xk; u0); u0] � (1� l)�

Here h(0; u0) = u0: Now we select x near 0; xk 2 [0; c]; c > 0; and de�ne

C0 : � = sup
xk2[0;c]

D [yk1 ; yk2 ]

Let fykmg be a sequence in C0; for any " > 0; we can �nd N0(") such that � < ", m;n � N0.

So ykm �! yk for xk 2 [0; c]. Furthermore

D [yk; u0] � D [yk; ykm ] +D [ykm ; u0] < "+ � (3.81)

for all x 2 [0; c]; m � N0("): Since " > 0 is arbitrary small,

D [yk; u0] � � (3.82)
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for all x 2 [0; c]. We now show that yk is continuous at x0 = 0. Given � > 0, there exists

�1 > 0 such that

D [yk; u0] � D [yk; ykm ] +D [ykm ; u0] � "+ �1

for every m � N0("); by (3.82), whenever jx�x0j < �1, yk is continuous at x0 = 0. So (3.22)

has a unique solution u0.

The necessary condition for the controllability (existence of solution) of the dual fuzzy

equation (3.36) is (3.69), the su¢ cient condition of the controllability is (3.73). For most

of membership functions such as the triangular function (3.8) and the trapezoidal function

(3.9), the Lipschitz condition (3.73) is satis�ed. They are controllable.

3.3 Simulations

In this section, we use several real applications to show how to use the dual fuzzy equation

to design fuzzy controller.

Example 3.1 (A chemistry process) A chemical reaction is to use the poly ethylene

(PE) and poly propylene (PP) to generate a desired substance (DS). If the cost of the mate-

rial is de�ned as x; the cost PE is x and the cost of PP is x2: The weights of PE and PP are

uncertain, which satisfy the triangle function (3.8). We want to product two types DS. If we

wish the cost between them are F (3:5; 4; 5) = y�; what is the cost x ? The weights of PE are

F (2:5; 3; 3:25) = a1 and F (0:75; 1; 1:25) = b1: The weights of PP are F (1:75; 2; 2:5) = a2 and

(1:75; 2; 2:5) = b2: The above relation can be modeled by the following dual fuzzy equation

(2:5; 3; 3:25)x� (1:75; 2; 2:5)x2

= (0:75; 1; 1:25)x� (1:75; 2; 2:5)x2 � (3:5; 4; 5)

Here f1 (x) = g1 (x) = x; f2 (x) = g2 (x) = x2:We use NN and FNN shown in Figure 3.2 and

Figure 3.3 to approximate the solution x: The learning rates for them are the same � = 0:02:

The results are shown in Table 1. The exact solution is x0 = 2: The neural networks start

from x(0) = 4: Both neural networks converge to the real solution. The error jx̂� x0j between
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Figure 3.4: The error between the approximate solution and the exact solution

the approximate solution x̂ and the exact solution x0 is shown in Figure 3.4.

Table 1. Comparison results of two types of neural networks

k x (k) with NN k x (k) with FNN

1 3:8377 1 3:7970

2 3:6105 2 3:3090

3 3:3435 3 2:9567
...

...
...

...

38 2:0053 26 2:0080

39 2:0044 27 2:0053

40 2:0036 28 2:0034

Example 3.2 (Heat source by insulating materials) Heat source is in the center of the

insulating materials. The thickness of the materials are not exact, which satisfy the trape-

zoidal function (3.9),

A = F (0:12; 0:14; 0:15; 0:18) = a1

B = F (0:08; 0:1; 0:2; 0:5) = a2

C = F (0:09; 0:1; 0:2; 0:4) = b1

D = F (0:02; 0:03; 0:05; 0:08) = b2
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A B C D R

AK BK CK
DK

Figure 3.5: Heat source by insulating materials

see Figure 3.5. The conductivity coe¢ cient of these materials are KA = ex = f1, KB =

x
p
x = f2, KC = x2 = g1, KD = xsin(�x

8
) = g2, here x is the elapsed time. The object

of the example is to �nd the time when the thermal resistance at the right side arrives

R = F (0:00415; 0:00428; 0:00569; 0:03187) = y�. The thermal balance is [100]:

A

KA

� B

KB

=
C

KC

� D

KD

�R

The exact solution is x = 3 [100]. The maximum learning rate of NN as Figure 3.2 is

� = 0:005: The maximum learning rate of FNN as Figure 3.3 is � = 0:1: The approximation

results are shown in Table 2. FNN is faster and more robust than NN.

Table 2. Comparison results of two types of neural networks

k x (k) with NN k x (k) with FNN

1 0:6251 1 0:7250

2 1:0542 2 1:1060

3 1:3321 3 1:5042
...

...
...

...

39 2:9899 10 2:9931

40 2:9922 11 2:9959

41 2:9940 12 2:9974
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Figure 3.6: Water tank system

Example 3.3 (Water tank system) The water tank system has two inlet valves q1, q2,

and two outlet valves q3, q4; see Figure 3.6. The areas of the valves are uncertain as

the triangle function (3.8), A1 = F (0:023; 0:025; 0:026), A2 = F (0:01; 0:02; 0:04), A3 =

F (0:014; 0:015; 0:017), A4 = F (0:04; 0:06; 0:07): The velocities of the �ow (controlled by the

valves) are f1 = ( x10)e
x, f2 = xcos(�x), f3 = cos(�x

8
), f4 = x

2
. If we hope the outlet �ow is

q = (4:090; 6:338; 36:402) = y�, what is the control variable x: The mass balance of the tank

is [196]:

�A1f1 � �A2f2 = �A3f3 � �A4f4 � q

where � is the density of the water. The exact solution is x0 = 2 [196]. We use x (0) = 5,

� = 0:001;  = 0:001 for both NN and FNN. The error jx̂� x0j between the approximate
solution x̂ and the exact solution x0 is shown in Figure 3.7. For this example, both NN and

FNN work well.

Example 3.4 (Solid cylindrical rod) The deformation of a solid cylindrical rod depends

on the sti¤ness E; the forces on it F; the positions of the forces L; and the diameter of the

rod d [201]; see Figure 3.8. The positions are not exact, they satisfy the trapezoidal func-

tion (3.9). L1 = F (0:3; 0:4; 0:6; 0:7); L2 = F (0:5; 0:7; 0:8; 0:9); L3 = F (0:5; 0:7; 0:8; 0:9):

The area of the rod is A = �
4
d2: The external forces are the function of x; F1 = x7;

F2 = x6
p
x; F3 = e2x [45]. We want the desired deformation at the point N be N� =

F (0:000673; 0:000931; 0:001164; 0:001310) as in (3.9). what is the amount of control force,
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Figure 3.7: The error between the approximate solution and the exact solution

L1

N(a)
F1F2B

A M

L2

d

N(b)
C M

F3

L3

d

Figure 3.8: Two solid cylindrical rods

which should be applied? According to the tension relations [45]

L1F1
AE

� L2(F1 + F2)

AE
=
L3F3
AE

�N�

where d = 0:02; E = 70� 109: The exact solution is x = 4:
We use x (0) = 7, � = 0:002;  = 0:002 for both NN and FNN. The error jx̂� x0j

between the approximate solution x̂ and the exact solution x0 is shown in Figure 3.9. For

this example, both NN and FNN work well. FNN is little better than NN.

Example 3.5 (Water Channel system) The water in the pipe d1 is divided into three

pipes d2, d3, d4, see Figure 3.10. The areas of the pipes are uncertain, they satisfy the
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Figure 3.9: The error between the approximate solution and the exact solution

trapezoidal function (3.9). A1 = F (0:4; 0:6; 0:7; 0:8), A2 = F (0:05; 0:1; 0:2; 0:4), A3 =

F (0:03; 0:08; 0:1; 0:2): The water velocities in the pipes are controlled by the valves para-

meter x; v1 = x3, v2 = ex

2
, v3 = x [196]. The control object is to let the �ow in pipe d4;

which is

Q = F (10:207861; 14:955723; 16:591446; 16:982892)

what is the valve control parameter x: By mass balance

A1v1 = A2v2 � A3v3 �Q

The exact solution is x = 3 [196]. The maximum learning rate of NN as Figure 3.2 is

� = 0:001: The maximum learning rate of FNN as Figure 3.3 is � = 0:08: The approximation

results are shown in Table 3. The error jx̂� x0j between the approximate solution x̂ and the
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`
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A 2
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A 3

A 1

d1 V 1

d4

V 3

Q=cte

A 4

d3

Figure 3.10: Water Channel system

exact solution x0 is shown in Figure 3.11. FNN is faster and more robust than NN.

Table 3. Comparison results of two types of neural networks

k x (k) with NN k x (k) with FNN

1 5:9024 1 5:9226

2 5:7361 2 5:5341

3 5:5321 3 5:1234
...

...
...

...

77 3:0599 21 3:0162

78 3:0322 22 3:0131

79 3:0110 23 3:0086

Example 3.6 (Water tanks system) There are three tanks connected to a pipeline at a

constant H; see Figure 3.12. We want to pump water from one tank to the other two tanks.

This system satis�es the following relation

H = A0 � A1Q� A2Q
2 � A3Q

3
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Figure 3.11: The error between the approximate solution and the exact solution

where Q is the quantity of �ow, H is the height of the pipe, A0, A1, A2, and A3 are the

characteristic coe¢ cients of the the pump., they are

A0 = (1; 5; 8); A1 = (3; 7; 8); A2 = (1; 2; 4); A3 = (1; 3; 4)

We have the following 4 real uncertain data

Q = f2; (2; 4; 5); (3; 5; 6; 7); (1; 2; 4)g

where (2; 4; 5) and (1; 2; 4) satisfy the triangle function (3.8), (3; 5; 6; 7) is the trapezoidal

function (3.9), 2 is a crisp number.

H = f(19; 51; 72); (19; 257; 648); (46; 465; 767; 1632); (6; 51; 360)g

Now we use a neural network to approximate A0, A1, A2, and A3: The results are shown in
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J

1

2

3

P

Figure 3.12: Pumping water from one tank to the other two tanks

Table 4.

Table 4. Neural network approximation for the coe¢ cients

k Â0 Â1

1 (3:9; 7:9; 10:9) (5:9; 9:8; 10:9)

2 (3:7; 7:7; 10:6) (5:7; 9:6; 10:7)
...

...
...

75 (1:0; 5:0; 8:0) (3:0; 7:0; 8:0)

k

1

2
...

75

Â2 Â3

(2:91; 3:9; 5:9) (3:9; 5:9; 6:9)

(2:7; 3:71; 5:8) (3:7; 5:7; 6:8)
...

...

(1:0; 2:0; 4:0) (1:0; 3:0; 4:0)

Example 3.7 (Heat source by insulating materials) Heat source is in the left of the

insulating materials, see Figure 3.13. The conductivity coe¢ cient of these materials are

KA = ex = f1, KB = x
p
x = f2, KC = x2 = g1, KD = xsin(�x

8
) = g2, here x is the elapsed

time. The thermal balance is [100]:

R =
A

KA

� B

KB

� C

KC

� D

KD
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A B C D R

AK
BK CK

DK

Figure 3.13: Heat source by insulating materials

Three types of variable x satisfy the triangle function (3.8) and the trapezoidal function (3.9)

x = f(2; 3; 4); (3; 5; 6); (1; 3; 5; 7)g

The corresponding data related to R are

R = f(13; 43; 90); (24; 99; 180); (6; 43; 99; 237)g

The parameters satisfy

A = (3; 4; 6); B = (1; 4; 5); C = (2; 3; 4)

The approximation results are shown in Table 5.

Table 5. Neural network approximation for the coe¢ cients

t A B C

1 (5:8; 6:8; 8:8) (3:9; 6:9; 7:92) (3:9; 4:7; 5:9)

2 (5:7; 6:7; 8:6) (3:8; 6:8; 7:8) (3:8; 4:5; 5:8)

3 (5:6; 6:6; 8:5) (3:6; 6:6; 7:7) (3:6; 4:4; 5:6)
...

...
...

...

95 (3:0; 4:0; 6:0) (1:0; 4:0; 5:0) (2:0; 3:0; 4:0)
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3.4 Conclusions

In order to model uncertain nonlinear system, we use fuzzy equations and dual fuzzy equa-

tions, which are in the form of linear-in-parameter. The uncertainty is represented by fuzzy

numbers. We �rst prove that these fuzzy models have solutions under certain conditions.

These conditions are controllability of the fuzzy control algorithms. By some special fuzzy

operations, we transform the dual fuzzy equations into two types of neural networks. We

design modi�ed gradient descent algorithms to train the neural networks, such that the

solutions (fuzzy controllers) are estimated by the neural networks.

Since normal modeling methods cannot be applied for fuzzy number and fuzzy equation

directly, we transform the fuzzy equation into a neural network. Then we modify the gradient

descent method for fuzzy numbers updating, and propose a back-propagation learning rule for

fuzzy equations. The upper bounds of the fuzzy modeling errors are proven. We successfully

extend the approximation theory of crisp models to fuzzy equation model. The novel methods

are validated with some benchmark examples.



Chapter 4

Modeling with fuzzy di¤erential

equation

In this chapter, a new model based on Bernstein neural network is used, which has good

properties of Bernstein polynomial for FDE. The Bernstein polynomial has good uniform

approximation ability for continuous functions [70]. Also it has innumerable drawing proper-

ties, homogeneous shape-sustaining approximation, bona �de estimation, and low boundary

bias. A very important property of the Bernstein polynomial is that it generate a smooth

estimation for equal distance knots [68]. This property is suitable for FDE and PDE ap-

proximation.

Two types of neural networks are used: static and dynamic models, to approximate the

solutions of FDEs. These numerical methods use generalized di¤erentiability of FDEs. The

solutions of FDE is substituted into four ODEs. Then the corresponding Bernstein neural

networks are applied.

For solving the strongly degenerate parabolic and Burgers-Fisher equations a model using

neural networks is developed. A trial solution of this system is subdivided into two parts.

The initial and boundary conditions compensate the �rst part that contains no adjustable

parameters. The involvement of neural network containing adjustable parameters (weights

and biases) concludes the second part. A training technique is implemented for the training
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of the network which requires the calculation of the error gradient in consideration of the

network parameters. In order to maintain a continuation, a signi�cantly modi�ed methodol-

ogy is illustrated for solving a wave equation which is modeled on the basis of two patterned

Bernstein neural networks, static and dynamic models.

Some numerical examples are proposed to show the e¤ectiveness of the approximation

methods with the Bernstein neural networks.

4.1 Fuzzy modeling with fuzzy di¤erential equation

In reference to fuzzy or the case concerned to interval arithmetic, equation x = y � z is not

equivalent with the phase z = x 	 y = x � (�1)y or to y = x 	 z = x � (�1)z and this is
the major factor for introducing the following Hukuhara di¤erence (H-di¤erence) [131].

De�nition 4.1 (Hukuhara di¤erence) The de�nition of H-di¤erence is suggested by x	H
y = z () x = y� z; if x	H y exists, its �-level is [x	H y]� = [x�� y�; �x�� �y�]. Precisely,
x	H y = 0 but x	 y 6= 0.

De�nition 4.2 (Generalized Hukuhara di¤erence) [44] The generalized Hukuhara dif-

ference (gH-di¤erence) associated to two fuzzy variables x and y is illustrated in a manner

depicted below

x	gH y = z ()
(
1) x = y � z

2) y = x� (�1)z
(4.1)

It is convenient to display that 1) and 2) in combination are genuine if and only if z is a

crisp number. With respect to �-level what we got are [x 	gH y]� = [minfx� � y�; �x� �
�y�g;maxfx� � y�; �x� � �y�g] and If x 	gH y and x 	H y subsist, x 	H y = x 	gH y. The

circumstances for the inerrancy of z = x	gH y 2 E are

1)

(
z� = x� � y� and z� = �x� � �y�

with z� increasing; z� decreasing; z� � z�

2)

(
z� = �x� � �y� and z� = x� � y�

with z� increasing; z� decreasing; z� � z�

(4.2)
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where 8� 2 [0; 1]

De�nition 4.3 (��level of fuzzy function) The ��level of fuzzy-valued function F :

[0; a]! E is

F (x; �) = [F (x; �); F (x; �)]

where x 2 E, for each � 2 [0; 1].

With the de�nition of Generalized Hukuhara di¤erence, the gH-derivative of F at x0 is

expressed as

d

dt
F (x0) = lim

h!0

1

h
[F (x0 + h)	gH F (x0)] (4.3)

In (4.3), F (x0 + h) and F (x0) exhibits similar style with x and y respectively included in

(4.1).

We use the following FDE

d

dt
x = f(x; t) (4.4)

where x is the fuzzy variable x 2 E; d
dt
x is the fuzzy derivative (see Hukuhara di¤erence)

of x, f(x; t) is a fuzzy function. It is clear that the fuzzy function f(x; u) is the mapping

f : [0; �]� E ! E, where � 2 R.
Let us consider the FDE (4.4) where f : [0; �]�E ! E: If we apply the ��level (3.11) to

f(x; t) in (4.4), then we obtain two functions: f [t; x(�; �); �x(�; �)] and f [t; x(�; �); �x(�; �)] :

The fuzzy di¤erential equation (4.4) can be equivalent to the following four ODE

1)

(
d
dt
x = f [t; x(�; �); �x(�; �)]

d
dt
�x = f [t; x(�; �); �x(�; �)]

2)

(
d
dt
x = f [t; x(�; �); �x(�; �)]

d
dt
�x = f [t; x(�; �); �x(�; �)]

(4.5)
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if the following two conditions are satis�ed [40]: f and f are "equivalent continuous", f and

f satisfy the Lipchitz conditions��f [t; x(�; �1); �x(�; �1)]� f [t; x(�; �2); �x(�; �2)]
��

� L1 j�1 � �2j��f [t; x(�; �1); �x(�; �1)]� f [t; x(�; �2); �x(�; �2)]
��

� L2 j�1 � �2j

(4.6)

where L1 and L2 are positive constants.

4.2 Approximation of the solutions with Bernstein neural

networks

In general, it is di¢ cult to solve the four ODE in (4.5). Here, we use a special neural network,

Bernstein neural network, to approximate the solutions of the FDE (4.4).

The two variables Bernstein series polynomial can be written as follow

B(x1; x2) =
PN

i=0

PM
j=0

�
N
i

��
M
j

�
Wi;jx1i(T � x1i)

N�ix2j(1� x2j)
M�j

(4.7)

where
�
N
i

�
= N !

i!(N�i)! ;
�
M
j

�
= M !

j!(M�j)! ; Wi;j is the coe¢ cient. This polynomial can be regarded

as neural network. It has two inputs: x1i and x2j; and one output y;

y =
NX
i=0

MX
j=0

�ijWi;jx1i(T � x1i)
N�ix2j(1� x2j)

M�j (4.8)

where �i =
�
N
i

�
; j =

�
M
j

�
.

Now we use the Bernstein neural network (4.8) to approximate the solution of the FDE

(4.4). Since the solution of (4.4) can be written as four ODE as (4.5), we design the Bernstein

neural network in the form of (4.5).
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We assume x1 is time interval t; x2 is the �-level as in (3.11). The solution of (4.4) in

the form of the Bernstein neural network is

xm(t; �) = xm(0; �)

�t
PN

i=0

PM
j=0 �ijWi;jti(T � ti)

N�i�j(1� �j)
M�j

(4.9)

where xm(0; �) is the initial condition of the solution.

We calculate the derivative of (4.8), then we obtain

1)

(
d
dt
xm = C1 + C2

d
dt
�xm = D1 +D2

2)

(
d
dt
xm = C1 + C2

d
dt
�xm = D1 +D2

(4.10)

where t 2 [0; T ], � 2 [0; 1]; tk = kh, h = T
k
, k = 1; :::; N , �j = jh1, h1 = 1

M
, j = 1; :::;M ,

C1 =
PN

i=0

PM
j=0 �ijW i;jti(T � ti)

N�i�j(1� �j)
M�j

D1 =
PN

i=0

PM
j=0 �ij

�Wi;jti(T � ti)
N�i�j(1� �j)

M�j

C2 = tk
PN

i=0

PM
j=0 �ijW i;j[iti�1;j(T � ti)

N�i

� (N � i) ti;j(T � ti)
N�i�1]�ij(1� �j)

M�j

D2 = tk
PN

i=0

PM
j=0 �ij

�Wi;j[iti�1;j(T � ti)
N�i

� (N � i) ti;j(T � ti)
N�i�1]�ij(1� �j)

M�j

where d = 0:02; E = 70� 109: The exact solution is x = 4:

� input unit:
o11 = t; o12 = �

� the �rst hidden units:
o21;i = f 1i (o

1
1); o22;i = f 2i (o

1
1)

o23;j = g1j (o
1
2); o24;j = g2j (o

1
2)

� the second hidden units:

o31;i = o21;i(o
2
2;i); o32;j = o23;j(o

2
4;j)
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Figure 4.1: Static Bernstein neural network

� the third hidden units:
o41;i = �io

3
1;i; o42;i0 = jo

3
2;j

� the forth hidden units:
o5i;j = o41;io

4
2;j

� output unit:

N(t; �) =
NX
i=0

MX
j=0

(ai;jo
5
i;j)

Here f 1i = ti; f 2i = (T � t)N�i; �i =
1
TN

�
N
i

�
, g1i0 = �j; g2j = (1� �)M�j; j =

�
M
j

�
:

The training errors between (4.10) and (4.5) are de�ned as

1)

(
e1 = C1 + C2 � f

�e1 = D1 +D2 � �f

2)

(
e2 = C1 + C2 � �f

�e2 = D1 +D2 � f

(4.11)
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The standard back-propagation learning algorithm is utilized to update the weights with

the above training errors

W i;j (k + 1) = W i;j (k)� �1(
@e21
@W i;j

+
@�e21
@W i;j

)

�Wi;j (k + 1) = �Wi;j (k)� �2(
@e22
@ �Wi;j

+
@�e22
@ �Wi;j

)
(4.12)

here �1 and �1 are positive learning rates. The momentum terms, �W i;j (k � 1) and
� �Wi;j (k � 1), can be added to stabilized the training process.
The Bernstein neural network (4.9) shown in Figure 4.1 is feedforward (static) neural

network. We can also use a recurrent (dynamic) neural network to approximate the solution

of (4.4).

The dynamic Bernstein neural network is(
d
dt
xm(t; �) = P (t; �)A(xm(t; �); �xm(t; �)) +Q(t; �)

d
dt
�xm(t; �) = P (t; �)A(xm(t; �); �xm(t; �)) +Q(t; �)

(4.13)

where f(x; t) in (4.4) has the form of

f(t; x) = P (t)x+Q(t)

The structure of the dynamic Bernstein neural network is shown in Figure 4.2.

The training errors in (4.11) are changed into

1)

(
e1 = C1 + C2 � PA(xm; �xm)�Q

�e1 = D1 +D2 � PA(xm; �xm)�Q

2)

(
e2 = C1 + C2 � PA(xm; �xm)�Q

�e2 = D1 +D2 � PA(xm; �xm)�Q

(4.14)

The the training algorithm can be the same as the (4.12).

The leaning process of the dynamic Bernstein neural network (4.13) is faster then the

static Bernstein neural network (4.9). However, the robustness of (4.9) is better than (4.13),

because the weights of the dynamic Bernstein neural network are di¢ cult to convergence.
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Figure 4.2: Dynamic Bernstein nerual network
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4.3 Solutions with strongly degenerate parabolic and

Burgers-Fisher equations

De�nition 4.4 (Second-order nonlinear PDE) The second-order singular nonlinear PDE

can be portrayed using the equation below

@2u(x; t)

@t2
+
2

t

@u(x; t)

@t
= F (x; u(x; t);

@u(x; t)

@x
;
@2u(x; t)

@x2
) (4.15)

where t and x are independent variables, u is the dependent variable, and F is a nonlinear

function of x, u, ux and uxx, also the initial conditions for the PDE (4.15) are as follows:

u(x; 0) = f(x); ut(x; 0) = g(x)

De�nition 4.5 (Strongly degenerate parabolic equation) The strongly degenerate par-

abolic equation has been explained as follows

@u(x; t)

@t
+
@Q(u(x; t))

@x
=
@2A(u(x; t))

@x2
; (x; t) 2 �T := [0; 1]� (0; T ); T > 0 (4.16)

consider the boundary conditions as:

u(x; 0) = g0(x); u(0; t) = f0(t); u(1; t) = f1(t)

where the integrated di¤usion coe¢ cient A is exhibited by

A(u) =

Z u

0

a(s)ds; a(u) � 0; a 2 L1([0; 1]) \ L1([0; 1])

The function a is allowed to terminate on u-intervals of positive length, on which Eq. (4.16)

degenerates to a �rst-order scalar conservation law. Hence, Eq. (4.16) is termed as strongly

degenerate.

De�nition 4.6 (Burgers-Fisher equation) The generalized Burgers-Fisher equation is

de�ned as

@u(x; t)

@t
+ �u�(x; t)

@u(x; t)

@x
� @2u(x; t)

@x2
= �u(x; t)(1� u�(x; t)) (4.17)
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(x; t) 2 �T := [0; 1]� [0; T ]; T > 0

with initial and boundary conditions:

g0(x) := u(x; 0) = (
1

2
+
1

2
tanh(

���
2(� + 1)

x))
1
� ; 0 � x � 1

f0(t) := u(0; t) = (
1

2
+
1

2
tanh(

���
2(� + 1)

(�( �

� + 1
+
�(� + 1)

�
)t)))

1
� ; 0 � x � 1; t � 0

f1(t) := u(1; t) = (
1

2
+
1

2
tanh(

���
2(� + 1)

(1� ( �

� + 1
+
�(� + 1)

�
)t)))

1
� ; 0 � x � 1; t � 0

where �, �, and � are constants.

Here a three layer neural network with two input signals, m hidden neurons and one

output signal is formulated in order to solve the strongly degenerate parabolic and Burgers-

Fisher equations which depends on the function approximation capability of the neural net-

work and repays the solution of di¤erential equations in a closed analytic and di¤erentiable

form (see Figure 4.3). The input-output connection of each unit of the suggested neural

network is written as:

� Input units:
o11 = x (4.18)

o12 = t

� Hidden units:
o2j = F (bj + w1jx+ w2j t) j = 1; :::;m (4.19)

� Output unit:

N(x; t) =
mX
j=1

(Wjo
2
j) (4.20)

Here, the most common function F (r) = 2
1+e�2r�1 (tan-sigmoid function) which is termed

to be a continuously di¤erentiable nonlinear function, is accepted as an activation function
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Figure 4.3: Neural network (NN) equivalent to strongly degenerate parabolic and Burgers-

Fisher equations

of the hidden units. In order to set the boundary conditions, we select a trial solution which

can be depicted as sum of the two terms as

um(x; t) = (1�x)f0(t)+xf1(t)+(1�t)fg0(x)�[(1�x)g0(0)+xg0(1)]g+x(1�x)tN(x; t) (4.21)

where

N(x; t) =
mX
j=1

(WjF (bj + w1jx+ w2j t)) (4.22)

If we suppose that 0 � x � 1, the rectangle [0; 1] � [0; T ] can be divided into nn0 mesh
points (xi; tj) = ((i�1)h; (j�1)h0); h = 1

n�1 ; h
0 = T

n0�1 ; (i = 1; :::; n; j = 1; :::; n
0). In the given

problems, the substitution of approximate solution um(x; t) instead of the unknown function

will result the following least mean square error for the relation mentioned (x; t) = (xi; tj)

as follows:

Ei;j =
1

2
(Mi;j)

2 (4.23)

where for Burgers-Fisher equation

Mi;j =
@um(x; t)

@t
j
x = xi

t = tj

+ �u�m(x; t)j
x = xi

t = tj

@um(x; t)

@x
j
x = xi

t = tj

� @2um(x; t)

@x2
j
x = xi

t = tj
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��um(x; t)j
x = xi

t = tj

(1� u�m(x; t)j
x = xi

t = tj

)

and for strongly degenerate parabolic equation

Mi;j =
@um(x; t)

@t
j
x = xi

t = tj

+
@Q(um(x; t))

@x
jx=xi;t=tj �

@2A(um(x; t))

@x2
j
x = xi

t = tj

Generally the summed up error of the suggested neural network is exhibited as:

E =
nX
i=1

n0X
j=1

Ei;j =
X
i;j

Ei;j (4.24)

The proposed learning rule can be systematically extracted as minimizers of the referred

error function. The above statement indicates that the main intention in the remaining

part of this section is to train the proposed network architecture in order to complete this

task. Consideration of above intention will result in the starting of derivation of a learning

procedure that is considered to be a natural generalization of the Newton method in order

to adjust network parameters (weights and biases). The Newton�s rule is carried out on the

basis of cost function Ei;j, to calculate the weight modi�cations Wq as [172]:

Wq(r + 1) = Wq(r)� �(r)
@Ei;j
@Wq

; q = 1; :::;m (4.25)

where � is the training rate � > 0. In order to increase training process, we add a momentum

term as

Wq(r + 1) = Wq(r)� �(r)
@Ei;j
@Wq

+ [Wq(r)�Wq(r � 1)]

where  > 0. The index r refers to the iteration number. Apart from that, Wq(r + 1) and

Wq(r) exhibit the upgraded and recent output weight values, respectively. Now, the explicit

methodology of (4.25) can be potrayed as follows:2664
W1

...

Wm

3775
r+1

=

2664
W1

...

Wm

3775
r

� (rEi;j(W )r)TrEi;j(W )r
(rEi;j(W )r)TQrrEi;j(W )r

rEi;j(W )r + 

2664
�W1

...

�Wm

3775
r�1

(4.26)
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where

rEi;j(W ) = (
@Ei;j
@W1

; � � � ; @Ei;j
@Wm

)T

and

Q =

2666664
@2Ei;j
@W 2

1

@2Ei;j
@W1@W2

� � � @2Ei;j
@W1@Wm

@2Ei;j
@W2@W1

@2Ei;j
@W 2

2
� � � @2Ei;j

@W2@Wm

� � � � � � � � � � � �
@2Ei;j

@Wm@W1

@2Ei;j
@Wm@W2

� � � @2Ei;j
@W 2

m

3777775 (4.27)

are computed at the current mesh points (xi; tj). Here Q is the Hessian matrix with com-

ponents @2Ei;j
@Wq@Wp

(for q; p = 1; :::;m). It is quite obvious that the convergence speed is in

direct relation with the learning rate. In order to achieve optimal learning rate for rapid

convergence of the learning optimization rule, the inverse of Hessian matrix Q of the error

function Ei;j is impinged at the current mesh points. The approximate Newton method

illustrated above is well su¢ cient to scale the descent step in each step. The usage of chain

rule for di¤erentiation will result in the present partial derivative as mentioned below:
@Ei;j
@Wq

=
@Ei;j
@Mi;j

:
@Mi;j

@Wq

=Mi;j:
@Mi;j

@Wq

For Burgers-Fisher equation assume that

K1(x; t) =
@u(x; t)

@t
; K2(x; t) = u�(x; t)

@u(x; t)

@x

K3(x; t) =
@2u(x; t)

@x2
; K4(x; t) = u(x; t)(1� u�(x; t))

then we have

@Mi;j

@Wq

=
@Mi;j

@K1(xi; tj)
:
@K1(xi; tj)

@Wq

+ �
@Mi;j

@K2(xi; tj)
:
@K2(xi; tj)

@Wq

� @Mi;j

@K3(xi; tj)
:
@K3(xi; tj)

@Wq

� �
@Mi;j

@K4(xi; tj)
:
@K4(xi; tj)

@Wq

For strongly degenerate parabolic equation that has been used in the stated methodology,
@Mi;j

@Wq
can be accomplished in a same manner. When the above relation is substituted into

(4.26), we will achieve the desired learning rule. The learning procedure stated above can

also be widespread to the other network parameters (w1q ; w
2
q and bq) in a similar way.
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4.4 Solution with wave equation

De�nition 4.7 (wave equation ) The Cauchy problem for the wave equation in one di-

mension can be stated as

@2u(x; t)

@t2
+ c2

@2u(x; t)

@x2
= f(x; t); (x; t) 2 [0; a]� [0; b] (4.28)

with

u(x; 0) = �(x); ut(x; 0) =  (x)

where a and b are constants. In above equation the parameter c is called the speed of light.

We continue our discussion of solving PDEs with the help of two pattern of neural

networks and the application of Bernstein polynomial. Consider the Cauchy problem (4.28),

where the solution u depends on both spatial and temporal variables x and t respectively.

The trial solution is written as:

um(x; t) = �(x) + t (x) + t[B(x; t)�B(x; 0)� @B(x; 0)

@t
]

where B(x; t) is the bivariate Bernstein polynomial series of solution function u(x; t), namely:

B(x; t) =
nX
i=0

mX
j=0

�
n
i

��
m
j

� xi(a� x)n�i

an
tj(b� t)m�j

bm
qi;j(x; t); n;m 2 N

B(x; t) =
nX
i=0

mX
j=0

�i;jx
i(a� x)n�itj(b� t)m�jqi;j(x; t); n;m 2 N; �i;j =

1

anbm

�
n
i

��
m
j

�
(4.29)

where �
n
i

�
=

n!

i!(n� i)!
;
�
m
j

�
=

m!

j!(m� j)!

Consider the following relations:

@2um(x; t)

@x2
= �00(x) + t 00(x) + t[

@2B(x; t)

@x2
� @2B(x; 0)

@x2
� @2@B(x; 0)

@x2@t
]
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and
@2um(x; t)

@t2
= 2

@B(x; t)

@t
+ t

@2B(x; t)

@t2

Substituting the above relations in the origin problem (4.28) leads to the following di¤erential

equation:

2
@B(x; t)

@t
+ t

@2B(x; t)

@t2
+c2(�00(x)+ t 00(x)+ t[

@2B(x; t)

@x2
� @2B(x; 0)

@x2
� @2@B(x; 0)

@x2@t
]) = f(x; t)

(4.30)

(x; t) 2 [0; a]� [0; b]

For simplicity the above relation can be rewritten as follows:

nX
i=0

mX
j=0

�i;j(x; t)qi;j(x; t) + �(x; t) = f(x; t); (x; t) 2 [0; a]� [0; b] (4.31)

where

�i;j(x; t) = 2�i;jx
i(a� x)n�i(jtj�1(b� t)m�j � (m� j)tj(b� t)m�j�1)

+t�i;jx
i(a� x)n�i(j(j � 1)tj�2(b� t)m�j � 2j(m� j)tj�1(b� t)m�j�1

+(m� j)(m� j � 1)tj(b� t)m�j�2) + c2t�i;j(i(i� 1)xi�2(a� x)n�i

�2i(n� i)xi�1(a� x)n�i�1 + (n� i)(n� i� 1)xi(a� x)n�i�2)tj(b� t)m�j

�c2t�i;j(i(i� 1)xi�2(a� x)n�i � 2i(n� i)xi�1(a� x)n�i�1

+(n� i)(n� i� 1)xi(a� x)n�i�2)(jtj�1(b� t)m�j � (m� j)tj(b� t)m�j�1)

and

�(x; t) = c2(�00(x) + t 00(x) + t
@2B(x; 0)

@x2
)

We design a neural network to represent the equation (4.29), see Figure 4.2.

In the above architecture the mathematical symbol is de�ned as:

'i;j =

nX
i=0

mX
j=0

�
n
i

��
m
j

� xi(a� x)n�i

an
tj(b� t)m�j

bm
; n;m 2 N

The input-output relation of each unit in the proposed neural architecture can be sum-

marized as follows:
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� Input unit:
oi;j = qi;j; i = 0; :::; n; j = 0; :::;m

� Output unit:
N(x; t) = 'i;joi;j

Now, a suitable numerical technique should be able to provide an appropriate tool for

measuring and calculating the accuracy of obtained solution. Hence, to compare the exact

solution with its obtained one, the least mean square error is used, which is stated as follows:

Ei;j =
1

2
(
nX
i=0

mX
j=0

�i;j(x; t)qi;j(x; t) + �(x; t)� f(x; t))2

We use Newton�s rule as described in (4.26) for adjusting the parameters such that the

network error to be minimized over the space of weights setting. The initial parameter qi;j is

selected randomly to begin the procedure. The described standard self learning mechanism

works as follows:

qi;j(r + 1) = qi;j(r)� �(r)
@Ei;j
@qi;j

where � is the training rate � > 0. In order to increase training process, we add a momentum

term as

qi;j(r + 1) = qi;j(r)� �(r)
@Ei;j
@qi;j

+ [qi;j(r)� qi;j(r � 1)]

where  > 0. The index r refers to the iteration number.

Consider another type of neural network architecture shown in Figure 4.1. The input-

output relation of each unit in the proposed neural architecture can be summarized as follows:

� Input unit:
o11 = x

o12 = t

� The �rst hidden units:

o21;i = f 1i (o
1
1); o22;i = f 2i (o

1
1); i = 0; :::; n
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o23;j = g1j (o
1
2); o24;j = g2j (o

1
2); j = 0; :::;m

� The second hidden units:

o31;i = o21;i(o
2
2;i); i = 0; :::; n

o32;j = o23;j(o
2
4;j); j = 0; :::;m

� The third hidden units:

o41;i = �io
3
1;i; i = 0; :::; n

o42;j = jo
3
2;j; j = 0; :::;m

� The forth hidden units:

o5i;j = o41;io
4
2;j; i = 0; :::; n; j = 0; :::;m

� Output unit:

N(x; t) =
nX
i=0

mX
j=0

(qi;jo
5
i;j)

In above relations we have:

f 1i = xi; f2i = (a� x)n�i; �i =
1

an

�
n
i

�
; i = 0; :::; n

g1j = tj; g2j = (b� t)m�j; j =
1

bm

�
m
j

�
; j = 0; :::;m

4.5 Simulations

In this section, we use several real applications to show how to use the Bernstein neural

networks to approximate the solutions of the FDEs.

Example 4.1 The vibration mass which is shown in Figure 4.4 has a very simple model

d

dt
x(t) =

k

m
x(t) (4.32)
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where the spring constant k = 1; the mass m are changeable in (0:75; 1:125); so the position

state x(t) has some uncertainties, the ODE (4.32) can be formed into a FDE. It has the

same form as (4.32), only x(t) becomes a fuzzy variable. If the initial position is x(0) =

(0:75+0:25�; 1:125�0:125�); � 2 [0; 1] ; then the exact solutions of the FDE (4.32) are [97]

x(t; �) =
�
(0:75 + 0:25�)et; (1:125� 0:125�)et

�
(4.33)

where t 2 [0; 1]: Now we use the static Bernstein neural network (4.9), noted as SNN, to
approximate the solution (4.33)8>>>><>>>>:

xm(t; �) = (0:75 + 0:25�)

+t
PN

i=0

PM
j=0 �ijW i;jti(T � ti)

N�i�j(1� �j)
M�j

�xm(t; �) = (1:125� 0:125�)
+t
PN

i=0

PM
j=0 �ij

�Wi;jti(T � ti)
N�i�j(1� �j)

M�j

We also use dynamic Bernstein neural network (4.13), noted as DNN, to approximated the

solutions. The learning rates are � = 0:01,  = 0:01 To compare our results, we use the

other two popular methods: Max-Min Euler method and Average Euler method [205]. The

comparison results are shown in Table 1 and Table 2.

Table 1. Solutions of di¤erent method
� Exact solution SNN DNN Max-Min Euler Average Euler

0 [2.0387,3.0581] [1.9713,3.0043] [1.9901,3.0305] [1.9453,2.9180] [2.2441,2.6191]

0.1 [2.1067,3.0241] [2.0302,2.9415] [2.0591,2.9752] [2.0102,2.8855] [2.2791,2.6166]

0.2 [2.1746,2.9901] [2.1059,2.9131] [2.1283,2.9399] [2.0750,2.8531] [2.3140,2.6140]

0.3 [2.2426,2.9561] [2.1618,2.8707] [2.1901,2.8931] [2.1398,2.8207] [2.3490,2.6115]

0.4 [2.3105,2.9222] [2.2307,2.8453] [2.2601,2.8799] [2.2047,2.7883] [2.3840,2.6090]

0.5 [2.3785,2.8882] [2.2984,2.8088] [2.3288,2.8337] [2.2695,2.7559] [2.4189,2.6064]

0.6 [2.4465,2.8542] [2.3631,2.7784] [2.3904,2.7955] [2.3344,2.7234] [2.4539,2.6039]

0.7 [2.5144,2.8202] [2.4292,2.7449] [2.4555,2.7691] [2.3992,2.6910] [2.4888,2.6013]

0.8 [2.5824,2.7862] [2.4895,2.7067] [2.5101,2.7302] [2.4641,2.6586] [2.5238,2.5988]

0.9 [2.6503,2.7523] [2.5564,2.6769] [2.5821,2.7001] [2.5289,2.6262] [2.5588,2.5963]

1 [2.7183,2.7183] [2.6199,2.6399] [2.6414,2.6614] [2.5937,2.5937] [2.5937,2.5937]
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Figure 4.4: Vibration mass

Table 2. Approximation errors
� SNN DNN Max-Min Euler Average Euler

0 [0.0601,0.1098] [0.0207,0.0601] [0.0934,0.1401] [0.2054,0.4390]

0.2 [0.0658,0.1067] [0.0241,0.0612] [0.0996,0.1370] [0.1394,0.3761]

0.6 [0.0798,0.1022] [0.0322,0.0654] [0.1121,0.1308] [0.0074,0.2503]

0.8 [0.0791,0.0891] [0.0328,0.0499] [0.1183,0.1276] [0.0586,0.1874]

1 [0.0921,0.0921] [0.0534,0.0534] [0.1246,0.1246] [0.1246,0.1246]

Example 4.2 The heat treatment in welding can be modeled as [61]:

d

dt
x(t) = 3Ax2(t) (4.34)

where transfer area A is uncertainty as A = (1+�; 3��); � 2 [0; 1]: So (4.34) is a FDE. If
the initial condition is x(0) = (0:5

p
�; 0:2

p
1� �+0:5); the static Bernstein neural network

(4.9) has the form of8>>>><>>>>:
xm(t; �) = 0:5

p
�

+t
PN

i=0

PM
j=0 �ijW i;jti(T � ti)

N�i�j(1� �j)
M�j

�xm(t; �) = 0:2
p
1� �+ 0:5

+t
PN

i=0

PM
j=0 �ij

�Wi;jti(T � ti)
N�i�j(1� �j)

M�j

With the learning rates � = 0:002 and  = 0:002; the approximation results are shown in

Table 3.
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Table 3. Bernstein neural network approximation
� SNN DNN

0 [0.0511,0.0754] [0.0224,0.0381]

0.1 [0.0402,0.0623] [0.0203,0.0362]

0.2 [0.0398,0.0588] [0.0197,0.0374]

0.3 [0.0224,0.0312] [0.0211,0.0321]

0.4 [0.0433,0.0613] [0.0246,0.0462]

0.5 [0.0507,0.0631] [0.0152,0.0258]

0.6 [0.0469,0.0726] [0.0191,0.0392]

0.7 [0.0571,0.0778] [0.0288,0.0452]

0.8 [0.0373,0.0509] [0.0157,0.0362]

0.9 [0.0401,0.0635] [0.0202,0.0408]

1 [0.0394,0.0394] [0.0167,0.0167]

4.6 Conclusions

In this chapter, the solutions of the FDEs are approximated by two types of Bernstein neural

networks. First the FDE is transformed into four ODEs with Hukuhara di¤erentiability.

Then neural models are constructed with the structure of ODEs. The modi�ed backprop-

agation method for fuzzy variables is used for training the neural networks. The theory

analysis and simulation results show that these new models, Bernstein neural networks, are

e¤ective to estimate the solutions of FDEs.

Also a methodology involving novel iterative technique considering neural networks is

suggested to extract approximate solution for the second-order nonlinear PDEs. This per-

spective is designed to grant good approximation on the basis of learning technique which is

associated with quasi-Newton rule. Furthermore to continue, a sophisticated methodology

is provided in order to solve PDEs on the basis of the application of two patterned Bernstein

neural networks, static and dynamic models.



Chapter 5

Uncertain nonlinear system control

with Z-numbers

The decisions are carried out on the basis of knowledge. In order to make the decision fruitful,

the knowledge acquired must be credible. Z-numbers connect to the reliability of knowledge

[221]. Many �elds related to the analysis of the decisions are actually use the ideas of Z-

numbers. Z-numbers are much less complex to calculate compared with nonlinear system

modeling methods. The Z-number is abundantly adequate number compared with the fuzzy

number. Although Z-numbers are implemented in many literatures, from theoretical point

of view this approach is not certi�ed completely.

The Z-number is a novel idea that is subjected to a higher potential in order to illustrate

the information of the human being and to use it in information processing [221]. Z-numbers

can be regarded as to answer questions and carry out the decisions [121]. There are few

structure based on the theoretical concept of Z-numbers [87]. [19] gave an inception which

results in the extension of the Z-numbers. [122] proposed a theorem to transfer the Z-

numbers to the usual fuzzy sets.

In this chapter, dual fuzzy equations [213] and FDEs are used to model the uncertain

nonlinear systems, where the coe¢ cients are Z-numbers. Then the existence of the solutions

of the dual fuzzy equations and FDEs is discussed. It corresponds to controllability problem
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of the fuzzy control [65]. Two types of neural networks, feed-forward and feedback networks

are used to approximate the solutions (control actions) of the dual fuzzy equation and FDE.

Several real examples are employed to show the e¤ectiveness of the fuzzy control design

methods.

5.1 Nonlinear system modeling with dual fuzzy equa-

tions and Z-numbers

The following de�nitions will be used in this chapter.

De�nition 5.1 (Z-numbers) A Z-number has two components Z = [A (x) ; p]. The pri-

mary component A (x) is termed as a restriction on a real-valued uncertain variable x. The

secondary component p is a measure of reliability of A. p can be reliability, strength of belief,

probability or possibility. When A (x) is a fuzzy number and p is the probability distribution

of x, the Z-number is de�ned as Z+-number. When both A (x) and p are fuzzy numbers, the

Z-number is de�ned as Z�-number.

The Z+-number carries more information than the Z�-number. Here we use the de�nition

of Z+-number, i.e., Z = [A; p] ; A is a fuzzy number, p is a probability distribution.

We use membership functions to express the fuzzy number. The most popular member-

ship functions are the triangular function

�A = F (a; b; c) =

(
x�a
b�a a � x � b
c�x
c�b b � x � c

otherwise �A = 0 (5.1)

and trapezoidal function

�A = F (a; b; c; d) =

8>><>>:
x�a
b�a a � x � b
d�x
d�c c � x � d

1 b � x � c

otherwise �A = 0 (5.2)
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The probability measure is expressed as

P =

Z
R

�A(x)p(x)dx (5.3)

where p is the probability density of x; R is the restriction on p: For discrete Z-numbers

P (A) =
nX
i=1

�A(xi)p(xi) (5.4)

De�nition 5.2 (�-level of Z-numbers) The �-level of the Z-number Z = (A;P ) is demon-

strated as

[Z]� = ([A]�; [p]�) (5.5)

where 0 < � � 1. [p]� is calculated by the Nguyen�s theorem

[p]� = p([A]�) = p([A�; A
�
]) =

�
P�; P

��
where p([A]�) = fp(x)jx 2 [A]�g. So [Z]� can be expressed as the form �-level of a fuzzy

number

[Z]� =
�
Z�; Z

��
=
�
(A�; P�) ;

�
A
�
; P

���
(5.6)

where P� = A�p(xi
�), P

�
= A

�
p(xi

�), [xi]� = (xi�; xi�):

De�nition 5.3 (supremum metrics for Z-numbers) [20]The supremum metrics in bZn
is suggested as

D(Z1; Z2) = d(A1; A2) + d(P1; P2) (5.7)

in this case d(�; �) is the supremum metrics considering fuzzy sets [131]. ( bZn; D) is a complete
metric space. D(Z1; Z2) has been incorporated with the following possessions:

D(Z1 + Z;Z2 + Z) = D(Z1; Z2)

D(Z2; Z1) = D(Z1; Z2)

D(�Z1; �Z2) = j�jD(Z1; Z2); � 2 R
D(Z1; Z2) � D(Z1; Z) +D(Z;Z2)
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Similar with the fuzzy numbers [110], the Z-numbers are also incorporated with four

primary operations: �; 	; � and �: These operations are exhibited by: sum, subtract,
multiply and division. The operations in this research work are di¤erent de�nitions with

[222]. The �-level of Z-numbers is applied to simplify the operations.

Let us consider Z1 = (A1; p1) and Z2 = (A2; p2) to be two discrete Z-numbers illustrating

the uncertain variables x1 and x2;
Pn

k=1 p1(x1k) = 1;
Pn

k=1 p2(x2k) = 1. The operations are

de�ned

Z12 = Z1 � Z2 = (A1 � A2; p1 � p2)

where � 2 f�;	;�;�g.
The operations for the fuzzy numbers are de�ned as [110]

[A1 � A2]
� = [A1

� + A2
�; A1

�
+ A2

�
]

[A1 	 A2]
� = [A1

� � A2
�; A1

� � A2
�
]

[A1 � A2]
� =

�
A1

�A2
� + A1

�A2
� � A1

�A2
�; A1

�
A2

�
+ A1

�
A2

� � A1
�
A2

�� (5.8)

For all p1 � p2 operations, we use convolutions for the discrete probability distributions

p1 � p2 =
X
i

p1(x1;i)p2(x2;(n�i)) = p12(x)

If A is a triangle function, the absolute value of the Z-number Z = (A; p) is

jZ(x)j = (ja1j+ jb1j+ jc1j; p(ja2j+ jb2j+ jc2j)) (5.9)

Also the above de�nitions satisfy the generalized Hukuhara di¤erence [44]

Z1 	gH Z2 = Z12 ()
(
1) Z1 = Z2 � Z12

2) Z2 = Z1 � (�1)Z12
(5.10)

It is convenient to display that 1) and 2) in combination are genuine if and only if Z12 is a

crisp number. With respect to �-level what we get is [Z1 	gH Z2]� = [minfZ�1 � Z�2 ; Z
�

1 �
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Z
�

2g;maxfZ�1 �Z�2 ; Z
�

1 �Z
�

2g] and if Z1	gH Z2 and Z1	H Z2 subsist, Z1	H Z2 = Z1	gH Z2.
The circumstances for the inerrancy of Z12 = Z1 	gH Z2 2 E are

1)

(
Z�12 = Z�1 � Z�2 and Z

�

12 = Z
�

1 � Z
�

2

with Z�12 increasing; Z
�

12 decreasing; Z
�
12 � Z

�

12

2)

(
Z�12 = Z

�

1 � Z
�

2 and Z
�

12 = Z�1 � Z�2

with Z�12 increasing; Z
�

12 decreasing; Z
�
12 � Z

�

12

(5.11)

where 8� 2 [0; 1]

De�nition 5.4 (��level of Z-number valued function) Let eZ denotes the space of Z-
numbers. The ��level of Z-number valued function F : [0; a]! eZ is

F (x; �) = [F (x; �); F (x; �)]

where x 2 eZ, for each � 2 [0; 1].
With the de�nition of Generalized Hukuhara di¤erence, the gH-derivative of F at x0 is

expressed as
d

dt
F (x0) = lim

h!0

1

h
[F (x0 + h)	gH F (x0)] (5.12)

In (5.12), F (x0 + h) and F (x0) exhibits similar style with Z1 and Z2 respectively included

in (5.10).

If we apply the ��level (5.5) to f(t; x) in (5.45), then we obtain two Z-number valued
functions: f [t; x(�; �); �x(�; �)] and f [t; x(�; �); �x(�; �)] :

Now we use fuzzy equations (3.4) or (3.5) to model the uncertain nonlinear system (3.2).

The parameters of the fuzzy equation (3.5) are in the form of Z-numbers,

yk = a1 � f1(xk)� a2 � f2(xk)� :::� an � fn(xk) (5.13)

or
a1 � f1(xk)� a2 � f2(xk)� :::� an � fn(xk)

= b1 � g1(xk)� b2 � g2(xk)� :::� bm � gm(xk)� yk
(5.14)

where ai and bi are Z-numbers.
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Taking into consideration a particular case, fi(xk) has polynomial pattern,

(a1 � xk)� :::� (an � xnk) = (b1 � xk)� :::� (bn � xnk)� yk (5.15)

(3.22) is termed as dual polynomial based on Z-number.

The object of the modeling is to minimize error between the two output yk and zk: As

yk is noted as a Z-number and zk is considered to be crisp Z-number, hence we apply the

minimum of every points as the modeling �aw

mink jyk � zkj = mink j�kj
yk = ((u1(k); u2(k); u3(k)) ; p (v1(k); v2(k); v3(k)))

�k = ((�1(k); �2(k); �3(k)) ; p ('1(k); '2(k); '3(k)))

(5.16)

By the de�nition of absolute value (5.9),

mink j�kj = mink[(ju1(k)� f(xk)j+ ju2(k)� f(xk)j
+ju3(k)� f(xk)j); (jp(v1(k))� f(xk)j+ jp(v2(k))� f(xk)j+ jp(v3(k))� f(xk)j)]
�1(k) = mink ju1(k)� f(xk)j; �2(k) = mink ju2(k)� f(xk)j; �3(k) = mink ju3(k)� f(xk)j
p('1(k)) = mink jp(v1(k))� f(xk)j; p('2(k)) = mink jp(v2(k))� f(xk)j;
p('3(k)) = mink jp(v3(k))� f(xk)j

(5.17)

The modelling constraint (5.16) is to uncover u1(k); u2(k); u3(k); p(v1(k)); p(v2(k)) and

p(v3(k)) in such a manner

min
u1(k);u2(k);u3(k);p(v1(k));p(v2(k));p(v3(k))

n
max
k
j�kj

o
= min

u1(k);u2(k);u3(k);p(v1(k));p(v2(k));p(v3(k))

n
max
k
jyk � f(xk)j

o
(5.18)

Considering (5.17)

�1(k) � ju1(k)� f(xk)j; �2(k) � ju2(k)� f(xk)j; �3(k) � ju3(k)� f(xk)j
p('1(k)) � jp(v1(k))� f(xk)j; p('2(k)) � jp(v2(k))� f(xk)j; p('3(k)) � jp(v3(k))� f(xk)j
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(5.18) can be resolved by the application of linear programming methodology,8>>>>>>>>>><>>>>>>>>>>:

min �1(k)

subject:
�1(k) + f(

Pn
j=0 aj � xjk)	gH (

Pn
j=0 bj � xjk)g � f(xk)

�1(k)� f(
Pn

j=0 aj � xjk)	gH (
Pn

j=0 bj � xjk)g � �f(xk)
min'1(k)

subject:
p('1(k)) + f(

Pn
j=0 aj � xjk)	gH (

Pn
j=0 bj � xjk)g � f(xk)

p('1(k))� f(
Pn

j=0 aj � xjk)	gH (
Pn

j=0 bj � xjk)g � �f(xk)

(5.19)

8>>>>>>>>>><>>>>>>>>>>:

min �2(k)

subject:
�2(k)�

hPn
j=0 ajx

j
k �

Pn
j=0 bjx

j
k

i
� f(xk)

�2(k) � 0
min'2(k)

subject:
p('2(k))�

hPn
j=0 ajx

j
k �

Pn
j=0 bjx

j
k

i
� f(xk)

p('2(k)) � 0

(5.20)

8>>>>>>>>>><>>>>>>>>>>:

min �3(k)

subject:
�3(k)�

hPn
j=0 �aj�x

j
k �

Pn
j=0
�bj�x

j
k

i
� f(xk)

�3(k) � 0
min'3(k)

subject:
p('3(k))�

hPn
j=0 �aj�x

j
k �

Pn
j=0
�bj�x

j
k

i
� f(xk)

p('3(k)) � 0

(5.21)

here aj; bj; xk; �aj; �bj and �xk are explained as mentioned in (5.5). Henceforth, the superior

way of approximating f(xk) at the juncture xk is yk. The lapse in approximating the error

�k is minimized.

The object of the controller design is to obtain uk; such that the output of the plant yk
can follow a desired output y�k;

min
uk
kyk � y�kk (5.22)
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The control object can be regarded as: detect a solution uk for the mentioned dual equation

on the basis of Z-number

(a1�f1(xk))�(a2�f2(xk))�:::�(an�fn(xk)) = (b1�g1(xk))�(b2�g2(xk))�:::�(bm�gm(xk))�y�k
(5.23)

here xk = [yTk�1; y
T
k�2; � � �uTk ; uTk�1; � � � ]T

5.2 Controllability of uncertain nonlinear systems via

dual fuzzy equations and Z-numbers

As the main objective of control is the detection of a uk of (5.14) based on Z-number, the

controllability means the dual fuzzy equation (5.14) has solution.

We need the following lemmas.

Lemma 5.1 If the coe¢ cients of the dual equation (5.14) are Z-numbers, then the solution

uk satis�es �
\nj=1domain [fj (x)]

	
\
�
\mj=1domain [gj (x)]

	
6= � (5.24)

Proof. Assume u0 2 bZ is considered to be a solution of (5.14), the dual equation which
relies on Z-numbers turns out to be

(a1 � f1(u0))� :::� (an � fn(u0)) = (b1 � g1(u0))� :::� (bm � gm(u0))� y�k

As fj(u0) and gj(u0) prevail, u0 2domain[fj (x)] ; u0 2domain[gj (x)]. Subsequently, it can
be inferred that u0 2 \nj=1domain[fj (x)] = D1; and u0 2 \mj=1domain[gj (x)] = D2. Hence

there prevails u0; in such a manner u0 2 D1 \D2 6= �.

Let two Z-numbersm0; n0 2 bZ,m0 < n0. We de�ne a setK (x) = fx 2 bZ;m0 � x � n0g;
and an operator S : K ! K as

S (m0) � m0; S (n0) � n0 (5.25)

In this matter S is condensing and continuous, also it is bounded as S(z) < r(z); z � K and

r(z) > 0: r(z) can be considered as the evaluation of z:
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Lemma 5.2 We de�ne ni = S (ni�1) and mi = S (mi�1), i = 1; 2; :::, and the upper and

lower bounds of S are �s and s, then

�s = lim
i!+1

ni; s = lim
i!+1

mi; (5.26)

and

m0 � m1 � ::: � mn � ::: � nn � ::: � n1 � n0: (5.27)

Proof. As long as S is uprising, it is quite obvious from (5.25) that (5.27) prevails. In this

case we verify that fmig conjoins to some s 2 bZ and S(s) = s. The set B = fm0;m1;m2; :::g
is enclosed andB = S(B)

S
fm0g, thus, r(B) = r(S(B)) here r(B) denotes the quanti�cation

of non-compactness of B. It is observed from S that r(B) = 0, i.e., B is a proportionally

compact set. Thus, there prevails an out�ow of fmnkg � fmng in such a manner that
mnk ! s for any s 2 bZ (take into consideration that bZ is complete). Distinctly, mn � s � nn

(n = 1; 2; :::). As in case p > nk, according to the de�nition of supremum metrics for Z-

numbers, it reveals that D(s;mp) � D(s;mnk). Hence, mp ! s as p ! 1. Considering
limit n ! 1 on either sides of the equality mn = S(mn�1), we �nd s = S(s), as a result S

is continuous and K is closed.

Similarly, we can conclude that fnng converges to some �s 2 bZ and S(�s) = �s. So, we

con�rm that �s and s are the maximal and minimal �xed point related to S inK, respectively.

Assume es 2 K and S(es) = es. As S is in the increase tend, it is obvious from m0 � es � n0

that S(m0) � S(es) � S(n0), i.e., m1 � es � n1. Utilizing the similar logic, we obtain

m2 � es � n2, and formally, mn � es � nn (n = 1; 2; 3; :::). Here, considering limit n ! 1,
we extract s � es � �s.
The �xed point will result in x0 inside K, the consecutive iterates xi = S (xi�1) ; i =

1; 2; ::: will result in convergency towards x0, i.e., the supremummatrix (5.7) limi!1D(xi; x0) =

0:
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Theorem 5.1 If ai and bj (i = 1 � � �n; j = 1 � � �m) in (5.14) are Z-numbers, and they
satisfy the Lipschitz condition

j(dM1(ai); dM2(ai))� (dM1(ak); dM2(ak))j � H jai(M1)� ak(M1)j+H jai(M2)� ak(M2)j
j(dU1(ai); dU2(ai))� (dU1(ak); dU2(ak))j � H jai(U1)� ak(U1)j+H jai(U2)� ak(U2)j

(5.28)

the upper bounds of the functions fi and gj are jfij � f; jgjj � g;

then the dual fuzzy equation (5.14) has a solution u in the following set

KH =
n
u 2 eZ; ��u(�1;�1) � u(�2;�2)

�� � (n �f �m�g)(H j�1 � �2j+H j�1 � �2j)
o

(5.29)

Proof. Since ai and bj are the Z-numbers, and from the de�nition (5.28),

dM(�; �) = ((a1M1(�); a1M2(�))� f1(x))� :::� ((anM1(�); anM2(�))� fn(x))

	gH((b1M1(�); b1M2(�))� g1(x))	gH :::	gH ((bmM1(�); bmM2(�))� gm(x))

So

jdM(�; �)� dM('; �)j = (jf1(x)j � j (a1M1(�); a1M2(�))	gH (a1M1('); a1M2(�)) j)� � � �
�(jfn(x)j � j (anM1(�); anM2(�))	gH (anM1('); anM2(�)) j)

�(jg1(x)j � j (b1M1(�); b1M2(�))	gH (b1M1('); b1M2(�)) j)� � � �
�(jgm(x)j � j (bmM1(�); bmM2(�))	gH (bmM1('); bmM2(�)) j)

(5.30)

With respect to the Lipschitz condition (5.28), (5.30) is

jdM(�; �)� dM('; �)j � f(H
Pn

i=1 j�� 'j+H
Pn

i=1 j� � �j)� g(H
Pm

i=1 j�� 'j
+H

Pm
i=1 j� � �j) =

�
n �f �m�g

�
(H j�� 'j+H j� � �j)

In the same manner, the upper limits su¢ ce

jdU(�; �)� dU('; �)j �
�
n �f �m�g

�
(H j�� 'j+H j� � �j)

As the lower limit jdM(�; �)� dM('; �)j � 0; with respect to Lemma 5.2 the solution contains
in KH and is de�ned as (5.29).



5.2 Controllability of uncertain nonlinear systems via dual fuzzy equations and Z-numbers109

Lemma 5.3 Let us consider the data number to be m and also we suggest the order of the

equation to be n in (5.15), also

m � 2n+ 1 (5.31)

where k = 1 � � �m; hence the solutions of (5.20) and (5.21) are �2(k) = p('2(k)) = �3(k) =

p('3(k)) = 0.

Proof. Since
nX
j=0

ajx
j
k �

nX
j=0

bjx
j
k � �f(xk); i = 1; 2; :::;m: (5.32)

Let us opt 2n+ 1 points for xk, and result is the interpolation of the dual polynomial based

on Z-number

b (k) =
nX
j=0

ajx
j
k �

nX
j=0

bjx
j
k (5.33)

Let h = maxkfb (k) + f(xk)g and h > 0; as a result we can transform the dual polynomial

based on Z-number (5.15) to the other form of new dual polynomial based on Z-number

b (k)� h. This suggested recent dual polynomial based on Z-number su¢ ces (5.32). Hence-
forth the presumable spot of (5.20) �2(k) � 0 and p('2(k)) � 0; it should be zero. In the

similar manner, outcome can be extracted for (5.21).

The solutions xk is Z-number. In case of k = 1 � � �n; there should be a validated solution
for the equation approximation [148]. Since u2 (k) ; v2 (k) ; u3 (k) and v3 (k) ; (5.19) contains

a solution.

Theorem 5.2 If there are a big amount of data number (5.31), and the dual polynomial

based on Z-number (5.15) satis�es

D [h (xk1; uk1) ; h (xk2; uk2)] � lD [uk1; uk2] 0 < l < 1 (5.34)

where h (�) exhibits a dual polynomial based on Z-number,

h (xk1; uk1) : (a1 � xk1)� :::� (an � xnk1) = (b1 � xk1)� :::� (bn � xnk1)� yk1 (5.35)
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D [u; v] is the Hausdor¤ distance related to Z-numbers u and v,

D [u; v] = max

(
sup

(x1;y1)2u
inf

(x2;y2)2v
(d (x1; x2) + d (y1; y2)); sup

(x1;y1)2v
inf

(x2;y2)2u
(d (x1; x2) + d (y1; y2))

)
d (x; y) is the supremum metrics considering fuzzy sets, then (5.15) contains a distinct solu-

tion u.

Proof. The knowledge we extracted from lemma 5.2 states that, there exist solutions

for (5.19)-(5.21), if it includes too much of data that satisfy (5.31). Neglecting de�cit of

generality, let we consider the solutions for (5.19)-(5.21) are at par with xk = 0; which tends

to u0: (5.34) signi�es h (�) in (5.35) is continuous. If we select a � > 0 in such a manner that
D [yk; u0] � �; hence

D [h(xk; u0); u0] � (1� l)�

Considering h(0; u0) = u0: Taking into our account we choose x close to 0; xk 2 [0; c]; c > 0;
and stated as

C0 : � = sup
xk2[0;c]

D [yk1 ; yk2 ]

Assume fykmg be a succession in C0; for any " > 0; the computation can be done for N0(")
in such a manner � < ", m;n � N0. Hence ykm �! yk for xk 2 [0; c]. Henceforth

D [yk; u0] � D [yk; ykm ] +D [ykm ; u0] < "+ � (5.36)

for all x 2 [0; c]; m � N0("): As " > 0 is randomly minute,

D [yk; u0] � � (5.37)

for all x 2 [0; c]. Now we validate that yk is continuous at x0 = 0. It is supplied � > 0, there
resides �1 > 0 in such a manner

D [yk; u0] � D [yk; ykm ] +D [ykm ; u0] � "+ �1

for every m � N0("); by means of (5.37), while jx� x0j < �1, yk is continuous at x0 = 0. As

a result (5.15) contains a distinct solution u0.
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The necessary circumstance in order to establish the controllability (existence of solution)

related to the dual equation which is based on Z-number (5.23) is (5.24), the su¢ cient

condition related to the controllability is (5.28). For majority of membership functions,

such as triangular functions and the trapezoidal function, the Lipschitz condition (5.28) is

contended. In this case it is considered to be controllable.

5.3 Fuzzy controller design with neural networks and

dual fuzzy equations

It is not possible to acquire a solution based on analysis for (5.14). In this section, we utilize

neural networks to approximate the solution (control). In order to �t the neural networks,

(5.14) is written as

(a1 � f1(x))� :::� (an � fn(x))	gH (b1 � g1(x))	gH :::	gH (bm � gm(x)) = y�k (5.38)

We use two types of neural networks, feed-forward and feedback neural networks, to

approximate the solutions of (5.38), see Figure 3.2 and Figure 3.3. The inputs to the neural

network are the Z�numbers ai and bi; the outputs of the Z�number yk: The weights are
fi (x) and gj (x) :

The main idea is to detect appropriate weights of neural networks such that the output

of the neural network ŷk; approaches the desired output y�k: In the control point of view, we

want to �nd a controller uk which is a function of x; such that the output of the plant (3.1)

yk (crisp value) approximate theZ-number y�k:

The input Z-numbers ai and bi are primarily implemented to �-level as (5.5)

[ai]
� = (a�; a�) i = 1 � � �n

[bj]
� =

�
b�; b

�
�

j = 1 � � �m
(5.39)



112 Uncertain nonlinear system control with Z-numbers

After that, the operation involve multiplication by the Z-number weights fi (x) and gj (x)

[Of ]
� =

�P
i�Mf

fi
� (x) ai

� +
P

i�Cf
fi
� (x) ai

�;
P

i�M 0
f
fi
�
(x) ai

�;
P

i�C0f
fi
�
(x) ai

�
�

[Og]
� =

�P
j�Mg

gj
� (x) bj

� +
P

j�Cg
gj
� (x) bj

�
;
P

j�M 0
g
gj
� (x) bj

�
;
P

j�C0g
gj
� (x) bj

�
�
(5.40)

HereMf = fijfi� (x) � 0g, Cf = fijfi� (x) < 0g; M 0
f = fijfi

�
(x) � 0g, C 0f = fijfi

�
(x) < 0g;

Mg = fjjgj� (x) � 0g, Cg = fjjgj� (x) < 0g; M 0
g = fjjgj� (x) � 0g, C 0g = fjjgj� (x) < 0g:

The neural network output is

[ŷk]
� =

�
Of

� �Og
�; Of

� �Og
�
�

(5.41)

The training error is

ek = y�k 	 ŷk

here [y�k]
� =

�
y�k
�; y�k

�
�
; [ŷk]

� =
�
ŷk
�; ŷk

�
�
; [ek]

� =
�
ek
�; ek

�
�
:

In order to train the weights, we need a cost function related to the Z-numbers as

Jk = J� + J
�
; J� =

1

2

�
y�k
� � ŷk

�
�2
; J

�
=
1

2

�
y�k
� � ŷk

�
�2

(5.42)

It is quite obvious, Jk ! 0 when [ŷk]
� ! [y�k]

� :

The index (5.42) is least mean square. It has a self-correcting feature that makes it

suitable to vast arbitrarily without shifting from its constraints. The gradient algorithm is

subjected to cumulative series of errors.

The gradient technique is now been utilized to train the Z-number weights fi (x) and

gj (x). The solution x0 is the function of fi (x) and gj (x) : We compute
@Jk
@x0

and @Jk
@x0

as

@Jk
@x0

= @J�

@x0
+ @J

�

@x0
@Jk
@x0

= @J�

@x0
+ @J

�

@x0

(5.43)

According to the chain rule

@J�

@x0
=

@J�

@ŷk
�

@ŷk
�

@Of
�

@Of
�

@fi
� (x)

@fi
� (x)

@x0
� @J�

@ŷk
�

@ŷk
�

@Og
�

@Og
�

@gj� (x)

@gj
� (x)

@x0
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So
@J�

@x0
=

nX
i=1

�
�
y�k
� � ŷk

�
�
a�i fi

0� +

mX
j=1

�
y�k
� � ŷk

�
�
b�j gj

0�

Or
@J�

@x0
=

nX
i=1

�
�
y�k
� � ŷk

�
�
a�i fi

0� +
mX
j=1

�
y�k
� � ŷk

�
�
b
�

j gj
0�

@Jk
@x0

can be calculated the same as above.

The solution x0 is upgraded as

x0 (k + 1) = x0 (k)� � @Jk
@x0

x0 (k + 1) = x0 (k)� � @Jk
@x0

Here � is the rate of the training � > 0:

For the requirement of increasing the training methodology, the adding of the momentum

term is mentioned as

x0 (k + 1) = x0 (k)� � @Jk
@x0
+ 

�
x0 (k)� x0 (k � 1)

�
x0 (k + 1) = x0 (k)� � @Jk

@x0
+  [x0 (k)� x0 (k � 1)]

Here  > 0: After the updating of x0 , it is necessary to induce the weights fi (x0) and gj (x0).

The solution related to the dual equation is on the basis of Z-number (5.14) which can

also be estimated by feedback neural network, as in Figure 3.3. In this form, the inputs are

the Z-number functions of nonlinearity fi (x) and gj (x) ; the concerned weights are taken to

be as Z-numbers ai and bj: The training error ek has been utilized here in order to update

x. Once the nonlinear operations fi (x) and gj (x) are performed, Of and Og are considered

to be similar to (5.40). The output related to the neural network is similar to (5.41).

5.4 Nonlinear system modeling with fuzzy di¤erential

equations Z-numbers

Consider the following controlled unknown nonlinear system

_x = f1(x1; u; t) (5.44)
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where f1(x1; u) is unknown vector function, x1 2 <n is an internal state vector and u 2 <m

is the input vector.

Here, we use the following di¤erential equation (FDE) to model the uncertain nonlinear

system (5.44),

d

dt
x = f(x; u) (5.45)

where x 2 <n is the Z-number variable, which corresponds to the state x1 in (5.44); f(t; x)
is a Z-number vector function, which relates to f1(x1; u); d

dt
x is the derivative associated to

the Z-number variable. Here the uncertainties of the nonlinear system (5.44) are in the sense

of Z-numbers.

The fuzzy di¤erential equation (5.45) can be equivalent to the following four ODE

1)

(
d
dt
x = f [t; x(�; �); �x(�; �)]

d
dt
�x = f [t; x(�; �); �x(�; �)]

2)

(
d
dt
x = f [t; x(�; �); �x(�; �)]

d
dt
�x = f [t; x(�; �); �x(�; �)]

(5.46)

Here, we use the FDE (5.45) to model the uncertain nonlinear system (5.44), such that

the output of the plant x can follow the plant output x1;

min
f
kx� x1k (5.47)

This modeling object can be considered as: �nding f and f in the fuzzy equations of (5.46)

or �nding the solutions of these models. It is impossible to obtain analytical solutions. We

use neural networks to approximate them, see Figure 5.1.

In fact, the nonlinear system can be modeled by the neural network directly. However,

this data-driven black box identi�cation method does not use the model information.
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Nonlinear system

(Differential Equation)

Bernstein Neural Networks

Fuzzy model

(Fuzzy differential Equation)

1x

x

nx

Solutions

Model  information

Figure 5.1: Nonlinear system modeling with fuzzy di¤erential equation

5.5 Controllability of uncertain nonlinear systems via

fuzzy di¤erential equations and Z-numbers

Theorem 5.3 If the Z-number function f and its derivative @f
@x
are on the rectangle [�p; p]�

[�q; q], here p; q 2 eZ, eZ is the space of Z-numbers, then there exists an unique Z-number

solution for the following FDE based on Z-numbers

d

dt
x = f(t; x); x(t0) = x0 (5.48)

for all t 2 (�b; b), b � p

Proof. We utilize Picard�s iteration technique [46] to develop a sequence of Z-number

functions 'n(t) as

'n+1(t) = '0 �
R t
0
f(s; 'n(s))ds

= '0 	H (�1)
R t
0
f(s; 'n(s))ds

We �rst validate that 'n(t) is continuous and prevail for all n. Obviously, if 'n(t) prevail

then 'n+1(t) is also prevail as

'n+1(t) = '0 �
R t
0
f(s; 'n(s))ds

= '0 	H (�1)
R t
0
f(s; 'n(s))ds
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Since f is continuous, so there exists N 2 E such that jf(t; x)j � N for all t 2 [�p; p]; as
well as all x 2 [�q; q]. If we set t 2 [�b; b] for b � min(q=N; p), then it is possible

k'n+1 	 '0k = k
Z t

0

f(s; 'n(s))dsk � N jtj � Nb � q

This validates that 'n+1(t) acquires values in [�q; q]. Because

'n(t) =
nX
k=1

('n(t)	 'n�1(t))

for any  < 1, we select t 2 (�b; b) such that j 'k(t)	 'k�1(t) j� k for all k. This signi�es

that there exists  < 1 [118]

j 'k(t)	 'k�1(t) j� k

From the mean value theorem [180],

'k(t)	 'k�1(t) =

Z t

0

[f(s; 'k�1(s))	 f(s; 'k�2(s))]ds

Applying the mean value theorem into the Z-number function h(x) = f(s; x) in the two

points 'k�1(s) and 'k�2(s),

h('k�1(s))	 h('k�2(s)) = h0( k(s))('k�1(s))	 'k�2(s))

Taking into consideration h0(x) = @f
@x
, we obtain

'k(t)	 'k�1(t) =

Z t

0

@f

@x
(s;  k(s))('k�1(s)	 'k�2(s))ds (5.49)

Because j 'k�1(s) 	 'k�2(s) j� k�1 for s � t and b < =N; by substituting the above

relation in (5.49) and utilizing the boundess of @f
@x
,

j 'k(t))	 'k�1(t) j�
Z t

0

Nk�1ds = Ntk�1 � Nbk�1

In order to validate that x is continuous, it is necessary to show that for any given � > 0

there exists � > 0 in such a manner that j t2 � t1 j< � implies j '(t2) 	 '(t1) j< �. At par

with the notation convenience, we suppose that t1 < t2. It follows that

'(t2)	 '(t1) = limn!1 'n(t2)	 limn!1 'n(t1)

= limn!1('n(t2)	 'n(t1)) = limn!1
R t2
t1
f(s; 'n(s))ds
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There exists N in such a manner that j f(s; x) j� N . Hence

j '(t2)	 '(t1) j�
Z t2

t1

Nds = N j t2 � t1 j� N�

henceforth by selecting � < �=N it is observed that j '(t2)	 '(t1) j< �. So limn!1 'n(t) is

prevail for all t.

Now we demonstrate that limn!1 'n(t) is continuous. Since

'(t) = limn!1 'n(t) = limn!1
R t
0
f(s; 'n�1(s))ds

=
R t
0
limn!1 f(s; 'n�1(s))ds =

R t
0
f(s; limn!1 'n�1(s))ds

where the last step (moving the limit inside the function) is at par with the concept that f

is continuous in each variable. Hence it is clear that

'(t) =

Z t

0

f(s; '(s))ds

because all functions are continuous,

d

dt
' = f(s; '(t))

If there exists another solution �(t),

'(t)	 �(t) =

Z t

0

(f(s; '(t))	 f(s; �(t)))ds

Since the two functions are di¤erent, there exists � > 0, j '(t)	 �(t) j> �. We de�ne

m = max
0�t�b

j '(t)	 �(t) j

N is the bound for @f
@x
. Utilizing the mean value theorem,

j '(t)	 �(t) j�
Z t

0

N j '(t)� �(t) j ds � N j t j m � Nbm

If we select b < �=2mN , it signi�es that for all t < b, j '(t)� �(t) j< �=2, that contracts the

fact that the least di¤erence is �. So there exists an unique Z-number solution.
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Theorem 5.4 Assume the following FDE based on Z-numbers

d

dt
x = f(t; x) (5.50)

here f 2 �Jab, �Jab is the set of linear strongly bounded operators, for every operators f

there exists a function � 2 L([a; b]; eZ+) such that jf(�)(t)j � �(t)k�kG; t 2 [a; b] and � 2
G([a; b]; eZ) and there prevails f0; f1 2 'ab; 'ab is a set of linear operators f 2 �Jab from the

set G([a; b]; eZ+) to the set L([a; b]; eZ+); such that
jf(t; �; �) + f

1
(t; �; �)j � f

0
(t; j�j; j�j); t 2 [a; b]

jf(t; �; �) + f 1(t; �; �)j � f 0(t; j�j; j�j); t 2 [a; b]
(5.51)

then (5.50) has an unique solution.

Proof. If x is a Z-number solution of (5.50) and �1
2
f1 2 Jab(a),

d

dt
� = �1

2
f1(t; �)� f0(t; jxj)�

1

2
f1(t; jxj) (5.52)

contains a unique Z-number solution �. Moreover as f0; f1 2 'ab

�(t) � 0; t 2 [a; b]
�(t) � 0; t 2 [a; b]

(5.53)

According to (5.51) and the condition f1 2 'ab, from (5.52) we have

d
dt
� � �1

2
f
1
(t; �; �) + f(t; x; x) + 1

2
f
1
(t; x; x)

d
dt
� � �1

2
f1(t; �; �) + f(t; x; x) + 1

2
f 1(t; x; x)

thus t 2 [a; b]
d
dt
(��) � �1

2
f
1
(t;��;��) + k(t; x; x) + 1

2
k1(t; x; x)

d
dt
(��) � �1

2
f 1(t;��;��) + f(t; x; x) + 1

2
f 1(t; x; x)

The last two inequalities is on account of the presumption �1
2
f1 2 Jab(a)

jx(t)j � �(t) t 2 [a; b]
jx(t)j � �(t) t 2 [a; b]

(5.54)
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According to the (5.54) and the conditions f0; f1 2 'ab, (5.52) results in
d
dt
� � f

0
(t; �; �); t 2 [a; b]

d
dt
� � f0(t; �; �); t 2 [a; b]

As f0 2 Jab(a), the last inequality with �(a) = 0 yields �(t) � 0 and �(t) � 0 for t 2 [a; b].
(5.53) implies � � 0. Thus based on (5.54) we have x � 0.

5.6 Fuzzy controller design with neural networks and

fuzzy di¤erential equations

In general, it is di¢ cult to solve the four equations (4.5) or (4.4). Here, we use a special

neural network named Bernstein neural network to approximate the solutions of the FDE

(4.4).

The Bernstein neural network uses the following Bernstein polynomial,

B(x1; x2) =
PN

i=0

PM
j=0

�
N
i

��
M
j

�
Wi;jx1i(T � x1i)

N�ix2j(1� x2j)
M�j

(5.55)

where
�
N
i

�
= N !

i!(N�i)! ;
�
M
j

�
= M !

j!(M�j)! ; Wi;j is the Z-number coe¢ cient.

This two variable polynomial can be regarded as a neural network, which has two inputs

x1i and x2j and one output y;

y =
NX
i=0

MX
j=0

�ijWi;jx1i(T � x1i)
N�ix2j(1� x2j)

M�j (5.56)

where �i =
�
N
i

�
; j =

�
M
j

�
.

Because the Bernstein neural network (5.56) has similar forms as (4.5), we use the Bern-

stein neural network (5.56) to approximate the solutions of four ODEs in (4.5).

If x1 and x2 in (5.55) are de�ned as: x1 is time interval t; x2 is the �-level , the solution

of (4.4) in the form of the Bernstein neural network is

xm(t; �) = xm(0; �)

�t
PN

i=0

PM
j=0 �ijWi;jti(T � ti)

N�i�j(1� �j)
M�j

(5.57)
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Figure 5.2: Static Bernstein neural network

where xm(0; �) is the initial condition of the solution based on Z-number.

so the derivative of (5.56) is

1)

(
d
dt
xm = C1 + C2

d
dt
�xm = D1 +D2

2)

(
d
dt
xm = C1 + C2

d
dt
�xm = D1 +D2

(5.58)

where t 2 [0; T ], � 2 [0; 1]; tk = kh, h = T
k
, k = 1; :::; N , �j = jh1, h1 = 1

M
, j = 1; :::;M ,

C1 =
PN

i=0

PM
j=0 �ijW i;jti(T � ti)

N�i�j(1� �j)
M�j

D1 =
PN

i=0

PM
j=0 �ijW i;jti(T � ti)

N�i�j(1� �j)
M�j

C2 = tk
PN

i=0

PM
j=0 �ijW i;j[iti�1;j(T � ti)

N�i

� (N � i) ti;j(T � ti)
N�i�1]�ij(1� �j)

M�j

D2 = tk
PN

i=0

PM
j=0 �ijW i;j[iti�1;j(T � ti)

N�i

� (N � i) ti;j(T � ti)
N�i�1]�ij(1� �j)

M�j

The above equations can be regarded as the neural network form, see Figure 5.2.
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� input unit:
o11 = t; o12 = �

� the �rst hidden units:
o21;i = f 1i (o

1
1); o22;i = f 2i (o

1
1)

o23;j = g1j (o
1
2); o24;j = g2j (o

1
2)

� the second hidden units:

o31;i = o21;i(o
2
2;i); o32;j = o23;j(o

2
4;j)

� the third hidden units:
o41;i = �io

3
1;i; o42;i0 = jo

3
2;j

� the forth hidden units:
o5i;j = o41;io

4
2;j

� output unit:

N(t; �) =
NX
i=0

MX
j=0

(ai;jo
5
i;j)

where f 1i = ti; f 2i = (T � t)N�i; �i =
1
TN

�
N
i

�
, g1j = �j; g2j = (1� �)M�j; j =

�
M
j

�
:

We de�ne the training errors between (5.58) and (4.5) as

1)

(
e1 = C1 + C2 � f

�e1 = D1 +D2 � �f

2)

(
e2 = C1 + C2 � �f

�e2 = D1 +D2 � f

(5.59)

The standard back-propagation learning algorithm is utilized to update the weights with

the above training errors

W i;j (k + 1) = W i;j (k)� �1(
@e21
@W i;j

+
@e21
@W i;j

)

W i;j (k + 1) = W i;j (k)� �2(
@e22
@W i;j

+
@e22
@W i;j

)
(5.60)
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Figure 5.3: Dynamic Bernstein nerual network

where �1 and �2 are positive learning rates.

The momentum terms, �W i;j (k � 1) and � �Wi;j (k � 1) can be added to stabilize the
training process. The above Bernstein neural network can be retended into a recurrent

(dynamic) form, see Figure 5.3. The dynamic Bernstein neural network is

(
d
dt
xm(t; �) = P (t; �)A(xm(t; �); �xm(t; �)) +Q(t; �)

d
dt
�xm(t; �) = P (t; �)A(xm(t; �); �xm(t; �)) +Q(t; �)

(5.61)

Obviously this dynamic network has the form of

f(t; x) = P (t)x+Q(t)
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The training algorithm is similar as (5.60), only the training errors are changed as

1)

(
e1 = C1 + C2 � PA(xm; �xm)�Q

�e1 = D1 +D2 � PA(xm; �xm)�Q

2)

(
e2 = C1 + C2 � PA(xm; �xm)�Q

�e2 = D1 +D2 � PA(xm; �xm)�Q

(5.62)

5.7 Simulations

In this section, we use several real applications to show how to use the fuzzy equation and

FDE with Z-number coe¢ cients to design the fuzzy controller.

Example 5.1 (Chemical reaction) The chemical reaction is to use the poly ethylene (PE)

and poly propylene (PP) to generate a desired substance (DS). If the cost of the material is

de�ned as x; the cost of PE is x and the cost of PP is x2: The weights of PE and PP are

uncertain, which satisfy the triangle function (5.1). We want to product two types DS. If

we wish the cost between them are [(360:5009; 400:5565; 421:3749); p(0:8; 0:9; 1)] = y�; what

is the cost x ? The weights of PE are

a1 = [(2:7951; 3:35412; 3:9131); p(0:7; 0:8; 1)]

b1 = [(1:5811; 2:1081; 2:6352); p(0:8; 0:9; 1)]

The PP weights are

a2 = [(4:8107; 5:3452; 5:8797); p(0:7; 0:875; 1)]

b2 = [(3:9131; 4:4721; 5:0311); p(0:6; 0:8; 1)]

The reaction can be modeled with the following fuzzy equation and Z-numbers

[(2:7951; 3:35412; 3:9131); p(0:7; 0:8; 1)]x� [(4:8107; 5:3452; 5:8797); p(0:7; 0:875; 1)]x2

= [(1:5811; 2:1081; 2:6352); p(0:8; 0:9; 1)]x� [(3:9131; 4:4721; 5:0311); p(0:6; 0:8; 1)]x2

�[(360:5009; 400:5565; 421:3749); p(0:8; 0:9; 1)]

Here f1 (x) = g1 (x) = x; f2 (x) = g2 (x) = x2:
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The exact solution is x� = [(18:3712; 19:3919; 19:9022); p(0:8; 0:96; 1)]:We use feed-forward

neural networks (NN) as Figure 3.2 and feedback neural networks (FNN) as Figure 3.3

to approximate the solution x: The learning rate is � = 0:02: The initial state is x(0) =

[(22:6612; 23:7102; 24:2407); p(0:8; 0:9; 1)]: The approximation results are shown in Table 5.1.

The modeling errors are shown in Figure 5.4.

Table 5.1. Neural networks approximate the Z � numbers
k x (k) with NN k x (k) with FNN

1 [(22:531; 23:684; 24:103); p(0:6; 0:8; 0:85)] 1 [(22:323; 23:487; 23:979); p(0:7; 0:8; 0:85)]

2 [(21:793; 22:837; 23:203); p(0:7; 0:8; 0:85)] 2 [(20:982; 22:133; 22:761); p(0:7; 0:85; 0:9)]
...

...
...

...

35 [(18:674; 19:717; 20:237); p(0:8; 0:92; 1)] 18 [(18:492; 19:514; 20:135); p(0:8; 0:92; 1)]

36 [(18:382; 19:401; 19:911); p(0:8; 0:96; 1)] 19 [(18:379; 19:397; 19:907); p(0:8; 0:96; 1)]

We can see that both neural networks work well. We use the follows to transfer the Z�numbers
to fuzzy numbers,

� =

R
x� eP (x)dxR
� eP (x)dx

Z = ( eA; eP ) = [(22:331; 23:384; 23:993); p(0:6; 0:8; 0:85)]. So eZ� = (22:331; 23:384; 23:993; 0:7) ;eZ 0 = (p0:7 22:331;p0:7 23:384;p0:7 23:993): The results of neural networks approximation
for the fuzzy numbers are shown in Table 5.2.

Table 5.2. Neural networks approximate the fuzzy numbers

k x (k) with NN k x (k) with FNN

1 (19:358; 20:349; 20:709) 1 (19:672; 20:698; 21:132)

2 (19:205; 20:125; 20:448) 2 (18:844; 19:878; 20:442)
...

...
...

...

35 (17:720; 18:710; 19:203) 18 (17:548; 18:517; 19:107)

36 (17:541; 18:513; 19:000) 19 (17:538; 18:509; 18:996)

The Z�numbers increase degree of reliability of the information. The comparison between the
Z-number Z = [(18:382; 19:401; 19:911); p(0:8; 0:96; 1)] and fuzzy number (17:541; 18:513; 19:000)
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Figure 5.4: Approximation errors of the neural networks

for k = 36 is shown in Figure 5.5. We see that the Z-number incorporates with various in-

formation and the solution of the Z-number is more accurate. The membership function for

the restriction in the Z-number is �AZ = (18:382; 19:401; 19:911): It can be in probability

form.

Example 5.2 (Heat source) Heat source is in the center of the insulating materials, see

Figure 3.5. The thickness of the materials are not exact, which satisfy the trapezoidal function

(5.2),

A = [(0:1317; 0:1536; 0:1646; 0:1975); p(0:7; 0:83; 0:9)] = a1

B = [(0:0843; 0:1054; 0:2108; 0:5270); p(0:8; 0:9; 1)] = a2

C = [(0:0964; 0:1072; 0:2144; 0:4288); p(0:7; 0:87; 0:9)] = b1

D = [(0:0216; 0:0325; 0:0542; 0:0867); p(0:8; 0:85; 0:92)] = b2

The coe¢ cient associated with conductivity materials are KA = x = f1, KB = x
p
x = f2,

KC = x2 = g1, KD =
p
x = g2, where x is considered to be as the elapsed time. The

control object is to �nd the time when the thermal resistance at the right side arrives R =

[(0:0162; 0:0293; 0:0424; 0:1241); p(0:75; 0:8; 0:9)] = y�. The thermal balance model is [100]:

A

KA

� B

KB

=
C

KC

� D

KD

�R
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Figure 5.5: Z-number and fuzzy number

The exact solution is x� = [(2:0519; 3:0779; 4:1039; 6:1559); p(0:8; 0:95; 1)] [100]. The learning

rate is � = 0:1 (NN) and � = 0:005 (FNN). The neural networks approximation results are

shown in Table 5.3 and Table 5.4.

Table 5.3. Neural networks approximate the Z � numbers
k x (k) with NN k x (k) with FNN

1 [(5:972; 6:983; 7:963; 9:982); p(0:6; 0:8; 0:85)] 1 [(5:989; 6:990; 7:979; 9:988); p(0:7; 0:85; 0:87)]

2 [(5:438; 6:383; 7:353; 9:302); p(0:75; 0:8; 0:9)] 2 [(5:378; 6:102; 7:123; 9:162); p(0:7; 0:85; 0:87)]
...

...
...

...

53 [(2:118; 3:170; 4:224; 6:333); p(0:8; 0:9; 1)] 22 [(2:089; 3:149; 4:146; 6:292); p(0:8; 0:96; 1)]

54 [(2:069; 3:087; 4:113; 6:175); p(0:8; 0:94; 1)] 23 [(2:059; 3:084; 4:113; 6:169); p(0:8; 0:94; 1)]

Table 5.4. Neural networks approximate the fuzzy numbers

k x (k) with NN k x (k) with FNN

1 (5:131; 5:999; 6:841; 8:576) 1 (5:360; 6:255; 7:141; 8:939)

2 (4:934; 5:791; 6:671; 8:440) 2 (4:813; 5:461; 6:374; 8:199)
...

...
...

...

53 (2:009; 3:007; 4:007; 6:008) 22 (1:993; 3:004; 3:956; 6:004)

54 (1:966; 2:934; 3:915; 5:870) 23 (1:957; 2:931; 3:909; 5:864)
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Example 5.3 (Water channel system) The water in the pipe d1 is divided into three

pipes d2, d3, d4, see Figure 3.10. The areas of the pipes are uncertain, they satisfy the

trapezoidal function (5.2),

A1 = [(0:421; 0:632; 0:737; 0:843); p(0:75; 0:9; 1)]

A2 = [(0:052; 0:104; 0:209; 0:419); p(0:8; 0:91; 1)]

A3 = [(0:031; 0:084; 0:105; 0:210); p(0:8; 0:9; 0:95)]

The water velocities in the pipes are controlled by the valves parameter x; v1 = x3, v2 = ex

2
,

v3 = x [196]. The control object is to let the �ow in pipe d4 which is

Q = [(11:478; 40:890; 93:332; 293:056); p(0:8; 0:87; 0:95)]

what is the valve control parameter x: By mass balance

A1v1 = A2v2 � A3v3 �Q

The exact solution is demonstrated by x = [(3:127; 4:170; 5:212; 7:298); p(0:8; 0:92; 1)] [196].

The learning rate of NN is � = 0:08: The neural networks approximation results are shown

in Table 5.5 and Table 5.6.

Table 5.5. Neural networks approximate the Z � numbers
k x (k) with NN k x (k) with FNN

1 [(5:751; 6:772; 7:741; 9:761); p(0:6; 0:8; 0:85)] 1 [(5:878; 6:881; 7:867; 9:877); p(0:7; 0:81; 0:85)]

2 [(5:327; 6:261; 7:131; 9:201); p(0:7; 0:8; 0:87)] 2 [(5:158; 6:004; 7:001; 9:002); p(0:7; 0:85; 0:9)]
...

...
...

...

55 [(3:142; 4:194; 5:229; 7:321); p(0:8; 0:9; 1)] 20 [(3:136; 4:185; 5:225; 7:312); p(0:85; 0:9; 1)]

56 [(3:136; 4:188; 5:222; 7:315); p(0:8; 0:93; 1)] 21 [(3:130; 4:178; 5:218; 7:305); p(0:8; 0:92; 1)]
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Table 5.6. Neural networks approximate the fuzzy numbers

k x (k) with NN k x (k) with FNN

1 (4:941; 5:818; 6:651; 8:386) 1 (5:188; 6:073; 6:944; 8:718)

2 (4:720; 5:548; 6:319; 8:153) 2 (4:632; 5:392; 6:287; 8:085)
...

...
...

...

55 (2:980; 3:978; 4:960; 6:945) 20 (2:975; 3:970; 4:956; 6:936)

56 (2:977; 3:976; 4:958; 6:945) 21 (2:970; 3:964; 4:951; 6:932)

FNN is much faster and more robust compared with NN. After converting the Z�numbers
to fuzzy numbers, it is possible to extract the fuzzy rules.

Example 5.4 The heat treatment system in welding can be modeled as [61]:

d

dt
x(t) = 3Ax2(t) (5.63)

where transfer area A is uncertain as A = [(1 + �; 3 � �); p(0:8; 0:87; 0:95)]; � 2 [0; 1]: So
(5.63) is a FDE based on Z-number. If the initial condition is x(0) = [(0:5

p
�; 0:2

p
1� �+

0:5); p(0:8; 0:92; 1)]; the static Bernstein neural network (4.9) has the form of

8>>>><>>>>:
xm(t; �) = 0:5

p
�

+t
PN

i=0

PM
j=0 �ijW i;jti(T � ti)

N�i�j(1� �j)
M�j

xm(t; �) = 0:2
p
1� �+ 0:5

+t
PN

i=0

PM
j=0 �ijW i;jti(T � ti)

N�i�j(1� �j)
M�j

where the approximate Z-number solution is termed as [(xm(t; �); xm(t; �)); p(0:8; 0:9; 1)].

With the learning rates � = 0:002 and  = 0:002; the approximation results for Z-numbers

are shown in Table 4. The results of Bernstein neural networks approximation for the fuzzy

numbers are shown in Table 5.

Table 4. Bernstein neural networks approximate the Z-numbers
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� SNN DNN

0 [(0.0582,0.0859),p(0.7,0.8,0.85)] [(0.0250,0.0425),p(0.7,0.82,0.9)]

0.1 [(0.0449,0.0696),p(0.7,0.8,0.9)] [(0.0224,0.0399),p(0.75,0.82,0.9)]

0.2 [(0.0419,0.0619),p(0.8,0.92,1)] [(0.0207,0.0394),p(0.8,0.94,1)]

0.3 [(0.0250,0.0348),p(0.7,0.81,0.9)] [(0.0226,0.0344),p(0.8,0.85,0.96)]

0.4 [(0.0487,0.0689),p(0.7,0.8,0.88)] [(0.0271,0.0510),p(0.75,0.82,0.9)]

0.5 [(0.0534,0.0665),p(0.8,0.9,1)] [(0.0160,0.0271),p(0.81,0.92,1)]

0.6 [(0.0494,0.0765),p(0.8,0.9,1)] [(0.0201,0.0413),p(0.81,0.92,1)]

0.7 [(0.0630,0.0859),p(0.75,0.82,0.9)] [(0.0303,0.0476),p(0.82,0.9,1)]

0.8 [(0.0393,0.0536),p(0.8,0.92,1)] [(0.0164,0.0379),p(0.82,0.94,1)]

0.9 [(0.0422,0.0669),p(0.8,0.9,1)] [(0.0212,0.0430),p(0.8,0.94,1)]

1 [(0.0443,0.0443),p(0.7,0.8,0.88)] [(0.0186,0.0186),p(0.7,0.82,0.9)]

Table 5.Bernstein neural networks approximate the fuzzy numbers
� SNN DNN

0 [0.0511,0.0754] [0.0224,0.0381]

0.1 [0.0402,0.0623] [0.0203,0.0362]

0.2 [0.0398,0.0588] [0.0197,0.0374]

0.3 [0.0224,0.0312] [0.0211,0.0321]

0.4 [0.0433,0.0613] [0.0246,0.0462]

0.5 [0.0507,0.0631] [0.0152,0.0258]

0.6 [0.0469,0.0726] [0.0191,0.0392]

0.7 [0.0571,0.0778] [0.0288,0.0452]

0.8 [0.0373,0.0509] [0.0157,0.0362]

0.9 [0.0401,0.0635] [0.0202,0.0408]

1 [0.0394,0.0394] [0.0167,0.0167]

Example 5.5 A generalized model of a tank system is displayed in Figure 5.6. Assume

I = t + 1 be in�ow disturbances of the tank that will generate vibration in liquid level x,

here R = 1 will be the �ow obstruction that can be curbed using the valve and A = 1 is

considered to be cross section of the mentioned tank. The expression in relation to the liquid
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Figure 5.6: Liquid tank system

level considering the tank can be described as [196]:

d

dt
x(t) = � 1

AR
x(t) +

I

A
(5.64)

If the initial condition is x(0) = [(0:96 + 0:04�; 1:01 � 0:01�); p(0:75; 0:82; 0:9)]; the static
Bernstein neural network (4.9) has the form of

8>>>><>>>>:
xm(t; �) = (0:96 + 0:04�)

+t
PN

i=0

PM
j=0 �ijW i;jti(T � ti)

N�i�j(1� �j)
M�j

xm(t; �) = (1:01� 0:01�)
+t
PN

i=0

PM
j=0 �ijW i;jti(T � ti)

N�i�j(1� �j)
M�j

where t 2 [0; 1] and the approximate Z-number solution is termed as [(xm(t; �); xm(t; �)); p(0:75; 0:81; 0:95)].
We also use dynamic Bernstein neural network (4.13) to approximate the solutions. To

compare our results, we use the other generalization of neural network method [77]. The

comparison results for Z-numbers are shown in Table 6. The speci�cations quoted here are

� = 0:001 and  = 0:001. Corresponding error plots are shown in Figure 5.7. The results of

Bernstein neural networks approximation for the fuzzy numbers are shown in Table 7.

Table 6. Solutions of di¤erent methods based on Z-numbers
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Figure 5.7: Plot of absolute error between the exact solution and the approximated one with

SNN, DNN and other generalization of neural network methodology based on Z-numbers

� SNN DNN Neural network

0 [(0.0435, 0.0994),p(0.72,0.81,0.87)] [(0.0112, 0.0442),p(0.75,0.82,0.88)] [(0.0798, 0.1153),p(0.7,0.75,0.85)]

0.2 [(0.0504, 0.0940),p(0.7,0.8,0.9)] [(0.0248, 0.0635),p(0.75,0.82,0.9)] [(0.0878, 0.1375),p(0.7,0.8,0.85)]

0.4 [(0.0441, 0.0802),p(0.8,0.85,0.92)] [(0.0131, 0.0422),p(0.8,0.9,1)] [(0.1105, 0.1592),p(0.75,0.83,0.9)]

0.6 [(0.0178, 0.0423),p(0.8,0.92,1)] [(0.0121, 0.0384),p(0.81,0.94,1)] [(0.0613, 0.0915),p(0.8,0.9,1)]

0.8 [(0.0608, 0.0709),p(0.71,0.8,0.9)] [(0.0154, 0.0309),p(0.8,0.87,0.95)] [(0.0739, 0.0925),p(0.7,0.8,0.85)]

1 [(0.0611, 0.0611),p(0.75,0.82,0.91)] [(0.0335, 0.0335),p(0.8,0.87,0.92)] [(0.1007, 0.1007),p(0.7,0.8,0.9)]

Table 7. Solutions of di¤erent methods based on fuzzy numbers

� SNN DNN Neural network

0 [0.0387, 0.0884] [0.0101, 0.0398] [0.0701, 0.1012]

0.2 [0.0451, 0.0841] [0.0225, 0.0575] [0.0771, 0.1207]

0.4 [0.0407, 0.0740] [0.0125, 0.0401] [0.1001, 0.1442]

0.6 [0.0169, 0.0402] [0.0115, 0.0365] [0.0582, 0.0868]

0.8 [0.0544, 0.0635] [0.0144, 0.0289] [0.0649, 0.0812]

1 [0.0554, 0.0554] [0.0311, 0.0311] [0.0901, 0.0901]
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5.8 Conclusions

We use dual fuzzy equations, whose coe¢ cients are Z-numbers, to model uncertain nonlinear

systems. Then we give the relation between the solution of the fuzzy equations and the

controllers. The controllability of the fuzzy system is proposed. Two types of neural networks

are applied to approximate the solutions of the fuzzy equations. Modi�ed gradient descent

algorithms are used to train the neural networks. The novel methods are validated by several

benchmark examples.



Chapter 6

Conclusions

Many uncertain nonlinear systems can be modeled by linear-in-parameter models. The un-

certainties can be regarded as parameter changes, which can be described as fuzzy numbers.

These models are fuzzy equations or FDEs. The nonlinear system modeling corresponds to

�nd the fuzzy parameters of the fuzzy equations or FDEs, and the fuzzy control is to design

suitable nonlinear functions in the fuzzy equation or FDE. Both fuzzy modeling and fuzzy

control via fuzzy equations and FDEs need solution of these equations. There are various

approaches. However, all of analytical methods for the solutions of fuzzy equations or FDEs

are very di¢ cult to be applied, especially for nonlinear fuzzy equations or FDEs. Moreover,

the numerical methods are very complex and the approximation accuracy of the numerical

calculations are normally less.

Here, the modeling and controlling uncertainty nonlinear systems with fuzzy equations

is proposed. We discuss more general fuzzy equations: dual fuzzy equations. The controlla-

bility condition is given for the fuzzy control through these equations. Two types of neural

networks are applied to approximate the solutions of the mentioned equations. They are

controller design process. For modeling, we �rst transform the fuzzy equation into a neural

network. Then we modify the normal gradient descent method to train the fuzzy coe¢ cients.

With this modi�cation, we can apply normal neural modeling methods to uncertain nonlin-

ear system modeling with fuzzy equations. The approximation theory for crisp models are
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extended into fuzzy cases. The upper bounds of the modeling errors with fuzzy equations are

estimated. In continue the solutions of the FDEs are approximated by two types of Bernstein

neural networks. These numerical methods use generalized di¤erentiability of FDEs. The

solutions of FDE is substituted into four ODEs. Then the corresponding Bernstein neural

networks are applied. Also a methodology involving novel iterative technique considering

neural networks is suggested to extract approximate solution for the second-order nonlinear

PDEs with real constant coe¢ cients (RCCs) taking into account initial and boundary con-

ditions. This perspective is designed to grant good approximation on the basis of learning

technique which is associated with quasi-Newton rule. A trial solution of this system is sub-

divided into two parts. The initial and boundary conditions compensate the �rst part that

contains no adjustable parameters. The involvement of neural network containing adjustable

parameters (weights and biases) concludes the second part. Also, a sophisticated methodol-

ogy is provided in order to solve PDEs on the basis of the application of Bernstein polynomial

that is modeled with the help of two pattern of neural networks, static and dynamic models.

Furthermore to continue, we use dual fuzzy equations, whose coe¢ cients are Z-numbers, to

model uncertain nonlinear systems. The relation between the solution of the fuzzy equations

and the controllers is given. Two types of neural networks are implemented to approximate

solutions of the fuzzy equations with Z-number coe¢ cients. Also, the solutions of FDEs

based on Z-numbers are approximated by two types of Bernstein neural networks.
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