Energy-Balancing Passivity-Based Control
Is Equivalent To
Dissipation And Output Invariante

Fernando Casfs*, Romeo Ortega

3L aboratoire des Signaux et Systemes, Supélec
3 rue Joliot Curie, 91192 Gif-sur-Yvette, France

Abstract

Passivity-based controllers (PBCs) achieve stabilimadfononlinear systems, rendering the closed-loop passive w

a desired energy (storage) function. A natural questioarider which conditions is it possible to make this function
equal to the dterence between the plant and controller energies—when titeotler is said to benergy-balancing

In this paper we prove that a necessary arfigant condition for energy-balancing is that the open amdctbsed-
loop systems have the same dissipation functions and gassiputs. A second contribution of our work is the
identification of a new passive output for port-Hamiltonsystems, which is invariant to the action of PBCs that
modify only the energy function—so-called basic intercastimen and damping assignment PBCs—proving that they
are energy-balancing. To establish these results aafgabraicframework for analysis and design of PBCs, centered
around the principles of output and dissipation invariamedeveloped. Using this framework several PBC schemes
reported in the literature are compared. Also, we preseyst@imatic procedure to generate new passive outputs, this
result is of interest on its own, since it allows to extend dpplicability of PBC to systems that are non-minimum
phase antr have relative degree larger than one.

Key words: Passivity-based control, port-Hamiltonian systems, §yalance, Interconnection and Damping
Assignment

1. Introduction system is first rendered passive and then extra damping
o is introduced feeding back the passive output to ensure
In standard passivity-based control (PBC), the funda- asymptotic stability. An alternative, and far reaching,
mental problem of feedback stabilization of nonlinear viewpoint of PBC as interconnection of dynamical sys-
systems is reformulated in terms of feedb@assiva-  tems, instead of a state-feedback action, may be found
tion. The objective is to find a state-feedback control ;, [4, 5, 1]—see also [6], where standard PBCs are ob-
law that renders the closed-loop system strictly output tajneq as restrictions of these dynamic controllers.
passive with a storage function having an isolated mini-  The selection of the desired energy function in stan-
mum at the given equilibrium and, to ensure asymptotic g PBC is, similarly to the selection of a Lyapunov
stabilization, a detectable passive output. Interested function, a non-trivial task. In this paper it is assumed
readers are referred to [1] for a tutorial account on this inat the original system is cyclo-passive, see Assump-
state-feedback approaqh to _PBC, tr_]at is called “standardijon (1. This condition is a restatement of energy con-
PBC”, and to [2] for a historical review of PBC. A par-  saryation, where the energy function is not required to
ticular case of standard PBC is the so-called energy- he pounded from below. Hence, it is a rather weak as-
shaping plus damping-injection technique, where the symption, verified by most physical systems, that does

UThis work was partially supported by CONACyT (Mexico) and 1As shown in [3], the separation of the PBC design in two steps
European project HYCON with reference code FP6-1ST-511368 induces a loss of generality.
*Corresponding author 2For brevity, in the sequel the “standard” qualifier is omitted
Email addressescastanos@lss.supelec. fr (Fernando the understanding that we are dealing all the time with desdback
Cast#ios),ortega@lss.supelec.fr (Romeo Ortega) PBC.
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not imply any stability property whatsoever. Under the puts is proposed and the EB property of BIDA is estab-
aforementioned assumption, the most natural desiredlished. Finally, we present the conclusions in Section 6.
storage function candidate is thefdrence between the

energy of the plant and the energy of the controller. 4 ) o
PBCs that verify this property are said to baergy- once they are defined and there is no possibility of con-

balancing(EB) [5]. A fundamental question that arises {uSion. For a distinguished elemextt € R" and a given
is then: Under which conditions a PBC is EB? function f : R" — R™ we denote the constant vector

f* = £(x*).

Notation. The arguments of the functions are omitted

In [5] it is shown that, if the PBC ensures stability, a
necessary condition for EB is that the dissipation func-
tion is equal to zero at the desired equilibrium, which 2. Standard Passivity-Based Control
consequently means that the system can be stabilized — -
extracting a finite amount of energy from the controller. 2.1 De_f|n|t|on of Ffasswlty—Based Con_trol )

In this paper we prove that, even without the stability re-  CONSider a nonlinear system described by equations
guirement, anecessary and gicientcondition for EB of the form
is that the open and the closed-loop systems have the 5 - { x = f(X)+g(xXu

L . : : , Q)
same dissipation and output functions—hence provid- y = h(X

ing a cgmplete che_lracterization of EB .PBC‘ wherex € R" is the stateu : R — R™ is the input and
Dissipation assignment has traditionally been re- y: R — RMis the output. The remaining functions,

i e e oo e | B < g B R andh 51 R, ae
abovgeyundeprsgéres the central role it plays in the un- assumed_ o _be smooth and of appropriate _dlmens_lons.

. . The matrixg is assumed to be full rank—uniformly in
derstanding of PBC that motivates the development of . .

. . . x. We also impose the following.

a newalgebraicframework for analysis and design of
PBCs, centered around the principles of output and dis- Assumption 1. X is cyclo-passive. That is, there exists
sipation invariance. Using this framework several PBC a C*! function H : R" — R, called thestoragefunc-
schemes reported in the literature are compared in thistion, such that, for all x € R", allt > 0 and all input
paper, including the well-known Interconnection and functions t)
Damping Assignment (IDA) PBC, in its basic and gen- t
eral formulations [7, 6, 8]. In Basic IDA (BIDA) itis as- H(x(t)) — H(x(0)) < f h™(x(9))u(s)ds, 2
sumed that the plant is described by a port-Hamiltonian 0
model and the objective is to shapaly the energy where X0) = xo and Xt) is the state ok at time t re-
function—without modifying the interconnection and sulting from initial condition ¥ and input function )23
damping matrices. A second contribution of our work Equivalently, if and only if
is the identification of a new passive output for port- K < YU 3)
Hamiltonian systems, which ievariantto the action of -
BIDA. Combining this result with the characterization along the trajectories of the system.
of EB mentioned above shows that BIDA is EB. To es- Recall that e | Ve if it lo- .
tablish these results a systematic procedure to generate ecafl that a system IS passive 1 1L Is cyclo-passive
new passive outputs is presented. The procedure is Ofandl-_| has a m'”"T‘““11]- Clearly, Every passive Sys-
interest on its own, since it allows to extend the appli- tem is cyclo-passive but the converse is not true. In

cability of PBC to systems that are non-minimum phase thellr)rl?s Or: ?netr)gyregczan?e,n c?/clo-ﬁ)asswe j{rSt.e ms ex-
andor have relative degree larger than one. a net absorption of energy alorgosed trajec

In the following section the PBC problem is formu- torleis !9]’,[ Wh'tlﬁ E{)a?3|;/efsystemts :;\bs](c)rb_ e_nerlgy along
lated and an algebraic characterization, in terms of the anytrajectory that starts from a State of minimal energy

. TN 0) = arg minH(x).
added energy function and added dissipation, is given. X . , . .
In Section 3 the equivalence between dissipation and The celebrated Hill-Moylan's Theorem [9] gives, in

output invariance and the property of EB of PBC is es- ﬂ:e Ep'r.'t Orf Kal:nqn-\:gkubgwcf:-Popoys Lerr:gs, an
tablished. In Sectidn/4 it is shown that, by suitably as- algebraiccharacterization of Cyclo-passive systems.

signing the dissipation of the closed-loop system, itis —; , _ _ _
possible to recover several existing PBCs—providing a ,Of ourse, we require that the integralin (2) is well defined.

. . For ease of presentation a version of the theorem for systétms w
framework to classify and compare them. In Sedﬁbn S, & relative degree one is given first. In Section 5 the generaio is
procedure to generate zero-relative-degree passive outstated.
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Theorem 2. The systent (1) is cyclo-passive with ! y |

storage function H if and only if there exists a function : - . f<i
. . . Zd + O
d: R" - R,, called thedissipation functionsuch that, I | +
! _ I
VHT()f(X) = —d(X) (4a) : h—hg i v
h( = g"(YVH(). (4b) l >
|
| |
I z u |
Using Hill-Moylan’s Theorem one obtains the power : - :
balance equation fat ! Usr
! I
H=yu-d(. (5) : |
|
The objective in PBC is to “shape”, via state- '+ _ _ _ _ _ _ _ _ _ ___ ______ ,'
feedback/(5). More precisely:
Definition 3 (The set PBC). The state-feedbacksg : Figure 1: Adding a current source to create a new passiveibutp

R" — R™is said to be a PBC (shorthand notation:
usr € PBQ if and only if there exist functions H:

R" - R and by - R" — R™ such that sought) with respect to the original output. Changing

the output is a natural way to satisfy the vector relative
U= Usp(X) +V (6) degree requirement and to overcome the minimal phase

restriction on the plant. In terms of the usual analogy be-
with v a new, virtual input, renders the closed-loop sys- tween passive systems and electrical ports, the change

tem of the output corresponds to the addition of a current
. sourceh(x) — hy(x) (see Figure 1).
S LU RCALCEE (9 =hex) (see Figure 1
ya = ha(x) ; Remark 4. Definition'3 has been intentionally stated in
(7) a fairly general way. Noticee.g, that a null control

cyclo-passive with storage functiony¢t). That is, if it

o usr(X) = O satisfies the requirements of the definition
verifies

. takeH =H ddy(x) = d(x)).

Ho < yIv. ®) (takeHq(X) = H(X) anddy(x) = d(X))

Remark 5. As announced above, an algebraic frame-
work to derive particular subsets of the set PBC will be
proposed. To simplify notation we sayr € Q, where

From Hill-Moylan’s Theorem we have that the new
power balance becomes

Ha = ygv - da(X) . (9) Q c PBC is either one of the se{&B, BIDA, IDA}
consisting of particular classes of PBCs—to be defined
where the new dissipatiafy : R" — R, is given by later.

_ T
da(x) = ~VHg ()(F(x) + g(x)use (X)) (10) 2.2. Characterizing Passivity-Based Controllers

Comparing the open-loop power balance (5) with the  The following proposition, which constitutes the
closed-loop power balande|(9) we observe that, besidesmain thread of the paper, gives an algebraic characteri-
the energy and the dissipation, the output has also beerzation of the set PBC.

modified. Since full-state-feedback is assumed, there

is—a priori—no reason to maintain the original output Proposition 6. uss € PBC if and only if there exist

y as the cyclo-passive output. We thus take the liberty functions H: R" —» Rand & : R" — R, with

to define the new output that, according to Theorem 2,

should be of the form da(¥) = ~d(x),

ya = hg(X) = g" (X)VHq4(X) . (11) such that

This approach diers from the classic problem formula- ~ h"(X)use(X) = =VHZ ()(f () + g(X)usr(X)) — da(X) .
tion of [10], where feedback passivation is defined (and (12)
3



Proor. To prove sificiency, assume thdt (12) is satis- Proposition 8. us € PBC N EB if and only if, the
fied and define output and the dissipation remain invariant. That is, if
and only if (9) holds with
Hii=Hy-H and dy:=dy—-d>-d. (13)

=y, dg=d.
Eq. (12) can be rewritten as ya=y. &

Proor. To prove sificiency, assuméy = d (i.e, dy =
0) andyy = y. Sinceyy = g'VHgandy=g'VH,yg =Yy
holds if and only ifg"VHq = g" VH or, equivalently, if
and only if

(h=g"VH) uss = (d+ VHT ) = VHqfg — dg . (14) g'VHa=0. 7

From (4) and Assumption 1 we know tHat g"VH = 0 Substituting[(17) and, = 0 in (12) yields
andd+VHTf = 0, so(14) becomegH fy = —dq. Take

h"usg = =(VHq — VH) " (f + gusg) + d — dy

or, equivalently, as

. ) . h'uss = -VH. f . 18
hg as in[(11). According to Hill-Moylan’s Theorem, the s a (18)
systemzg is cyclo-passive. On the other hand, equatidn (17) implies that
For necessity, assume thg§ is cyclo-passive with _
storage functiorHg and outputhy. Again, from Hill- Ha= VH][f + g(usg + V)] = VH, f . (19)

Moylan’s Theorem, we know that .
Combining [(18) and (19) one geth"usz = Hj (i.e.,
VHJ fd = —dd . (15) Usr € EB)

For necessity, suppose that (16) holds. Then,
From (13) andfy = f + gusr, equation[(15) becomes ¥ SUpp (16)

. ~hTusgg = VH [ +g(usr + V)]
(VHa+ VH)'(F + gr) = ~da—d., VHTQUr = [VHg~ VHIT[ + g(use + V)]
which is equivalent to ~VHgus = VHjfq+VHjgv—VHT[f +gV] —
~ VH gusr

VHTgusr = =VH_ (f + gusg) — da — (VHT f +d) .

or, equivalently,
SinceVH"g = handVH™ f + d = 0, one obtains q y

hr T (f q VH{fa—VHTf = —VHjgv+VHTgv
Usr = —VHa (T + guse) — da. VHIfg— VH™f = —VHIgv. (20)
This completes the proof. - Equation[(20) must hold for alj, in particular, fov = 0.
This implies thatVH] fs = VHT f, which is equivalent
3. Energy-Balancing PBC to dy = d. Thus, equation (20) becomes
As indicated in the Introduction, the most natural de- VHlgv=0 Vv,

sired storage function candidate is thdfelience be- o .
tween the energy of the plant and the energy of the con- which impliesVH;g = 0. As stated before, this is
troller, that is equivalent toyg = y. O

t
Ha(x(t)) = H(x(1)) _fo h" (x(9))usr(s)ds 4. Overcoming the Dissipation Obstacle

This motivates the definition of the following subset of 4-1. Stabilization and the Dissipation Obstacle
PBC. When PBC is used for stabilization of an equilibrium,
x* € R", the storage function is typically used as a Lya-

Definition 7 (Energy-Balancing). A PBC for the punov function, so it is required that

cyclo-passive syster® (1) is said to be EB i,
usr € PBC N EB) if and Only iffor all v, X* = arg mian . (21)

-y Usr = Ha (16)

. . . P 5A PBC that satisfies these conditions is said to be output- and
with Ha is defined in (13). dissipation-preserving, respectively.
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SinceVH} = 0 is a necessary condition for (21) it is
clear from (11), that the outpyy must be zero at the
equilibrium (.e., y} = 0). Likewise, from equation (10),

we also have that the dissipation at the equilibrium must

be zero (e, dj = 0). EB PBCs, that preserve output
and dissipation, impose then to tbpen-loopsystem
that

d* = —(VH*)"f* =0, y*=0.
This is the so-calledissipation obstacld5].

4.2. IDAPBC

It is clear that dissipation should be modified to sta-

bilize, with PBCs, systems that dissipate energy at the

equilibrium. A candidate dissipation functial, which

is compatible with the requiremenf; = 0 and over-
comes the dissipation obstacle, is given in the follow-
ing proposition, where the well-known IDA PBC is re-
derived.

Proposition 9. Fix
dy(X) = VHg ()Ra(x)VHq(X)

with Ry : R" - R™ Ry =RT > 0.

(22)

() usr € PBCif and only if
g(x)usr(X) = = f(X) = Ra(Xx)VHa(x) + a(x) (23)

for some functionr : R" — R" such thate" VHq
is identically zero. Then:

(i) If x* is an equilibrium of the closed-loop that sat-
isfies[(21) them* = 0

(iii) Forany Jg:R" — R™", Jy = —J], the function
a(X) = Ja(X)VHa(X),

satisfies both restrictionst* = 0anda"VHq = 0.
Furthermore, the closed-loop systexy, takes the
port-Hamiltonian (PH) [1] forn®
s [ X = Fal)VHa) + gV
T\ ve = gT(NVH(X) ’

Fa(X) := Ja(x) = Ra(x) .

(24)

6In the literature of PH systemgy is called the interconnection
and Ry the damping. For obvious reasons, this control strategy is
known as IDA[[7].

5

Proor. For suficiency of (i), assume (23) and premulti-
ply by VH;

~VHJ f — VH]R4VHq
—VH]f —VHTf -

— VHJ R4VHq .

VHiQUss =
(VHT + VH,)gusr

By reordering terms we get
VH guss = —VH, (f + gusg) — VH' f = VHRyVHq .
(25)
Notice that the aggregated dissipation is
da = VHyRyVHq4 + VHT | (26)
So (25) can be expressed as

VH guss =
hTUSF

—VH, (f + gusp) — da
~VHJ] (f + gUsg) — da .

Hence, according to Propositiphiz € PBC.
For necessity, assume that € PBC,i.e, that (12)
holds. Then, from (26),

VH'guss = -VHJ(f +guss) — VHTf —
— VH] RiVHg
0 = VHj(gus + f + RyVHg) .

The latter implies the existence of a vector fieldsat-
isfying (23) and
a"VHy=0.

Regarding (ii), notice that for a control that satis-
fies (23), the driftfy = f + gusr of the controlled system
is

fd=f—f—RdVHd+a/=—RdVHd+a. (27)
If x* is an equilibrium of the closed-loop, thefif =
0 andVH} = 0. These equations, together with (27)
imply thata* = 0.

The first assertion of (iii) is proved by noting that
VH; = 0 impliesa* = JjVH} = 0. Orthogonal-
ity follows from the fact thatvHj J4VHy = O for any
skew-symmetric matri¥g.

The second assertion of (iii) can be verified replacing
ain (27) to get:

fd = —RyVHg+ J4VHqg
= F4VHy4.



4.3. Basic IDA PBC 5. Basic IDA-PBC is Energy-Balancing

Although in some cases the choice of the matrigges In the preceding sections we used a relaxed ver-
andRy in IDA may be motivated by physical consider-  sjon of Hill-Moylan’s Theorem for systems without
ations, besides the requirement of the solvability of the feedthrough termscf. Theorem 2). In this section, we
matching equations, there are no general guidelines. If show that the incorporation of a feedthrough component

the original system already has the PH form allows to generate new cyclo-passive outputs. In partic-
ular, to identify one which is invariant to the action of

- { x = FVHX) +g0u (28) BIDA. It turns out that the dissipation associated to the

y = g'(}VH( ’ new output is also invariant under BIDA. Output and

. Cn . . ] ) dissipation invariance then establish that BIDA is EB
withF 1 R" — R F+FT <0, one natural firstchoice  (with respect to the definition of the new output).
of Fq is simply
Fa=F. 5.1. Passivity-Based Control for Systems with

In this case the controller is called Basic IDA (BIDA) Feedthrough

and the equation to solve is, according to (23), Let us start by recalling the general version of Hill-
Moylan’s Theorem [9].

OQUsr = —-FVH - RdVHd + JdVHd
= FVH,. (29) Thg-orem 11. Consider a system with feedthrough de-
scribed by
Notice that, in general, in BIDA the dissipation is . w = f(x AU
modified from > <= K )+g_( ) , jeR™M
y' = h(x)+j(Xu

_ T _ T — T . )
d=-VH'f VH FVH = VH RVH where j: R" - R™™and h : R" —» R™. X is cyclo-

passive with storage function H if and only if, for some

o g € N, there exist functions:IR" - R%and w: R" —
dy = —~VH] fg = ~VH] FVHg = VH]RVH, . R such that

We close this section with an interesting property of VHT(X)f.(X) = IoF (312)

BIDA controllers. W) = g"(x)VH() + 2w (¥)I(x).(31b)

W (w(x) = %(JT(X) +1i(9) (31c)

Proposition 10. A BIDA controller that is output-

preserving is necessarily dissipation-preserving, cense with | - | the Euclidean norm.

quently, it is EB. A
The power balance equation fbt is

Proor. Premultiply (29) byWH. to obtain . . _
ply (29) byvH, H= () u_d (32)
VH] =VH]FVH, = -VH]RVH 30
a glbr a 2 aRVHa.  (30) with the dissipation given by
whereR(X) := —%(F(x)+FT(x)). Under the assumption
of output preservation,e., VHIg = 0, equation[(30)
shows thaVHJRVH, = 0. SinceR is symmetric and
positive semidefinite,

dI(x) = [1(x) + w(x)ul? . (33)
Indeed, by considering the equation
H=VH"f+VH gu,
RVH,=0.

it is easy to verify, from/(31a) and (31b), that

This means that dissipation is preserved: _ _
H —|IZ + (h)Tu—-2w"lu

P+ = ju)Tu-2wTlu

o) u-II? - %uT(j +jDu—2wTlu.

dg = (VH + VH.)TR(VH + VH,) = VHTRVH =d. .

O



Invoking (31B) and[(33) we recover the power bal-
ance/(32).

Theorem 11 can be used tmnstructnew cyclo-
passive outputs. Indeed, it provides a means to
parametrize the output functidn and the dissipation
functiond! in terms of the free square matrjxhence
the notation). If we sef = 0, thenX! = X and, ac-
cording to Assumptioh|1, equation (31a) must hold for
somel—which we fix. Now, for allj, whose symmetric
part is positive semidefinite, there always exissat-
isfying (31¢). w can then be used to define, via (31b)
and (33)hl andd!, respectively.

Considering relative degree zero systems allows for
an extension, provided by the free matiixof the set
PBC givenin Definition 3|

Definition 12 (The extended set PBC).The state-

feedback ¢ € PBCif and only if there exists functions

Hg : R" > R and b : R" - R™ such that the system
hy(¥) + (v

%:{
fa(x) = 109 + g(Juse(x)  (34)

is cyclo-passive with storage function Hle. it satisfies
the dissipation inequality

X

: f4(X) + gV
Y

Ha < (V)TV.

Again, from Hill-Moylan’s Theorem we get the
power balance equation fa

Ha = (y) v —dj. (35)
with dissipation
dj0) = () + WOV
and .
hl = gTVHa + 207lg, (36)
wherely : R" — RY verifies
VHg () fa(¥) = —lla(x)P (37)

andw satisfies/(31c).

5.2. Generation of Cyclo-Passive Outputs for PH Sys-
tems

Although Proposition 11 is applicable to general
affine systems, our interest in this paper is restricted

"To avoid cluttering the notation this new set is still calRBC.

to the case whel is a PH system of the form (28).
For this class of systems, a new cyclo-passive output
(which is an extension of the power-shaping output in-
troduced in|[11] to the case whdn is not full rank)

is constructed. Interestingly, the set of passive outputs
can also be characterized in terms of matrix inequalities,
which in some cases is more insightful. The interested
reader is referred to [12], where this is shown for the
linear case (the generalization to the nonlinear case is
straightforward).

To present the main result, which is contained in
Proposition 17, the notion ajeneralized inversef a
matrix, a technical assumption and two lemmata, are
needed.

Definition 13. [13] Let A be an nx o matrix of arbi-
trary rank. A generalized inverse of A is arxm matrix
A~ such that

AATA=A.

It should be pointed out that, in generd; is not
unique; but it always exists [13, Lemma 2.2.3].

Assumption 14. X is a PH system described by (28)
and satisfies

FTI(F)F=F (38)

and
spang c spanF . (39)

It is important to underscore that equation|(38) does
not depend on the particular choice f (see [13]).
Furthermore, ifF is nonsingular, then (38) and (39) are
immediately satisfied.

Lemma 15. The equation

FT(QZ(IF(X) = -F(¥) . (40)
with unknown Z R" — R™", is consistenti(e., at least
one such Z exists) if and onlyif (38) is satisfied.

Proor. Equation/(40) is a special case of the linear ma-
trix equation

AXB=C, (41)

where X is the unknown. According to [13, Theorem
2.3.2], equatiori (41) is consistent if and only if

AACBB=C. (42)

By matching the terms in (40) and (41) we get
A=FT,

X=Z, B=F and C=-F.



By substituting these in (42) we obtain

~FT(FT)FFF
o FT(F)F

-F
- F

(recall thatFF~F = F and that a possible generalized

inverse ofF T is (F7)7). d
Lemma 16. Equations[(40) and (39) imply that
F'Zg=-g. (43)

Proor. Equation [(39) implies the existence of a map-
pings : R" - R™M such that

g(x) = F(X)B(X) .
On the other hand, equation (40) implies that
FTZFB = -Fp

for anyB. Combining the last two equations yields (43).
O

Proposition 17. Consider a systent satisfying As-
sumption 14 and define

Z(x) == =(F7)"(JF(IF(X) - (44)
The system
E;.{ X = F(VH(X) +g09u
Yy = gT(X)Z(X)F(X)VH(X)+9T(X)Z(X)g((>2§)

is cyclo-passive with storage function H.

Proor. The proofis established verifying the conditions
of Theorenm 11. Notice that for system (45) we have

j=9"Zg9 (46)
and

hi = g"ZFVH . (47)

We will show that there exists functionsandw such

that (31) is satisfied. Because bf (38) and Lenmima 15,

equation|(40) is consistent. Under Assumptioh 14, (44)
is a particular positive semidefinite solution. Equa-
tion (40) implies that

VHTFTZFVH = -VHTFVH .

GivenZ computeY : R" - R™" as
Z"+Z
YTY = T+ (48)

which can always be obtained sineg{ Z") > 0. ltis
then easy to see that

| := YFVH, (49)
satisfies/(31a). Furthermore,
w=Yg. (50)
satisfies
ww=g 2 2g= 27+ ).
Substituting andw into (31b) one obtains
hi = g"VH+29"YTYFVH
= g'VH+g"(Z" + ZFVH (51)
= ¢g'VH-g'VH +g"ZFVH (52)

g"ZFVH ,

where [(48) is used to obtain (51), WhlIE(40) and
Lemmad 16 are invoked in (52).

Remark 18. When F is nonsingular, the new cyclo-
passive outpuy! coincides with the power-shaping out-
put of [11]. It is shown in [14] that the generation of the
new output, for a class of electrical and electromechani-
cal systems, is tantamount to the application of the clas-
sical Thevenin-Norton transformation of electrical cir-
cuits. Additional connections with power-shaping may
be found in these two papers.

5.3. Basic IDA PBC is Energy-Balancing

As one might expect, in the zero-relative-degree case
there is also a connection between energy-balancing and
output and dissipation invariance.

Proposition 19. usr € PBC N EB if the output and the
dissipation remain invariant. That is, if (35) holds with
y =y, and d=d|. (53)

Proor. By subtracting[(3R2) from (35) it is readily seen
that
Ha= (Y V- () u+di-d, (54)
with H, defined as in (113). Substitution of the hypothe-
sis (53) into[(54) yields
Ha=(Y))"(v—-u).
Sinceu = Ugg + V,

Ha = —(y))usr - (55)



The next proposition shows thgt andd! are invari-
ant under BIDA contraf

Proposition 20. Consider the cyclo-passive sys-

tem [(44), [(45) and suppose that Assumption 14 holds.

The BIDA control given by (29) is a PBC with
h\=g"ZFVHy. (56)

Moreover, the controller is output and dissipation pre-
serving. Therefore, it is EB.

Proor. We will show first that the closed-loop

i
5

is cyclo-passive with storage functidty. To this ef-
fect, we will prove that there exists dnsuch that (37)
and [36) are valid. Indeed, equation (40) implies that

X
i
Ya

FVHq + gv

g"Z(FVHqg + gv) (57)

VHFTZFVHg = ~VH]FVHg ,
o)
lg = YFVHg,
with Y defined as in (48), satisfids (37). Selectings
(50) and substituting into (36) gives
h} 9" VHq + 9" (Z" + Z)FVHq
gTVHd - gTVHd + gTZFVHd

g"ZFVHy . (58)
This proves our cyclo-passivity claim.
For output preservation, we will prove that
y =
& h+jug = h. (59)
Equation (46) and (29) imply that
jusr = 9" Zgur = g"ZFVH,.
Replacing in[(58) yields
hi + jusr = g"ZFVH + g"ZFVH, = g’ ZFVHq4 . (60)

From {60) and (56) one obtains (59). _ .
Regarding dissipation, we will prove thdt = dé,
that is,

Il + Wusg + WM? = |lg + Wu? . (61)

8A similar result (using dferent arguments) was obtained!in [14]
for the case whefr is nonsingular.
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Direct substitution of the expressionsl&ndw gives

| + Wugp

= YFVH + Ygur
YFVH + YFVH,

YFVHq .

Sincelq is equal toY FVHq, we concludel (61). O

Remark 21. Notice that the property of energy-
balancing for BIDA is established with respect to the
definition of the new passive outputf((55)), which is
obviously diterent from[(16).

6. Conclusions

A framework for analysis and design of PBC, based
on the principles of dissipation and output preservation,
has been derived. This framework allows to classify var-
ious PBCs according to Table 1, where the key algebraic
equatior@that define the sets are given in parenthesis.

The equivalence between output and dissipation
preservation and the important property of EB has been
established. In this regard, we identified zero-relative-
degree outputs that are invariant under BIDA control,
rendering it EB.

The properties of output and dissipation preservation
are also important in dynamic PBC, such as Control by
Interconnection (Cbl). Cbl is output and dissipation pre-
serving by construction (see Fig. 2 and [6] for details).
We hope then that the results presented here will pro-
vide a means to extend the work done in [6], where the
relationships among Cbl andftéirent PBCs are studied
(see also [15]).
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Dissipation Output

Usr € EB
(Y'usg = —VH] f) < Preserved & Preserved
usr € BIDA
(Qusr = (J — R)VHy) = VHJRVHy & g"VH4
if, in addition
g'VH,=0
or = Preserved & Preserved
j=9"Zg
Usr € IDA
(Qusr = —f +(Jy-Ry)VHy) = VHjRsVHy &  g'VHq4

Table 1: Classifying dferent PBCs according to their dissipation and output pvasien properties.

+ v -

I y Ye I
| - o |
| |
I + + + I
> u Usr D ( U | X :
I - - 1:1 - !
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| Power—preserving interconnexion Lossless |
| 24 System |

Figure 2: The Cbl scheme.
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