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Abstract— The concept of integral sliding mode (ISM) is
revised. ISM ensures insensitivity of the robustified system’s
trajectory with respect to the matched uncertainty, starting from
the beginning of the process. Modification of the ISM approach
allows to design the desired dynamics for the matching variables
and guarantees that the unmatched part of the uncertainties is
minimized and not amplified.

I. INTRODUCTION

A. Motivation

Sliding Mode Control is a powerful nonlinear control tech-
nique that has been intensively developed during the last 35
years [1]. A system’s motion in a sliding surface, named
sliding mode, turns out to be robust with respect to distur-
bances and uncertainties matched by a control but sensitive
to unmatched ones. The sliding mode design approach consist
of two steps [1]. First, the switching surface is designed such
that the system’s motion in the sliding mode satisfies design
specifications. Second, a control function that makes the
switching function attractive to the system’s state is designed.

A disadvantage of such a control design is that the trajectory
of the designed solution is not robust even with respect to the
matched disturbances on a time interval preceding the sliding
motion.

In [2],[1],[3] and [4] a new sliding mode design concept,
namely integral sliding mode (ISM), without any reaching
phase was proposed. As a result, the robustness of the tra-
jectory for a nominal system can be guaranteed throughout
an entire response of the system starting from the initial
time instant. The main disadvantage of ISM is that ISM
does not have the decomposition property typical for sliding
mode controllers because the robustified trajectory requires
the design of the control law in the complete state space.
Moreover, for systems with both matched and unmatched
uncertainties it is necessary to be sure that during ISM design
the unmatched part of the uncertainties is not amplified.

B. Main Contribution

In this paper the concept of the ISM concept is modified.
It is shown that in exchange of the decomposition property
of the sliding mode control it is possible to design the ISM
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ensuring desired dynamics for the linear part of the matched
variables.

Moreover it is shown that the proposed ISM design:
• does not amplify the unmatched uncertainties in the sense

that its Euclidean norm is not bigger than the Euclidean
norm of the original unmatched perturbation;

• ensures that the Euclidean norm of the resulting un-
matched perturbation is minimal.

II. CONTROL DESIGN CHALLENGE

Let us consider a controlled linear uncertain system

ẋ (t) = Ax (t) + Bu (t) + ξ (x, t) , x(0) = x0, (1)

where x (t) ∈ <n is the state vector at time t ∈ [0, t1],
u (t) ∈ <m is a control action, B+ := [BᵀB]

−1
Bᵀ is the

pseudoinverse matrix for B, ‖A‖ ≤ a+, ‖B+‖ ≤ b+, and
ξ(x, t) is an external disturbance (or uncertainty) consisting of
matched and unmatched parts. Suppose that ξ(0, t) is bounded
and ξ(x, t) can not grow faster than a linear function.

The control design problem can be formulated as follows:
design the control law u = u (t) in the form

u (t) = u0 (t) + u1 (t) , (2)

where u1 (t) is the “integral sliding-mode” control part, pro-
viding:

• the complete compensation of the unmeasured matched
part of the uncertainty starting from the initial time
instant (tcomp = 0);

• dependency of the dynamics of the matched part of the
system solely on the control component u0 (t) (control
design for the function u0 (t) will be discussed bellow).

Substitution of the control law (2) into system (1) yields

ẋ (t) = Ax (t) + Bu0 + Bu1 + ξ (x, t) , x(0) = x0. (3)

A. Projection matrix design

Let us define the auxiliary sliding function

s(t) = σ(t) + Gx(t), (4)

where σ(t) is some auxiliary variable and G is a projection
matrix, which will be defined bellow. Then

ṡ(t) = σ̇(t) + G[Ax (t) + Bu0 + Bu1 + ξ(x, t)].

Suppose that det GB 6= 0 and that we can enforce the sliding
mode in the surface s = 0 via the ISM control u1 (s). In order
to find the ISM dynamics one has

u1eq = −[GB]−1G(Ax (t) + Bu0 + ξ(x, t))

− [GB]−1σ̇(t)



Then the ISM dynamics equations have the form

ẋ (t) =
[

I − B (GB)
−1

G
]

[Ax (t) + Bu0 + ξ (t)] −

− B (GB)
−1

σ̇(t). (5)

Let us design a projection matrix G such that
• does not amplify the unmatched uncertainties ξeq (x, t) =

[

I − B (GB)
−1

G
]

ξ(x, t) in the sense that its Euclidean
norm is not bigger than the Euclidean norm of the original
unmatched perturbation;

• ensures that the Euclidean norm ξeq (x, t) of the resulting
unmatched perturbation is minimal.

Proposition 1: B+ is a matrix which minimizes the norm
of ξeq (x, t), i.e.

B+ = arg min
G∈<m×n

∥

∥

∥

[

I − B (GB)
−1

G
]

ξ (x, t)
∥

∥

∥

2

(6)

Let us remark that
∥

∥

∥

[

I − B (GB)
−1

G
]

ξ (x, t)
∥

∥

∥

2

=
∥

∥

∥
ξ (t) − B (GB)

−1
Gξ (x, t)

∥

∥

∥

2

= ‖ξ (x, t) − Bϕ‖
2

where ϕ = (GB)
−1

Gξ (x, t). Thus, problem (6) can be
rewritten in the form:

ϕ0 = arg min
ϕ∈<m

‖ξ (x, t) − Bϕ‖
2
,

which has ϕ0 = B+ξ (x, t) as solution (see [5]). Taking G =
B+ we will have:

(GB)
−1

Gξ (x, t) = B+ξ (x, t) = ϕ0

which implies (6).
Proposition 2: The unmatched perturbation ξeq (x, t) =

[I − BB+] ξ (x, t) is not amplified, i.e.
∥

∥

[

I − BB+
]∥

∥

2
= 1.

Let µ(D) be the largest eigenvalue of D and ν (D) the smallest
eigenvalue of D. Let us denote the Euclidean norm of a real
matrix as

‖D‖
2

=
(

largest eigenvalue of DT D
)1/2

=
(

µ(DT D)
)1/2

we have that
∥

∥

[

I − BB+
]∥

∥

2
=

(

µ
(

[

I − BB+
]T [

I − BB+
]

))1/2

since [I − BB+]
T

[I − BB+] = [I − BB+], and from the
properties of eigenvalues (I + D) x = (1 + λ) x (λ is an
eigenvalue of D). Then

∥

∥

[

I − BB+
]∥

∥

2
=

(

µ(I − BB+)
)1/2

(7)

=
(

1 − ν
(

BB+
))1/2

. (8)

Now, let λ be any eigenvalue of BB+, since the matrix
(

BT B
)−1

can be represented as
(

BT B
)−1/2 (

BT B
)−1/2

, the

following is obtained

λx = BB+x = B
(

BT B
)−1

BT x

λxT x = xT B
(

BT B
)−1/2 (

BT B
)−1/2

BT x

=
∥

∥

∥

(

BT B
)−1/2

BT x
∥

∥

∥

2

≥ 0,

which means that λ ≥ 0. The matrix BB+ is singular, that is
why at least one eigenvalue is equal to zero, hence ν (BB+) =
0. Then from (8) it follows that

∥

∥

[

I − BB+
]
∥

∥

2
= 1.

So it is reasonable to select G = B+.

B. Transformation of the state

Let us split system (3) in two parts, one corresponding
to the matched and another to the unmatched coordinates
of uncertainties. Let us do so by defining the following
nonsingular transformation:

T :=

[

B⊥

B+

]

,

where B⊥ = In(I − BB+); In(X) means the linearly
independent rows of X , ‖A‖ ≤ a+, ‖B+‖ ≤ b+.

Applying transformation T to system (3)

z (t) =

[

z1 (t)
z2 (t)

]

:= Tx (t) =

[

B⊥x (t)
B+x (t)

]

one has
[

ż1 (t)
ż2 (t)

]

=

[

F11z1 + F12z2 + B⊥ξ
(

T−1z, t
)

F21z1 + F22z2 + u0 + u1 + B+ξ
(

T−1z, t
)

]

(9)

C. Design of the auxiliary function

Let’s try to define an integral sliding mode surface such that
the linear part of the equation for z2 in system (9) will have
the form F d

21z1 + F d
22z2.

Define the auxiliary “sliding” function s (z, t) ∈ <m as

s (z, t) = σ(z, t) + z2, (10)

where σ(z, t) is an auxiliary variable which will be defined
bellow. Then, it follows that

ṡ (z, t) = σ̇(z, t) + F21z1 + F22z2 +

+u0 + u1 + B+ξ
(

T−1z, t
)

. (11)

The next step is to select the auxiliary variable σ as the
solution to the following Cauchy problem

σ̇ (z, t) = −u0 − F d
21z1 − F d

22z2, (12)
σ (z (0) , 0) = −z2 (0) .

Then the equation for the function s (z, t) becomes

ṡ (z, t) = −(F d
21 − F21)z1 − (F d

22 − F22)z2 +

+ u1 (z, t) + B+ξ
(

T−1z, t
)

(13)
s (z (0) , 0) = 0.



Suppose that
∥

∥ξ
(

T−1z, t
)∥

∥ ≤ q||z||+ p, q, p > 0. In order to
realize a sliding mode dynamics, let us design the relay control
in the form

u1(z, t) = −M(z)
s(t)

‖s(t)‖
,

M(z) = q̄||z(t)|| + p̄, q̄ ≥ q + b+a+, p̄ ≥ p + b+ξ+ (14)

That implies

ṡ (z, t) = −M(z)
s(t)

‖s(t)‖
+ (F d

21 − F21)z1 + (F d
22 − F22)z2.

D. ISM stability

For the Lyapunov function V =
1

2
‖s‖

2 we have

d

dt
V = (s, ṡ)

=

(

s,B+ξ
(

T−1z, t
)

− M(z)
s(t)

‖s(t)‖

)

+

+
(

s, (F d
21 − F21)z1 + (F d

22 − F22)z2

)

≤ −‖s‖
[

M(z) −
∥

∥B+ξ
(

T−1z, t
)∥

∥

]

−

− ‖s‖
[

−b+ (‖F‖ − ‖z (t)‖)
]

≤ −‖s‖
[(

q̄ − q − b+a+
)

||z(t)||
]

−

− ‖s‖ [p̄ − p] ≤ 0,

where

F =

[

F11 F12

F d
21 − F21 F d

22 − F22

]

.

So we realize that

V (s (z (t) , t)) ≤ V (s (z (0) , 0)) =
1

2
‖s (z (0) , 0)‖

2

= 0.

That implies that for all t ∈ [0, t1] the following identities

s (t) = 0, ṡ (t) = 0 (15)

hold; which in turn means that the integral sliding mode
control (14) completely compensates the effect of the matched
uncertainty B+ξ

(

T−1z, t
)

from the beginning of the process.

E. Nominal system design

Taking into account (14), we will find the equivalent control
for the ISM dynamics as follows:

u1eq = (F d
21 − F21)z1 + (F d

22 − F22)z2 − B+ξ
(

T−1z, t
)

.

Applying u1eq in (9) we obtain the ISM dynamics in the form
[

ż10 (t)
ż20 (t)

]

:=

[

F11 F12

F d
21 F d

22

] [

z10 (t)
z20 (t)

]

+

+

[

B⊥ξ
(

T−1z, t
)

0

]

+

[

0
u0(t)

]

, (16)

which will be called the nominal system.

III. ABOUT THE SMOOTH CONTROL LAW DESIGN

The nominal system (16)
• contains the uncertainties in the equations for the un-

matched variable z10 (t) only;
• for the case when F d

21 = F d
22 = 0, ż20 in (16) does not

depend on the state vectors z10, and z20, but depends on
the control u0 only.

Design of the smooth control law for the nominal system
(16) allows to make the decomposition of the min-max mul-
timodel problem [6]. A similar approach simplified the H∞

control design for a decentralized system [7].

IV. CONCLUSIONS

ISM ensures the insensitivity of the robustified control
law with respect to the matched uncertainties, starting from
the beginning of the process. On the other hand, the ISM
approach does not have the decomposition properties typical of
conventional sliding mode control, i.e. the sliding dynamics for
the ISM has the same order as the original system. Suggested
modification of the ISM approach allows to design the desired
dynamics for the linear part of the matched variables.

Moreover, the proposed ISM design guarantees that the
unmatched part of the uncertainties is minimized and not
amplified. The proposed results are useful for control design
in a system with both matched and unmatched uncertainties.
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