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Abstract1

For mitigating the COVID-19 pandemic, much emphasis is made on implementing non-pharmaceutical inter-2

ventions to keep the reproduction number below one. However, using that objective ignores that some of these3

interventions, like bans of public events or lockdowns, must be transitory and as short as possible because of4

their significative economic and societal costs. Here we derive a simple and mathematically rigorous criterion5

for designing optimal transitory non-pharmaceutical interventions for mitigating epidemic outbreaks. We find6

that reducing the reproduction number below one is sufficient but not necessary. Instead, our criterion prescribes7

the required reduction in the reproduction number according to the desired maximum of disease prevalence and8

the maximum reduction in disease transmission that the interventions can achieve. We study the implications9

of our theoretical results for designing non-pharmaceutical interventions in 16 cities and regions during the10

COVID-19 pandemic. In particular, we estimate the minimal reduction of each region’s contact rate that is nec-11

essary to control the epidemic optimally. Our results contribute to establishing a rigorous methodology to guide12

the design of optimal non-pharmaceutical intervention policies.13
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Introduction14

Since the seminal work of May and Anderson [1], the design of interventions to eradicate infectious diseases15

has the objective of achieving a basic (R0) or effective reproduction number below one [2, 3]. The underlying16

assumption here is that it is possible to maintain interventions for long periods, such as long-term vaccination17

programs. During the COVID-19 pandemic, this same objective is guiding the design of non-pharmaceutical18

interventions (NPIs) [4]. However, maintaining NPIs like bans of public events or lockdowns for long periods of19

time is infeasible because of their substantial economic and societal costs [5, 6]. Actually, instead of aiming for20

eradication, NPIs aim to mitigate the economic and social costs of the epidemic outbreak [7]. Nevertheless, we21

still lack simple guidelines to design NPIs for mitigating epidemic outbreaks, analogous to the R0 < 1 condition22

for eradication.23

Here we use the classical Susceptible-Infected-Removed epidemiological model to fully characterize the24

design of NPIs for mitigating epidemic outbreaks. With this aim, we consider that NPIs should achieve an op-25

timal tradeoff between two objectives [8]. First, optimal NPIs must minimize the period in which they need26

to be applied, consequently minimizing their associated economic and societal costs. Second, optimal NPIs27

must guarantee that the disease prevalence does not exceed a specified maximum level, which for example can28

represent the health services’ capacity for that particular disease [9]. We obtain a full analytical characterization29

of such optimal NPIs, specifying the optimal intervention at each state that the epidemic can be. This character-30

ization yields the necessary and sufficient criterion for the existence of optimal NPIs for mitigation, analogous31

to the R0 < 1 condition for eradication. We find that reducing the reproduction number below one is sufficient32

but not necessary for their existence. Instead, we show that the desired maximum disease prevalence determines33

the necessary reduction in the reproduction number. The consequence of not reducing the reproduction number34

below one is that interventions must start before the disease prevalence reaches the specified maximum level.35

We also demonstrate numerically that the derived optimal NPIs are robust to uncertainties in the model parame-36

ters and unmodeled epidemic dynamics (e.g., undetected infections). Finally, we explore the implications of our37

theoretical result by analyzing the response of 16 cities and regions across the globe to the COVID-19 pandemic,38

finding that most regions achieved a larger-than-necessary reduction in transmission. Our results contribute to39

designing non-pharmaceutical interventions to respond optimally and robustly against epidemic outbreaks.40

Characterizing optimal non-pharmaceutical interventions41

Optimal epidemic mitigation using NPIs42

Our objective is to characterize the reduction in the disease transmission that is optimal for each state in which43

the epidemic outbreak can be. For this, we leverage on the mathematical tractability of the Susceptible-Infected-44
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Removed (SIR) model [10], where the state can be characterized by the pair .S; I / 2 Œ0; 1�2. Here, S is the45

proportion of the population that is susceptible to the disease, and I is the disease prevalence (i.e., proportion46

of the population that is infected), see Fig. 1a. We discuss later other more detailed epidemic models. The47

epidemic state changes with time t as the disease is transmitted, producing the trajectory .S.t/; I.t// for t � 0.48

For epidemic mitigation, we consider that the goal is keeping the disease prevalence below a specified level49

Imax 2 .0; 1�. This constant may characterize, for example, the health services’ capacity in the sense that a50

prevalence above Imax causes higher mortality due to hospital saturation [11]. In general, Imax should consider51

all social and economic conditions of the specific population where the outbreak occurs. To keep I.t/ � Imax,52

we assume we can apply one or several NPIs that reduce disease transmission by the factor .1 � u/, for some53

u 2 Œ0; 1�, see Fig. 1a. The NPIs achieve no reduction when u D 0, and they completely stop transmission54

when u D 1. Since it is unfeasible to stop transmission fully, we upper-bound the reduction by umax 2 .0; 1/.55

We say that u is admissible if u 2 Œ0; umax�.56

Different admissible NPIs can keep the disease prevalence below Imax. For instance, “intervention 1” in57

the example of Fig. 1b-c keeps this restriction and has an “effective duration” of 120 days. Here, the effective58

duration of an intervention is the interval between the start of the outbreak and the last time that a non-zero59

intervention is applied (Fig. 1d). “Intervention 2” of Fig. 1b-c also keeps the restriction I.t/ � Imax, but its60

effective duration is only 69 days. To design the optimal NPI, we ask for the intervention with minimal effective61

duration. Specifically, we ask for the admissible reduction u� .S.t/; I.t// required now (i.e., at the current state)62

such that: (1) it minimizes the effective duration of the intervention; and (2) it ensures that the prevalence can63

be maintained below Imax for all future time by using some admissible intervention. If the optimal NPI problem64

has a solution u�, then u�.S; I / characterizes the optimal reduction in the disease transmission that the NPIs65

should achieve if the epidemic state is .S; I /. In particular, u� gives the optimal way to start and stop the NPIs.66

NPIs exist without reducing the reproduction number below one67

Our first main result is a complete analytical characterization of the optimal NPIs in the SIR model (see Box 168

for a summary and Supplementary Note S1 for details). To understand how the optimal NPIs work, note that the69

SIR model predicts a safe zone of states .S; I / where, without any further interventions, the disease prevalence70

will not exceed Imax (blue zone in Fig. 2a-c). The safe zone is characterized by the inequality I � ˚R0
.S/,71

where R0 is the basic reproduction number of the outbreak in the population, and the function ˚R is defined72

in Eq. (2) of Box 1. The goal of an optimal NPI is thus to reach this safe zone as fast as possible without73

violating the restriction I.t/ � Imax. The ability to achieve this goal depends on the epidemic state. That is,74

we can partition the plane .S; I / in two regions: those states from which it is possible to reach the safe zone75

without exceeding Imax (feasible states), and those where it is impossible (unfeasible states). We find these two76

4



regions are characterized by the separating curve ˚Rc
.S/, where we call Rc WD .1 � umax/R0 the controlled77

reproduction number (Fig. 2a-c). Note that Rc describes the maximum reduction in the basic reproduction78

number that (constant) admissible interventions can achieve. Therefore, Rc < 1 is the necessary and sufficient79

condition that a constant and permanent admissible intervention (i.e., u.t/ � const. for all t � 0) needs to80

satisfy to eradicate a disease outbreak in the SIR model. However, for outbreak mitigation, our analysis shows81

that feasible states exists without achieving disease eradication (white regions in Fig. 2b-c). This result is82

important because it proves that NPIs for epidemic mitigation do not require reducing the basic reproduction83

number below one.84

A design criterion for NPIs85

We demonstrated above that NPIs exist even when Rc > 1. However, how large can Rc be before NPIs keeping86

I.t/ � Imax do not exist? When S.0/ ! 1, our characterization shows that an NPIs exists if and only if87

Rc � 1; or Imax C
1

Rc
ln Rc �

�
1 �

1

Rc

�
� 0: (1)

The above inequality is our second main result, connecting the specified maximum disease prevalence Imax with88

the outbreak’s controlled reproduction number Rc D .1 � umax/R0 (Supplementary Note S2). The inequality89

(1) governs the existence of NPIs for mitigating epidemic outbreaks, in analogy to how the condition Rc < 190

works for disease eradication. Note that Rc < 1 is a sufficient condition for the existence for NPIs, but the91

inequality (1) shows that this condition is far from necessary. If Imax > 0, there exists Rc > 1 for which NPIs92

exist (Fig. 2d). Note also that the maximum feasible Rc increases with Imax.93

We can use (1) to design NPIs as follows. Consider an infectious disease outbreak with a given R0 and94

that the specified maximum prevalence is Imax. Then, the inequality (1) gives the criterion to design NPIs95

by providing the range of disease transmission reduction umax that the NPIs should attain. In particular, it96

provides the minimal reduction u�
max in the contact rate required for the existence of NPIs. For example, if97

Imax D 0:1 then R�
c D 1:71 is the maximum admissible controlled reproduction number (orange point in Fig.98

2d). Therefore, if an outbreak in the population has R0 D 3, then the minimal reduction is u�
max D 0:43 because99

.1 � u�
max/R0 D R�

c .100

Optimal NPIs are simple101

For any epidemic state, the optimal transmission reduction takes a simple form which can be described by102

coloring the .S; I / plane, see top row of Fig. 3. Here, for all states in the white region the optimal intervention103

is no intervention; for all states in the yellow region the optimal intervention is u�.S; I / D umax. There are104

regions (specifically lines) where the optimal intervention switches frequently between u� D 0 and u� D umax105
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producing a so-called “singular arc” that slides along the two regions, leading to an “average” intervention106

u� 2 Œ0; umax�. We find that, in general, the optimal NPIs have four phases: a first one where no intervention107

is needed, a second phase where interventions start with maximum strength, a third phase of gradual decrease108

of interventions, and a “final push” where the maximum interventions are re-applied for a short period to reach109

the safe zone faster.110

We illustrate the above behavior in three qualitatively different cases. The first case is when the optimal111

intervention starts just when the disease prevalence reaches Imax (Fig. 3a). This case occurs when the interven-112

tions are strong enough to stop the rise in prevalence at Imax regardless of the fraction of susceptible population.113

Our analysis shows that this occurs if and only if umax is large enough to render Rc D .1�umax/R0 � 1. When114

the initial susceptible population is close to 1 (pink trajectory in Fig. 3a), the optimal intervention first waits115

until the disease prevalence reaches Imax. At that time, the optimal NPI stops the disease prevalence exactly at116

Imax, and then it gradually decreases its magnitude to ensure that the disease prevalence slides along Imax as117

the susceptible population decreases. When the susceptible population reaches the threshold S�, the optimal118

intervention is again the maximum one (Fig. 3a). This “final push” allows reaching the safe zone faster, releas-119

ing the interventions sooner. The middle and bottom panels of Fig. 3a show the resulting disease prevalence120

and optimal interventions as a function of time. Note that a smaller initial susceptible population yields other121

trajectories (green and purple in Fig. 3a).122

The second case is when an “early” intervention is necessary before the disease prevalence reaches Imax123

(Fig. 3b). This case happens when the admissible reduction in the contact rate cannot immediately stop the124

disease prevalence at Imax if the susceptible population is large at that time. We find this case occurs if and only125

if umax is small in the sense that Rc D .1 � umax/R0 > 1. Here, a trajectory may hit the yellow region before126

reaching Imax (pink trajectory in Fig. 3b). When that happens, the optimal intervention starts with the maximum127

reduction u� D umax. Then it maintains this maximum reduction to “slide” the trajectory between the yellow128

and white regions. Once the trajectory reaches Imax, the magnitude of the optimal intervention decreases to129

slide the trajectory along Imax. Again, the final push occurs when the susceptible population reaches S�.130

The third case is when the initial state .S0; I0/ lies in the unfeasible region (Fig. 3c). This case occurs131

when umax is so small that, even if the maximum admissible intervention u D umax is applied from the start132

of the outbreak, the disease prevalence will exceed Imax (pink trajectory in Fig. 3c). In this case the optimal133

intervention problem is unfeasible because it is impossible to achieve I.t/ � Imax. However, note that the using134

u� D umax yields the smallest prevalence peak.135

6



Optimal NPIs are robust136

To evaluate the optimal NPIs in more realistic scenarios, we numerically analyzed their performance in three137

epidemic models with uncertain epidemic parameters and more detailed epidemic dynamics (see details in138

Supplementary Note S3). In all cases, we consider that the basic reproduction number has been estimated139

as OR0 using an SIR model, and that the optimal NPIs are designed using this estimate. Then, these optimal140

NPIs are applied to an outbreak with possibly different epidemic dynamics and possibly different R0. Note that141

estimation errors in R0 will affect the correct start and “final push” for reaching the safe zone.142

In the first scenario, we consider an outbreak with SIR dynamics where the strength of the NPIs is uncertain.143

We model this uncertainty replacing u by ku in the model equations, where k 2 .0; 1/. Then, for example,144

k D 0:9 (resp. k D 1:1) represents a 10% underestimation (resp. overestimation) of the NPIs strength. Across145

outbreaks with different R0’s and an uncertainty of 10% in the intervention’s strength, we find that the disease146

prevalence is maintained below Imax as long as R0 is not underestimated (Fig. 4a). In the second scenario, we147

consider an SEIR outbreak with an incubation period for the disease. For an incubation period of 7 days as in a148

typical COVID-19 infection, the optimal NPIs maintain the disease prevalence below Imax if R0 < 2:5 and its149

value is estimated with an error of below 30% (solid yellow and orange in Fig. 4b). For larger R0 or a larger150

incubation period, the disease prevalence may exceed Imax (red in Fig. 4b).151

For the final scenario, we consider an SEIIR model with an incubation period of 7 days and with a fraction152

p 2 Œ0; 1� of infected individuals that are asymptomatic and thus remain hidden to the epidemic surveillance153

system. The goal is to maintain the prevalence of symptomatic individuals below Imax, without knowing the154

fraction of asymptomatic individuals. This situation occurs during the COVID-19 pandemic, where between155

p D 0:55 and p D 0:8 of infections are asymptomatic [12]. For p < 0:7 and R0 < 3:64, the optimal156

NPIs maintain the disease prevalence of symptomatic individuals below or very close to Imax if the estimation157

error for R0 is below 30% (dotted and solid lines in Fig. 4c). An outbreak with low R0 produces a maximum158

disease prevalence of symptomatic individuals below Imax, which may result in a larger effective duration of159

the interventions. Overall, these numerical results shows that the optimal NPIs are robust against a wide range160

of parameter uncertainty and unmodeled dynamics, provided that the estimation error in the outbreak’s basic161

reproduction number does not exceed 30%.162

Designing optimal NPIs for the COVID-19 pandemic163

To explore the implications of our simple criterion for designing NPIs, we analyzed how 16 cities and regions164

implemented NPIs during the COVID-19 pandemic. For each region or city, we constructed Imax using the165

number of available intensive care beds, considering that a fraction of the infected individuals will require them166
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(Supplementary Note S4). The Imax we obtain ranges from 2:87 � 10�3 for Lima (Peru) to 109:78 � 10�3167

for Boston (US), reflecting the large heterogeneity of the available health services across the globe (Fig. 5a).168

With this information, we calculated the maximum feasible R�
c for each region using our design criterion of169

inequality (1). Since R�
c is a monotone function of Imax, we find that R�

c follows the same trend as Imax (Fig.170

5b). The smallest R�
c D 1:08 occurs for Lima and the largest R�

c D 1:75 for Boston. Note that in both cases171

R�
c > 1. This result implies that, for the R0 of a region’s disease outbreak, NPIs policies must be implemented172

to guarantee that at least a reduction u�
max can be achieved such that .1 � u�

max/R0 � R�
c .173

Next, we investigated the minimal reduction u�
max in transmission required to achieve those upper bounds174

for the COVID-19 pandemic. For this, we first collected information for the R0 in each region calculated at the175

start of the pandemic and when the NPIs were inactive (Supplementary Note S3). We find a median nominal176

R0 of 2.2, with Tokyo having the smallest one (R0 D 1:3) and Madrid having the largest one (R0 D 3:11),177

see Fig. 5c. From these values of R0, we calculated the minimal required reduction u�
max per region or city178

(blue in Fig. 5d). For the nominal R0’s per region or city, we find that a median reduction of u�
max of 0.42 is179

necessary. However, this minimal necessary reduction is heterogeneous across regions. For example, Tokyo180

just requires u�
max D 0:15 while Madrid requires u�

max D 0:61. These two cities have the smallest and largest181

R0, respectively. If two cities have a comparable R0, then the city with large Imax ends requiring a smaller u�
max182

(e.g., Boston with u�
max D 0:26 and Lima with u�

max D 0:50).183

To evaluate the feasibility of achieving the minimal reduction predicted by our analysis, we collected data for184

the average mobility reduction in each region during the NPIs in each region (grey in Fig. 5d and Supplementary185

Note S4). Considering this average mobility reduction as a proxy for the reduction in disease transmission, we186

find that all regions achieved a greater than necessary reduction. For example, Delhi attained a mobility reduction187

of 0.84, while the minimal necessary reduction in transmission according to our analysis is u�
max D 0:42. Other188

regions are in the boundary. For example, New South Wales attained a mobility reduction of 0.48, while the189

minimal necessary reduction in transmission was u�
max D 0:44. Overall, across regions, we find a median excess190

of 0.22 in the reduction of mobility compared to the minimal reduction in transmission u�
max predicted by our191

analysis.192

Discussion and concluding remarks193

Our choice of a simple SIR model was motivated by its epidemiological adequacy for the COVID-19 pandemic194

and its low dimensionality. The mathematical tractability of the SIR model gives us a complete understanding of195

the optimal NPIs to apply at any epidemic state. The feedback form u�.S; I / of the optimal intervention reflects196

such understanding, prescribing the optimal action to perform if the epidemic is at state .S; I /. This feedback197

strategy should be contrasted to most other studies applying optimal control to epidemic outbreaks, where the198
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optimal intervention is written as an open-loop function of time u�.t/ [13–16] (see Supplementary Note S4 for199

details about how our work is related to existing optimal control studies). The open-loop intervention gives the200

optimal action at any time for a particular initial state. However, it does not tell us what the optimal is action201

if the epidemic is not in the exact state predicted by the model. Understanding the optimal action to perform202

at any state has the crucial advantage of allowing us to apply this knowledge to any model, and therefore to203

reality. Indeed, feedback gives control strategies the required robustness to work on real processes [17, 18],204

and we numerically confirm that the optimal NPIs we derived have such robustness. Future work could analyze205

the robustness of the optimal intervention when the state of the epidemic is not entirely known. For example,206

this case may happen when significative delays exist in reporting new infections, or when tests for identifying207

infected individuals are limited.208

The optimal intervention resulting from our analysis can take a continuum of values that may be infeasible209

to implement in practice. We can use an averaging approach to circumvent this problem. Namely, consider a210

time window of T days (e.g., a week). Suppose that the average reduction prescribed by the optimal intervention211

over a certain window is Nu�. We can realize this reduction on average by combining d D T Nu�=umax days of212

maximum reduction with .T � d/ days without intervention. This approach yields an intervention similar to213

Karin et al. [19], with the difference that the periods of intervention and activity are optimally balanced.214

We obtained our criterion to design optimal NPIs for mitigating epidemic outbreaks by characterizing the215

necessary and sufficient conditions for the existence of solutions to an optimal control problem. In general,216

deriving such complete characterizations is challenging because it involves solving an infinite-dimensional op-217

timization problem [20]. Indeed, computational methods cannot produce such a characterization [21], and estab-218

lished analytical methods like Pontryagin’s Maximum Principle only yields necessary conditions for optimality219

[20]. We note that there are several studies applying these and other similar methods to the SIR model [22,220

23], in particular during the COVID-19 pandemic [11, 24–27]. This last property allowed us to apply Green’s221

Theorem to compare the cost of any two interventions analytically. In this sense, the method we use is closer to222

our previous work on optimal control for bioreactors [28]. Our results could guide a complete characterization223

of optimal NPIs for more detailed epidemic models or more detailed optimization objectives, but this is likely224

very challenging.225

We will inevitably face new epidemics where non-pharmaceutical interventions are the only option to control226

infections. Rather counter-intuitively, we find that for “ending” an epidemic outbreak as fast as possible using227

NPIs it is not always optimal to apply the maximum intervention. This observation illustrates the need for devel-228

oping a better scientific understanding that can inform the design of optimal non-pharmaceutical interventions229

and plan the required health services capacity.230
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BOX 1. Optimal NPIs for the Susceptible-Infected-Removed (SIR) model.

The SIR model with interventions u.t/ 2 Œ0; umax� reducing disease transmission takes the form

dS

dt
D �.1 � u/ˇ SI;

dI

dt
D .1 � u/ˇ SI � I:

Here, S.t/ and I.t/ are the proportion of the population that is susceptible or infected at time t � 0,
respectively. We denote by .S0; I0/ the initial state at t D 0. The parameters of the SIR model are the
(effective) contact rate ˇ � 0, and the mean residence time of infected individuals  � 0 (in units of
day�1). By assuming S0 � 1, these two parameters yield the basic reproduction number R0 D ˇ= .
We are interested in reaching the safe zone

S D
˚
.S; I / j I � ˚R0

.S/
	

;

where

˚R.S/ D

(
Imax if S � R�1,
Imax C R�1

�
log.RS/ C 1 � RS

�
otherwise.

(2)

The safe zone is the largest set with the following property: If, for any given time t1, the state .S1; I1/

belongs to S, we can set u D 0 henceforth and still have I.t/ � Imax for all t � t1. That is, when S
is reached, we can terminate the intervention with the assurance that a possible rebound in the disease
prevalence will not exceed Imax.
Our goal is to steer an arbitrary initial state .S0; I0/ to the safe zone S in minimal time without violating
the constraint I.t/ � Imax. We say that an intervention achieving this goal is an optimal intervention.
In Supplementary Note S1, we prove that the existence of an optimal intervention is characterized by the
separating curve ˚Rc

as follows:

(1) An optimal intervention exists if and only if the initial state .S0; I0/ lies below this separating
curve (i.e., I0 � ˚Rc

.S0/).

Above, Rc WD .1 � umax/R0 is the controlled reproduction number. Moreover:

(2) If it exists, the optimal intervention u� at the state .S; I / is

u�.S; I / D

8̂<̂
:

0 if .S; I / 2 S [ W
1 � 1=.RcS/ if I D ˚Rc

.S/ and S� < S < R�1
c

umax otherwise
(3)

with
W D f.S; I / j I < ˚Rc

.S/; S > 	.I /g :

Above, the curve S D 	.I / is defined in Supplementary Note S1, while S� denotes the intersec-
tion of S D 	.I / and I D ˚Rc

.S/.
231
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Figure 1: Optimal non-pharmaceutical interventions. a. Susceptible-Infected-Removed (SIR) model with
non-pharmaceutical interventions (NPIs) reducing disease transmission. For the optimal NPI design problem,
the objective is to design the intervention u�.t/ with minimal effective duration such that u�.t/ 2 Œ0; umax� and
I.t/ � Imax for all t � 0. b and c. Panels show the response of the SIR model for two interventions (parameters
are ˇ D 0:52,  D 1=7, I0 D 8:855 � 10�7 and S0 D 1 � I0). Both intervention 1 and 2 satisfy u.t/ � umax
and guarantee that I.t/ � Imax Actually, intervention 2 is the optimal one derived using our analysis: it is
intervention with minimal effective duration satisfying I.t/ � Imax. d. The effective duration of an intervention
measures the interval between the start of the outbreak and the last time that a non-zero intervention is applied.
In this example, the effective duration of intervention 1 is 120 days, while the effective duration of intervention
2 is 69 days.
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states that dot not exceed Imax without interventions. This zone is characterized by the inequality I � ˚R0
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.S/ (black line). a. For “strong” interventions with umax D 0:8, the controlled reproduction number is
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below Imax are feasible. Note this case corresponds to eradication. b. For “intermediate” interventions with
umax D 0:6, the controlled reproduction number is Rc D .1�umax/R0 D 1:456 > 1. Here, the separating curve
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we obtain Rc D 2:184 > 1. In this case, states with S.0/ � 1 are unfeasible. d. For S.0/ ! 1, our design
criterion for NPIs prescribe the values of Rc’s that a given Imax can manage.

12



0 20 40 60 80 100 120
0.

0.05

0.1

0.15

0.2

time (days since onset)

0 20 40 60 80 100 120
0.

0.2
0.4
0.6
0.8

1.

0 20 40 60 80 100 120
0.

0.05

0.1

0.15

0.2

time (days since onset)

pr
ev

al
en

ce

pr
ev

al
en

ce

pr
ev

al
en

ce
0 20 40 60 80 100 120

0.
0.2
0.4
0.6
0.8

1.

0 20 40 60 80 100 120
0.

0.2
0.4
0.6
0.8

1.

op
tim

al
in

te
rv

en
tio

n

0 20 40 60 80 100 120
0.

0.2
0.4
0.6
0.8

1.

time (days since onset)

0 20 40 60 80 100 120
0.

0.2
0.4
0.6
0.8

1.

op
tim

al
in

te
rv

en
tio

n

0 20 40 60 80 100 120
0.

0.2
0.4
0.6
0.8

1.

time (days since onset)

interventions are strong enough
to start at              

interventions need to start
before reaching         

interventions are too weak
to stop prevalence at          

0 20 40 60 80 100 120
0.

0.05

0.1

0.15

0.2

time (days since onset)

0 20 40 60 80 100 120
0.

0.2
0.4
0.6
0.8

1.

0 20 40 60 80 100 120
0.

0.2
0.4
0.6
0.8

1.
op

tim
al

in
te

rv
en

tio
n

0 20 40 60 80 100 120
0.

0.2
0.4
0.6
0.8

1.

time (days since onset)

maximum interevention maximum interevention

no
intervention

no
intervention

no
intervention

no
intervention

maximum interevention

no
intervention

a b c

Figure 3: Optimal non-pharmaceutical interventions in the Susceptible-Infected-Removed model. For all
panels, the parameters of the SIR model are  D 1=7, ˇ D 0:52, (i.e., R0 D 3:64/ and Imax D 0:1. We consider
a population of N D 8:855 � 106 individual (like in Mexico City) and I0 D 1=N . Panels shows trajectories for
three initial proportions of the susceptible population: large S0 D 1�I0 � 1 (pink), medium S0 D 0:8 (green),
and small S0 D 0:65 (purple). a. For umax D 0:8 we have Rc D .1 � umax/R0 D 0:728 � 1. In this case, the
optimal intervention starts when the disease prevalence reaches Imax. Afterwards, the intervention decreases in
an hyperbolic arc until reaching the point S D S�. At that time, the intervention becomes maximum in the “final
push” to reach the safe zone. b. For umax D 0:58 the controlled reproduction number is Rc D .1 � umax/R0 D

1:52 > 1. Here ˚Rc
.1/ > 0, implying that the epidemic still can be mitigated for initial states with S0 � 1

and I0 � 0 (pink trajectory). In this case, the optimal intervention starts when the initial condition hits the
separating curve below Imax at t D 35. At that instant the intervention starts with the maximum value umax, and
continues in that form until the trajectory reaches Imax. c. Choosing umax D 0:4 yields Rc D 2:184 > 1. In this
case, the optimal intervention problem does not have a solution for all initial states S0 > 0:85. This is illustrated
by pink trajectory: even when applying the maximum intervention from the start, I.t/ will grow beyond Imax.
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Figure 4: Optimal non-pharmaceutical interventions are robust. For all panels, the estimated parameters
used for constructing the optimal NPIs are O D 1=7, Ǒ D 0:52, Imax D 0:1, umax D 0:6. We consider a
population of N D 8:855�106 as in Mexico City, and the initial conditions I.0/ D 1=N and S.0/ D 1�1=N .
If the models contain other state variables, they were initialized at zero. The optimal NPIs are constructed
assuming OR0 D Ǒ= O , while the actual epidemic dynamics has a possibly different R0 D ˇ= . Panels shows
results for outbreaks with three values of R0: low (yellow), medium (orange), and large (red). a. A SIR model
where the reduction in the disease transmission by the NPIs is uncertain. We model this case replacing u by
ku in the model equations. Panel shows the results for k D 1:1 (dotted), k D 1 (solid), and k D 0:9 (dashed).
b. SEIR model where exposed individuals do not transmit the infection, with � > 0 the incubation period.
Panel shows the results for � D 1=5 (dotted), � D 1=7 (solid), and � D 1=11 (dashed). c. A SEIIR model
with � D 1=7 and two classes of infected individuals (symptomatic and asymptomatic). Here, p 2 Œ0; 1� is the
proportion of exposed individuals that become asymptomatic. The vertical axis denotes the disease prevalence
for symptomatic individuals. The panel shows the results for p D 0:55 (dotted), p D 0:7 (solid), and p D 0:8

(dashed).
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Figure 5: Minimum necessary reduction in disease transmission for NPIs in the COVID-19 pandemic.
a. Calculated Imax according to the proportion of available intensive care beds in each region or city and the
estimated fraction of infected individuals requiring intensive care. b. Maximum controlled reproduction number
Rc that each region or city can handle according to its Imax. Larger Imax allows a larger Rc . c. Basic reproduction
number R0 per region or city before interventions started. Median (blue big dot), and 95% confidence interval
(smaller dots) are shown. d. Minimum umax necessary for feasibility for each region or city (blue) according to
the R0 of panel c. Grey bars denote the reported average mobility reduction in each region between March 19
and April 30.
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S1. Characterization of the optimal intervention in the Susceptible-
Infected-Removed model

The model is given by

ÛS = − (1 − u) βSI
ÛI = (1 − u) βSI − γI ,
ÛR = γI

where the parameters β > 0, γ > 0 are assumed constant. Since the total population N = S + I + R
remains constant all the time, the model can be reduced to that of a second order system using only the
states (S, I). The maximal (acceptable) value of I is Imax and the maximal achievable value of the control
is umax. So the state has to belong to the following feasible sets

XF =
{
(S, I) ∈ R2 | 0 ≤ S ≤ 1, 0 ≤ I ≤ Imax

}
UF = {u ∈ R | 0 ≤ u ≤ umax < 1} .

Sometimes it will be useful to write the differential equation in a compact form as

Ûx = f (x) + g (x)w, w = 1 − u[ ÛS
ÛI

]
=

[
0

−γI

]
+ βSI

[
−1
1

]
w .

The trajectory starting at the initial point x0 = (S0, I0) and subject to the control u : R→ UF is denoted
by ϕ (t, x0, u (·)).

Let us define the function

ΦRα(S) =
{

Imax if S < R−1
α

Imax + R−1
α (ln(RS) + 1 − RαS) otherwise

with Rα ∈ {Rc, R0}. The optimal control problem consists in finding the control strategy u such that,
starting from the initial point (S0, I0), the target set

T =
{
(S, I) ∈ R2

≥0 | I ≤ ΦR0(S)
}

is reached in the minimal time with the state restriction I (t) ≤ Imax satisfied for all time. Note that this
set is positively invariant without control (u = 0), and that every trajectory that starts in this set satisfies
the restriction I(t) ≤ Imax for all t ≥ 0 (see Fig. S1).

Now let us define the reachable set for an initial state x0 as the set of points that can be reached from
the initial point x0 with feasible control, i.e.,

R (x0) =
{

x ∈ R2
≥0 | x = ϕ (t, x0, u (·)) for some finite t ≥ 0 and admissible u

}
.

Also, we define the controllable set of the target set T as the set of points from which some point in the
target T can be reached with a feasible control, i.e.,

C (T) =
{

x ∈ R2
≥0 | ∃ x f ∈ T, x f = ϕ (t, x, u (·)) for some finite t ≥ 0 and admissible u

}
.

The set C (T) can be equivalently described as R (T) for the system

Ûx = − f (x) − g (x) (1 − u) ,

1



Supplementary Figure S1 | The set T is the largest positive invariant set satisfying I ≤ Imax. The figure was generated with R0 = 2,
Rc = 1.18 and Imax = 0.02.

i.e., the set of points that can be reached from the set T for the dynamics with backward time. Now, the
optimal control problem has a solution if and only if

R (x0) ∩ C (T) ∩ XF , ∅ .

Since the points of the form (S, I) = (S, 0) are equilibria for every control value, R ((S, 0)) = (S, 0),
we exclude them from the initial conditions for which there is a solution (except if the equilibrium is
already in the target set). Now, since ÛS < 0 for S > 0, I > 0,

R (x0) ∩ C (T) , ∅

for every initial condition (except for initial conditions of the form (S, 0)). It is obvious that, for the
problem to be feasible, the initial state has to be in the feasible set XF , i.e.,

R (x0) ∩ XF , ∅ .

S1.1 Calculation of the orbits

Although it does not seem to be possible to find the trajectories of the system explicitly, it is easy to find
its orbits. For this we write (we exclude the points for which I = 0 since they are equilibria)

dI
dS
=

ÛI
ÛS
=

(1 − u) βSI − γI
− (1 − u) βSI

=
(1 − u) βS − γ
− (1 − u) βS

=
1

(1 − u) R0S
− 1

which is a separable differential equation (DE). Assuming that u is constant and integrating, we obtain

I − I0 =
1

(1 − u) R0
ln

(
S
S0

)
− (S − S0) . (S1)

2



An interesting rewriting of (S1) is

I (t) + S (t) − 1
(1 − u) R0

ln (S (t)) =I0 + S0 −
1

(1 − u) R0
ln (S0) .

This means that the quantity I (t)+S (t)− 1
(1−u)R0

ln (S (t)) remains constant along the trajectory. Note that
this constant depends on the control value used. The above equation is well-known for the SIR model
(see, e.g., [1]).

Given an initial condition (S0, I0) this expression gives, for any 0 < S < S0 the (unique) value of I
that is reached in future time1. Thus there exists a function I (S; (S0, I0)) that gives the value of I as a
function of S and the initial condition. Moreover, from the first equation in the DE we obtain

dS
(1 − u) βSI

= −dt

and, if we take the expression I (S; (S0, I0)), we obtain a separable DE that can be integrated,

T(S; S0, I0) = −
∫ S

S0

dS
(1 − u) βSI (S; (S0, I0))

= − 1
(1 − u) β

∫ S

S0

dS

S
(
I0 +

1
(1−u)R0

ln
(

S
S0

)
− (S − S0)

) ,
and that gives the time to reach the point (S, I (S)) from the initial point (S0, I0) with the (constant)
control u. Although it does not seem possible to give an explicit expression for this integral, it is clear
that S parametrizes uniquely the solutions (since it is monotone).

S1.2 The number of infected people
If we apply a constant control 0 ≤ u ≤ umax the infection will eventually die out, i.e., the value I (∞) = 0
will be reached asymptotically (otherwise R (t) would continue growing, which is impossible). We can
therefore compute S (∞) implicitly from (S1) as

I (∞) − I0 =
1

(1 − u) R0
ln

(
S (∞)

S0

)
− (S (∞) − S0)

or, equivalently, as

1
(1 − u) R0

ln (S (∞)) − S (∞) = 1
(1 − u) R0

ln (S0) − S0 − I0 .

Note that the final value of S depends on the initial values, but also on the control used.
If we assume that the model is normalized, and the initial value is S0 = 1 and I0 ≈ 0, then

S (∞) − 1
(1 − u) R0

ln (S (∞)) = 1 .

Note that, if u → 1−, then S (∞) → 1−. So, the larger the value of u, the larger the value of S (∞).

S1.3 Reachable set from (S0, I0)
At each point in the state space, the directions in which the vector field points for different values of the
control are given by Fu (x) = f (x)+ g (x) (1 − u). The extreme values are given by F0 (x) = f (x)+ g (x)

1If we select S > S0 the obtained value of I is reached in a past time (t < 0).
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Supplementary Figure S2 | Phase Plane with maximal and minimal orbits bounding the reachable set R (x0). Max corresponds to
the trajectory ϕ (t, x0, u = 0) while Min to ϕ (t, x0, u = umax). The figure was generated with R0 = 2, Rc = 1.18 and Imax = 0.02.

and Fumax (x) = f (x) + g (x) (1 − umax),

F0 (x) =
[

0
−γI

]
+ βSI

[
−1
1

]
Fumax (x) =

[
0

−γI

]
+ βSI

[
−1
1

]
(1 − umax) .

In the phase plane (S, I) both point to the “left”, since the first component (in the direction of S) is always
negative (recall that SI > 0). Since for the second components of the vector fields we have

−γI + βSI > −γI + βSI (1 − umax) ,

it follows that F0 is “above” Fumax . Therefore,the reachable set R (x0) is bounded by the two trajectories
ϕ (t, x0, u = 0) and ϕ (t, x0, umax), see Fig. S2. These two bounding orbits can be easily calculated using
Eq. (S1).

S1.4 Comparing the cost of two different trajectories

In order to be able to find the orbit (trajectory) solving the optimal control problem, it is necessary to be
able to compare the cost of two different trajectories that start at the same initial point and end at the same
final point. Consider two orbits ωi

(
x0, x f , ui

)
, i = 1, 2, joining the (same) points x0 and x f using two

different control actions, u1 and u2, respectively. The cost (i.e. time) going through ωi is

J (ui) =
∫ Ti

0
dt

along the trajectory. Given two such orbits, we want to compare both costs. This can be done, for example,
by subtracting them, i.e., if

J (u1) − J (u2) < 0

then the cost of ω1 is lower than that of ω2.
The cost J (ui) can be calculated as a line integral along the trajectory. We can see this in the following

4



manner. Calculate

∆ ( f (x) , g (x)) = − det [ f (x) , g (x)]
= − ( f1 (x) g2 (x) − f2 (x) g1 (x)) .

Now, by properties of the determinant this is also the same as

∆ ( f (x) + g (x) ui, g (x)) = − det [ Ûx, g (x)]
= Ûx2g1 (x) − Ûx1g2 (x) .

Therefore,

J (ui) =
∫ Ti

0
dt =

∫ Ti

0

Ûx2g1 (x) − Ûx1g2 (x)
∆ (x) dt

=

∫ x f

x0

(
g1 (x)
∆ (x) dx2 −

g2 (x)
∆ (x) dx1

)
,

which is a line integral along the orbit ωi. Since the two paths have the same initial and final points, they
form a closed curve, and calculating the line integral along the closed curve followed in the counterclock-
wise direction we obtain the difference of the costs, i.e.

J (u1) − J (u2) =
∳

Γ

(
g1 (x)
∆ (x) dx2 −

g2 (x)
∆ (x) dx1

)
where Γ is the closed path of the two orbits followed in the counterclockwise direction. For this we have
to assume that: (1) the two paths (orbits) do not intersect at any points except the initial and final ones,
and (ii) that ∆ , 0.

Using Green’s theorem, the line integral can be calculated using a surface integral:
∳

Γ

(u(x, y)dy + v(x, y)dx) =
∫ ∫

R

(
∂u
∂x

(x, y) − ∂v
∂y

(x, y)
)

dxdy =
∫ ∫

R
w (x, y) dxdy ,

where R is the region enclosed by the closed curve Γ. For our problem this becomes

J (u1) − J (u2) =
∫ ∫

R
w (x1, x2) dx1dx2

w (x1, x2) =
∂

∂x1

(
g1 (x)
∆ (x)

)
+
∂

∂x2

(
g2 (x)
∆ (x)

)
.

In our case,

∆ (x) = − ( f1 (x) g2 (x) − f2 (x) g1 (x))
= γβSI2

w (x1, x2) =
∂

∂S

(
−βSI
γβSI2

)
+
∂

∂I

(
βSI
γβSI2

)
=
∂

∂I

(
1
γI

)
= − 1
γI2 < 0 .

We see that w < 0 everywhere, and therefore the integral is always negative, implying that the “upper” or-
bit has a lower cost than the “lower” orbit (in the closed path traversed in the counterclockwise direction).
This observation allows us to find the optimal orbit by comparing it with others.
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S1.5 Optimal orbits
From the previous results, the “upper” trajectory is the one with no control (u = 0) and, in terms of the
cost alone, this trajectory is better than any other one joining the same two points. However, such control
may be inadmissible, since the corresponding I can go over Imax at some periods of time.

The computation of the optimal control can be approached in two ways:

• Fix the initial condition x0, find its optimal orbit and then its associated optimal control.

• Study the optimal control problem for all possible initial conditions.

Although the second approach is obviously better, it is more difficult, so we will start with the first ap-
proach. In fact, both approaches should lead to the same conclusions.

Now we can divide the study of the optimal orbit in several cases.

S1.5.1 Unfeasible trajectories

This is the case if I0 > Imax.

S1.5.2 Trivial trajectories

This is the case in which I0 ≤ ΦR0(S0). That is, the case in which we start in the target set.

S1.5.3 Bang-bang trajectories

If x0 < T, it is necessary to apply some control to maintain I below the maximal value Imax. Moreover,
admissible trajectories necessarily cross the boundary of T at S ≥ 1/R0, that is, they enter T at

∂T1 =
{
(S, I) | I = ΦR0(S) , S ≥ 1/R0

}
.

In order to find the optimal control that steers an initial state x0 to x f ∈ ∂T1, consider the change of
coordinates

µ(S, I) = I − 1
R0

ln(S) + S

ν(S, I) = I − 1
Rc

ln(S) + S

with inverse

S(µ, ν) = exp
(
1 − umax

umax
R0(µ − ν)

)
(S2a)

I(µ, ν) = 1
umax
µ − 1 − umax

umax
ν − exp

(
1 − umax

umax
R0(µ − ν)

)
. (S2b)

Note that, given I = 0, we can uniquely map µ to S ≥ 1/R0, which we will denote by S = Ŝµ(µ). Likewise,
we can uniquely map ν to S ≥ 1/Rc, and we will denote it by S = Ŝν(ν).

In the new coordinates, the dynamic equations are

Ûµ = −uI(µ, ν) (S3a)

Ûν = umax − u
1 − umax

I(µ, ν) (S3b)

Note that µ = const is an orbit when u = 0 and ν = const is an orbit when u = umax.
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Supplementary Figure S3 | An optimal bang-bang trajectory that initiates at x0 with u = 0 (red). When the state touches the curve S
(green), the control is set to u = umax until the state reaches x f ∈ ∂T1. The region containing all bang and bang-bang trajectories is
depicted in yellow. The figure was generated with R0 = 2, Rc = 1.18 and Imax = 0.02.

In (µ, ν)-coordinates, the entry point at T is the segment

∂T1 =
{
µ f

}
× [νmin, νmax]

with
νmin = − 1

Rc
ln
(
Ŝµ(µ f )

)
+ Ŝµ(µ f ) , νmax = Imax +

ln(R0)
Rc

+
1
R0

and
µ f = Imax +

ln(R0) + 1
R0

(see Fig. S3).

It follows from Sec. S1.4 that the fastest orbit joining an initial state (µ0, ν0) ∈ C(∂T1) and a final
state (µ f , ν f ) ∈ ∂T1 is the concatenation of a first piece connecting (ν0, µ0) and (ν f , µ0) with u = 0 and a
second piece connecting (ν f , µ0) and (ν f , µ f ) with u = umax. That is, the control is bang-bang. It is easy
to verify that this control yields the fastest trajectory, as any other trajectory joining (µ0, ν0) and (µ f , ν f )
is below this one. The transition times can be computed using (S3) as

T0(ν f , µ0; ν0, µ0) =
∫ νf

ν0

dν
1

1−umax
µ0 − ν − umax

1−umax
exp

(
1−umax

umax
R0(µ0 − ν)

)
and

Tc(ν f , µ f ; ν f , µ0) =
∫ µ f

µ0

dµ

−µ + (1 − umax)ν f + umax exp
(

1−umax
umax

R0(µ − ν f )
) ,

so that the total time is T(ν f , µ f ; ν0, µ0) = T0(ν f , µ0; ν0, µ0) + Tc(ν f , µ f ; ν f , µ0).
Note that µ f is fixed, but ν f ∈ [νmin, νmax] is free. We will now find the closest entry point by

minimizing T over ν f . Set

µmax = − 1
R0

ln
(
Ŝν(νmin)

)
+ Ŝν(νmin) ,

7



Supplementary Figure S4 | The minimal time φµ (νf ) it takes an initial state (νmin, µ0) to reach the target point (νf , µ f ). The curves
were generated with R0 = 2 and Rc = 1.18. Note that the global minimum is well defined (it is unique).

fix µ0 ∈ [µ f , µmax] and define the map

φµ0 : [νmin, νmax] → R
ν f 7→ T(ν f , µ f ; νmin, µ0) .

Assumption 1. Global minima of φµ0 are unique.

By Weierstrass Theorem, global minima of φµ0 always exist. The assumption excludes the highly
degenerate case in which the global minimum could occur for more than one value of ν f . Figure S4
shows plots of φµ0 for various values of µ0 using the parameters R0 = 2 and Rc = 1.18. Note that the
global minimum is unique (indeed, for large values of µ0, φµ0 is convex). We now define the function

ν∗ : [µ f , µmax] → [νmin, νmax]
µ0 7→ arg min

νf

φµ0(ν f ) .

This function defines a switching curve parameterized by µ0. In the original coordinates (S2), the switch-
ing curve takes the form

S =
{
(S, I) | S = S(ν∗(µ0), µ0), I = I(ν∗(µ0), µ0), µ0 ∈ [µ f , µmax]

}
.

Let Ī = max(S,I)∈S . To simplify the exposition, we introduce Ψ : [0, Ī] → [0, 1], defined implicitly by

(Ψ(I), I) ∈ S .

We will parameterize S using I,

S =
{
(S, I) | S = Ψ(I), I ∈ [0, Ī]

}
.

The trajectories that reach S above Imax are of course unfeasible, so the class of optimal bang-bang
trajectories are only those that pass throughS∩XF (see the yellow region in Fig. S3). For future reference,
we will denote by S∗ the S coordinate at which S intersects the line I = Imax and by x1 the point (S∗, Imax).

Summarizing, there are two possible situations:
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1. Bang. If x0 belongs to the region delimited by ∂T1, I = Imax and S, then the optimal control
strategy is simply

u =

{
umax from t = 0 until x ∈ ∂T1

0 when x ∈ T
.

2. Bang-Bang . When x0 belongs to the region delimited by S, I = Imax and the orbit ϕ(−t, x1, umax),
then the optimal control strategy is

u =


0 from t = 0 until x ∈ S
umax until x ∈ ∂T1

0 when x ∈ T
.

S1.5.4 Trajectories containing a singular arc

Let us define an initial point x0 = (S0, I0) and the point x1 = (S∗, Imax). We are interested in four
trajectories (or orbits):

1. ϕ (t, x0, u = 0), the trajectory without control starting at x0. It will be useful to calculate the value
S = S̄ at which the orbit (first) touches Imax. For this we solve (use (S1))

Imax = I0 +
1
R0

ln
(

S
S0

)
− (S − S0)

for S and obtain two solutions: S1, S2. Define S̄ = max {S1, S2} as the largest.
Now we calculate the values of S ≤ Sc for which it is possible to achieve ÛI ≤ 0 (that is, that it is
possible to stop the growth of I). This value can be calculated from

ÛI = (1 − umax) βSI − γI ≤ 0

and gives

Sc = min
{

1
(1 − umax) R0

, 1
}
.

We “saturate” the value of Sc because Sc > 1 is not empidemiologically relevant. The control
required to achieve the condition I = Imax is the “singular” control

using = 1 − 1
R0S
.

Note that, if S > Sc at I = Imax, it is no longer possible to keep I at Imax because ÛI > 0.
If S̄ ≥ Sc, then the optimal control is bang-singular arc-bang,

u =


0 from t = 0 until I = Imax

using until S = S∗

umax until x ∈ ∂T1

0 when x ∈ T

. (S4)

This case is depicted in Fig. S5 for the parameters R0 = 2, Rc = 1.18 and Imax = 0.02.
If Sc = 1, then Sc ≥ S̄ holds trivially and the optimal strategy is again (S4).

2. ϕ (t, x0, umax), the trajectory with maximal control starting at x0.

9



Supplementary Figure S5 | An optimal trajectory that initiates at x0 with u = 0 (red) and such that S̄ ≤ Sc . When the state touches
the curve I = Imax, the control is set to u = using until the state reaches x1. The control is finally switched to u = umax until the state
reaches the target set. The region containing all bang-singular arc-bang trajectories is depicted in yellow. The figure was generated
with R0 = 2, Rc = 1.18 and Imax = 0.02 .

3. ϕ (−t, x1, u = 0), the trajectory without control that passes through x1. If x0 is at the left of this
trajectory, the optimal orbit is bang-bang, as shown in the previous section. Optimal trajectories
starting at the right have singular arcs.

4. ϕ (−t, x1, u∗), the trajectory with control

u∗ = min
{
using, umax

}
that passes through x1.

The control u∗ is such that this trajectory does not violate the restriction I ≤ Imax. For values of
S ≥ Sc, it is equal to umax, and for S ≤ Sc it is the control for the singular arc, i.e., it maintains
I = Imax until x f is reached.

When S̄ > Sc then it is necessary to start with the control strategy before reaching the maximal
value of I = Imax. Otherwise, this limit will be surpassed. However, this is only feasible if, moving
backwards from the point (Sc, Imax) with the maximal control umax it is possible to reach a point
(S0, Ic) such that Ic ≥ I0. The value of Ic can be calculated from (S1),

Ic = (Sc − S0) + Imax −
1

(1 − umax) R0
ln

(
Sc

S0

)
.

If Ic = I0, the optimal control is

u =


umax from t = 0 until I = Imax

using until S = S∗

umax until x ∈ ∂T1

0 when x ∈ T

.
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When Ic > I0, the control is bang-bang-singular arc-bang,

u =



0 from t = 0 until S = Ss

umax from S = Ss until I = Imax

using until S = S∗

umax until x ∈ ∂T1

0 when x ∈ T

,

where (Ss, Is) is a switching point. It is characterized as follows: the trajectory ϕ (t, x0, u = 0)
intersects the trajectory ϕ (−t, x1, umax) at (Ss .Is). Such point can be calculated from (S1) as

Is − I0 =
1
R0

ln
(

Ss

S0

)
− (Ss − S0)

Imax − Is =
1

(1 − umax) R0
ln

(
Sc

Ss

)
− (Sc − Ss) .

By substituting the first into the second we get

Is = I0 +
1
R0

ln
(

Ss

S0

)
− (Ss − S0)

Imax = I0 +
1
R0

ln
(

Ss

S0

)
− (Ss − S0) +

1
(1 − umax) R0

ln
(

Sc

Ss

)
− (Sc − Ss) .

Solving for Ss in the second we arrive at

Is = I0 +
1
R0

ln
(

Ss

S0

)
− (Ss − S0)

ln (Ss) =
(1 − umax)

umax

1
R0

{
−Imax + I0 + S0 − Sc −

1
R0

(
ln (S0) −

1
(1 − umax)

ln (Sc)
)}
.

This case is depicted in Fig. S6 again for the parameters R0 = 2, Rc = 1.18 and Imax = 0.02.

If Ic < I0, then it is not possible to solve the optimal problem, since any strategy will surpass the
maximal value Imax. This is the case if, e.g., umax is reduced and Rc increases to 1.27 (see Fig. S7).

S1.6 A feedback control strategy

The previous “open loop” strategy can be implemented as a state feedback control. This strategy is rather
simple, since there are basically only two switching curves: ϕ (−t, x1, u∗) and S. Another switch takes
place when the target region has been attained and the control is switched off, but this happens in a
“natural” manner.

The switching curve ϕ (−t, x1, u∗) can be written as

I = ΦRc (S) , S ≥ S∗ .

We can further define the “waiting” set

W =
{
(S, I) | I < ΦRc (S), S > Ψ(I)

}
.
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Supplementary Figure S6 | An optimal trajectory that initiates at x0 with u = 0 (red) and such that S̄ > Sc . When the state arrives at
(Ss, Is ), the control is set to u = umax. When the state touches the curve I = Imax, the control is set to u = using until the state reaches x1.
The control is finally switched to u = umax until the state reaches the target set. The region containing all bang-bang-singular arc-bang
trajectories is depicted in yellow. The figure was generated with R0 = 2, Rc = 1.18 and Imax = 0.02.

Supplementary Figure S7 | For the initial condition x0 the problem is unfeasible, Imax will be surpassed, no matter which strategy is
used. The figure was generated with R0 = 2, Rc = 1.27 and Imax = 0.02.
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Supplementary Figure S8 | The optimal feedback strategy (S5). The target and waiting sets, T and W, are illustrated for R0 = 2,
Rc = 1.18 and Imax = 0.02.

The optimal control feedback is thus given by

u∗ (S, I) =


0 (S, I) ∈ T ∪W
using = 1 − 1

R0S if I = ΦRc (S) and S∗ < S < R−1
c

umax otherwise
. (S5)

Such strategy is summarized in Fig. S8.
Alternatively, we can implement a pure switching control since the “equivalent control”[2] will realize

the singular control on the singular arc,

u∗ (S, I) =
{

0 (S, I) ∈ T ∪W
umax otherwise

.

Note that this control strategy extends the control action beyond the region where the optimal control is
feasible.
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S2. Necessary and sufficient conditions for the existence of optimal
NPIs

Let (S0, I0) denote the initial state of the SI model. As shown in Supplementary Note S1, the necessary
and sufficient condition for the existence of NPIs is that I0 ≤ ΦRc (S0) where ΦRc (S) is the separating
curve. To characterize a condition that is independent of the initial state, we consider the limit case of
S0 = 1 and I0 = 0. Under this assumption, the necessary and sufficient condition of existence is that
ΦRc (1) ≥ 0. In other words, the boundary of existence of NPIs is when the separating curve exactly
crosses I = 0 at S = 1. Substituting S = 1 in the separating curve we obtain the condition

Rc ≤ 1, or Imax +
1
Rc

ln Rc −
(
1 − 1

Rc

)
≥ 0,

which is precisely the inequality (1) of the Main Text..
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S3. Robustness of the optimal intervention
Here we describe the models used to evaluate the robustness of the optimal intervention.

S3.1 Robustness to the presence of demography and an incubation period.
To evaluate the robustness of the optimal intervention to the presence of an incubation period of the
disease, we considered the SEIR dynamics

ÛS = −(1 − u)β SI + µ − µS,
ÛE = (1 − u)β SI − λE,
ÛI = λE − γI,
ÛR = γI .

(S6)

Above, E(t) denotes the fraction of individuals in the population exposed to the disease, but which are not
yet infectious, at time t. The parameter 1/λ ≥ 0 denotes the incubation period of the disease in units of
days. The parameter µ ≥ 0 denotes the recruitment rate in units of days−1. For the result of our paper, we
choose µ = 1/(365 · 75) corresponding to a life expectancy of 75 years. For this model, the intervention
we apply is u(t) = u∗(S(t), I(t)) with u∗(S, I) as in Eq. (S5).

S3.2 Robustness to the presence of hidden infected individuals.
To evaluate the robustness of the optimal intervention to hidden infected individuals, consider that that
infections can be symptomatic or asymptomatic. We assume that all asymptomatic infections do not
require hospital care, and hence remain undetected by the epidemic surveillance system. To model this
scenario, we consider the dynamics

ÛS = −(1 − u)β S(Ia + Is) + µ − µS,
ÛE = (1 − u)β SI − λE,
ÛIs = p λE − γIs,

ÛIa = (1 − p) λE − γIa,

ÛR = γ(Is + Ia).

(S7)

Above, Is denotes the fraction of symptomatic infections and Ia the fraction of asymptomatic ones. The
model assumes that a fraction p ∈ [0, 1] of exposed individuals result in symptomatic infections, and the
rest (1−p) in asymptomatic ones. We assume that infectious period 1/γ is the same for both symptomatic
and asymptomatic individuals. For the results of our paper, we choose λ = 1/7. Since we assume that
only symptomatic individuals end up requiring hospital care, we consider that the objective is to keep
Is(t) ≤ Imax only. The control applied is u(t) = u∗(S(t), Is(t)) where u∗(S, I) is given by Eq. (S5).

15



S4. Application to the COVID-19 pandemic
S4.1 Estimate for the fraction of infected individuals requiring intensive care.
For COVID-19 pandemic by the SARS-CoV-2 virus, we estimated the fraction f of infected individuals
requiring intensive-care under the following assumptions:

1. Current estimates for the fraction p ∈ [0, 1] of infected individuals that are symptomatic show a
large variability [3], ranging from a 20/100 in a report of the World Health Organization, to 96/100
in a study of 328 adults in Shanghai[4]. We take the nominal value of p0 = 60/100.

2. Following Kremer et al.[5], we assume that from the individuals that are symptomatic, a fraction
15/100 develop severe symptoms.

3. Finally, following Li et al. [6], from the individuals that develops severe symptoms, we assume that
the fraction 28/100 will require intensive care.

Under the above assumptions, the fraction of infected individuals requiring intensive care has a nominal
value

f =
60
100

15
100

28
100
=

63
2500

= 0.0252.

S4.2 Data used in our analysis.
Supplementary Fig. S9 shows the data used for our analysis. Data was collected using the following
methodology:

1. Number of intensive care beds in each city. This was obtained from official statements when
possible (e.g., the Massachusetts Department of Public Health for Boston). In other cases, this
number was obtained from public statements of authorities of each city. A complete list of the
references appears in the Supplementary Fig. S9.

2. Population in each city. Data was obtained from Wikipedia.

3. Reduction of mobility in each city. This was obtained from Google Community Mobility Re-
ports https://www.google.com/covid19/mobility/. For our analysis, we considered three
categories of mobility: retail & recreation, transit stations, and workplaces. To estimate an overall
mobility reduction, we averaged the mobility reduction in these three categories from March 19 to
April 30. Data was accessed on May 7, 2020.

4. Basic reproduction number. We estimated this quantity from the value of the effective time-
varying reproduction number Rt at the start of the pandemic around March 8, 2020. These estimates
were obtained from the website https://epiforecasts.io/covid/.
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S5. Related work
For the control of infectious diseases, there is a large body of work using optimal control methods to design
interventions, including vaccination and quarantines[7, 8], drug treatments[9], or dispersal of insecticides
and education campaigns[10]. The standard tool to solve these optimal control problem is the celebrated
Pontryagin’s Maximum Principle[11]. However, note that the Maximum Principle only gives necessary
conditions for optimality. The gap between the necessary and sufficient conditions for optimality needs to
be closed using additional arguments, often relying on assuming that the control appears multiplying an
affine function of the state variables. This assumption is not satisfied in our formulation of optimal NPIs.
We emphasize that the optimal interventions obtained from this approach result in open loop strategies
which only depend on time. By contrast, our analysis gives a feedback optimal strategy that characterizes
the optimal action to make according to the actual state of the epidemic. Indeed, our characterization of
optimal NPIs does not rely on the Maximum Principle. Instead, the low dimensional of our model allows
us to apply Green’s Theorem to compare the cost of two different interventions. The consequence of our
approach is that we obtain a feedback or closed loop strategy that corrects itself based on the actual state
of the epidemic.

The COVID-19 pandemic has stirred much interest on designing non-pharmaceutical interventions.
This has led to strategies like interspacing mitigation with brief periods of activity[12]. Optimal control
methods have been also applied, for example to minimize the peak of infection[13], minimize the number
of infections[14], minimize the economic costs[15], or maximize welfare[16]. Compared to these studies,
our analytical characterization of optimal NPIs provides gives us a complete understanding of the optimal
decisions that need to be made. For example, no intervention is needed before reaching the separating
curve.
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