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Abstract

The robustness properties of integral sliding mode coen®lare studied. This note shows how
to select the projection matrix in such a way that the eualideorm of the resulting perturbation is
minimal. It is also shown that when the minimum is attainée, tesulting perturbation is not amplified.
This selection is particularly useful if integral slidingoaie control is to be combined with other methods
to further robustify against unmatched perturbatidis, is taken as a special case. Simulations support

the general analysis and show the effectiveness of thiscpkt combination.

. INTRODUCTION

Sliding mode control [1] is a robust technique, well known its ability to withstand external
disturbances and model uncertainties satisfyingmlaéching conditionthat is, perturbations that
enter the state equation at the same point as the contrdl(@ju the case of completely actuated
systems). Sliding mode control (SMC) has other advantageshslike ease of implementation
and reduction in the order of the state equation. The latigparty clearly simplifies the control
design problem.

Roughly speaking, the conventional SMC design methodolagyprises two steps: first
design a sliding manifold such that the system’s motion @ltdre manifold meets the spec-
ified performance; second, design a (discontinuous) cblavwg such that the system’s state is
driven towards the manifold and stays there for all futureeti regardless of disturbances or

uncertainties. The resulting controller, although rokagdinst matched perturbations, has some
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disadvantages. Among them we have: the need to measure the state; the lack of robustness
against unmatched perturbations; and rbeching phasei.e. an initial period of time in which
the system has not yet reached the sliding manifold and iemsiSve, even to perturbations
satisfying the matching condition.

Several strategies have been proposed to solve these plBee for example [2], [3], [4],
[5], [6] where the need to measure the whole state is relake@ddress the issue of robustness
against unmatched perturbations the main strategy hastbearombination of SMC with other
robust techniques, e.g. [7], [8], [9].

In order to solve the reaching phase problemiraegral sliding mode design concept was
proposed [10], [11]. The basic idea is to define the contrelda the sum of a continuous nominal
control and a discontinuous control. The nominal contraleisponsible for the performance of
the nominal system, i.e. without perturbations; and theatisnuous control is used to reject
the perturbations. An integral term is included in the siigdmanifold, this guarantees that the

system trajectories will start in the manifold from the fitishe instant.

A. Motivation

To solve the problems of the reaching phase and of the robsstagainst unmatched per-
turbations simultaneously (e.g. in the case of sub-adusystems), the main idea —as in the
conventional sliding mode case— has been the combinatiamtegjral sliding mode control and
other robust techniques. The particular combination déperf course on the specific nature of
each problem, and each particular combination has a settafisi¢hat needs to be properly
addressed. In the case of multi-model uncertain systenjs[fi3 a multi-model decomposition
becomes the essential problem; in the case of nonlineaeragstwith unknown unmatched
uncertainties [14] Lyapunov’s direct method becomes a laature; if integral sliding mode
control is to be combined with LMI based control techniquie® selection of the equivalent
matched dynamics would be the main issue. For systems with dielay the essential problem
is that the nominal control should contain a delayed compb[ib].

In all of the above mentioned cases the selection of the gioje matrix plays a key role in
the design of the sliding manifold. In this note we addressrbed for a universal choice of

such matrix. The results are then complemented wittHanapproach.
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B. Main Contribution

In this work we show the following:

« At an integral sliding mode, the discontinuous control ctetgdy compensates the matched
perturbations, but the unmatched ones are replaced byean@thich we shall call equiv-
alent) disturbance.

« There is a set of projection matrices for which the norm of ¢éa@ivalent disturbance is
minimal.

« For any projection matrix in this set, the gain of the disawnus action is also minimal
and the equivalent disturbance equals the unmatched enghére is no amplification of
the unmatched disturbance.

All the above means that an integral sliding mode controifermproperly designed, while
eliminating the matched perturbations, could lead to dioption of the unmatched ones.

The main results are general and can be applied whenever IBM& be combined with

other techniques to robustify against unmatched distudmmnin this noteH{,, control is taken
as a specific case. Simulations support the validity of tredyars developed and show that the

performance of art{,, controller can be increased by this particular combination

C. Paper’s Structure

In the next section we present a short review of ISMC and stegeproblem formally. In
section 1l the problem statement is solved and differetegrpretations are given to the results.
In section IV we analyze the combination of ISM witli,, control. The conclusions are given

in section V.

[I. PROBLEM STATEMENT
A. Preliminaries, ISMC
Consider a nonlinear system of the form
& = f(x,t) + Bu(z,t) + ¢(z, 1), (1)

wherexz € R™ is the statet € R represents timey(z,t) € R™ is the control action ane(z,t)
is a perturbation due to model uncertainties or externalidiances. The following assumptions

are made:
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Assumption lrrank B = m.
Assumption 2:The actual value of(z, t) is of course unknown, but it is bounded by a known
function ¢(z,t) € L., i.e. ||¢(x,t)|| < ¢(z,t) for all z andt.

In the ISMC approach, a law of the form
u(z,t) = uo(x,t) + uy(z,t)

is proposed. The nominal contrah(z,t) is responsible for the performance of the nominal
system;u;(z,t) is a discontinuous control action that rejects the pertisha by ensuring the
sliding motion. The sliding manifold is defined by the get| s(x,t) = 0}, with
t
s(z,t) = G[m) — a(ty) — / (f(z,7) + BUO(CL’,T))dT] @)

to

G € R™*™ is a projection matrix which must satisfy
Assumption 3:The matrix productG B is invertible.

The term

x(tg) + / (f(w, T)+ Buo(x,T))dT

to

in (2) can be thought as a trajectory of the system in the aeseh perturbations and in the
presence of the nominal contro}, that is, as a nominal trajectory for a given initial conafiti
x(tp). With this remark in minds(x,t) can be considered a penalizing factor of the difference
between the actual and the nominal trajectories, projealaadg G (hence the namerojection
matrix, not to be confused with a projection operator). Notice #tdt= t,, s(x,t) = 0, so the
system always starts at the sliding manifold.

The discontinuous contral; is usually selected as

(GB)Ts(z,t)
(GB)Ts(x, t)||’

wherep(z,t) is a gain high enough to enforce the sliding motion. To sifyipliotation we will

)

Ul(wvt) = —p(l‘,t)

omit some of the functions’ arguments from now on.

B. Analysis of the Unmatched Perturbation

Before we analyse the effect of the unmatched perturbatis abnvenient to introduce the

following proposition
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Proposition 1: For any matrixB € R"*™ satisfying Assumption 1, the identity
I, = BB" + B*B*"

holds, whereB* is understood as the left inverse & that is BY = (BTB)~'B” and the
columns of B+ € R**(»~™) span the null space d5”.

Proof: Consider a matrix

P=
B+

This matrix is clearly non-singular since it's inverse isegi by P! = [B BL}, that is

. |B*B 0 I, O
PP = =
0 B+ Bt 0 I,
By reversing the order of the operands we &et' - P = BB 4+ B+ B+ = 1,,. |

Now we can project the perturbatieninto the matched and unmatched spaces
¢ = ¢m + ¢ua ¢m £ BB+¢7 ¢u £ BLBL+¢)

where¢,,, and ¢, are the components that belong to the matched and unmatphedssrespec-
tively.
To determine the motion equations at the sliding manifold wge the equivalent control

method [1]. The derivative of along time is
§ = G|[f+B(ug+wuw)+BB"¢+ B*B*¢| — G[f + Bu]
= GB(ui + BT¢) + Go,.
The equivalent control is obtained by solving the equatica 0 for u,
Uuteq = —BYo — (GB)™'Go,. 4)

Remark 1:In the majority of the papers dealing with SMC, perturbatians assumed to be
matched and the term on the far right is usually ignored.

By substitutingu;., for u; in (1) we obtain the sliding dynamics
feq = [+ Blug— B ¢—(GB)'G¢y) + BB ¢+ B B "¢

= f+ Bug+ [I — B(GB)'G] ¢ (5)
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From the last equation we can draw several conclusionst, fivs dynamics at the sliding
manifold do not contain the matched perturbation: it hasisercessfully rejected. Second, with
respect to conventional SMC, we have gained some extra degfeieeedom. We can use,
to stabilize the nominal system and to treat the unmatcheanpation. The projection matrix
G can now be considered a free parameter. Third, the ordereoédiivalent dynamics is equal
to that of the original system, that is, therenis order reduction This is the “price” we pay in
return for the extra degrees of freedom and the eliminatioth® reaching phase. And fourth,

the unmatched perturbation is now multiplied by a matrix
I'£[I-B(GB)'qG].

Another way to look at this, is that we have traded the origpsaturbatione,, + ¢,, for a new

ONE: Peq = L'y

C. Specific Questions

Matrix I" is the main concern of this note. We would like to pose two spequestions
regardingl:
1) Is there a5, such that norm of the equivalent perturbatiy is minimal?
2) Does matrixI" amplify the unmatched perturbation? i.e. is the normpf greater than
the norm of¢,?
These questions make sense whenever we are consideringchech@erturbations andg, is to

be designed with robustness against unmatched uncertaintynd.

1. M AIN RESULTS

In this section we answer the questions formulated in thélpro statement and make some
comments on the answers.

Proposition 2: B” is a matrix which minimizes the norm of.,, i.e.

I[I - B(GB)'G] ¢, (6)

G* = B' = arg min
GeRan

Proof: Notice first that

|| [I - B (GB>_1 G] CbuH2 = ”qu - B(:0H2
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wherey = (GB)_1 G¢,. Thus, problem (6) can be rewritten in the form:

t = ' u B )
p" = arg min ||¢ ¢l

which, according to the Projection theorem [16, p. 51] bas= B¢, as a solution. Making
G = BT we will have:

o= (B"B)" B¢y = B¢, = ¢*

which implies (6). [ |
Notice that forG = B* we also havep = B*¢,, so B also minimizesp.,.
Proposition 3: Givenm < n and a minimizingG*, the resultingl* = I — B (B*B) ™' Bt =
I — BB has euclidean norm equal to one. Moreover, the resultinjvaigat perturbationp.,
is equal to the original unmatched perturbatign

Proof: Notice first that
r'r* = [I-BB*Y|[I-BB*"]|=1-BB* - BB" + BB"BB"
= I -BB"=T",

which means thal™ is a symmetric matrix and therefore all the eigen-valuesr@aé Suppose

thatv is an eigen-vector associated to any eigen-valud ', that is,
Moo=\ = o' =X\ (7)
But, sincel*’T™* = I'* we have
v T T = oI T = A|v||% (8)

From (7) and (8), it is clear that the eigen-valued'ahust satisfy\> = ). The last equation has
two solutions,A = 0 and A = 1. Sincerank(BB™) < n, the rank of/ — BB™ cannot be zero.
This means thal™* must have at least one eigen-value different from zero,ishdihe maximum
eigen-value is one. The last sentence implies ffh&t] = 1.

The second statement of the proposition follows directhnfrthe fact that até = B* (or
G = BT) the productG¢, equals zero. [ |

A possible interpretation of the previous theorems is thadrider to avoid amplification we
should only penalize the difference between the actual amdimal trajectories, projected into

the matched space. Notice that 6r= B* the equivalent control (4) becomes., = —B" ¢,
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so, it should only contain the matched perturbations: atgngit to compensate the unmatched
perturbations with the discontinuous control would onlykenanatters worst.
The selection = B* has other advantages. First, the discontinuous contrak (8)mplified

to

S

U = —p7—r7.

Is]]
Second, the gaip and as a consequence the amplitude of the chattering cadieeck Consider
the candidate Lyapunov functionl = |s||?/2. At G = B* the derivative ofs is

s=—prr+B%,
Is]]

and the derivative ol is

o (—pﬁ N Bw) < —lslltp— 1Bl (©)

In order to guarantee the sliding motion the discontinuat®a only has to major the matched

disturbance. In the general case, the derivative of the uuyayp function is

vV = 7 <GB <—p% + B+¢) + Gqsu)

< —(GB)"sll(p - IB*6 ~ (GB)*Géul)) (10)

So it is reasonable to sele@t = B*. We close this section by writing the dynamics at the
sliding manifold
:teq = f + BUO + ¢u- (11)

V. CASE OFSTUDY: ISM AND H., CONTROL

In this section we analyze the specific combination of ISM@ amother robust method.
The main goal of this section is to support the previous amslgnd propositions 2 and 3. For

simplicity we have chosen a linear techniqaé;, control.

A. Background}H,, control

Within the classical framework, when the full state is aaflié the plants under consideration

have the form
t = Ax+ B,w+ Bu (12a)

2z = Cx+Du, ze&R"™ (12b)
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where z is an artificial penalty variable, matric&s and D are of appropriate dimension and
establish a compromise between the cost associated toatieeastd the cost of the control used
to keep the state within some bounds. The goal is to minintieeH,, norm of the transfer
matrix 77, that goes fromw to z.

The following assumption is typical:

Assumption 4:(A, B) is stabilizable,(C, A) is detectable and” [C D} = [0 ]}.
The first part of assumption 4 is obvious and the second gteesrthe boundedness of the
state. The last part means thathas no cross weighting between the state and control, and
that the control weight matrix is the identity. The lattendae relaxed by a suitable coordinate
transformation.

The following theorem (given without proof) is a standarduié of H,, control [17].

Theorem 1 (Doylest al): Given assumption 4, there exist a controller satisfying
[Tewlloe <y
iff there exists a real, symmetric, positive semi-definitatmx X satisfying the Riccati equation
XA+ ATX - X(BB" —y7*B,BH)X +CTC =0. (13)
Moreover, when this condition holds, one such controller is

uw=—-BTXz. (24)
In [18], [19] it is shown that theé{.,, norm in the frequency domain and the (truncatéd)

induced norm of a linear system in the time domain are egemali.e., if the conditions of

T T
/ |=|Pdr < 72 / Jwl2dr (15)
to to

holds for all T > t,. This equivalence allows to understand thg, problem in terms of

Theorem 1 are satisfied, then

disturbance attenuatignto generalize thé+,, control objective to nonlinear systems and to
restate theH,, control problem in the following terms: minimize the systerperformance

index, where the performance indexis understood as a truncatéd gain.
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B. Proposed Methodology

The basic idea is to use an ISMC to reject the matched pettanband design the nominal
control usingH,. techniques to attenuate the unmatched one. Suppose thatralde to be
designed for system (12). In terms of (1) we hag¥e,t) = Az and ¢ = B,w. According
to (11), the system’s dynamics at the sliding manifold: iss Az + B+ B** B, w + Bugy, where
¢. = B+*B**B,w was used to derive the previous equation. Notice that theodfsuous
control u; is already fixed, so we need to replageby u, in the definition of the penalty
variablez, that is

zo = Cx + Duy.

The problem now becomes that of finding a minimymand a semi-definite matriX' that
satisfies (13), but with3,, substituted byB+B+*B,,.

The controlu, is used to keep the state within some bounds and the cost bbitld be
taken into account if a comparison with the standafd control strategy is to be made, in
other words: for comparison purposes the original definited » should be used. Whether
or not the discontinuous contral; improves the over all performance index is not an easy
guestion to answer, for it depends mainly on the we(dlassigned to the state. We can however,
make a (rather informal) remark: notice that by orthogdpaliB+ B+ B,w||*> = ||B,w|?* —
|BBTB,w|* Since the squared norm of the unmatched perturbation isigger than the
original one, we should expect a better performance indekdfweight given to the state is
“high-enough”.

We summarize the proposed methodology in the following ritigm:

1) Solve the Riccati equation
XA+ A"X - X(BB" =y *B,BL)X +C"C =0, (16)
where B, £ BB+ B,
2) Set the sliding manifold as

s=B" [x(t) —a(ty) — /t(A — BBTX)z(r)dr

to

3) and the control as
w=—-BT"Xz - pﬁ, p > | BT Byuwl.
S
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C. Numerical Example

Consider the following LTI system:

w1 [o o 1 ol [z] Jo 0] 0]
Ty 0 0 0 1 Lo 0 0 w1 0
= + + u. a7
T3 -1 0 -2 0] [z3 01 Wo 0
_:ic4_ _2 -1 0 2_ | 4| _1 O_ _1_
—— ~~~
BU} B
We define the error variable as
diag(5, 5, 10, 10) 0
z20 = T+ Uo
0 1
~ ~ — —~~
C D
1) H., control alone: Equation (13) has
[70.35 —2.43 2053 2.24 |
X —2.43 57.62 =717 4.29
20.53 —7.17 7046 —-0.47
i 2.24 4.29 —047 12.83_

as a solution, where the optimal valge= 5.9337 was calculated up to four decimal places.

The resulting controller is then,

w— —BTXz = [—2.24 429 047 —12.82] -

2) ISMC plusH,,: The disturbances are first decomposed as

[0 0 0 0
00 0 0
B,w = w + w.
00 0 1
(1 0] 0 0]
~—— ——
BB B, BLBL+B,

The first part is matched and will be eliminated by the discwdus controh:,; the second is

unmatched and will be treated using the continuous coatyalesigned using th& ., technique.
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The solution to (16) is given by

[70.25 —2.34 2041 217 |
~92.34 57.39 —6.94 4.23
2041 —6.94 70.34 —0.45
| 217 423 —045 1261

, and v =15.9291.

The nominal control is
Uy = ~B' Xz = [—2.17 —4.23 0.45 —12.61] z

and the sliding manifold is

s(o.) = B* [x(t) ~ (ko) — / (Ar Buo)dT} |

to
D. Simulation results

Three simulations were carried out. In all cases the systasperturbed by the signal
T
w = cos(7t) [1 —0.6} (18)

and the initial conditions were set at the origin. The firshdation was made using tHe .
controller. The second one was made using the combinat®Md plus..’, but with G set

different from B™*:

G:[Q 2 2 0.5}

The third simulation was made using the optimal valiie- B*. The system’s states are shown
in Fig. 1. The time histories af; andz3 are the same in all cases because the control has no
influence on them. Notice however that f6r= B* there is an attenuation of the amplitudes
of x5, andx, with respect to thé<., controller and there is an increase of the amplitudes when
G # B™.

In the second simulation the ggimeeded to enforce the sliding mode was obtained using (10)
and was set to 3.6. In the last simulation it was obtainedgué®) and was set to 1.2. The
discontinuous controls were approximated by

S

S
36— 12—
|s| +0.0001 |s| +0.0001
respectively. It can be seen in Fig. 2 that whigsé B+ the control acts in the opposite direction,

Uy = and u; = —

i.e. it's effect iscounter effective
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1
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0.3 T T T T T T T T T T T T T T T T

-0.3 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Fig. 1. System’s states. Simulation results for tHe, controller (dashed-line) and the “ISM pli€~" controller for two

cases(G # B (dotted-line) andZ = B (solid-line). The time histories of; andz3 are too similar to appreciate a difference.

Fig. 2. High frequency controlsu; = —3.6s/(|s| + 0.0001) for G # B* (dotted) andu; = —1.2s/(|s| + 0.0001) for
G = B (solid).

For comparison purposes we have in Fig. 3 a plof df.,/||w| c, for each controller. When
G is selected improperly, the value iscreaseddue to the amplification ofb,. When G is
selected properly, the value is, after a short transiemteifothan the one obtained b,
alone, even though the discontinuous component was ingludéhe penalty variable (i.ex =
Cx + D(ug + uy)).

V. CONCLUSIONS

In this note we studied the effects that the projection mdtas on the resulting (equivalent)
perturbation. It was shown that in the presence of unmatdistdrbances the projection matrix of
an ISM controller should be selected carefully, for the Itasy controller could amplify them.

Two propositions provide a way for selecting the projectioatrix correctly. The proposed
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Fig. 3. Actual values of the&, gains for perturbations (18).

parameters ensure that the effect of the unmatched disitebaill not be amplifiedby the
discontinuous control. It is also shown that the discomirsi control can not attenuate the
unmatched disturbances.

The analysis is aimed at combining ISMC with other robushmégues.H,, control was
selected as a specific case, but other techniques could dexsseell. Simulation results support

the analysis developed.
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