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Abstract— The robustness properties of both, sliding mode
control and H∞ design methodologies are exploited in the con-
text of decentralized control, for which interconnections among
subsystems are treated as perturbations. A dynamic surface is
proposed for the sliding mode design. The sliding mode control
successfully rejects the matched interconnections and reduces the
order of the H∞ problem (crucial in large-scale systems). H∞

control is used to attenuate the unmatched interconnections and
relaxes the assumption of full state information. It is demon-
strated that the combination of these two methods simplifies the
design process, as it allows to design each subsystem separately.
A composite Lyapunov function, constructed as a sum of the
individual functions of each subsystem is used in order to ensure
stability of the overall system. Sufficient conditions for stability
are given in terms of the existence of proper solutions to Riccati
equations.

Index Terms— Sliding mode control, Variable structure sys-
tems, Large-scale systems, Distributed control.

I. INTRODUCTION

A. Motivation

Large-scale systems may require the use of decentralized
control design when one, or several of the following difficulties
occur:

1) The system is widely distributed in space, so information
transfer is too costly (e.g. power systems),

2) implementation of a centralized feedback law is hard or
impossible due to the system’s decentralized structure
(e.g. aerial and terrestrial traffic control),

3) the complexity of analysis and design resulting from the
system’s order can be reduced by splitting the system
into several subsystems (e.g. large flexible structures),

4) the design criteria is robustness in the presence of struc-
tural perturbations where subsystems are disconnected
and again connected during operation.

In general terms, the problem of decentralized control is
that of finding a set of controllers satisfying an information
constraint: the information available at each control station is
only a subset of the measurement variables. The controllers
are to be designed for stabilizing the set of interconnected
subsystems that comprise the overall system. Clearly, such
a decentralized feedback scheme would address difficulties 1
and 2.
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As in the centralized case, several strategies have been
proposed in order to solve the problem. For instance, eigen-
value assignment [1], [2] and [3]; or optimal control, which
attracted considerable attention [4], [5], [6] and [7]. The main
disadvantage of these methods is that, at some stage of the
design procedure, a solution to a set of simultaneous equations
of at least the same order of the system needs to be found.
Thus, difficulty 3 is left unsolved.

An alternative strategy is to consider each system inde-
pendently and treat interconnections as perturbations. This
approach seeks to eliminate, or at least attenuate the pertur-
bations using available robust techniques. A scheme like this
one has the advantage of resolving difficulties 3 and 4.

Sliding mode control (SMC) is a powerful and robust
technique that fits well into this framework. The sliding mode
controller drives the system’s state into a “custom built”,
sliding (switching) surface and constraints the state thereafter.
A system motion in a sliding surface, named sliding mode, is
robust with respect to uncertainties and disturbances matched
by a control. Besides robustness, SMC has other features,
such as the order reduction of the dynamic equations when
the system is in the sliding mode. Examples of the variable
structure theory applied to decentralized control can be found
in [8], [9] and [10].

Nevertheless, SMC alone has a few disadvantages. One is
the sensitivity to unmatched disturbances, which is usually
overcome by assuming that disturbances are only of the
matched type. Another disadvantage is the requirement of full
state feedback, where a straight forward estimation in place
of the states results in detriment of the robust properties of
the controller. The problem of measurement feedback using
SMC has been addressed in [11], for example. As an example
of unmatched disturbance attenuation see [12]. Although these
issues have been successfully resolved, a direct combination
of the previous solutions is not satisfactory.

B. Contribution

To overcome the loss in robustness, we consider a dynamic
surface, where an H∞ reduced order observer is used to esti-
mate the state. We show that under reasonable assumptions, the
robustness properties of the SMC controller are maintained;
and that when combining SMC and H∞ techniques, it is
possible to achieve several goals at the same time:

• Measurement feedback.
• Matched disturbance annihilation.
• Unmatched disturbance attenuation.

Moreover, because of the SMC, the Riccati equations typical
of H∞ problems, turn out to be of reduced order.



C. Paper Structure

In this paper, sliding mode control combined with H∞

methods is applied to the decentralized control problem.
In section II, we give a formal statement of the problem.
A short review of the H∞ theory is given in section III.
In section IV the H∞ and SMC techniques are combined,
achieving matched disturbance rejection and unmatched distur-
bance attenuation. In section V the methodologies developed
are applied to the decentralized control problem, where a
Lyapunov function for the overall, interconnected system is
used for stability analysis. Sufficient conditions for stability
are then given in terms of resolvability of Riccati equations.

II. PROBLEM STATEMENT

Consider a linear time invariant decentralized system with
ν control stations

ẋi(t) = Aixi(t) + Biui(yi, t) +

ν∑

j 6=i

Aijxj(t) (1a)

yi(t) = Cixi(t), i = 1, 2, . . . , ν (1b)

where xi(t) ∈ <ni is the state vector, yi(t) ∈ <pi are the
available measurements and ui(xi, t) ∈ <mi is the control
action of the ith station at time t ∈ <. Note that ui satisfies
the information constraint, it depends on yi only. Ai, Bi

and Ci are matrices of appropriate dimensions.
∑ν

j 6=i Aijxj

represents the influence of the other stations, where the Aij’s
are, again, matrices of appropriate dimensions. In what fol-
lows, whenever the subscript i appears, it is assumed that the
properties stated hold for all i = 1, 2, . . . , ν.

The objective is to design each of the control laws ui so
that system (1) is semi-globally asymptotically stable.

Assumption 1: rank(CiBi) = mi.
We will consider system (1) as a set of perturbed systems

ẋi(t) = Aixi(t) + Biui(yi, t) + ηi(x
ī)

yi(t) = Cixi(t).

x, the whole state, is defined as

x ,
[
xT

1 xT
2 . . . xT

ν

]T
,

xī is understood in the same way as x, but with xi removed

xī ,
[
xT

1 xT
2 . . . xT

ν \xi

]T
,

and the nominal systems are

ẋi(t) = Aixi(t) + Biui(yi, t) (2a)
yi(t) = Cixi. (2b)

The perturbations ηi, resulting from the interconnections,
are thus defined as

ηi(x
ī) =

ν∑

j 6=i

Aijxj(t) (3)

= Aīxī, Aī ,
[
Ai1 Ai2 . . . Aiν \Aii

]

Assumption 2: The initial state x(t0) is bounded by a
known constant q, ‖x(t0)‖ ≤ q.

With the preceding assumptions in mind, we can restate
our problem as follows: design ν control laws for the nominal
systems (2), so that perturbations (3) do not affect the stability
of system (1).

III. H∞ CONTROL, SHORT REVIEW

In this section we make a short review of the standard H∞

state-space control problem as presented in [13], where the
methodology is paralleled to the one proposed in H2 theory,
originally termed Linear Quadratic Gaussian (LQG).

A. Overview

According to [14], the most general block diagram of a
control system is

G

K

�
w

�
z

-

y

�

u

where G is called the generalized plant and K is the controller.
The output z is a penalty variable which may contain an
error signal; y is composed of the available measurement
variables; u is the control input and w contains all external
inputs, including disturbances, sensor noise and commands.
The resulting closed-loop transfer function from w to z is
denoted by Tzw.

The objective is to minimize ‖Tzw‖∞, where the H∞ norm,
defined in the frequency domain of a stable transfer matrix
G(s) is

‖G(s)‖∞ , sup
ω

σmax[G(jw)].

With this objective in mind, the H∞ and H2 control algorithms
are put in the same setting; as it is shown in [13], the LQG
problem, when translated to the frequency domain (i.e., H2)
can be formulated in terms of minimizing ‖Tzw‖2.

An interesting result arises when the H∞ control problem is
translated to the time domain. In the general case, the resulting
state-space controller has an estimator-state feedback structure,
similar to LQG controllers.

Despite the similarities outlined, there is a fundamental
difference: when the infinite norm is used, we can only find
explicit solutions for ‖Tzw‖∞ < γ, where γ is grater than
it’s optimum value. For the optimum to be found, a search is
required. This stands in contrast to H2, where the optimum γ
can be calculated straight forward.

Whilst the comparison between H2 and H∞ is not strictly
necessary in our analysis, it certainly provides insight into the
H∞ control problem.

B. Classical H∞ Control Problem

The H∞ control problem can be stated as follows: find a
controller K such that ‖Tzw‖∞ < γ. An additional feature is
required, internal stability. By internal stability we mean that
the states of G and K go to zero from all initial values when



w = 0. A controller K which is internally stabilizing is said
to be admissible.

The solution to this problem requires a few assumptions.
The generalized plant considered has the form

G(s) =





A B1 B2

C1 0 D12

C2 D21 0



 ,

where [
A B
C D

]

, C(sI − A)−1B + D.

Or in the time domain, G may be written as

ẋ = Ax + B1w + B2u (4a)
z = C1x + D12u (4b)
y = C2x + D21w (4c)

Assumption 3: (A,B1) is stabilizable and (C1, A) is de-
tectable.

Assumption 4:

DT
12

[
C1 D12

]
=
[
0 I

]

Assumption 5:
[

B1

D21

]

DT
21 =

[
0
I

]

Assumption 3 warrants that the resulting controller is ad-
missible. Assumption 4 means that z has no cross weighting
between the state and control, and that the control weight ma-
trix is the identity. This assumption is only used to simplify the
formulas derived and can be relaxed by a suitable coordinate
transformation. Assumption 5 is dual to 4 and serves the same
purpose.

C. Solution

The solution is given in the form of a theorem.
Theorem 1: Given assumptions 3-5, there exists an admis-

sible controller such that ‖Tzw‖∞ < γ iff the following three
conditions hold.

1) There exists a real, positive semi-definite matrix X∞

satisfying the Riccati equation

X∞A + AT X∞ − X∞(B2B
T
2 − γ−2B1B

T
1 )X∞

+ C1C
T
1 = 0. (5)

2) There exists a real, positive semi-definite matrix Y∞

satisfying the Riccati equation

Y∞A + AT Y∞ − Y∞(CT
2 C2 − γ−2C1C

T
1 )Y∞

+ B1B
T
1 = 0. (6)

3) The spectral radius of X∞Y∞ is less than γ2.
Moreover, when this conditions hold, one such controller is

Ksub(s) ,

[
Â∞ −Z∞L∞

F∞ 0

]

(7)

where

Â∞ , A + γ−2B1B
T
1 X∞ + B2F∞ + Z∞L∞C2

F∞ , −BT
2 X∞, L∞ , −Y∞CT

2

Z∞ , (I − γ−2Y∞X∞)−1 �

Theorem 1 is a restatement of theorem 3 in [13] and it’s proof
can be found there.

The (suboptimal) controller Ksub in equation (7) can be
realized with an estimator-state feedback structure as

˙̂x = Ax̂ + B1ŵworst + B2u + Z∞L∞(C2x̂ − y)

u = F∞x̂, ŵworst = γ−2BT
1 X∞x̂.

In [15] it is shown that the H∞ norm in the frequency
domain and the (truncated) L2 induced norm of a linear
system in the time domain are equivalent. This equivalence
allows to understand the H∞ problem in terms of disturbance
attenuation and to assess stability in terms of Lyapunov
functions. The following theorem is basically a restatement
of the results found in [15].

Theorem 2: Suppose that,
1) Assumptions 3, 4 and 5 hold.
2) The conditions of theorem 1 are satisfied.

Then, the controller Ksub in (7) is internally stabilizing and
∫ T

0

zT (s)z(s)ds ≤ γ2

∫ T

0

wT (s)w(s)ds

holds for any T > 0.
Moreover, the candidate Lyapunov function

V (x, x̂) = xT X∞x + γ2x̃(Z∞Y∞)−1x̃ (8)

satisfies

V̇ ≤ −‖C1x‖
2 − ‖u‖2 + γ2‖w‖2 � (9)

IV. MEASUREMENT SLIDING MODE CONTROL

As in [11], we approach the measurement sliding mode
problem by a suitable change of coordinates. In this section
however, we take into account the effect of the unmatched
perturbations.

In what follows, we assume that the measurements have
no noise, that is, the exogenous input w only contains distur-
bances and uncertainties.

The effect of the exogenous input w, via B1, in system (4)
can be represented as a vector consisting of two components,
one that belongs to the space spanned by B2, and another that
belongs to the space orthogonal to B2

B1w = B2B
+

2 B1w + B⊥
2 B⊥+

2 B1w

B1w = B2wm + B⊥
2 wu,

where the pseudoinverse B+ is defined as

B+ , (BT B)−1BT

and
wm = B+

2 B1w, wu = B⊥+

2 B1w.

The first term, B2wm, enters through the same channel as
the control and it is said that satisfies the standard matching



condition. Sliding mode control (SMC) is an effective tech-
nique with the ability to withstand disturbances of the matched
type. The main idea is to use a discontinuous control action
in order to force the system’s state into a desired surface,
regardless of the matched uncertainties. Besides it’s robustness
property, sliding mode control has another advantage: the
dynamic equations are of lower order than the original system.
This is due to the fact that the sliding surface, being embedded
in the state space, is of lower dimension.

SMC design is usually done in two steps. The first one
is to design a desired sliding surface, and the second one is
to design the control action which drives the system into the
specified surface.

A. The Dynamic Sliding Surface

When full information is available, the sliding surface can
be set as

σ(x) = Sx = 0,

where S ∈ <m×n provides stable dynamics. When the only
information available is through the measurement variables
y, one might be tempted to design an estimator (e.g., using
the H∞ techniques described in the previous section) to
reconstruct the state and use the estimation in place of x

σ = Sx̂.

Following a similar analysis to the one developed in this
paper, it is easy to show that an approach like this would
be vulnerable to uncertainties, even of the matched type. The
reasons should become clear latter, but roughly speaking, the
problem is that the estimator filters out uncertainties.

Suppose that the system under consideration has the form
[
ẋ1

ẋ2

]

=

[
A11 A12

A21 A22

] [
x1

x2

]

+

[
wu

u + δ

]

(10a)

y =
[
C21

C22

]
[
x1

x2

]

, (10b)

and a transformation ȳ = Tyy exists, such that
[
ȳ1

ȳ2

]

=

[
C211

0
0 I

] [
x1

x2

]

where x1 ∈ <n−m, x2 ∈ <m, ȳ1 ∈ <p−m and ȳ2 ∈ <m.
However, if the system doesn’t have this structure, as long as
assumption 1 holds, we can always find a suitable transforma-
tion. Such transformation is described in the appendix.

This particular form allows the use of x2 as a virtual control
uv for the reduced order system

ẋ1 = A11x1 + A12uv + B11w

B11 = B⊥+

2 B1, uv = x2.

x2 can be obtained by a simple transformation on the mea-
surement variables, so it is only necessary to estimate x1.

Suppose that conditions of theorem 1 are satisfied with

B1 → B11 C1 → In−m×n−m A → A11

B2 → A12 C2 → C211

Notice that the reduced dimension of the problem broadens
the class of system’s satisfying such conditions.

We can estimate x1 as

˙̂x1 = A11x̂1 + A12uv + ŵu worst + Z∞L∞(C211
x̂1 − ȳ1)

and use the virtual control law

uv = ȳ2 = F∞x̂1,

so that the (dynamic) sliding surface becomes

σ = −F∞x̂1 + ȳ2

=
[
−F∞ I

]

︸ ︷︷ ︸

S

[
x̂1

ȳ2

]

= 0.

B. Enforcing the Sliding Modes

The discontinuous control proposed is

u(x̂1, y) = −M(x̂1, ȳ2)
σ

‖σ‖
,

where M(x̂1, ȳ2) is a positive scalar function satisfying

M > ‖F∞A∞ − A21‖ ‖x̂1‖

+ ‖F∞Z∞L∞ − A22‖ ‖ȳ2‖ + δ̄ (11)

with
δ̄ > ‖δ − A21x̃‖

By taking Vσ(σ) = ‖σ‖2/2 as a Lyapunov function we
verify the stability of σ:

V̇ = σT σ̇, (12)

the derivative of σ along time is

σ̇ = S

[
A∞x̂1 − Z∞L∞ȳ2

A21x1 + A22ȳ2 + u + δ

]

= (−F∞A∞ + A21)x̂1 + (F∞Z∞L∞ − A22)ȳ2

+ δ − A21x1 − M
σ

‖σ‖

Combining (12) and (13), one has

V̇σi
= −M‖σ‖ + σT

[

(−F∞A∞ + A21)x̂1

+ (F∞Z∞L∞ − A22)ȳ2 + δ − A21x̃1

]

≤ −‖σ‖
[

M − ‖F∞A∞ − A21‖ ‖x̂1‖

+ ‖(F∞Z∞L∞ − A22)‖ ‖ȳ2‖ + δ̄
]

≤ 0.

C. The Sliding Dynamics

To determine the dynamics of the sliding mode, we first
obtain the equivalent control ueq, see [16],

σ̇ = −F∞(A11x̂1 + A12x2 + ŵu worst

+ Z∞L∞(C211
x̂1 − ȳ1))

+ A21x1 + A22x2 + ueq + δ = 0

ueq = −(A21x1 + A22x2 + δ)

+ F∞(A11x̂1 + A12x2 + ŵu worst

+ Z∞L∞C211
(x̂1 − x1)),



and then substitute ueq in the system’s equations

ẋ2 = F∞(A11x̂1 + A12x2 + ŵu worst

+ Z∞L∞C211
(x̂1 − x1))

= F∞(A11x1 + A12x2 + wu + ˙̃x1)

ẋ1 = A11x1 + A12x2 + wu.

Where it is verified that the matched disturbance is success-
fully rejected.

A similar analysis, using a full order observer would show
that the system is susceptible even to matched perturbations.

V. APPLICATION TO DECENTRALIZED CONTROL

We can write system (1) using H∞ notation as

ẋi = Aixi + Bi1
︸︷︷︸

Aī

wi
︸︷︷︸

xī

+Bi2ui

yi = Ci2xi.

After the transformation described in the appendix
[
ẋi1

ẋi2

]

=

[
Ai11 Ai12

Ai21 Ai22

] [
xi1

xi2

]

+

[
wiu

ui + δ

]

[
ȳi1

ȳi2

]

=

[
Ci211

xi1

xi2

]

.

Select a candidate Lyapunov function for the interconnected
system

V =

ν∑

i=1

Vi,

with each Vi defined as in (8). For each Lyapunov function

V̇i ≤ −‖xi1‖
2 − ‖xi2‖

2 + γ2
i ‖x

ī‖2

= −‖xi‖
2 + γ2

i ‖x
ī‖2,

so the derivative of V along time is

V̇ ≤ −

ν∑

i=1

(

‖xi‖
2 − γ2

i ‖x
ī‖2

)

= −‖x‖2 +

ν∑

i=1



γ2
i

ν∑

j 6=i

‖xj‖
2





= −‖x‖2 +
ν∑

i=1



γ2
i

ν∑

j=1

‖xj‖
2



−
ν∑

i=1

(

γ2
i ‖xi‖

2

)

≤ −‖x‖2

(

1 −
ν∑

i=1

γ2
i

)

= −‖x‖2
(
1 − ‖γ‖2

)
, γ ,

[
γ1 . . . γν

]T
.

So, if ‖γ‖ < 1, where each γi satisfies the conditions of
theorem 1, we have an asymptotically stable system.

We only need to determine the bounds δ̄i. From the ap-
pendix,

δi = wim + C ′′
21wiu

If the initial estimation error is known, it can be used to
estimate δ̄. If not, we may take a conservative approach
(setting x̂(0) = 0)

δ̄i = ‖B+

i2Bi1 + C ′′
i21

B⊥+

i2 Bi1 − Ai21‖q

Thus, for any initial condition x(t0) we can find a set δ̄i.
So, if conditions of theorem 1 are satisfied, we obtain a set of
controllers achieving semi-global stability for system (1).

A. Step by Step Algorithm Description

To summarize the analysis just developed, we provide the
step by step algorithm needed for the design process:

1) Propose γ such that ‖γ‖2 < 1.
2) Verify conditions of theorem 1. If they hold, determine

the sliding surfaces σi as in (7).
3) Calculate gain matrices Mi(x̂i1, ȳi2) as in (11). Set

ui(ȳi) = −Mi(x̂i1, ȳi2)
σ

‖σ‖ .

B. Numerical Example

Consider two identical interconnected systems




ẋi1

ẋi2

ẋi3



 =





0 1 0
−2 −3 4
−11 −6 −1









xi1

xi2

xi3



+





0
0
1



ui+

+





0.2 −0.5 0.1
−1 0.1 0.2
12 5.5 3









xī
1

xī
2

xī
3



 (15)

with outputs
[
yi1

yi2

]

=

[
5 0 0
0 0 1

]

, i = 1, 2.

Notice that the system is already in the form of equation (10),
so we proceed directly with the algorithm above. A possible
set of γ’s is

γi = 0.67, ‖γ‖2 = 2γ2
i = 0.9

The reduced order problem is given by

A =

[
0 1
−2 −3

]

B1 =

[
0.2 −0.5 0.1
−1 0.1 0.2

]

, B2 =

[
0
4

]

,

C1 = I, C2 =
[
5 0

]
.

The conditions of theorem 1 are satisfied with

Xi∞ =

[
2.864 0.480
0.478 0.222

]

, Yi∞ =

[
0.155 −0.060
−0.060 0.149

]

.

Since the control is scalar, we can set ui = −M sign(σi). A
conservative approach for the gain (given x̂i1(0) = x̂i2(0) =
0, xi1(0) = xi2(0) = xi3(0) = 1) is

M = 10

A simulation of the interconnected system is shown in Fig-
ure 1, where the stability of the system is verified. In Figure 2,
there is a plot of the control action (smoothed by a linear
function and a saturator). It can be seen that the control effort
is reasonable.
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Fig. 1. Estimated state (dashed line) and actual state (solid line). x̂1(0) =
x̂2(0) = 0, x1(0) = x2(0) = x3(0) = 1
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Fig. 2. Control Action. The function sign(σi) was smoothed by the linear
function 1000σi followed by a saturator with minimal and maximal values
of −10 and 10 respectively.

VI. CONCLUSIONS

Two robust techniques were combined in order to amend the
interactions held between a set of subsystems comprising an
interconnected system. A control law, obtained by combining
H∞ and sliding mode theory, proved useful in the stabilization
of the decentralized system by measurement feedback. Suffi-
cient conditions for stability have H∞ flavor, as they are given
in terms of resolvability of Riccati equations. These equations
however, are of reduced dimension. The analysis developed
proved semi-global exponential stability.

APPENDIX

A. System’s Coordinate Transformation

As in [16], we use a transformation x′ = T1x to put
system (4) in regular form. A possible T1 is

T1 =

[

B⊥+

2

B+

2

]

,

After such a transformation, the system can be written as
[
ẋ′

1

ẋ′
2

]

=

[
A′

11 A′
12

A′
21 A′

22

] [
x′

1

x′
2

]

+

[
wu

u + wm

]

y =
[
C ′

1 C ′
2

]
[
x′

1

x′
2

]

Where x′
1 ∈ <n−m, x′

2 ∈ <m and all matrices are of
appropriate dimensions. Let’s make now a transformation Ty

on the output

Ty =

[
C ′⊥

2

C ′+
2

]

ȳ = Tyy =

[
C ′′

11 0
C ′′

21 I

] [
x′

1

x′
2

]

C ′′
11 = C ′⊥

2 C ′
1, C ′′

21 = C ′+
2 C ′

1.

Notice that assumption 1 implies that rank(C ′
2) = m, which

warranties the existence of C ′+
2 . If we further make another

transformation on the state

T2 =

[
I
(n−m)×(n−m)

0
(n−m)×m

C ′′
21 I

m×m

]

we get
[
ẋ′′

1

ẋ′′
2

]

=

[
A′′

11 A′′
12

A′′
21 A′′

22

] [
x′′

1

x′′
2

]

+

[
wu

u + δ

]

[
ȳ1

ȳ2

]

=

[
C ′′

11 0
0 I

] [
x′′

1

x′′
2

]

with δ = wm + C ′′
21wu.
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[10] M. Akar and Ü. Özgüner, “Decentralized sliding mode control design
using overlapping decompositions,” Automatica, vol. 28, pp. 1713–1718,
2002.

[11] S. K. Bag, S. K. Spurgeon, and C. Edwards, “Output feedback sliding
mode design for linear uncertain systems,” IEE Proc.-Control Theory
Appl., vol. 144, pp. 209–216, May 1997.

[12] J. Xu, Y. Pan, and T. Lee, “Analysis and design of integral sliding mode
control based on Lyapunov’s direct method,” in Proc. American Control
Conference, Denver, Colorado, June 2003, pp. 192–196.

[13] J. C. Doyle, P. P. Khargonekar, and B. A. Francis, “State-space solutions
to H2 and H∞ control problems,” IEEE Trans. Automat. Contr., vol. 34,
pp. 831–847, Aug. 1989.

[14] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control
Theory. New York: Macmillan Publishing Company, 1992.

[15] A. Isidori and A. Astolfi, “Disturbance attenuation and H∞-control
via measurement feedback in nonlinear systems,” IEEE Trans. Automat.
Contr., vol. 37, pp. 1283–1293, Sept. 1992.

[16] V. Utkin, J. Guldner, and J. Shi, Sliding Modes in Electromechanical
Systems. London, U.K.: Taylor & Francis, 1999.


